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This work aims at increasing the performance prediction for acoustic propagation systems
that will operate in the presence of the inevitable parameters uncertainty. In the present
contribution, the finite element method is applied to solve an acoustic problem described by
the Helmholz equation when the geometric and material properties present uncertainty. The
influence of the uncertainty of physical parameters on the pressure field is discussed. The
results using the polynomial chaos expansion method are compared with Monte Carlo simu-
lations. It is show that uncertainty levels in the input data could result in large variability
in the calculated pressure field in the domain.

Keywords: finite element simulation, uncertainty quantification, acoustic propagation, gene-
ralized Polynomial Chaos

1. Introduction

The guided acoustic propagation is an important field of acoustics. This importance arises
as a consequence of the need in reducing or increasing the sound intensity in some regions of
wave-guides. The acoustic propagation in cylindrical wave-guides is a common field in struc-
tures like automotive and aircraft engines. The Helmholtz equation is normally used to model
the propagation of acoustic waves (Cheung and Jin, 1991; Nark et al., 2003, 2005; Taktak et
al., 2012). For a large set of problems, there is no analytical closed solution to this equation.
Generally, a numerical procedure was applied to calculate the sound pressure field (Lins and Ro-
chinha, 2009; Lan, 2005). The finite element (FE) simulation is a very powerful technique which
can be applied to obtain an approximate solution to the Helmholtz equation. The deterministic
simulation leads to an approximate and nominal solution of reality. In some cases, the behavior
prediction of a system is especially difficult because of the variability induced by uncertainty.
The challenge is to improve the performance of numerical simulations of guided acoustic pro-
pagation. Recently, the probabilistic modeling of mechanical problems has received attention of
some researchers (Sepahvand and Marburg, 2014; Xia et al., 2015). All of them are looking for
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more robust models that take into account the random nature of some parameters: material pro-
perties, geometrical irregularities, boundary and initial conditions, operating conditions, loading.
The numerical accuracy and error control have been employed in simulations for fluid structure
interaction (Mansouri et al., 2013) vibroacoustic problems (Dammak et al., 20117b; Mansouri et
al., 2012a,b; Sepahvand and Marburg, 2014), CFD research (Xiu and Karniadakis, 2003) and dy-
namic responses of engineering structures (Yang and Kessissoglou, 2013). The application of the
FE method to the Helmholtz equation has also been an object of certain studies concerning the
error estimation and propagation (Ihlenburg and babuska, 1995). In (Lins and Rochinha, 2009),
the solution of acoustic problems was resolved numerically when the boundary conditions presen-
ted uncertainty. Nevertheless, according to (Lepage, 2006), there is a relative lack of information
about how statistical distributions of some variables influence the distributional properties of
the acoustic response. Based on literature reviews, one can distinguish two ways to include sto-
chastical behavior in finite element simulations: the first is a statistical approach or a sampling
method, like the Monte Carlo (MC) technique (Hurtado and Alvarez, 2012). In this method, a
large number of samples of input variables are required for reasonable accuracy. The problem
is then solved for each realization. This technique allows one to obtain the entire probability
density function of any system variable. It is widely used since it is easier to implement and very
robust. However, a huge number of realizations to be solved could lead to a prohibitive computa-
tional cost. The second probabilistic tool is a non-statistic approach or a non-sampling method,
which results in analytical treatment of the stochastic process. It consists in the polynomial cha-
os (Fisherand Bhattacharya, 2008; Creamer, 2006; Ng and Eldred, 2012). It is a more efficient
tool due to discretization of random parameters by a set of limited realizations. This theory was
initiated by Ghanem and Spanos (1991) who used expansion in Wiener-Hermite polynomials to
model stochastic processes with Gaussian random variables (Wiener, 1938). The convergence
of such an expansion in the mean square sense has been shown (Cameron and Martin, 1947)
and generalized to various continuous and discrete distributions using orthogonal polynomials
following the so called Askey-scheme (Xiu and Karniadakis, 2002). This general extension is
known as generalized polynomial chaos (gPC) (Wan and Karniadakis, 2006). Polynomial chaos
gives a mathematical framework to separate the stochastic components of a system response
from deterministic ones. According to (Xiu and Karniadakis, 2002, 2003), polynomial chaos did
not receive much attention for a long time. In the numerical aspect, one can distinguish intru-
sive and non-intrusive methods. The first method is applied to systems in which the governing
equations are known. In this case, the stochastic equations are used to generate a set of determi-
nistic equations using the Galerkin method (Ghanem and Spanos, 1991), which are difficult to
implement. Nonintrusive technique seems to be more efficient since it only requires simulations
corresponding to particular samples of the random parameters, and no modifications are needed
on the system model (Nechak et al., 2013). It worth mentioning that works on numerical simula-
tion of sound propagation in a three-dimensional duct coupled with uncertainty analysis remains
infrequent. In (Taktak et al., 2011), a numerical method of the modeling of sound propagation
in circular and rectangular cross-section ducts in the presence of flow was developed and pre-
sented. The pressure acoustic field inside the duct was determined for several incident acoustic
modes. In (Kesentini et al., 2015), the wave finite element method was applied to study guided
acoustical propagation. In those studies, uncertainties on the fluid-structure interaction were
neglected.

In this paper, we aim at increasing the performance prediction for acoustic propagation
systems that will operate in the presence of the inevitable parameters uncertainty associated
with the geometric and material properties. The stochastic methods discussed above, MC and
gPC, are implemented and integrated in finite element simulation for a circular cross-section
duct. The simulation results are discussed, compared and validated with literature.
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2. Governing equations of the physical problem

2.1. Acoustic propagation in a cylindrical duct

In this Section, the governing equations of sound propagation in circular cross-section ducts
are presented in Fig. 1. The equation governing the acoustic behavior of a fluid is the Helmholtz

Fig. 1. Description of the cylindrical guide

equation (Taktak et al., 2011; Kim and Nelson, 2004)

∆pi + k2pi = 0 (2.1)

where ∆ is the Laplacian operator, pi is the acoustic pressure inside the studied duct and k is
the total wave number. It is well noticed that the resolution of this equation depends on the
duct geometry. In this work, a cylindrical cross-section duct is considered. For this kind of duct,
the resolution Helmholtz equation in the cylindrical coordinates system is carried out by the
variables separation method. The acoustic pressure is expressed as

P (ri, θ, z) = R(ri)Θ(θ)Z(z) (2.2)

where

Z(z) = Aejkzz +Be−jkzz Θ(θ) = θ1e−jmθ + θ2ejmθ R(ri) = CJm(krri) (2.3)

where A, B, θ1,2 and C are constants depending on boundaries conditions. The wave numbers
are related by the dispersion relation (Taktak, 2008)

Γ 2mn + k
2
mn − k2 = 0 (2.4)

In the case of a rigid wall, the radial wave number is defined by

Γmn =
χmn
a

(2.5)

where χmn is the n-th root of the derivative of Jm – the Bessel function of the first kind of the
order m. Thus the modal analysis can be applied (Dammak et al., 2017a; Blazejewski, 2013;
Blazejewski et al., 2014) and the acoustic pressure field inside the duct is obtained as

P (ri, θ, z, t) =
∞∑

m=0

∞∑

n=0

Pmn(z)Ψmn(ri, θ)e−jωt (2.6)

where Pmn are the modal coefficients associated modes (m,n) defined by

Pmn(z) = Amne−jkmnz +Bmnejkmnz (2.7)

and Ψmn are the eigenfunctions of the enclosure (Blazejewski et al., 2014; Meissner, 2008), which
satisfy the Helmholtz equation and can be expressed as

Ψmn(ri, θ) = Jm
(
χmn

ri
a

)
ejmθ (2.8)

The Helmholtz equation will be solved numerically in Section 3.
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2.2. Uncertainty modeling

In this Section, we introduce two classical techniques for representing random processes: the
generalized Polynomial Chaos (gPC) and the Monte Carlo (MC) technique.

2.2.1. Polynomial chaos

The Polynomial Chaos was originally developed by Wiener (1938). It is a stochastic method
based on spectral representation of the uncertainty. The PC decomposes a random function (or
variable) into separable deterministic and stochastic components. Here, a brief mathematical
review of this approach will be given. For instance, considering any random variable λi such as
velocity, density, or pressure in a stochastic fluid dynamics problem, one can write (Nechak et
al., 2013)

λi(x, ξ) =
∞∑

j=0

λi,j(x)φj(ξ) (2.9)

where ξ is the random variable vector with a known joint density functionW (ξ), λi,j is the deter-
ministic component and φj(ξ) is the orthogonal polynomial function satisfying the orthogonality
relation

〈φi, φj〉 =
∫
φiφjW (ξ) dξ =

{
0 if i 6= j
〈φi, φj〉 if i = j

(2.10)

where 〈·〉 is the internal product operator. As a series expansion to infinity cannot be used in
practice, the sum is truncated to a finite number of terms Np, which is shown to be dependent on
the gPC order p, and the stochastic dimension r denoting the number of uncertain parameters

λi(x, ξ) =
Np∑

j=0

λi,j(x)φj(ξ) (2.11)

with

Np =
(p+ r)!
p!r!

− 1 (2.12)

For a random variable with certain distribution, the orthogonal function φj can be chosen in
such a way that its weight function has the same form as the probability function W (ξ). Then,
computing λi is transformed into the problem of finding the coefficients λi,j of its truncated
expansion (Smith et al., 2007). To extend the application of the polynomial chaos theory to pro-
pagation of continuous non-normal input uncertainty distributions, Xiu and Karniadakis (2003)
used a set of polynomials known as the Askey scheme to obtain the Wiener-Askey generalized
Polynomial Chaos. Table 1 shows commonly used, Legendre, Hermite, and Laguerre polynomials
and the associated probability density functions (PDF) included the Askey scheme. Legendre
and Laguerre polynomials are optimal basis functions for uniform and exponential input uncer-
tainty distributions respectively, whereas the Hermite polynomials are optimal for the normal
distributions in terms of the convergence of the statistics.
The intrusive and non-intrusive approaches are generally defined to calculate these coeffi-

cients called stochastic modes. The non-intrusive approach seems to be more efficient since it
only requires simulations corresponding to particular samples of random variables and it needs
no modifications of the stochastic model, contrary to the intrusive approach. That is why only
the non-intrusive approach is considered in this paper. This approach considers the determi-
nistic model as a black-box and approximates the stochastic coefficients with formulas based
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Table 1. Correspondence between the type of distribution and the type of base of chaos

Distribution Density function Polynomial Weight function W (ξ) Support range

Uniform
1
2

Legendre Le(ξ) 1 [−1, 1]

Normal
1√
2π
exp
(−ξ2
2

)
Hermite Hn(ξ) exp

(−ξ2
2

)
[−∞,+∞]

Exponential exp(−ξ) Lagrange La(ξ) exp(−ξ) [0,+∞]

on deterministic code assessment. The spectral projection (NISP) and regression are the main
non-intrusive polynomial chaos methods used for uncertainty quantification. In the technique
NISP (Ng and Eldred, 2012), once the solution is expressed in the base of polynomial chaos
following general expression (2.11), it is projected, which determines stochastic coefficients as

λi,j(x) =
〈λi(x, ξ), φj(ξ)〉
〈φj(ξ), φj(ξ)〉

=
1
〈φ2j 〉

∫
λi(x, ξ)φj(ξ)W (ξ) dξ j = 0, . . . , Np (2.13)

The regression method (Blatman and Sudret, 2008) consists in calculating the stochastic coeffi-
cients so as to minimize the least squares sense, the gap ε between the solution of the stochastic
model and its approximation in the base of generalized polynomial chaos

ε =
Q∑

k=1

[
λi(x, ξ(k))−

Np∑

j=0

λi,j(x)φj(ξ(k))

]
(2.14)

The ξ(k) may be selected from the roots of a polynomial with the condition Q > Np + 1, with
Q being the number of Gauss points. By designating λi,j = (λi,0, . . . , λi,Np)

T, the vector of
modal coefficients, Z the matrix of elements Zq,l = φj(ξ(q)) and λi = (λi(x, ξ(1)), . . . , λi(x, ξ(q)))
the vector corresponding to the game simulations ξ(q). and if the matrix ZTZ is non-singular
then the optimal solution of the classical least squares problem is given by

λi,j = (ZTZ)−1ZTλi (2.15)

The quality of the solution depends on the conditioning of the matrix (ZTZ) called the Fischer
matrix.

2.2.2. Monte Carlo theory

The MC method provides successive resolutions of a deterministic system incorporating
uncertain parameters modeled by random variables. It generates, for all uncertain parameters
and according to their probability distributions and their correlations, random simples. For each
draw, a set of parameters is obtained and a deterministic calculation, following numerical (FES)
or analytical models well defined, is made. The main advantage of this method is that it can be
applied to any system, whatever is its size and complexity (linear, non-linear, etc.). A reasonable
accuracy of the results requires a large number of draws which makes the MC method prohibitive
in terms of computational cost. The standard MC approach considers functions of the following
form

Y =M(X) (2.16)

where M represents the model under consideration, X = [X1,X2, . . . ,Xn]T is a vector of uncer-
tain input parameters and Y represents the vector of estimated outputs that will be a random
vector. The algorithm of this method can be summarized in 5 steps:
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Step 1: probabilistic identification of uncertain parameters in the model;

Step 2: sampling and random generation of inputs following identified probabilistic distribu-
tions;

Step 3: spread of uncertainty i.e. of the data set resulting from step 2 into the model and
determination of the corresponding outputs set;

Step 4: estimation of the outputs probabilistic distributions whose statistical characteristics
are given by the mean value µγ and standard deviation σγ . These are calculated using a
set of N simulations as follows

µγ =
1
N

N∑

i=1

M(X(j)) σ2γ =
1

N − 1
N∑

i=1

[M(X(j))− µ2γ ] (2.17)

Step 5: convergence analysis of the distribution of the model output.

3. Numerical results

Finite element simulations are carried out to study the acoustic propagation in a cylindrical
duct. The acoustic pressure P within a finite element can be written as

P =
m∑

i=1

NiPi (3.1)

where Ni is a set of linear shape functions, Pi are acoustic nodal pressures at the node i, and
m is the number of nodes forming the element. For the pressure formulated acoustic elements,
the finite element equation for the fluid in matrix form is

Mf P̈+KfP = Ff , (3.2)

whereMf is the equivalent fluid mass matrix, Kf is the equivalent fluid stiffness matrix, Ff is
the vector of applied fluid loads, P is the vector of unknown nodal acoustic pressures, and P̈ is
the vector of the second derivative of acoustic pressure with respect to time.
Section 3.1 deals with numerical model validation without considering uncertainty. In Section

3.2, the stochastic methods discussed above, MC and gPC, are implemented and integrated in
finite element simulation for the cylindrical duct. In this framework, geometrical (radius of the
duct) and material properties (density) are presenting the probabilistic parameters.

3.1. Deterministic model

The chosen example consists in applying the modal pressure at the left boundary ΓL of a
cylindrical duct, as indicated in Fig. 1. The geometric characteristics of the studied duct are:
radius a = 0.02m and length L = 0.25m. The magnitude of the imposed pressure is equal
to 1Pa. At the end of the duct ΓR, a normalized acoustic impedance is applied (Zp = 2) to
reflect the acoustic wave plane. The duct has been modelled using 8000FLUID30 elements.
This is an entirely acoustic analysis and there are no active displacement degrees of freedom. In
the following, the acoustic pressure fields obtained by the present numerical simulation without
probabilistic approach is discussed. Only the real parts of the pressure are studied. The ANSYS
Finite Element model of the duct is given in Fig. 2.
Figure 3 presents the pressure field inside the duct at several frequencies. The wave propa-

gation is clear and the localization of the maximum of the real part of the acoustic pressure is
varying as a function of the frequency. Frequency evolution of the pressure magnitude in one
point inside the cylindrical duct is depicted in Fig. 4. The results greatly agree those shown in
(Kesentini et al., 2015).
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Fig. 2. ANSYS Finite Elements model of the cylindrical duct

Fig. 3. Real part of the acoustic pressure inside of the studied cylindrical wall duct

Fig. 4. Frequency evolution of the pressure magnitude in one point inside the cylindrical duct
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3.2. Probabilistic analysis

In this Section, the stochastic methods discussed above, MC and gPC, are implemented
and integrated in finite element simulation, see Section 3.1. The objective is to enhance the
performance prediction for acoustic propagation systems that will operate in the presence of the
inevitable parameters uncertainty associated simultaneously with the geometric and material
properties. The geometric uncertain parameter considered here is a, radius of the cylindrical
duct. The physical uncertain parameter is density ρ. These parameters are chosen to be uniform
random following a progressive nomination around their nominal values ±5%; a = a0+ ξa1 and
ρ = ρ0 + ξρ1, where a0, ρ0 are the mean values, and a1, ρ1 are convenient constants. Using
the Monte Carlo method to analyze the pressure field consists in creating a grid of numerical
values from the probabilistic uncertain parameters and calculating the quantity of interest of the
linearized system for each value of the grid. The case of uniform distribution of the uncertain
parameters is considered. The quantity of interest is analyzed for 500 drawings. Figure 5 shows
the distribution of the input variables (a, ρ) in the case of uniform distribution of uncertainty.

Fig. 5. Probability distribution of radius and density

Fig. 6. Magnitude of the maximum pressure inside the duct as a function of geometric and material
uncertain parameters

The results consist in the quantity of interest (the magnitude of pressure) plotted in Fig. 6
as a function of different duct radii and densities. The chaotic representation of the acoustic
pressure is

P (ri, θ, z, ξ) =
Np∑

j=0

P j(ri, θ, z)φj(ξ) (3.3)

The Monte Carlo representation for the acoustic pressure can be expressed as

PMC(ri, θ, z, ξ) =M(X) (3.4)
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whereM is the finite element model and X = [a, ρ]T is the vector of input uncertain parameters.
The probability distribution and the relative errors are shown in Figs. 7 and 8. All results are
compared with the direct method of MC. Models based on gPC are constructed using r uncertain
parameters (r = 1 → 2). It is well depicted from Fig. 6 that for ±5% of radius variation a, the
maximum pressure magnitude is varying linearly, justifying the choice of the drawing number
in MC. In the case of variability within density, one can remark that radius has a more effect
on the pressure magnitude than density.

Fig. 7. Probability distribution of pressure

Fig. 8. Histogram of the relative error of pressure

We plot in Fig. 9 the mean value of the pressure as a function of the order p, for an uncertain
parameter with variation of ±5%. It is noted that there is a convergence of the average from
p = 4. On can notice that the pressure distribution of the mean is very similar to that obtained
when we use a deterministic model (Section 3.1). It is also proved that the results strongly
depend on the frequency used.
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Fig. 9. Average of the pressure

Table 2 shows the main features of each technique. It is worth mentioning that the Monte
Carlo technique is a very powerful method to solve complex systems with random parameters. In
this work, 500 of samplings of two input variables are calculated and then the problem is solved
for each sample of input variables. Nevertheless, according to results in Table 2, this technique
has poor convergence for mean and standard deviation of the solution, requiring a large number
of samples to achieve good precision in results, resulting in costly computation. This result is in
a good agreement with (Nechak et al., 2013).

Table 2. Comparison between MC and gPC

Frequency f = 1000Hz Monte Carlo gPC(r = 2)

Order p – 4
Number of simulations 500 25
Maximum relative error between gPC and MC – 6.4e−4

Mean of the pressure (Pa) 0.047262 0.047262
Standard deviation 0.001821 0.001826
Time [s] 43438.96 0.5182

For high frequencies that are greater than 5000Hz, Fig. 10 shows that the acoustic pressure
is varying nonlinearly according to radius of the cylindrical duct. We plot in Figs. 11a and 11b,
respectively, the mean value and the standard deviation of pressure as a function of the order p.
It is clear that there is a convergence of these statistical results from p = 7.

4. Conclusions

In this work, the MC method and the gPC have been coupled to FE simulation discussed above
in order to calculate statistical data from output pressure field. In this paper, a numerical so-
lution of the Helmholtz equation is proposed based on finite element simulation. This solution
is coupled to probabilistic approaches, when physical parameters present uncertainty. The case
of a cylindrical duct has been considered. The influence of uncertain variables on the pressure
field has been discussed. The results using the polynomial chaos expansion method have been
compared with the Monte Carlo technique. Convergence has been verified with comparisons
against exact solutions and solutions from Monte Carlo simulations. As regards efficiency, gPC
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Fig. 10. Magnitude of the maximum pressure inside the duct as a function of radius at a high frequency

Fig. 11. (a) Average and (b) standard deviation of pressure

based simulation is computationally less expensive than the MC technique to generate the so-
lution statistics. In the problems we have studied here, we can only make direct comparisons
when using two random physical parameters, and no interaction is considered. The future track
of work will consist in the study of uncertainty of the fluid-structure interaction when several
uncertain input variables are included.
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Delamination crack growth is a major source of failure in composite laminates under static
and fatigue loading conditions. In the present study, damage mechanics based failure models
for both static and fatigue loadings are evaluated via UMAT subroutine to study the dela-
mination crack growth phenomenon in Glass Fiber Reinforced Plastic (GFRP) composite
laminates. A static local damage model proposed by Allix and Ladevèze is modified to an
non-local damage model in order to simulate the crack growth behavior due to static loading.
Next, the same classical damage model is modified to simulate fatigue delamination crack
growth. The finite element analysis results obtained by the proposed models are successfully
compared with the available experimental data on the delamination crack growth for GFRP
composite laminates.

Keywords: finite element analysis, GFRP, damage mechanics, non-local, fatigue, delami-
nation

1. Introduction

Composite laminates are frequently used in modern structural materials due to the high strength-
-to-weight ratio. Moreover, by adjusting the orientation of fibers one can also get desired me-
chanical properties in desired loading directions (Herakovich, 1997). Carbon and glass fibers are
commonly used to manufacture composite laminates. Carbon fibers have better strength and
less density than glass fibers, but they are not cost effective. Glass Fiber Reinforced Plastic
(GFRP) composite laminates are used in avionic, automobile, ship and wind turbine industries.
In the present study, delamination crack growth simulations for the GFRP composite laminates
are performed under static and fatigue loadings. Delamination may be defined as a crack like
an entity between the composite laminates. The cracks can grow within laminates under static
and fatigue loadings and may result in failure of structural parts (Davies et al., 1989; Allix and
Ladevèze, 1992). Normally, damage or fracture mechanics based approaches are used to study
the cark growth behavior in different structural elements. Fracture mechanics deals with the
propagation of already existing crack (Meng and Wang, 2014) while, on the other hand, damage
mechanics can not only simulate the propagation of cracks but also deals with initiation of the
crack (Allix et al., 1995, 1998; Allix and Ladevèze, 1996; Ijaz et al., 2016).
Damage mechanics based formulations have been used to simulate the crack growth behavior

in composite laminates mostly for CFRP (Corigliano, 1993; Corigliano and Allix, 2000; Chaboche
et al., 1997; Alfano and Crisfield, 2001). In the present study, delamination crack growth in the
GFRP composite laminates is focused using the damage mechanics based formulation.
Classical static damage models proposed by earlier authors were mostly local in nature (Allix

and Ladevèze, 1992; Corigliano, 1993; Chaboche et al., 1997; Alfano and Crisfield, 2001). Loca-
lization means that damage tends to localize in a narrow zone in front of the crack tip rather
than a uniform distribution over a certain region (Jirasek, 1998). Bažant and Pijaudier-Cabot
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(1988, 1989) proposed an integral type non-local damage model for brittle concrete materials.
Similarly, a rate dependent damage model is also proposed to avoid the localization issues
in CFRP composite laminates by introducing a time delay in the damage evolution formula-
tion (Allix et al., 2000; Marguet et al., 2007). To counter the localization problem, Peerlings
introduced a gradient enhanced damage evolution model (Peerlings et al., 2001). Borino ga-
ve the idea of using the integral type non-local damage model for the interface damage mo-
dels for composite laminates (Borino et al., 2007). Ijaz used the idea of an integral type non-
-local interface damage model for the study of delamination crack growth in CFRP composite
laminates (Ijaz et al., 2014). GFRP composite laminates also show a considerable amount of
fiber bridging during crack growth (Davidson and Waas, 2012). In the present study, an inte-
gral type non-local damage is used to accommodate the spurious localization and fiber bridging
issues during delamination crack growth in GFRP composite laminates under static loading con-
ditions. The classical damage model proposed by Allix and Ladevèze (1992, 1996) is modified
to a non-local one.
This article is organized as follows: in Section 2, basics of the classical interface damage model

are recalled. The proposed non-local static interface damage model is discussed in Section 3.
Finite element simulation results and their comparison with the experimental data are detailed
in Section 4. Finally, some concluding remarks are given in Section 5.

2. Introduction to the classical local interface damage model

Simulation of delamination crack growth in composite laminates is performed by coupled in-
terface damage modelling. The interface is a crack like entity that exists between two adjacent
lamina layers. The relative displacement of the two adjacent layers with respect to each other
can be described as

U = U+ −U− = U1N1 + U2N2 + U3N3 (2.1)

whereN1,N2 andN3 are mutual perpendicular vectors in an orthotropic reference frame for the
interface. The failure or deterioration of the interface is taken into account by the introduction
of three damage variables, d1, d2 and d3 correspond to orthotropic direction vectors. Here, d3
corresponds to the out-of-plane opening mode (Mode I), whereas d1 and d2 correspond to the
in-plane shearing and tearing failure modes (Mode II and Mode III). The damage variable is
divided into two parts, i.e. static damage variable diS and fatigue damage variable diF . Hence,
the total damage di can be calculated by taking the sum of the two aforementioned damage
variables di = diS + diF , i = 1, 2, 3.
If σ13, σ23 and σ33 are interfacial stress components in N1, N2 and N3 directions, respectively,

then the damage variables are related to the interfacial displacements as


σ13
σ23
σ33


 =



k01(1− d1) 0 0
0 k02(1− d2) 0
0 0 k03(1− d3)






U1
U2
U3


 (2.2)

here k01 , k
0
2 and k

0
3 are defined as interface rigidities corresponding to three failure modes. The

damage model is built by considering thermodynamic forces combined with damage variables
and are associated with three modes of delamination as follows (Allix et al., 1995; Allix and
Ladevèze, 1996)

Yd3 =
1
2
〈σ33〉2+

k03(1− d3)2
Yd1 =

1
2

σ213
k01(1− d1)2

Yd2 =
1
2

σ232
k02(1− d2)2

(2.3)



Mathematical modelling and simulation of delamination crack growth... 19

where 〈σ33〉+ represents the positive value of σ33, i.e. damage will not grow during compression
loading when a normal loading is applied. Now the three damage variables are assumed to be
strongly coupled and are governed by a single equivalent damage energy release rate of the
following form (Allix and Ladevèze, 1996)

Y (t) = max
r¬t

(
(Yd3)

α + (γ1Y d1)
α + (γ2Y d2)

α
) 1
α (2.4)

where γ1 and γ2 are coupling parameters, and α is a material parameter which governs the
damage evolution under mixed mode loading conditions. Now, the damage evolution law is
defined as an isotropic material function of the following form

if [(d3S < 1) and (Y < YR)] then d1S = d2S = d3S = ω(Y )

else d1S = d2S = d3S = 1
(2.5)

where the damage evolution material function ω(Y ) is defined as (Allix and Ladevèze, 1996)

ω(Y ) =
( n

n+ 1
〈Y − YO〉+
YC − YO

)n
(2.6)

where YO and YC are threshold and critical damage energy release rates. n is termed as a
characteristic function of the material. Higher values of n correspond to a brittle interface. YR is
defined as damage energy associated to rupture and can be calculated using following formula

YR = YO +
n+ 1
n

d
1
n
c (YC − YO)

Now the identification of parameters YC , γ1 and γ2 can be done by comparing the energy dissipa-
tion yielded by the damage mechanics approach and LEFM (Linear Elastic Fracture Mechanics).
For a pure mode case energy release rate GiC (i = I, II, III) obtained from fracture mechanics,
the experiments considering LEFM can be compared to the damage mechanics approach using
the following relation (Allix et al., 1995; Allix and Ladevèze, 1996)

GIC = YC GIIC =
YC
γ1

GIIIC =
YC
γ2

(2.7)

For a mixed-mode loading case, a standard LEFM model can be recovered as (Allix and La-
devèze, 1996)

( GI
GIC

)α
+
( GII
GIIC

)α
+
( GIII
GIIIC

)α
= 1 (2.8)

The equivalence between damage mechanics and LEFM also leads to the following relation
during the complete debonding process (DP)

GIC =
∫

DP

σ33 dU3 GIIC =
∫

DP

σ13 dU1 GIIIC =
∫

DP

σ23 dU2 (2.9)

Equation (2.9) states that for any pure mode debonding case, the area under the curve obtained
from the damage mechanics approach is equal to the experimentally obtained critical energy
release rate GiC .
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3. Non-local interface damage model for static loading

The classical interface damage model shows the strain softening phenomenon during the degra-
dation process (Borino et al., 2007; Ijaz et al., 2014). Due to this softening behaviour, the stress
tends to localize in a narrow region in front of the crack tip. This localization phenomenon is
more obvious for 3D delamination simulations over 2D analysis. Moreover, fibre bridging also
occurs during delamination crack growth in GFRP composite laminates (Yao, 2015; Davidson
and Waas, 2012). The mathematical non-local interface damage model presented in this Section
will also inherently accommodate the fibre bridging process.
In the proposed methodology, the damage variable is made non-local by taking spatial avera-

ging over a certain domain using the Gaussian distribution methodology. The averaging domain
is dictated by the characteristic length parameter l. A higher value of l means that more elements
are used for the averaging. This domain dependent characteristic length l will also simulate the
fibre bridging behaviour since bridging occurs over a certain domain during delamination crack
growth in composite laminates.
Now one can write the average of damage variable d over the surrounding domain using the

weight function α0(r) (Ijaz et al., 2014)

d(x) =
1

Vr(x)

∫
α0(‖x− ζ‖)d(ζ) dζ (3.1)

where

Vr(x) =
∫
α0(‖x− ζ‖) dζ (3.2)

The damage variable calculated using Eq. (2.5) is made non-local using Eq. (2.10) over a pre-
scribed selected domain. The isotropic weight function α0(r) is calculated using the Gaussian
distribution function of exponential form as follows

α0(r) = exp
(
− r
2

2l2
)

(3.3)

From the above equation it is clear that the weight function α0(r) depends on the distance
between two points r = ‖x − ζ‖ and the characteristic length parameter l. A smaller value of l
corresponds to a less number of elements available for averaging. Higher values mean that more
elements will take part in the for averaging.
Equation (2.10) describes the damage variable d which is made non-local by taking spatial

averaging. Similarly, like Eq. (2.10), two other variables like the equivalent damage energy release
rate Y and interfacial displacement U are also made non-local, and then the damage variable is
calculated using these as

Y (x) =
1

Vr(x)

∫
α0(‖x− ζ‖)Y (ζ) dζ

U(x) =
1

Vr(x)

∫
α0(‖x− ζ‖)U(ζ) dζ

(3.4)

Once the values of Y (x) and U(x) are known then the non-local damage variable can be cal-
culated as a function of Y (x) and U(x), respectively. Once the value of the averaged non-local
variable d is calculated either using Eqs. (2.10) and (2.13)1 or (2.13)2 then the updated value
of d will be used in Eq. (2.2) to calculate the interfacial stresses.
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4. Finite element analysis and results

In this Section, details and results of finite element simulations are presented and discussed
separately for both static non-local and fatigue interface damage models for GFRP composite
laminates. Double Cantilever Beam (DCB) specimen for Mode I is shown in Fig. 1. The specimen
has total length L, initial crack length a0 and total height 2h, as shown in Fig. 1.

Fig. 1. DCB specimen for Mode I delamination crack growth

All simulations are performed in finite element software Cast3M (CEA) (Verpeaux et al.,
2000). The geometry of the beam is modelled with 2D plane strain quadrangles. The interface
between the specimen arms is modelled with 2D interface element JOI2 to simulate the debon-
ding process (Beer, 1985). Different parameters like YO, YC , γ1, n, k01 and k

0
3 are needed to be

identified for the finite element analysis of Mode I and Mode II delamination crack growth. The
value of threshold damage energy YO is taken zero, i.e. YO = 0 for all the finite element simu-
lations. The identification of YC and γ1 can be done by using Eq. (2.7) provided that Mode I
and Mode II critical energy release rates GIC and GIIC are already determined from LEFM
experiments. The identification of value of n depends on the brittleness of the interface. The
value of n varies between 0-1.0, and a good value can be identified by matching the experimental
and numerical results. The values of interfacial rigidities can be calculated using the following
relation (Ijaz et al., 2011)

k03 =
(2n + 1)

2n+1
n

8n(n+ 1)Yc
σ233 k0i =

γi(2n+ 1)
2n+1
n

8n(n+ 1)Yc
σ23i i = 1, 2 (4.1)

In Eq. (4.1), σ33 and σ3i (i = 1, 2) are the maximum interfacial normal and in-plane shear
stresses. The energy release rate calculated using fracture mechanics theory for pure Mode I is
given as (Willams, 1988)

GI =
M2

bEI
(4.2)

where M is the applied moment, b is width of the specimen, E is flexure modulus and I is the
second moment of area of the bear arm.

5. FE analysis of delamination crack growth under static loading

In this Section, finite element analysis of Mode I delamination crack growth for GFRP composite
laminates is performed using the non-local interface damage model. The experimental work of
Davidson and Waas (2012) on Mode I delamination crack growth for GFRP composite laminates
is used for finite element analysis. Nominal dimensions for DCB specimen are: L = 130, h = 2.5,
a0 = 50 and width is b = 25.4. All the dimensions mentioned above for DCB specimen are in mm.
the Mode I critical energy release rate GIC value is 1.45KJ/m2. The modulus E11, in the fibre
direction is 11.5GPa and the major Poisson’s ratio is 0.3 for GFRP (Davidson and Waas, 2012).
In the interface damage model, different values are identified as discussed above. The interfacial
rigidity k03 is found to be 9000MPa/mm for maximum normal stress value of 50MPa. Figure 2
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shows the evolution of normal stress with respect to the interfacial displacement for different
identified damage parameters. From Fig. 2, one can also observe that the area under the curve
is always equal to the critical energy release rate for the complete debonding process, Eq. (2.9).

Fig. 2. Evolution of normal stress σ33 with interfacial displacement U3

Three different formulations on averaging of the variables d, Y and U are discussed earlier
for the non-local interface damage model. These three different non-local interface damage for-
mulations are implemented in finite element software Cast3M via procedure PERSO1 and user
material subroutine UMAT.
Figure 3 shows the normalized value of evolution of the reaction force with crack opening

displacement for Mode I delamination crack growth using d based non-local damage formulation.
Reaction force values are normalized to 120N for ease of presentation and comparison with the
experimental results. Figure 3 presents the curves for the non-local model for three different
characteristic lengths l with values of 0.2, 0.4 and 0.6.

Fig. 3. (a) Normalized reaction force and (b) crack growth vs crack opening displacement for d based
non-local formulation

From Fig. 3a, one can notice that as the characteristic length value reduces, the results
coincide with the classical local damage model proposed by Allix and Ladevèze. The reason
is that as the characteristic length value reduces, a fewer number of elements is available for
the averaging and the results come close to those predicted by the local damage model. The
finite element simulation results are also in good agreement with the experimental results of
(Davidson and Waas, 2012). Peng and Xu (2013) proposed a damage model that accommodates
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the bridging effect by dividing the damage variable into static dS and bridging db parts. However,
in the present work, the non-local model accommodates the bridging effect by controlling the
characteristic length l. The model of Peng and Xu (2013) also demonstrated the similar behaviour
of the increasing reaction force with an increase in the bridging force, whereas in the present case
a larger value of the characteristic length causes an increase in the reaction force, see Fig. 3a.
From Fig. 3a, one can also note that although the peak reaction force is different for various
characteristic length values, but they all tend to converge close to each other once a stable crack
growth is established.

Figure 3b presents the evolution of delamination crack growth as a function of the crack ope-
ning displacement. Figure shows the evolution of the crack for the non-local model using three
different characteristic length values, i.e. 0.2, 0.4 and 0.6. In Fig. 3, the finite element analysis
results are also compared with the experimental results. The start of crack growth correspon-
ding to different l values is in accordance with the behaviour depicted in Fig. 3. The start of
crack growth for the non-local damage model with a small value of l (0.2) and the classical local
damage model is almost the same. Similarly, crack growth starts late for a larger l (0.6) value in
comparison to smaller l (0.2, 0.4) values, and this behaviour is also in accordance with the one
predicted in Fig. 3. The late start of crack growth is due to a relatively large value of l, which
means that more elements are available for the averaging in the non-local zone and, thus, impar-
ting extra resistance to crack growth resulting in an increase in the reaction force and, hence,
the late start of crack growth. The actual fibre bridging behaviour during delamination crack
growth in GFRP composite laminates is simulated by introducing the characteristic length l
into the classical local damage model. The larger value of l indicates a wider fibre bridging zone,
which means extra resistance to crack growth and a higher value of the reaction force. Moreover,
there is a good agreement between numerical and experimental results for delamination crack
growth with crack opening displacement, Fig. 3b.

Figure 4 shows the evolution of the reaction force and crack growth with crack opening
displacement using the U based non-local damage model. Trend of the reaction force and crack
growth for the U based non-local damage model is very similar to that predicted by d based
formulation. In the case of d based non-local formulation, the reaction force and crack growth
converge very close to each other while for U based formulation both almost converge to the same
path for different values of l once the stable crack growth rate establishes. The results presented
in Fig. 4 also show a similar trend as predicted by Peng and Xu (2013) for the reaction force in
the GFRP composite laminate delamination crack growth for different bridging forces.

Fig. 4. (a) Normalized reaction force and (b) crack growth vs. crack opening displacement for U based
non-local formulation
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Similarly, Fig. 5 shows the evolution of the reaction force and crack growth with crack opening
displacement using the Y based non-local damage model. The results predicted by this non-local
damage model show erratic behaviour. The results start to deviate from the experimental ones
as the characteristic length l value increases for both the reaction force and crack growth, see
Fig. 5.

Fig. 5. (a) Normalized reaction force and (b) crack growth vs crack opening displacement for Y based
non-local formulation

From the above discussions, it can be inferred that d and U based non-local damage formu-
lations give reasonable results for delamination crack growths in GFRP composite laminates.
The proposed methodology will not only avoid the localization issue but will also compensate
the fibre bridging effect.

Fig. 6. Evolution of the damage variable with crack opening displacement: (a) local damage model,
(b) non-local damage model, l = 0.6

Figure 6 shows the evolution of the damage variable with crack opening displacement for the
first ten elements from the crack tip for local and U based non-local damage models. In the figure
one can observe that for the first five elements, from the crack tip, the damage evolution starts
as soon the load is applied in the local damage model, whereas in the non-local damage model,
the damage evolution for the first seven elements starts as soon the load is applied. Similarly, for
the eighth element, the damage evolution starts when the crack opening displacement is 17mm
in the local damage model, and it starts around 8mm in the non-local damage model. The
characteristic length l helps one to involve more elements in the averaging process and makes
more elements be a part of damage initiation in the non-local model in comparison to the local
damage model. Hence, one can say that for larger values of l, more elements will be available in
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the averaging process and will take part in initial damage growth as soon as the load is applied.
Since in the local damage model no averaging of damage variable is done over a certain area,
therefore, fewer elements will take part in the initial damage growth in comparison with the
non-local damage model, see Fig. 6.

6. Conclusion

Delamination crack growth in GFRP composite laminates under static loading is simulated
in the present study. The original classical local damage proposed by Allix and Ladevèze is
modified to a non-local static damage model and a fatigue damage model. The proposed models
are implemented via UMAT subroutine and PERSO1 procedure in Cast3M FE software. The
non-local damage model is not only capable of avoiding the accumulation of damage in front of
the crack tip but also compensates the fibre bridging phenomenon at the interface by introducing
characteristic length l. The reaction force and crack growth are plotted against the crack opening
displacement for different values of l in pure Mode I static loading. Three different formulations
based on averaging of variables d, Y and U are proposed. FE simulation results show that d
and U based non-local models predict good results. The results determined by finite element
analysis for the static loading is successfully compared with the available experimental data of
GFRP composite laminates.
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A stereological ubiquitiformal softening model for describing the softening behavior of con-
crete under quasi-static uniaxial tensile loadings is presented in this paper. In the model,
both the damage evaluation process of fracture cross-sections and their distribution along
the specimens axis are taken into account. The numerical results of a certain kind of full
grade concrete made of crushed coarse aggregate are found to be in good agreement with
the experimental data. Moreover, an experiental relation between the lower bound to the
scale invariance of concrete and its tensile strength is also obtained by data fitting of the
experimental data, which provides an effective approach to determine the lower bound to
scale invariance of concrete.

Keywords: ubiquitiform, fractal, concrete, softening curve

1. Introduction

Fractals have been widely used as a nonlinear mathematical tool to describe mechanical beha-
vior of heterogeneous materials such as concrete since the pioneer work of Mandelbrot (1982),
Mandelbrot et al. (1984). It has been found that the internal structure of concrete appears quite
a well approximate self-similarity in many aspects over certain ranges of scale. For example,
it has been verified experimentally that the fracture surface of concrete can be described by
fractals (Saouma and Barton, 1994; Charkaluk et al., 1998). Stroeven has shown that for almost
all the aggregate grading in concrete, the distribution of the aggregate particles in various dia-
meters appears the self-similarity feature (Stroeven, 1973, 2000). Moreover, fractals have also
been widely used to describe the fracture behavior of concrete (Borodich, 1997; Carpinteri et al.,
2002; Khezrzadeh and Mofid, 2006). However, there are still many intrinsic difficulties in fractal
applications, especially in the case when the measure of a real geometrical or physical object
must be taken into account because kinds of density of fractal parameters defined on the unit
fractal measure are not only lacking unambiguous physical meanings but also very difficult to be
determined in practice. Recently, Ou et al. (2014) demonstrated that such a difficulty was caused
by contradiction between the integral dimensional immeasurability of a fractal and the integral
dimensional characteristic of a real physical or geometrical object in nature, and proposed a
new concept of ubiquitiform. According to Ou et al. (2014), a ubiquitiform is defined as a finite
order self-similar (or self-affine) physical configuration constructed usually by a finite iterative
procedure. It has been shown that a ubiquitiform has a finite integral dimensional measure and
must be of integral dimension in Euclidean space, whereas the Hausdorff dimension of a fractal is
usually not integral. The Hausdorff dimension of the initial element of a fractal changes abruptly
at the point of infinite iteration, which results in divergence of the integral dimensional measure
of the fractal and makes the fractal approximation of a real geometrical or physical object to a
ubiquitiform unreasonable.
One important phenomenon in tensile failure of concrete is softening, and the most widely

used theory is the so-called cohesive crack model (Barenblatt, 1959, 1962). Over the past decades,
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several softening curves have been proposed, such as the linear curve (Hillerborg et al., 1976), the
bilinear curve (Petersson, 1981), the nonlinear curve (Reinhardt et al., 1986) and the power-law
curve (Gopalaratnam and Shah, 1985; Karihaloo, 1995). Recently, Khezrzadeh and Mofid (2006)
proposed a quasi-fractal softening curve based on fractal concepts, in which, however, only the
damage evaluation process of the fractured cross-section was considered. On the other hand,
as demonstrated by Ou et al. (2014), a ubiquitiform, rather than a fractal, should be used in
describing a real geometrical or physical object in the case of the integral dimensional measure
of the object.
Therefore, in this study, based on the concept of the ubiquitiform, a stereological ubiquiti-

formal softening model for concrete, in which both the damage evaluation process of fractured
cross-sections and their distribution along the specimens axis are taken into account, and the
calculated results of softening curves of concrete are compared with previous experimental data.
Moreover, it is interesting to find that there exists a good correspondence between the lower
bound to scale invariance and the tensile strength of concrete, and then an experiential formula
for the corresponding relationship is obtained.

2. Stereological ubiquitiformal softening model

To describe the damage evaluation process of a concrete specimen, a stereological damage region
is assumed in this paper, based on the fracture band theory (Bažant and Oh, 1983). Namely,
fracture of a heterogeneous aggregate material such as concrete can be assumed to occur in
the form of a blunt smeared crack band. Such a stereological damage region consists of a series
of fracture surfaces distributed along the axis of the specimen as a generalized ubiquitiformal
Cantor set, and each of the fracture surface will be described by a generalized ubiquitiformal
Sierpinski carpet having different complexity. The generalized ubiquitiformal Sierpinski carpet
is generated by a series of recursive procedures, i.e. an iteration process from the initial square
of unit side length. In each step of the iteration, each remaining square is divided into p2

identical smaller squares, and the generalized ubiquitiformal Sierpinski carpet is then obtained
by repeatedly removing q (q/p2 < 1) small squares from the remaining squares. According to
Khezrzadeh and Mofid (2006), the removing area represents the cracked area of the fractured
cross-sections. As has been defined by Ou et al. (2014), the complexity D of such a generalized
ubiquitiformal Sierpinski carpet is

D =
ln(p2 − q)
ln p

(2.1)

Therefore, taking different values of p and q, the generalized ubiquitiformal Sierpinski carpet
can be used to describe a surface with any complexity. The removed area in the n-th iteration is

∆an = Ap
q

p2

(p2 − q
p2

)n−1
(2.2)

where Ap is the nominal area of the generalized ubiquitiformal Sierpinski carpet. The total area
of the increased crack surface, when the specimen is failed, is

A1 =
nc∑

n=1

∆an = Ap
[
1−
(p2 − q

p2

)nc]
= Ap

[
1−
( 1
pnc

)2−D]
(2.3)

where nc represents the critical iteration number of the generalized ubiquitiformal Sierpinski
carpet when the specimen is failed.
According to the fracture band theory (Bažant and Oh, 1983), in this study, a multiple

crack surface hypothesis is proposed in the ubiquitiformal softening model. That is to say, to
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describe the damage evolution of the concrete material, besides the main crack surface, there
are still several secondary crack surfaces, each of which is described as the above-mentioned
generalized ubiquitiformal Sierpinski carpet with different iteration orders. These crack surfaces
are assumed to be distributed along the axis of the specimen as a generalized ubiquitiformal
Cantor set (Fig. 1). Hereinafter, we denote these crack surfaces as the i-th order crack surfaces
(i = 1, 2, 3, . . . ,m), and the first order (i = 1) one is the main crack surface. According to the
structure of the generalized ubiquitiformal Cantor set, the number of the i-th order crack surface
is ki = 2i−1. It is also assumed that the iteration number of the i-th order crack surface is one
less than that of the (i − 1)-th order crack surface. Thus, the increase of the i-th order crack
surface in the n-th iteration can be calculated by the equation

∆ain = Ap
q

p2

(p2 − q
p2

)n−i
(2.4)

The total increase of the crack surface in the n-th iteration is

∆an =
m∑

i=1

ki∆a
i
n =

m∑

i=1

2i−1Ap
q

p2

(p2 − q
p2

)n−i
= Ap

2mqp2m(p2 − q)n−m − q(p2 − q)n
p2n(p2 + q)

(2.5)

Fig. 1. Stereological ubiquitiformal softening model

According to the iteration law of the generalized ubiquitiformal Sierpinski carpet, the ratio
of the area of the (i+ 1)-th crack surface to that of the i-th crack surface is

Ai+1 =
p2 − q
p2

Ai (2.6)

where i = 1, 2, 3, . . . ,m, and, from Eq. (2.6), we have

Ai =
(p2 − q

p2

)i−1
A1 (2.7)

Then, the total crack surface increased in the fracture process is

A =
m∑

i=1

kiAi = A1
m∑

i=1

2i−1
(p2 − q

p2

)i−1
= A1

p2m − 2m(p2 − q)m
(2q − p2)p2m−2 (2.8)

For convenience, here, the homogeneous deformation along the axis of the specimen is as-
sumed, and then the elongations generated in each iteration ∆w are the same, which can be
written as

∆w =
wc
nc

(2.9)

where wc is the critical elongation of the specimen.
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In general, on the one hand, the energy consumed in each iteration is proportional to the
increase of the area of the crack surface, that is

∆Un = Gf∆an (2.10)

where Gf is the fracture energy. On the other hand, the required energy to generate new cracks
equal to the area under the softening curve in a interval of length ∆w implies that

∆Wn = Aσn∆w (2.11)

Thus, form Eqs.(2.10) and (2.11), there is

Gf
∆an
A
= σn∆w (2.12)

The relationship between the stress and the elongation in each iteration can be obtained
from Eqs. (2.5), (2.8), (2.9) and (2.12), as

σn =
Gf∆an
A∆w

=
GfApncp

2m−2(2q − p2)2mqp2m(p2 − q)n−m
A1wcp2n(p2 + q)[p2m − 2m(p2 − q)m]

− GfApncp
2m−2(2q − p2)q(p2 − q)n

A1wcp2n(p2 + q)[p2m − 2m(p2 − q)m]
1 ¬ n ¬ nc

(2.13)

It should be noticed that the values of both the stress and the elongation in Eq. (2.13)
are discrete, starting from n = 1. In order to obtain a continuous stress-elongation curve in
the interval of [0, wc], the Khezrzadeh and Mofid modification (Khezrzadeh and Mofid, 2006)
is used, which is described briefly below. Firstly, it is assumed that the value of the softening
function in w = 0 is equal to the tensile strength of the specimen, i.e., σ(0) = ft, and that the
stress-elongation curve is linear in the interval of [0,∆w]. Next, an energy modification factor µ
is then introduced to make sure that the area under the softening curve is equal to Gf , namely,

(1− µ)Gf =
[
ft + σ

(∆w
2

)]∆w
2

(2.14)

Thus one has

σ =
µApGfncp

2m−2(2q − p2)2mqp2m(p2 − q)
nc
wc
w−m

A1wcp
2 nc
wc
w(p2 + q)[p2m − 2m(p2 − q)m]

− µApGfncp
2m−2(2q − p2)q(p2 − q)

nc
wc
w

A1wcp
2 nc
wc
w(p2 + q)[p2m − 2m(p2 − q)m]

wc
nc
¬ w ¬ wc

(2.15)

For convenience, we assume that q = 1 in the ubiquitiformal softening model, then Eq. (2.15)
can be rewritten as

σ =
µApGfncp

2m−2(2− p2)2mp2m(p2 − 1)
nc
wc
w−m

A1wcp
2 nc
wc
w(p2 + 1)[p2m − 2m(p2 − 1)m]

− µApGfncp
2m−2(2− p2)(p2 − 1)

nc
wc
w

A1wcp
2 nc
wc
w(p2 + 1)[p2m − 2m(p2 − 1)m]

wc
nc
¬ w ¬ wc

(2.16)

For w = ∆w, we have

σ(∆w) =
µApGfncp

2m−4(2− p2)2mp2m(p2 − 1)1−m
A1wc(p2 + 1)[p2m − 2m(p2 − 1)m]

− µApGfncp
2m−4(2− p2)(p2 − 1)

A1wc(p2 + 1)[p2m − 2m(p2 − 1)m]

(2.17)
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We can obtain the slope of the softening curve in the interval [0,∆w]

C =
σ(∆w)− ft

∆w
=
µApGfn

2
cp
2m−4(2− p2)2mp2m(p2 − 1)1−m

A1w2c (p2 + 1)[p2m − 2m(p2 − 1)m]

− µApGfn
2
cp
2m−4(2− p2)(p2 − 1)

A1w2c (p2 + 1)[p2m − 2m(p2 − 1)m]
− nc
wc
ft

(2.18)

Then we have

σ =
µApGfn

2
cp
2m−4(2− p2)2mp2m(p2 − 1)1−m

A1w2c (p2 + 1)[p2m − 2m(p2 − 1)m]
w

− µApGfn
2
cp
2m−4(2− p2)(p2 − 1)

A1w2c (p2 + 1)[p2m − 2m(p2 − 1)m]
w − nc

wc
ftw + ft 0 ¬ w ¬ wc

nc

(2.19)

From Eq. (2.14) and Eq. (2.19) one can obtain the energy modification factor µ as

µ = 1− App
2m−4(2− p2)[2mp2m(p2 − 1)1−m − (p2 − 1)]
4A1(p2 + 1)[p2m − 2m(p2 − 1)m]

− 3ftwc
4Gfnc

=
4Gfnc − 3ftwc
4Gfnc

· 4A1(p2 + 1)[p2m − 2m(p2 − 1)m]
App2m−4(2− p2)[2mp2m(p2 − 1)1−m − (p2 − 1)] + 4A1(p2 + 1)[p2m − 2m(p2 − 1)m]

(2.20)

The ubiquitiformal softening curve of concrete is then

σ=





µApGfncp
2m−2(2− p2)[2mp2m(p2 − 1)−m − 1]

A1wc(p2 + 1)[p2m − 2m(p2 − 1)m]
(
1− 1

p2

)nc
wc

w wc
nc
¬w¬wc

(µApGfn2cp2m−4(2− p2)[2mp2m(p2 − 1)1−m − (p2 − 1)]
A1w2c (p2 + 1)[p2m − 2m(p2 − 1)m]

− nc
wc
f
)
w + ft 0 ¬w¬ wc

nc
(2.21)

In the ubiquitiformal softening model, the iteration number is calculated by the relation

(1
p

)N
=
δmin
l

(2.22)

where δmin and l are the minimum and maximum scales of the concrete respectively, which are
related to the micro and macro structure of the concrete. However, the iteration number calcu-
lated from Eq. (2.22) is always not an integer, whereas the iteration number of the generalized
ubiquitiformal Cantor set should be an integer. Thus we assume that n = [N ] in this paper,
where the square brackets represents the maximum integer no larger than the argument.

3. Numerical results of full grade concrete

To confirm the availability of the ubiquitiformal softening model, the model is used to calculate
the softening curve of a full grade concrete specimen made of crushed coarse aggregate, and the
numerical results are compared with the experimental result (Deng et al., 2005). In the expe-
riment, the uniaxial tension-compression behavior of the full grade concrete specimens made
of crushed coarse aggregate was studied on an INSTRON8506 material testing machine under
constant-displacement loading, with the maximum load of 3000 kN. Four displacement extenso-
meters were set around the test specimen, and the data collection and the loading control were
completed by using a computer. The composition of the concrete and the experimental data are
listed in Tables 1 and 2, respectively.
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Table 1. Concrete mix of the concrete [kg/m3]

Water Cement Ash
Artificial Artificial stone [mm] Superplasticizerits
sand 5-20 20-40 40-80 80-150 JGB DH9

87 131 44 585 328 328 492 492 10.5 1.23

Table 2. Experimental data of the concrete specimen

Curing period Tensile strength Elastic modulus Critical elongation Fracture energy
[day] ft [MPa] Et [GPa] wc [mm] Gf [N/m]

110 1.908 40.0 1.390 497.220
55 1.508 37.0 1.355 448.401
46 1.310 35.0 1.199 422.878
16 1.180 31.1 1.680 445.738
15 1.044 28.9 1.289 369.463
11 0.804 22.0 1.193 273.233

In the ubiquitiformal softening model, the parameter is: p = 2.07, which is the same as in
Khezrzadeh and Mofid (2006), and the adaptive result for m is m = 2.
For a certain concrete, the parameters p,m, Ap and nc in the softening model are determined,

and the material parameters Gf , wc and ft are also known. Thus the parameter A1 and µ can
be regarded as constants. Therefore, for convenience, we rewrite Eq. (2.21) as

σ =





C1C
w
2

wc
nc
¬ w ¬ wc

ft − C3w 0 ¬ w ¬ wc
nc

(3.1)

where C1, C2 and C3 are constant. The values of these parameters for concrete specimens with
different curing periods as well as the experimental data are all listed in Table 3.

Table 3. Parameters of the ubiquitiformal softening model for concrete specimen

Curing Tensile strength Crit. elongation Iteration δmin C1 C2 C3period [day] ft [MPa] wc [mm] number nc [µm]

110 1.908 1.390 12 24 1.145 0.1008 8.894
55 1.508 1.355 11 50 1.0047 0.1156 5.9895
46 1.310 1.199 10 104 1.0188 0.1090 4.4188
16 1.180 1.680 10 104 0.7080 0.2055 3.7931
15 1.044 1.289 9 215 0.7194 0.1563 3.4388
11 0.804 1.193 8 445 0.4916 0.1682 2.8644

The comparison between the softening curves calculated by using the ubiquitiformal model
and the experimental results are shown in Fig. 2. It can be seen that the ubiquitiformal softening
model is in good agreement with the experimental data. It should be pointed out that the
difference of the stress between the softening curve in the interval [0,∆w] increases with the
tensile strength of the specimen, except for the specimen with a curing period of 16 days.
However, it can also be seen that the experimental data for this specimen, especially the critical
elongation, is abnormal. The difference of the softening curve of this specimen is caused mainly
by abnormality of the experimental data.
As has been mentioned by Ou et al. (2014), the lower bound to the scale invariance δmin,

namely, the minimum scale of concrete, is a crucial parameter for a ubiquitiform, and it can be
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Fig. 2. The ubiquitiformal softening curve: (a) specimen of 1.908MPa, (b) specimen of 1.508MPa,
(c) specimen of 1.310MPa, (d) specimen of 1.180MPa, (e) specimen of 1.044MPa, (f) specimen

of 0.804MPa

seen that this crucial parameter is related with the tensile strength of the concrete specimen
with different curing periods. The lower bound to the scale invariance δmin for the specimen
with different tensile strength is shown in Fig. 3. By fitting the data with a power function, the
relation between the lower bound to the scale invariance δmin and the tensile strength can be
obtained as

δmin = 221.28 · f−3.24t (3.2)

where the units of δmin and ft are µm and MPa, respectively. This relationship provides a reaso-
nable approach to determine the lower bound to the scale invariance of concrete. Furthermore,
by analysing the influencing factors of the concrete tensile strength, the approach to determi-
ne the lower bound to the scale invariance of concrete by other physical parameters may be
obtained.
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Fig. 3. The relation between the lower bound to the scale invariance δmin and tensile strength
of concrete

It should be mentioned that, although such an ubiquitiformal softening model for concrete
seems to be similar to the fractal one (Khezrzadeh and Mofid, 2006), it has more definite physical
meanings. The relation between the lower bound to the scale invariance and tensile strength of
concrete is obtained numerically, which may provide a reasonable approach to determine the
lower bound to the scale invariance of concrete.

4. Conclusion

A stereological type of ubiquitiformal softening model that can well describe the softening beha-
vior of concrete under quasi-static tensile loadings is proposed in this paper. Both the damage
evaluation process of fracture cross-sections and their distribution along the specimens axis are
considered. Moreover, by fitting the experimental data, a relation between the lower bound to
the scale invariance and the tensile strength of concrete is obtained, which provides a reasonable
approach to determine the lower bound to the scale invariance of concrete.
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The paper develops an integration approach to stochastic nonlinear partial differential equ-
ations (SPDE’s) with parameters to be random fields. The methodology is based upon
assumption that random fields are from a special class of functions, and can be described
as a product of two functions with dependent and independent random variables. Such an
approach allows one to use Karhunen-Loève expansion directly, and the modified stochastic
spectral finite element method (SSFEM). It is assumed that a random field is stationary
and Gaussian while the autocovariance function is known. A numerical example of one-
dimensional heat waves analysis is shown.
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1. Introduction

In the literature, one can find works describing SPDE’s solutions using SSFEM for stationa-
ry problems (Le Maitre and Knio, 2010; Matthies and Keese, 2005). There are also methods
handling transient problems such as the Monte Carlo method (MC), perturbation method (Ka-
miński, 2013; Służalec, 2003), stochastic collocation method (SCM) (Acharjee and Zabaras,
2006; Babuška et al., 2007; Xiu and Hesthaven, 2005). These methods are widely used for many
problems, e.g. continuum mechanics, fluid dynamics, heat flow and have their advantages and
disadvantages (Stefanou, 2009; Xiu, 2010). As the leading in the literature, the SCM method is
listed due to the possibility of analyzing complex nonlinear problems. It reduces analysis time by
using multithreading and can be simply implemented (deterministic solver is treated as so-called
“black box”). Competitive to SCM is the method of Stochastic Spectral Finite Element Method
proposed by Ghanem and Spanos (2003). This method is one of the so-called intrusive methods,
which is very effective in solving linear problems, but requires building the source code from
scratch. An important disadvantage that is mentioned in many works is the coupling of equ-
ations that prevent the use of parallel solvers. This problem was solved by applying the domain
decomposition method (Subber and Sarkar, 2014). Another important disadvantage mentioned
in the works on numerical solution with SSFEM is the considerable difficulty of solving nonlinear
problems. Mathematical formulation of nonlinear stationary equations can be found in works
(Arregui-Mena et al., 2016; Ghosh et al., 2008; Hu et al., 2015; Matthies and Keese, 2005; Nouy,
2008; Nouy and Le Maitre, 2009; Stefanou et al., 2017; Xiu and Karniadakis, 2003; Zakian and
Khaji, 2016) rather than description of a general numerical approach. There is also no compre-
hensive solution to transient problems. This paper presents a methodology based upon a special
class of functions occurring in constitutive equations which can be described as a product of
two functions, respectively with dependent and independent variables. This approach allows one
to extend the applicability of SSFEM to solve wide range of nonstationary nonlinear stochastic
PDE’s.
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2. Stochastic description

In this work, a modified SSFEM is used. This method is based upon notion of a random field.
The random field α(x, ω) (Acharjee and Zabaras, 2007; Xiu, 2010) (x ∈ D ⊂ R, ω ∈ Ω) is a
real valued measurable function which assigns a random variable α(ω) to each point x on a
fixed probability space (Ω,Z,P). Here Ω is the set of elementary events, Z is the σ-algebra and
P : Z → [0, 1] is a probability measure. To obtain a computationally useful representation of
the process α(x, ω), it will be presented in the canonical form. Among various forms of such a
representation, a spectral representation - Karhunen-Loève expansion will be adopted in further
considerations (Ghanem and Spanos, 2003). This expansion may be presented in the following
form

α(x, ω) = ξ0α(x) +
∞∑

i=1

ξi(ω)
√
λifi(x) x ∈ D, ω ∈ Ω (2.1)

Such a Karhunen-Loève expansion is truncated to M terms

α(x, ω) ≈ ξ0α(x) +
M∑

i=1

ξi(ω)
√
λifi(x) x ∈ D, ω ∈ Ω (2.2)

In equation (2.1), {ξi(ω)}∞i=1 is a set of othonormal independent Gaussian random variables
with mean ξ0 = 1 and standard deviations equal to one, (·) is the expected value operator.
Constants {λi}∞i=1 and deterministic functions {fi(x)}∞i=1 are the eigenvalues and eigenfunctions
of the covariance kernel
∫

D

Ckernel(x1, x2)fi(x2) dx2 = λifi(x1) i ∈ N = {1, 2, . . .} (2.3)

The polynomial chaos (Ghanem and Spanos, 2003; Le Maitre and Knio, 2010) representation of
the random variable U(ω), truncated to P terms, can be written as

U(ω) ≈ U(ξ) =
P∑

i=0

uiΦi(ξ) (2.4)

where {Φi(ξ)}Pi=0 denotes polynomial chaoses (Ghanem and Spanos, 2003), and {ui}Pi=0 are
coefficients of the expansion. The coefficient P described by the expression (Ghanem and Spanos,
2003)

P = 1 +
p∑

s=1

2
s!

s−1∏

r=0

(M + r) (2.5)

is the total number of polynomial chaoses used in the expansion, excluding the zero-th order
term, with p denoting the order of polynomial chaoses (detailed description of polynomial chaoses
can be found in Ghanem and Spanos (2003), Le Maitre and Knio (2010)).

3. Governing equations formulation of SSFEM – an approach for a special class
of equations

3.1. Method of solution of the stochastic problem (SSFEM)

First step in solving SPDE’s, after finite element discretisation, is the stochastic random field
discretisation. Let K denotes the number of nodes of the discretized domain. The equation of
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motion with given initial and boundary conditions, which is analyzed, can be written in a well
known matrix form (Bathe, 1996)

M(x, ω,q(t, ω))q̈(t, ω) +C(x, ω,q(t, ω))q̇(t, ω) +K(x, ω,q(t, ω))q(t, ω) = F(x, ω,q(t, ω))

(3.1)

where t ∈ T denotes time, x ∈ D × D × D
def
= D

3 ⊂ R
3 denotes space variables, q(t, ω) is

a generalized K × 1 displacement vector and q̇(t, ω), q̈(t, ω) is the first and second derivative
in time. Suppose that for the K × K matrices M,C,K and K × 1 vector F separation of
dependent and independent variables can be made, which allows one to use Karhunen-Loève
expansion directly, e.g.

K(x, ω,q(t, ω)) = K(x, ω)fK(q(t, ω)) (3.2)

where fK(q(t, ω)) is a real valued Riemann integrable function on a suitable space and K(x, ω)
is a K ×K matrix. Such an approach limits applicability of this method to problems in which
constitutive equations or nonlinear boundary conditions can be written as a product of functions
of independent and dependent variables, e.g. k(x, q(x, t)) = ka(x)kb(q(x, t)). Many physical
relations can be written in this way or can be reduced to either k(x, q(x, t)) = kb(q(x, t)) or
k(x, q(x, t)) = ka(x).
Assume that the discretized function of generalized displacement at each node has represen-

tations in polynomial chaos

qk(t, ω) ≈
P∑

i=0

(qspect(t))k,iΦi(ξ(ω)) k = 1, 2, . . . ,K (3.3)

(index k denotes node number) and let it be derived its first and second order derivative with
respect to the time

q̇k(t, ω) ≈
P∑

i=0

(q̇spect(t))k,iΦi(ξ(ω)) k = 1, 2, . . . ,K

q̈k(t, ω) ≈
P∑

i=0

(q̈spect(t))k,iΦi(ξ(ω)) k = 1, 2, . . . ,K

(3.4)

The vector of nodal generalized displacement can be written as

q(t, ω) ≈ q(t, ξ) = qmatrixspect (t)Φnode(ξ) (3.5)

where qmatrixspect (t) is a K × (P + 1) matrix built from spectral coefficients and

Φnode(ξ) =
[
Φ0(ξ) Φ1(ξ) · · · ΦP (ξ)

]T
(3.6)

is a vector built from the polynomial chaoses.
Substituting appropriate derivatives of equation (3.5) to equation (3.1) and using (3.2),

(3.5)-(3.6), the following equation

M(x, ω)fM (qmatrixspect (t)Φnode(ξ))q̈
matrix
spect (t)Φnode(ξ)

+C(x, ω)fC(qmatrixspect (t)Φnode(ξ))q̇
matrix
spect (t)Φnode(ξ)

+K(x, ω)fK(qmatrixspect (t)Φnode(ξ))q
matrix
spect (t)Φnode(ξ) = F(x, ω)fF (q

matrix
spect (t))

(3.7)

can be obtained.
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Let us represent the matrices M(x, ω), C(x, ω), K(x, ω), F(x, ω) using the Karhunen-Loève
expansion, e.g.

K(x, ω) ≈ K(x, ξ) = (K(x))0ξ0 +
M∑

i=1

ξi(ω)(K0(x))i (3.8)

where (·)0 denotes a matrix computed for the mean value of the process and (·)0 denotes a
matrix built of the shape functions and Karhunen-Loève expansion terms (e.g. (K0(x))i =∫
D
∇N(
√
λifi(x))∇NT dx, where N is a vector built of test functions from the Sobolev space

H1(0, lelem) where lelem is a finite element length).
In order to formulate a suitable system of equations, let us represent the matrix of stochastic

eigenmodes of the solution as a vector qmatrixspect → qvectorspect where

qvectorspect (t) =
[[
q00(t) q01(t) · · · q0P (t)

] [
· · · qK0(t) · · · qKP (t)

]]T
(3.9)

where P , as before, is the total number of polynomial chaoses used in the expansion and K is
the total number of nodes in the FEM solution. The global vector of polynomial chaoses takes
the form

Φ(ξ) =
[
(Φnode(ξ))0 (Φnode(ξ))1 · · · (Φnode(ξ))K

]T
(3.10)

where the vectors of polynomial chaoses are the same for each node

(Φnode(ξ))0 = (Φnode(ξ))1 = . . . = (Φnode(ξ))K (3.11)

After substitution of appropriate expansions (3.8) of the matrices M(x, ω), C(x, ω), K(x, ω),
F(x, ω), equation (3.9) and (3.10) into (3.7), then multiplying by Φ(ξ) and averaging with
respect to the random space

〈
Φ(ξ)

(
(M(x))0ξ0 +

MM∑

iM=1

ξiM (M
0(x))iM

)
fMT

(
(qvectorspect (t))

TΦ(ξ)
)(
q̈vectorspect (t)

)T
Φ(ξ)

〉

+
〈
Φ(ξ)

(
(C(x))0ξ0 +

MC∑

iC=1

ξiC (C
0(x))iC

)
fCT

(
(qvectorspect (t))

TΦ(ξ)
)(
q̇vectorspect (t)

)T
Φ(ξ)

〉

+
〈
Φ(ξ)

(
(K(x))0ξ0 +

MK∑

iK=1

ξiK (K
0(x))iK

)
fKT

(
(qvectorspect (t))

TΦ(ξ)
)(
qvectorspect (t)

)T
Φ(ξ)

〉

=
〈
Φ(ξ)

(
(F(x))0ξ0 +

MF∑

iF=1

ξiF (F
0(x))iF

)
fF
(
(qvectorspect (t))

TΦ(ξ)
)〉

(3.12)

can be obtained, where

〈·〉 =
∫

Ω

(·) dP(ω) (3.13)

and MM , MC , MK , MF denote the numbers of terms in the Karhunen-Loève expansion.
Finally, the set of (P + 1)K nonlinear deterministic equations of the SSFEM method is

obtained

Mexpand(x,qvectorspect (t))q̈
vector
spect (t) +C

expand(x,qvectorspect (t))q̇
vector
spect (t)

+Kexpand(x,qvectorspect (t))q
vector
spect (t) = F

expand(x,qvectorspect (t))
(3.14)
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where, for example, the generalized stiffness matrix (matrices Mexpand and Cexpand can be
written in the same way)

Kexpand(x,qvectorspect (t))

=
〈
Φ(ξ)

(
(K(x))0ξ0 +

MK∑

iK=1

ξi(K0(x))iK
)
fK
(
(qvectorspect (t))

TΦ(ξ)
)
(Φ(ξ))T

〉 (3.15)

and the generalized force vector

Fexpand(x,qvectorspect (t)) =
〈
Φ(ξ)

(
(F(x))0ξ0+

MF∑

iF=1

ξi(F0(x))iF
)
fF
(
(qvectorspect (t))

TΦ(ξ)
)〉
(3.16)

For fr(qTΦ(ξ)) = 1, r = M,C,K,F equation (3.14) is linear. Moreover, the terms
〈ξiΦ(ξ)(Φ(ξ))T〉 and 〈ξiΦ(ξ)〉 of the above stated matrices obtained from integration over the
random space have a lot of zero entries (Ghanem and Spanos, 2003). In addition, this terms
may be determined in advance and only once.
In the proposed solution of nonlinear equation (3.14), the matrices in this equation ha-

ve to be numerically integrated both in the iteration step and time step, over a random and
geometric space. This is due to nonlinear functions fr (where r = M,C,K,F ) of the depen-
dent variable q appearing in the parts 〈ξiΦ(ξ)fg(qTΦ(ξ))(Φ(ξ))T〉 (where g = M,C,K) and
〈ξiΦ(ξ)fF (qTΦ(ξ))〉 of these matrices. Methods of evaluating the above mentioned inner pro-
duct for different types of nonlinearities of the functions fr can be found in work of Le Maitre
and Knio (2010).
For a complete presentation of the stochastic process q(x, t, ω), the covariance matrix is

determined (Ghanem and Spanos, 2003)

Covqq(t) =
P∑

j=0

〈Φj(ξ)Φj(ξ)〉(qvectorspect (t))j [(q
vector
spect (t))j ]

T (3.17)

where Covqq = {(Covqq)i,j}Pi,j=1, the j-th eigenmode of the vector qvectorspect (t) has been written
as (qvectorspect (t))j . Therefore, the expected value may be calculated

E(qvectorspect (t)) = (q
vector
spect (t))0 (3.18)

and the variance

V arq(t)i = Covqq(t)i,i i = 1, 2, . . . , P (3.19)

Matrix equation (3.14) is a deterministic system of nonlinear equations, therefore, in order to
solve it, one of methods of direct integration, for example Newmark method, can be used (Bathe,
1996).

3.2. Application of SSFEM to non-classical stochastic heat conduction constitutive model
– heat waves analysis

The most widely used model for many engineering problems is the classic equation of Fourier
(Fourier, 1822), which can be represented as a function of a random field. The expression for
the heat flux can be written

qF (x, t, ω) = −kF (x, ω, T )∇T (x, t, ω) x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T (3.20)

where kF (x, ω, T ) is Fourier thermal conductivity.
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Because of the anomalies associated with the Fourier model (Vernotte, 1958) and the presence
of finite speed propagation of heat, a Cattaneo model that takes into account heat flux relaxation
has been introduced (Cattaneo, 1948; Służalec, 2003)

τ∂tqC(x, t, ω) + qC(x, t, ω) = −kC(x, ω, T )∇T (x, t, ω) x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T

(3.21)

where τ represents the relaxation time and kC(x, ω, T ) is the Cattaneo thermal conductivity.
The Jeffreys type model is another heat conduction constitutive model of which the Cattaneo

model and a Fourier-like diffusive model are subcases that can be obtained from this model
(Joseph and Preziosi, 1989; Straughan, 2011; Tamma and Zhou, 1998; Ván and Fülöp, 2012)

τ∂tq(x, t, ω) + q(x, t, ω) = −k(x, ω, T )[∇T (x, t, ω) −K(x, ω, T )∂t(∇T (x, t, ω))] (3.22)

where x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T, and

k(x, ω, T ) = kF (x, ω, T ) + kC(x, ω, T ) (3.23)

and

K(x, ω, T ) =
τkF (x, ω, T )
k(x, ω, T )

is the so-called retardation time.
When the retardation time, K = 0, the Jeffreys model is reduced to the Cattaneo model.

When selecting, K = τ , the Jeffreys model only degenerates to a Fourier-like diffusive model
with relaxation (Tamma and Zhou, 1998).
Zhou and co-workers (Tamma and Zhou, 1998) introduced C-process and F-process models

which are a linear combination of the Fourier and Cattaneo models. The basic assumption is the
simultaneous occurrence of a fast process based on equation (3.21) and a slow process related
to equation (3.22). This model is a generalization of the above stated relations. The equations
describing connection between heat flux and temperature have the following form (Tamma and
Zhou, 1998)

qCF (x, t, ω) = qF (x, t, ω) + qC(x, t, ω) x ∈ D
3 ⊂ R

3, ω ∈ Ω, t ∈ T (3.24)

where

qC(x, t, ω) + τ∂tqC(x, t, ω) = −(1− FT (x, ω, T ))k(x, ω, T )∇T (x, t, ω)
qF (x, t, ω) = −FT (x, ω, T )k(x, ω, T )∇T (x, ω)

FT (x, ω, T ) =
kF (x, ω, T )

kF (x, ω, T ) + kC(x, ω, T )

k(x, ω, T ) = kF (x, ω, T ) + kC(x, ω, T )

(3.25)

After substitution of equation (3.25)1,2 into (3.24), it can be obtained

qCF (x, t, ω) + τ∂tqCF (x, t, ω)

= −[k(x, ω, T )∇T (x, t, ω) + τ∂t(k(x, ω, T )FT (x, ω, T )∇T (x, t, ω))]
(3.26)

Indexes F and C in the conductivity coefficient and in the heat flux vector respectively refer to
the Fourier model with infinite propagation speed of wave and to the Cattaneo model, occurring
simultaneously. Also the model number FT ∈ [0, 1] has been introduced. It can be seen that
for FT ∈ [0, 1] the Jeffrey model is obtained, for FT = 1 the Fourier one, and for FT = 0 the
equation is reduced to the Cattaneo model.
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4. Stochastic nonlinear 1D transport equation

To obtain equations describing the flow of heat in a rigid conductor, the following energy balance
equation (for clarity the shorthand notation is adopted T ≡ T (x, t, ω))

C(x, ω, T )∂tT +∇ · qCF = 0 x ∈ D, ω ∈ Ω, t ∈ T (4.1)

where C(x, ω, T ) = ρc(x, ω, T ) is combined with one of the model constitutive equation, initial
condition T (x, t = 0, ω) = T0 and a suitable boundary condition on ∂D. The equation associated
with C- and F-process models (which can be reduced to the above mentioned models) is stated
below

τ∂t(C(x, ω, T )∂tT ) + C(x, ω, T )∂tT − ∂x(kF (x, ω, T )∂xT )− τ∂t(∂x(kF (x, ω, T )∂xT ))
− ∂x((1− FT (x, ω, T ))k(x, ω, T )∂xT ) = 0

(4.2)

5. Governing equations formulation of the Galerkin Finite Element Method
(GFEM) – C- and F-processes model

The first step to solve the stochastic problem is discretisation of a deterministic space by the use
of the finite element method in the Galerkin approach (Bathe, 1996). To this end, the response
in terms of the temperature field is approximated by the expression

T (x, t, ω) = (T(t, ω))TN(x) (5.1)

where N(x) is a vector built of the test functions (as defined in Section 3.1), T(t, ω) is a vector
representing the discretized temperature field and the upper index T denotes transposition. The
final equations after appropriate transformations read

M(T)T̈ +C(T)Ṫ+K(T)T = F(T) (5.2)

where Ṫ and T̈ denote the first and second order temperature derivative with respect to time.
The individual matrices in equation (5.2) can be obtained through a standard FE method (Bathe,
1996).

6. Numerical example

Distributions of temperature statistical moments as functions of time of the considered model
for a thin steel sheet (similar to the work (Al-Nimr, 1997)) (Fig. 1) heated by a sudden heat
impulse (Ván and Fülöp, 2012) will be analyzed. For this purpose and for further analysis, the
following data will be adopted (Joseph and Preziosi, 1989; Ván and Fülöp, 2012).
Pulsed heating can be modeled as an internal heat source (Bargmann and Favata, 2014) with

various time characteristics or as external boundary conditions. Let the heating function for the
mixed boundary condition (convection-radiation) takes the form

Tpulse(t) = T0 + a sin(bt) exp(−ct) (6.1)

with parameters T0 = 293.15 K, a = 15 · 104K, b = π/10, c = 50.
One dimensional region of the sample (modeled as a bar) is divided into 20 elements. The

adopted heating time is equal to tmax = 0.6·10−10 s with 60 time steps (time increment∆t = 0.01·
10−10). Cattaneo thermal conductivity has been considered as a random function independent
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Fig. 1. Schematic of a thin steel plate heated by a pulse

of temperature (stationary and Gaussian process), kC(x, ω, T ) = kC(x, ω) with the covariance
kernel

Ckernel(x1, x2) = σ2kC exp
(−|x1 − x2|

b

)
(6.2)

where the coefficient of variation σ2kC and correlation length b are stated in Table 1.

Table 1. Parameters used in analysis

Parameter Value

Heat capacity per unit volume
c = 434.0 J/(kgK)

(deterministic)
Density (deterministic) ρ = 7850.0 kg/m3

Fourier thermal conductivity
kF = 54W/(mK)(deterministic)

Cattaneo thermal conductivity 〈kC(x, ω)〉 = 1210.0 · 1010W/(mKs)(random – mean)
Cattaneo thermal conductivity σ2kC = 2500.0 · 10

10W/(mKs)
(random – coefficient of variance)
Relaxation time τ = 20.0 · 10−12 s
Heat convection coefficient αc = 9.0W/(m2K)
(deterministic)
Emissivity (deterministic) εr = 0.625
Stefan-Boltzmann constant σB = 5.67 · 10−8W/(m2K4)
Thickness L = 0.005m
Correlation length b = 0.001m

Using the Karhunen-Loève expansion, the Cattaneo thermal conductivity can be written in
the form

kC(x, ω) ≈ 〈kC(x, ω)〉 +
M∑

i=1

ξi(ω)
√
λifi(x) (6.3)
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Therefore, the random matrix present in equation (3.14) can be expressed as

Fexpandx=0 (x = 0,T
vector
spect (t))

=
〈
Φ(ξ)

(
(Fx=0(x = 0))0ξ0 +

MF∑

iF=1

ξi(F0(x = 0))iF
)
fF
(
(Tvectorspect (t))

TΦ(ξ)
)〉 (6.4)

This matrix takes non-zero values for the boundary node (x = 0). The matrices (F(x))0 = 0,
(F0(x))iF = 0 are generally equal to zero, only for x = 0 (Fx=0(x = 0))0 = I. For the mixed
boundary condition (convection-radiation) it can be assumed that (parameters in Table 1)

fF
(
(Tvectorspect (t))

TΦ(ξ)
)
= αc

(
Tpulse(t)−

(
(Tvectorspect (t))

TΦ(ξ)
))

+ εrσB
[
Tpulse(t)

4 −
(
(Tvectorspect (t))

TΦ(ξ)
)4] (6.5)

Because the Cattaneo thermal conductivity is independent of the temperature function fK
included in the matrix

Kexpand(x,Tvectorspect (t))

=
〈
Φ(ξ)

(
(K(x))0ξ0 +

MK∑

iK=1

ξiK (K
0(x))iK

)
fK
(
(Tvectorspect (t))

TΦ(ξ)
)
(Φ(ξ))T

〉 (6.6)

(6.6) can be written as fK(·) = 1, and the matrices (K(x))0, (K0(x))iK can be determined from

(K(x))0 =
∫

D

∇NkF∇NT dx+
∫

D

∇N〈kC(x, ω)〉∇NT dx

(K0(x))iK =
∫

D

∇N(
√
λiKfiK (x))∇NT dx

(6.7)

the proposed modified SSFEM has been compared to the Monte Carlo method using the C- and
F-process models. As the relevant set of points, the heated surface has been chosen. As shown in
Fig. 2, there is a good correlation between the methods. SSFEM is giving smaller values for the

Fig. 2. Temperature mean value and relative error between SSFEM (3rd order polynomial chaos,
2nd order Karhunen-Loève expansion) and Monte Carlo (5000 samples) solution in function of time at

the heated surface
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standard deviation than MC (Fig. 3), which is typical for this method (Ghanem and Spanos,
2003). It can be seen that the biggest relative error for the standard deviation occurs in time
nodes with smallest values. The relative error of temperature (Fig. 2) between the mean value
obtained from the SSFEM and Monte Carlo solution is small with the extremum not exceeding
2.5 · 10−8. Computations have been performed for P = 3 order of polynomial chaos and M = 2
order of Karhunen-Loève expansion.

Fig. 3. Temperature standard deviation and relative error between SSFEM (3rd order polynomial chaos,
2nd order Karhunen-Loève expansion) and Monte Carlo (5000 samples) solution in function of time at

the heated surface

Fig. 4. Temperature eigenmodes obtained from SSFEM solution in function of time at the heated
surface – 1st and 2nd order of polynomial chaos, 2nd order Karhunen-Loève expansion

Figure 4 illustrates solutions for successive orders of polynomial chaos. As can be seen, the
biggest influence is the first order of the expansion on the basis of which it can be concluded that
the improvement of the convergence of statistical moments by increasing the order of expansion
in polynomial chaos will be small.
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7. Concluding remarks

The paper develops an approach to analysis stochastic nonlinear partial differential equations
(SPDE’s). As an example of stochastic analysis, the heat waves equation has been shown. The
C-F-processes constitutive model has been chosen for the analysis. It can be reduced to the
Fourier, Cattaneo and Jeffery types of models. A modified SSFEM, which consists in the sepa-
ration of dependent and independent variables in the main matrices, has been proposed to solve
nonlinear governing equations. The modified SSFEM has been compared to the Monte Carlo
method. The comparison has shown that the proposed method works with nonlinear problems
well and for equation (4.1) the solutions generated by the SSFEM method are convergent to
solutions generated by the Monte Carlo method due to the first and second statistical moment.
The analysis has revealed that the largest difference in the results obtained from the SSFEM
and MC method is generated in time nodes with the smallest standard deviation (local minima).
Comparison of the results from the methods has aimed at demonstrating compliance rather than
efficiency or time consumption of the SSFEM. In order to check time consumption of the me-
thod in relation to MC or SCM, one should use the domain decomposition method (Subber and
Sarkar, 2014) and methods of reducing the integration time of the main matrices (e.g. Smolyak
sparse grid method (Smolyak, 1963)) which would allow one to use parallel processing.
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In this paper, a multi-spring model is used for modelling of the crack in a micro/nanobeam
under axial compressive load based on a modified couple stress theory. This model inc-
ludes an equivalent rotational spring to transmit the bending moment and an equivalent
longitudinal spring to transmit the axial force through the cracked section, which leads to
promotion of the modelling of discontinuities due to the presence of the crack. Moreover,
this study considers coupled effects between the bending moment and axial force on the
discontinuities at the cracked section. Therefore, four flexibility constants appear in the con-
tinuity conditions. In this paper, these four constants are obtained as a function of crack
depth, separately. This modelling is employed to solve the buckling problem of cracked
micro/nanobeams using a close-form method, Euler-Bernoulli theory and simply suppor-
ted boundary conditions. Finally, the effects of flexibility constants, crack depth and crack
location on the critical buckling load are studied.

Keywords: flexibility constants, multi-spring model, MCST, buckling, crack

1. Introduction

It is clear that presence of cracks or any other defects into any structure leads to a decrease of its
capabilities. The issue of cracking in the structures is interested in both macro and small scale
dimensions. Thus, presentation of an accurate and appropriate model to capture crack conditions
is very important. In many studies, cracks have been modeled by means of different types of
springs. The type of the spring model depends on problem type, such as the type of loading and
geometry. In fact, kinds of displacements at the cracked section determine what modelling should
be selected. For example, a longitudinal spring model is used when the axial displacement is
dominant (Hsu et al., 2011), a rotational spring model is applicable for a wide range of problems
in which the angle changes between the crack surfaces are important (Akbarzadeh Khorshidi
et al., 2017; Akbarzadeh Khorshidi and Shariati, 2017b; Hasheminejad et al., 2011; Ke et al.,
2009; Loya etal, 2006; Shaat et al., 2016; Torabi and Nafar Dastegerdi, 2012; Wang and Wang,
2013; Yang and Cheng, 2008). Structures under torsion incorporate a torsional spring to describe
discontinuity at the cracked section (Loya et al., 2014). Rice and Levy (1972) stated that the
presence of a crack leads to a local reduction in bending and extensional stiffness along the crack
line. Therefore, it is more accurate to use a model which considers these two local reductions.
Akbarzadeh Khorshidi and Shariati (2017a) presented buckling analysis of cracked nanobeams
based on a modified couple stress theory and using a two-spring model at the cracked section.
The authors used the mentioned model according to the historical background expressed by Rice
and Levy (1972) and the discontinuity relations presented by Loya et al. (2009).
In majority of recent studies on static and dynamic behavior of micro/nanobeams in the

presence of a micro or nano-scale crack, the flexibility constant which introduces the crack
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severity is considered as a hypothetical input. However, there are studies which formulate the
severity of the crack as a function of the crack depth, the material length scale parameter and
other mechanical characteristics of the beam (Shaat et al., 2016; Akbarzadeh Khorshidi et al.,
2017). These papers use energy stored in the spring and compare it with the strain energy release
rate at the crack surfaces.
In the present study, the two-spring model is employed to describe discontinuities at the

cracked section and, consequently, four flexibility constants appear, which gives the severity of
the crack. Each flexibility constant is presented as a function of crack depth (as an unknown
parameter) and other parameters (given values). Therefore, the continuity relations are formu-
lated against the crack depth. The macroscopic fracture mechanics is used for micro/nano-scale
beams based on atomistic simulation models and continuum models (Joshi et al., 2010; Tsai et
al., 2016; Hu et al., 2017). Then, a modified couple stress based solution is proposed for buckling
analysis of the cracked beams.

2. Modelling

Consider an Euler-Bernoulli beam with length L, width b, thickness h and a crack with depth a
is located at distance Lc from the left side of the beam (Fig. 1a). In the present modelling, the
cracked beam is modelled as two separate segments connected by two massless elastic longitu-
dinal and rotational springs (Fig. 1b). Therefore, the total strain energy of the cracked beam is
equal to the strain energy of these two segments plus the strain energy stored in the springs.
With this explanation, the released potential energy due to the presence of the crack is equal
to the strain energy stored by the springs. The continuity conditions governed between the two
beam segments are defined as follows (Akbarzadeh Khorshidi and Shariati, 2017a; Loya et al.,
2009)

w1 = w2 N1 = N2 M1 =M2 x = Lc
∆θ = KMMM +KMNN ∆u = KNNN +KNMM

(2.1)

where ∆θ is the difference in the rotation angles between two crack surfaces (or the angle rotated
by the rotational spring) and ∆u is the longitudinal displacement occurred at the cracked section
(or amount of longitudinal spring compression). N and M are, respectively, the axial force and
the bending moment. Also, KMM , KMN , KNN and KNM are four coefficients to represent the
coupled effects between the axial force and bending moment in discontinuity relations.

Fig. 1. (a) A schematic of the cracked beam and (b) the springs model for a cracked section

Therefore, the strain energy of springs Usprings is stated as

Usprings =
1
2
M∆θ +

1
2
N∆u =

1
2
M(KMMM +KMNN) +

1
2
N(KNMM +KNNN) (2.2)
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Based on generalized Irwin’s (Irwin, 1960) relation, the potential energy-release rate G is
introduced as (Rice and Levy, 1972)

G =
(1− ν2)a

E
(πσ2bY

2
b + 2

√
πσtσbYtYb + σ

2
t Y
2
t ) (2.3)

where E is Young’s modulus, ν is Poisson’s ratio, σ and Y , respectively, reflect the stress and a
dimensionless function of the crack depth to thickness ratio a = a/h. Indices t and b represent
the status of the parameters in tension and bending, respectively.
When a cracked beam is subjected to compression, it senses a local compliance at the crac-

ked section, and the zones around the crack tend to open the crack lips. Based on the stress
concentration at the crack tip, a uniform stress field distributes along the beam thickness (see
Akbarzadeh Khorshidi and Shariati, 2017b). Therefore, the crack lips suffer stretching and ben-
ding (Fig. 2). The bending stress and tensile stress (thickness average stress) defined in Eq. (2.3)
are shown as

σb =
Mh

2I
=
6M
bh2

σt =
N

A
=
N

bh
(2.4)

where I in Eq. (2.4)1 represents the moment of inertia and, for a rectangular cross section, is
equal to bh3/12. Also, A in Eq. (2.4)2 denotes the cross section area and, for the mentioned
cross section, is equal to bh.

Fig. 2. The stress field due to the applied load and moment along the thickness

The strain energy due to the presence of the crack is obtained as

Uc =
a∫

0

G dAc = b
a∫

0

G da (2.5)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.5), we have

Uc =
(1− ν2)
Eb

(36πM2

h2

a∫

0

aY 2b da+
12
√
πMN

h

a∫

0

aYtYb da+N
2

a∫

0

aY 2t da
)

(2.6)

where a = a/h introduces the crack depth to thickness ratio. The dimensionless function Yt is
defined as (Gross and Srawley, 1965)

Yt = 1.99 − 0.41a+ 18.70a2 − 38.48a3 + 53.85a4 (2.7)

Also, the dimensionless function Yb is defined as (Ke et al., 2009)

Yb = 1.15− 1.662a + 21.667a2 − 192.451a3 + 909.375a4 − 2124.310a5

+ 2395.830a6 − 1031.750a7
(2.8)
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We consider that Uspring represented in Eq. (2.2) is equal to Uc obtained in Eq. (2.6), so, the
flexibility constants KMM , KMN , KNN and KNM are separately achieved as follows

KMM =
72π(1 − ν2)

Ebh2

a∫

0

aY 2b da KMN = KNM =
12
√
π(1− ν2)
Ebh

a∫

0

aYbYt da

KNN =
2(1− ν2)

Eb

a∫

0

aY 2t da

(2.9)

As we know, the stress resultants introduced in Eqs. (2.1) and (2.2) (the bending momentM
and the axial force N) are defined as

N =
∫

A

σxx dA M =M1 +M2 =
∫

A

zσxx A+
∫

A

mxy dA (2.10)

where M1 is the conventional bending moment and M2 is the couple moment that comes from
the modified couple stress theory proposed by Yang et al. (2002). The displacement field for the
Euler-Bernoulli beam is

u1 = u(x)− z
dw

dx
u2 = 0 u3 = w(x) (2.11)

where u and w are the axial and lateral displacements of the midplane, respectively. Therefore,
the nonzero strains and stresses are shown as

εxx =
du1
dx
=
du

dx
− z d

2w

dx2
σxx = Eεxx = E

(du
dx
− z d

2w

dx2

)
(2.12)

Also, the nonzero terms of the symmetric curvature tensor χ and the deviatoric part of the
couple stress tensor m are defined as (Akbarzadeh Khorshidi and Shariati, 2017a; Yang et al.,
2002)

χxy = −
1
2
d2w

dx2
mxy = −ℓ2µ

d2w

dx2
(2.13)

These tensors consider the couple stress effects in the modified couple stress theory, and ℓ is
a material length scale parameter to capture the size effect (Yang et al., 2002). µ = E/(2 + 2ν)
is the shear modulus.
Now, substituting Eqs. (2.12) into Eq. (2.10), we have

N = EA
du

dx
M = −(EI + ℓ2GA)dw

2

dx2
(2.14)

where Deff = EI + ℓ2GA is the effective beam stiffness obtained based on the modified couple
stress theory. According to Eq. (2.14), we can rewrite Eq. (2.1) as

w1 = w2
du1
dx
=
du2
dx

d2w1
dx2
=
d2w2
dx2

x = Lc

dw2
dx
− dw1

dx
= KMM

d2w

dx2
+KMN

du

dx
u2 − u1 = KNN

du

dx
+KNM

d2w

dx2

(2.15)

where

KMM = DeffKMM KMN = EAKMN

KNM = DeffKNM KNN = EAKNN
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Thus, we have

KMM = 36π(1 − ν)h
[1 + ν
6
+
( ℓ
h

)2] a∫

0

aY 2b da

KMN = 12
√
π(1− ν2)

a∫

0

aYbYt da

KNM = 6
√
π(1− ν)h2

[1 + ν
6
+
( ℓ
h

)2] a∫

0

aYbYt da

KNN = 2(1 − ν2)h
a∫

0

aY 2t da

(2.16)

Using Eqs. (2.7) and (2.8), and integrating from Eqs. (2.16), the flexibility constants are
obtained as functions of the crack depth to thickness ratio, and they are represented as follows

KMM = 36π(1 − ν)h
[1 + ν
6
+
( ℓ
h

)2]
a2(0.6612 − 1.2742a + 13.1490a2 − 102.9316a3

+ 533.4547a4 − 2321.1924a5 + 11126.9823a6 − 50267.9855a7 + 175186.4492a8

− 4399132.5842a9 + 772269.2856a10 − 927343.5821a11 + 723108.2196a12

− 329586.3470a13 + 66531.7539a14)
KMN = 12

√
π(1− ν2)a2(1.1442 − 1.2596a + 16.3259a2 − 93.4384a3 + 403.2692a4

− 1303.1856a5 + 3902.0329a6 − 9790.7006a7 + 17593.8331a8 − 20534.4869a9

+ 14059.7654a10 − 4273.8259a11)

KNM = 6
√
π(1− ν)h2

[1 + ν
6
+
( ℓ
h

)2]
a2(1.1442 − 1.2596a + 16.3259a2

− 93.4384a3 + 403.2692a4 − 1303.1856a5 + 3902.0329a6 − 9790.7006a7

+ 17593.8331a8 − 20534.4869a9 + 14059.7654a10 − 4273.8259a11)
KNN = 2(1 − ν2)ha2(1.9800 − 0.5439a + 18.6485a2 − 33.6968a3 + 99.2611a4

− 211.9012a5 + 436.8375a6 − 460.4773a7 + 289.9822a8)

(2.17)

3. Solutions

According to the Euler-Bernoulli beam theory, the governing equations for buckling of a cracked
micro/nanobeam are derived as (Akbarzadeh Khorshidi and Shariati, 2017b)

(EI + ℓ2GA)
d4wi
dx4i
+ P

d2wi
dx2i
= 0

{
i = 1 0 ¬ x ¬ Lc
i = 2 Lc ¬ x ¬ L

d2ui
dx2i
= 0

{
i = 1 0 ¬ x ¬ Lc
i = 2 Lc ¬ x ¬ L

(3.1)

Here the subscript i = 1, 2 refers to the left and right segments of the cracked beam. The
boundary conditions of a simply supported beam are expressed as

u1(0) = w1(0) = 0 u2(L) = w2(L) = 0

d2w1
dx2

∣∣∣∣∣
x=0

= 0
d2w2
dx2

∣∣∣∣∣
x=L

= 0
(3.2)
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The general solution to Eqs. (3.1) can be obtained as

wi(x) = Ai sin(αx) +Bi cos(αx) + Cix+Di i = 1, 2

ui(x) = Fix+Hi i = 1, 2
(3.3)

where α =
√
P/Deff , Ai, Bi, Ci, Di, Fi and Hi are unknown constants to be determined from

the boundary and continuity conditions.
Applying continuity conditions (2.15) and boundary conditions (3.2) into Eqs. (3.3), the

unknown constants are derived as

A1 =
(
1− tan(αL)
tan(αLc)

)
A2 B1 = D1 = 0 C1 = 2α

tan(αL)
sin(αLc)

L− Lc
L

A2

B2 = − tan(αL)A2 C2 = −2α
tan(αL)
sin(αLc)

Lc
L
A2 D2 = 2αLc

tan(αL)
sin(αLc)

A2

F1 = F2 H1 = 0 H2 = −LF2

F2 =
A2α

KMN

(
KMMα[sin(αLc)− tan(αL) cos(αLc)]−

tan(αL)
sin(αLc)

)

(3.4)

also

α =
L+KNN

KMNKNM

KMMα
(
sin2(αLc)− 12 tan(αL) sin(2αLc)

)
− tan(αL)

sin2(αLc)− 12 tan(αL) sin(2αLc)
(3.5)

The critical buckling load can be obtained by solving Eq. (3.5). For example, when we have
an intact beam (a = 0→ KMM = KMN = KNN = KNM = 0), according to Eq. (3.5) we have

tan(αL) = 0 → α =
nπ

L
n=1−→ Pcr = Deff

(π
L

)2
(3.6)

This is quite similar to the results obtained by Mohammad-Abadi and Daneshmehr (2014)
for modified couple stress based intact microbeams.
Using Eq. (3.5), the critical buckling load corresponding to each crack depth and crack

location can be determined. Also, the present model (four flexibility constants) can be compared
with the common model (only one constant) by removing the other constants. Moreover, the
coupled effects between the bending moment and axial force can be evaluated by neglecting the
crossover flexibility constants (KMN and KNM ).
Thus, the following equation can be used when only one flexibility constantKMM is employed

KMMLα
(
sin2(αLc)−

1
2
tan(αL) sin(2αLc)

)
− tan(αL) = 0 (3.7)

Also, the following equation can be used when the crossover flexibility constants are removed

(L+KNN )KMMα
(
sin2(αLc)−

1
2
tan(αL) sin(2αLc)

)
− tan(αL) = 0 (3.8)

4. Results

To illustrate the flexibility constants effects on the buckling behavior of cracked mi-
cro/nanobeams, some numerical examples of the obtained solution are presented in this Sec-
tion. Also, the effects of the crack depth and crack location on the critical buckling load are
investigated. First, the obtained results are validated with (Ke et al., 2009; Wang and Quek,
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2005) for macro-scale cracked beams (ℓ = 0). This comparison can be observed in Table 1, so
that P = Pcr/Pcr0 is the nondimensional critical buckling load (where Pcr0 denotes the critical
buckling load of an intact beam). In (Ke et al., 2009; Wang and Quek, 2005), only one flexibility
constant KMM (one equivalent rotational spring model) was employed, so, the present results
have two separate columns for the one-spring model where we have only KMM and the two-
spring model where all flexibility constants appear. In Table 1, each crack depth corresponds
to the crack severity, for example, a/h = 0.1 corresponds to KMM = 0.01 (this parameter is
introduced with symbol Θ in (Ke et al., 2009)).

Table 1. Nondimensional critical buckling load P of a cracked beam (Lc = 0.5L, ν = 0.33,
E = 70GPa and L = 10 h)

a/h
Present Ke et al. Wang & Quek

Two springs One spring (2009) (2005)

0.1000 0.9802 0.9801 0.9809 0.9830
0.1425 0.9614 0.9611 0.9622 0.9630
0.1757 0.9432 0.9426 0.9442 0.9450
0.2038 0.9257 0.9245 0.9266 0.9250
0.2280 0.9092 0.9071 0.9096 0.9070

Now, Table 2 and Figs. 3-6 present the critical buckling load for cracked micro/nanobeams
based on the modified couple stress theory and the two-spring model. All results are obtained as
a parametric study where ν = 0.33, L/h = 10 and ℓ/h = 0.5. The present study is applicable for
both micro and nano-scale problems (this issue is dependent on the scale of the material length
scale parameter).
Table 2 presents nondimensional critical buckling loads for different crack depths. In this

table, three types of nondimensional critical buckling loads are shown, where each load denotes
a special case of the flexibility field. P 1 is the nondimensional critical buckling load for the
one-spring model where we have only KMM (conventional model), P 2 is for the two-spring
model, but the crossover flexibility constants are vanished (the coupled effects between the
axial force and bending moment are neglected) and P 3 is for the two-spring model where all
four flexibility constants are considered. The results of Table 2 indicate that there are some
differences between P 3 and P 1, and this discrepancy increases when the crack depth is increased.
Also, comparison between P 2 and P 1 reveals that the use of two springs without consideration
of the crossover constants has no considerable impact on the obtained results. Figure 3 approves
Table 2, graphically. It is found that the two-spring model presents a greater buckling capacity
of cracked beams than the conventional model. Therefore, it is found that the local flexibility
at the cracked section (crack severity) caused by a particular crack depth is different for the
one-spring model P 1 and the two-spring model P 3.

Table 2. Nondimensional critical buckling load P of cracked micro/nanobeams (Lc = 0.5L)

a/h P 1 P 2 P 3

0 1 1 1
0.1 0.9584 0.9584 0.9586
0.2 0.8545 0.8545 0.8567
0.3 0.7130 0.7130 0.7232
0.4 0.5489 0.5489 0.5772
0.5 0.3901 0.3901 0.4504
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Fig. 3. Comparison of the two-spring model and the conventional model in terms of crack depth

The effect of crack location is shown in Fig. 4 for different crack depths. This figure indicates
that the crack has the greatest sensitivity when it is located in middle of the beam (Lc = 0.5L).
When the crack approaches the two ends, its effect is continuously decreased. This fact is directly
related to deformation of various points of the beam and, finally, the opening of the crack tip.

Fig. 4. The effect of crack location on the nondimensional critical buckling load with
different crack depths
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Also, variations of the nondimensional critical buckling load versus crack depth are demon-
strated in Fig. 5 in different crack locations. It is observed that not only the increasing of the
crack depth leads to a decrease in the buckling resistance of the beam, but also makes the effect
of crack location more considerable.

Fig. 5. The effect of crack depth on the nondimensional critical buckling load with
different crack locations

5. Conclusion

The flexibility constants of the cracked section are investigated using a multi-spring model (ro-
tational and longitudinal spring) to describe local flexibilities and discontinuities at the cracked
section of micro/nanobeams. This model not only promotes the discontinuities but also considers
the coupled effects between the bending moment and axial force on the discontinuities due to
the presence of the crack. Then, the buckling problem is solved for cracked micro/nanobeams
and the influence of crack depth and crack location is studied. Also, different configurations of
the flexibility constants are compared together. The results show that the flexibility constant
related with the bending moment (KMM) has the greatest impact on the local flexibility due to
the crack (crack severity). But, this crack severity changes by adding more flexibility constants.
It is found that the coupled effects between the bending moment and axial force (crossover con-
stants) are considerable, and the making use of the multi-spring model without consideration
of the crossover constants will not be useful. Therefore, the use of four constants (multi-spring
model) instead of only one (conventional model) estimates the buckling capacity better, and this
difference increases with an increase in the crack depth.
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The article presents a new contact model of an angular bearing, called the extended model.
The model takes account of the effects of centrifugal load caused by thr rotating ring of the
bearing and the issue of elasticity. Present models, encountered in literature and referred
to in the article as classical, consider the centrifugal force caused by the rotating ball only.
Results of analytical research on the extended model and of FEM simulation show explicitly
that the contact angles of bearings, and thus contact loads, differ very much from those
values obtained in the classical model. These differences are disadvantageous for designing
bearing assemblies, since contact loads are greater than those obtained in the classical model.
This means, among others, that the present structures with angular contact bearings are
in reality subject to greater loads than the constructor has envisaged. The motto of the
article is to design analytical calculation models in such a form which would enable the
constructor to estimate contact loads, just using a standard scientific calculator or MS
Excel type applications; so that there would be no need for solving complex models using
numerical methods.

Keywords: contact model, angular bearing, FEM

1. Introduction

One of the major constructional issues of HSC machine tools is the heat generated in rolling-
-contact bearings, e.g. in bearing seatings of high-speed spindles. The designer of the bearing
seating should have a possibility of estimating the amount of heat generated in the bearing, so
that he would be able to foresee, if needed, the necessity of applying a cooling system. In order
to estimate the amount of heat generated in the bearing, there is the need for, among others,
information on motion resistance existing in the bearing. Motion resistance in the bearing,
measured on the driving shaft, is determined according to the so-called formula (Palmgren,
1951), i.e.

Mf =M1 +Mv (1.1)

where Mf is the total bearing friction torque, M1 – friction torque due to external load, Mv –
friction torque due to lubrication.
Motion resistance due to the lubricant or oilMv can be determined using common mathema-

tical formulae (Harris and Kotzalas, 2013). At the some time, motion resistance due to rolling
friction in the bearing M1, according to Palmgren (1951) formula, is represented as follows

M1 = z
(Fs
Cs

)y
(0.9Fa cotα− 0.1Fr)dm (1.2)

where: Fa, Fr are axial and radial loads, Fs – bearing static equivalent load, Cs – bearing basic
static load rating, α – contact angle, z, y – coefficients dependent on the bearing structure and
the lubrication method.
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It presents results approximating reality for relatively low rotational speeds. As rotational
speeds increase, the difference between the friction torque calculated according to formula (1.1),
and the real motion friction torque, increases. Hence, the amount of heat generated in the
bearing, calculated according to formula (1.1), is lower than in the real system.
Technical lliterature draws attention to numerous models which take account the influence

of rotational speed, applied bearing load and preload on contact angles in angular bearings and
on contact loads Q taking place between the ball or shaft and the raceways of bearing rings
(Alfares and Elshrakawy, 2003; Antoine et al., 2005; Chen and Hwang, 2006; Jiang and Mao,
2010). Friction torque M1 as per Musiał and Styp-Rekowski (1999), Styp-Rekowski (1999) is a
function of contact loads Q and rolling friction coefficient f between the rolling element and
bearing raceways. Hence, familiarity of contact loads Q and the assumption of rolling friction
coefficient f enabled determination of the friction torque M1.
Harris and Kotzalas (2013) presented a model which takes into account the influence of

preload on the bearings contact angle α and on the contact load Q. This model assumes that
contact of the bearing ball with raceway falls under Hertz theory, whereas the mathematical
formula connecting the contact load with contact deformation has been assumed under the form
of Jones model (Haris and Kotzalas, 2013)

Q = Kδn (1.3)

here: K is rhe contact stiffness, δ – contact deformation, n – constant value (for ball bearings
n = 1, 5). Contact stiffness coefficient K is a function of ball curvature and bearing raceways.
Several authors, among others, Alfares and Elsharkawy (2013), Altintas and Cao (2005),

Chen and Hwang (2006), Cao and Altintas (2007), Jiang and Mao (2010), Jędrzejewski and
Kwaśny (2010), Abele et al. (2010), and Noel et al. (2013) have taken account the effects in
contact zones, which generates centrifugal load from rotating raceways, balls or shafts. One of
these is the difference in the bearings contact angles on inner and outer raceways and their
dependence on rotational speed. These models take into account simultaneous application of
the preload force of the angular bearing and the centrifugal load. A notable progress in the
development of modelling contact effects in bearings was the work of Antoine et al. (2005).
Considering the case of the bearings preload with the use of a spring, they presented an analytical
relationship between the bearings contact angles, present on both raceways, the inner and outer
one. This dependence has a substantially facilitated analytical solution in calculating contact
angles.
Few are publications on calculation of the total friction torque. The exceptions are some

articles (Musiał and Styp-Rekowski, 1999; Styp-Rekowski, 1999). Analytical formula has been
presented, which enables calculation of the friction torque on the driving shaft, basing on the
familiarity of contact loads and on the rolling friction coefficients. A common characteristic of all
encountered in literature contact models of angular bearings is the assumption of non-deformity
of all elements of the bearings except for the ball or shaft. Only contact deformations of the ball
or shaft are considered in calculation of the contact angles or contact loads (Fig. 1a)
A second common characteristic relates to the loads. The loads resulting from rotating

rolling elements are considered in analysis of contact effects only. At the same time, there have
been completely disregarded the loads resulting from the rotating inner ring of the bearing and
resulting from deformation of the ring due to the centrifugal force.

2. Classical contact model of the angular bearing

In order to compare the used till now contact models of angular rolling bearings with the
recommended, new extended model, there shall be presented both models on the example of an
angular bearing subject to the preload Fa and centrifugal load Fc, arising from rotating balls.
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Fig. 1. Contact models of angular bearings: (a) classical, (b) extended

The procedure of solving the contact problem in angular bearings boils down to determination
of the contact angles. Their familiarity enables determination of the other parameters, e.g.
contact loads. The procedure can be split down into at least three steps:

• identification of the position of centres of curvatures of the bearing inner and outer race-
ways and of the ball centre with the bearing being subject to load and not being subject
to loads,
• generation of conditions of equilibrium of loads acting on the bearings elements,
• generation of the geometrical condition, which shall enable determination of one of the
contact angles.

Figure 2 presents the state of the angular bearing subject only to the preload Fa (Fig. 2a)
as well as preload Fa and the centrifugal load Fc from the rotating ball (Fig. 2b).

For configuration depicted in Fig. 2a, the position of centres of raceway curvatures and of
the centre of the ball in a state not subject to the load is indicated as i, o and O. Geometric
constructional characteristic of such a state is the distance between points i and o, marked
as A. It is a constructional characteristic of each bearing. Equally important constructional
characteristics of bearing are the radii of curvature of the bearing raceways ri and ro, as well as
the contact angle α.

After the bearing is subject to the preload F ∗a (in this example applied to the inner ring)
displacement of the inner ring takes place. As a result the centre of curvature of the inner
raceway is displaced into the position i∗. This means that the distance between the points i∗

and o changes and assumes the value Ap and the contact angle assumes the value αp.

In the load configuration depicted in Fig. 2b (preload and centrifugal load of the rotating
ball), the centres of curvatures of both raceways i∗ and o are not subject to change, however the
ball centre gets displaced to point O1. At this stage of resolving the contact problem, there is
also determined the distance between the centres of curvatures, in this case it is Ap.

The second step of the procedure resolving the contact problem defines the conditions of
equilibrium of the loads acting on the bearing elements. For instance, for configuration depicted



62 J. Kosmol

Fig. 2. Configurations of the angular bearing subject to: (a) preload F ∗a and (b) preload F
∗

a and
centrifugal load Fc from rotating bearing balls: δi, δo – contact deformations, Qi, Qo, Qp – contact loads,
α, αi, αo, αp – contact angles, ri, ro – raceway curvature radii, i – index relating to the inner raceway,

o – index relating to the outer raceway, p – index relating to the state of preload F ∗a

in Fig. 2b (simultaneous preload and centrifugal load from the rotating ball), from the equations
of equilibrium of loads acting on the ball, it follows that

Qi sinαi = Qo sinαo Fc = Qi cosαi −Qo cosαo (2.1)

From the conditions of equilibrium of loads acting on the inner and outer ring, it can be seen
that

F ∗a = Qi sinαi F ∗a = Qo sinαo (2.2)

If relationships (2.2) are inserted into the second equation of (2.1), we obtain a very interesting
relationship, coupling together both contact angles as

1
tanαo

− 1
tanαi

=
Fc
F ∗a

(2.3)

Relationship (2.3), published by Antoine et al. (2005), is very significant for resolving the contact
problem of angular bearings as it reduces the number of unknowns by 1.
The third step of the procedure resolving the contact problem, defines the geometrical con-

dition, which shall enable determination of the single contact angle. The geometrical condition
includes, among others, contact deformations δi and δo as well as the distance connecting the
centres of curvatures i or i∗ and o, i.e. A or Ap.
Formulation of the geometrical condition, for example, for configuration depicted in Fig. 2b

is somewhat more complicated. For the triangle oi∗O1, it can be stated as follows

i∗O1 cosαi +O1o cosαo = A cosα (2.4)

Since i∗O1 and O1o can be expressed as

i∗O1 = ri + δi −
1
2
D O1o = ro + αo −

1
2
D (2.5)

then, by inserting (2.5) into (2.4) we obtain the sought geometrical condition
(
ri + δi −

1
2
D
)
cosαi +

(
ro + δo −

1
2
D
)
cosαo = A cosα (2.6)
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If relationship (2.6) considers equations (1.3), then it should assume the following form (Kosmol,
2016)

(
ri +

n

√
F ∗a

sinαiKi
− 1
2
D
)
cosαi +

(
ro +

n

√
F ∗a

sinαoKo
− 1
2
D
)
cosαo = A cosα (2.7)

Equations (2.7) and (2.3) form a system of equations, the solution to which determines the
contact angles αi and αo in function of the centrifugal load Fc and preload F ∗a .
Knowing the contact angles, we can calculate contact loads by using formulae (2.1).
Figure 3 features the influence of rotational speed on the contact loads Qi and Qo for selected

values of the preload determined by the presented methodology.

Fig. 3. Influence of rotational speed of the bearing on contact loads: (a) on the inner raceway Qi,
(b) on the outer raceway Qo, for selected values of the preload Fa

The simulation results in Fig. 3 confirm the known regularities that the contact load Qi on
the inner raceway slightly decreases with an increased rotational speed, whereas on the outer
raceway Qo, it increases substantially with the increased speed.

3. Extended contact model of angular bearings

As already mentioned, the present contact models of angular bearings take into account just
contact deformations of balls. Section 1 shows in form of an example what centrifugal load is
generated by the rotating inner bearing ring and what are its radial deformations. These values
are big enough to presume that they can change considerably the conditions of contact of the
ball with the raceways. Hence, a concept has been conceived of a contact model of the bearing,
also known as the extended model. It is depicted in Fig. 1b.
Figure 4 portrays the extended contact model of the bearing in convention of the classical

model (Fig. 2b).
The procedure of solving such a contact problem is the same as presented in Section 2.

First of all identified are the positions of centres of curvatures of both raceways of the bearing.
The starting point is the configuration corresponding to the force of preload, i.e. similar to
that presented in Fig. 2a. The centres of curvatures are in points i∗ and o, and the section
connecting both points has length Ap. The bearing contact angle is αp. The emergence of the
centrifugal load Fcr of the rotating bearing ring shall cause expansion of that ring and, in
effect, the displacement in the radial direction δr. In consequence, the centre of curvature of the
inner raceway is displaced, which assumes position i∗∗ (Fig. 4). The displacement of centre of
curvature of the inner raceway from point i∗ to point i∗∗ is equal to the displacement δr. The
section connecting the points i∗∗ and i∗ has length Acr, and the inclination angle of that section
is αcr.
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Fig. 4. Extended contact model of the bearing

In effect of action of the centrifugal load Fc from the rotating ball, the ball centre is displaced
to point O1. As a result, there can be formed a triangle i∗∗i∗O1, which enables one to formulate
the geometrical condition.
In the second step, we define conditions of equilibrium of loads acting on the bearing elements.

These are the same equations as (2.1) and (2.2), and resulting relationship (2.3). A new equation,
with respect to the bearings configuration, as presented in Fig. 3b, is the equation of equilibrium
of loads acting on the inner ring of the bearing (Fig. 4), namely

Fcr − Fr −Qi cosαi = 0 (3.1)

where: Fcr is the centrifugal load from the rotating bearing ring acting on a single bearing ball,
Fr – elastic force from elastically deformed bearing ring.
By assuming a linear model of a deformable ring in the form

Fr = Krδr (3.2)

where: Kr is the stiffness coefficient of the bearing ring, δr – elastic displacement of the bearing
ring, and inserting relationship (3.2) into (3.1), and finally, by considering Jones model (1.3),
we obtain the equation of equilibrium of loads acting on the inner ring

Fcr −Krδr −
F ∗a
tanαi

= 0 (3.3)

from which we determine the radial displacement δr, namely

δr =
1
Kr

(
Fcr −

F ∗a
tanαi

)
(3.4)

Relationship (3.4) together with (2.3) shall be the basis for determination of the contact angles.
Relationship (3.4) shows that as long as the following condition is met

Fcr <
F ∗a
tanαi

δr = 0 (3.5)

then δr cannot assume negative values.
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This means that as long as condition (3.5) is met, the solution of the contact problem is the
same as for the classical model (see identity (2.7)). However, when this condition is not met,
both solutions, i.e. for the classical model and for the extended one, shall differ.
Since the centrifugal load Fcr from the rotating ring is a function of rotational speed of the

bearing (speed of inner ring), then the threshold speed ωgr can be determined, below which
condition (3.5) is met, namely

ωgr <

√
2Fa

mpwdsr tanαi
(3.6)

where: mpw is mass of the inner ring, dsr – average diameter of the inner ring, ωgr – threshold
angular speed of the inner ring.
In step three of solution of the contact problem, the geometrical condition should be defined,

since there are two unknowns: contact angles αi and αo, and just single equation (2.3). The
geometrical condition, which can be formulated, is very similar to condition (2.6), as it assumes
the following form

(
ri + δi −

1
2
D
)
cosαi +

(
ro + δo −

1
2
D
)
cosαo = Acr cosαcr (3.7)

From Fig. 4, it may be inferred that there exists the following relationship between Acr and A

Acr cos acr = A cosα+ δr (3.8)

By inserting (3.8) into (3.7) and by applying relationships (2.2), Jones model (1.3) and relation-
ship (3.4), we get the first equation for determining the contact angles αi and αo

(
ri+

n

√
F ∗a

sinαiKi
− 1
2
D
)
cosαi+

(
ro+

n

√
F ∗a

sinαoKo
− 1
2
D
)
cosαo−

1
Kr

(
Fcr−

F ∗a
tanαi

)
= A cosα

(3.9)

Equation (3.9) together with (2.3) form a system the solution of which are the contact angles
αi and αo. When solving it, one should keep in mind condition (3.5).
Solving the system of equations (3.9) and (2.3) requires application of recurrence methods.
Further on, there shall be presented results of simulation tests of the angular bearing FAG

7013B. The tests consisted in the evaluation of the influence of rotational speed of the bearing
(of inner ring) on contact angles αi and αo, and on contact loads Qi and Qo for selected values
of the preload Fa. The tests have been performed for the extended contact model of the bearing.
Figure 5a presents the influence of rotational speed on contact angles of the bearing. There

are presented the results of tests for the extended model and the classical one (dashed line).
By comparing the results of tests of the influence of rotational speed on contact angles for

both contact models, it should be said that the consideration of centrifugal load from the rotating
bearing ring Fcr and its elasticity, significantly affects the contact angle αi on inner raceway.
The contact angle on the inner raceway decreases with an increased speed (in the classical model
this angle increases), and the model differs from the other by up to over 75%.
Such differences are not observed for the contact angle αo on the outer raceway. The runs

for both models are similar, i.e. the contact angle decreases with an increased speed, and the
differences do not exceed 20%.
Figure 5b represents the influence of speed on contact loads Qi and Qo for selected value of

the preload Fa. The diagrams put together the test results for the extended and the classical
model (dashed line).
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Fig. 5. Influence of rotational speed of the bearing on: (a) contact angles, (b) contact loads, for
preload 1000N; solid line relates to the extended model, dashed line relates to the classical model

The conclusions drawn from the presented test results can have substantial practical meaning,
since by generalizing, it can be said that according to the extended model, the contact loads are
greater than those according to the classical model.
Qualitatively, the runs of contact loads are similar, i.e. they increase with an increased

speed, however, they differ quantitatively. This refers to both, the load on the inner and outer
raceways. The loads determined by both models differ by 20% to 30% to the disadvantage of
the bearing, i.e. the loads determined according to the extended model are greater. This means,
among others, a greater resistance to bearing motion (greater amount of heat in the bearing)
and smaller durability of the latter.
On diagrams in Fig. 5, one can also observe the speed range with respect to which both

models present the same results. Depending on a given preload, this relates to the speed range
of 2000-2500 rotations/min, which results from inequality (3.6).
To get a full picture of the influence of centrifugal load from the rotating ring and its elasticity

on contact effects in the bearing, Fig. 6a demonstrates the influence of rotational speed on radial
displacements δr for the ring itself (dashed line) and for the complete bearing with three preload
values.
Depending on the preload of the bearing and on its rotational speed, the difference between

deformation of the inner ring alone and the displacement δr of the ring mounted in the bearing
is 30%.

Fig. 6. Influence of rotational speed on: (a) radial displacements δr for the ring itself (dashed line) and
for the complete bearing, (b) contact displacements of the inner raceway (dashed line relates to the

classical model)
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However, Fig. 6b shows the influence of rotational speed on contact deformations in the zone
of the inner raceway, for both contact models (dashed line relates to the classical model). Contact
deformations determined for both models differ qualitatively and quantitatively, whereas these
differences can reach 40% and more.

4. Verification of the extended contact model

Verification of the contact model of an angular rolling bearing shall be performed using two
methods:

• numerical method, with the use of the finite elements method (Kosmol and Gatys, 2016),
• experimental method.

The first method can be qualified as a direct method, since it enables direct comparison of
contact angles of the bearing or the effects in contact zones of the balls action with the bearings
raceways (contact loads).
The second method is qualified as an indirect method, since it only facilitates comparison of

the total friction torque in the bearing, which depends, among others, on contact loads.

4.1. Numerical analysis of contact effects in bearings using the finite elements method

The object of model tests has been the angular rolling bearing FAG B7013.
Due to the existence of numerous axes of symmetry, only a single rolling element has been

modelled as well as a section of inner and outer rings.
System Ansys offers 6 ways of modelling consolidations and 5 ways of modelling contacts.

Bearing rings have been deprived of the degrees of freedom corresponding to models Compression
only and Friction less.
It has been decided to model contact effects with the use of the standard frictional model,

which enables consideration of friction between adjacent bodies.
It is important for precision of calculations to define a calculation algorithm which predo-

minantly determines the manner of contact detection. The Augmented Lagrange algorithm has
been selected on the basis of software producer recommendations.
The preload of the bearing has been modelled in the form of thrust on the front surface of

the outer ring, whereas the dynamical effects in the form of centrifugal loads acting on movable
elements have been modelled using the standard Ansys mechanism.
The results of simulation are: relationships of the contact angles αi and αo and contact loads

Qi and Qo in function of rotational speed of the bearing (of the inner ring) for a selected value of
preload. Figure 7 portrays examples of the results for a preload of 1000N with consideration to
both the centrifugal load from the rotating ball (dashed lines) and the thrust from the bearing
ring.
The contact angles determined according to the extended model are smaller than those

calculated according to the conventional model. The differences measured up even to 40%. But
on the outer raceway, there was not so much difference observed between the angels.
A similar thing can be said about the contact loads. For the extended model, the contact

loads are clearly bigger for the load on the inner and outer raceways.
By comparing the results of FEM simulations featured by Fig. 7, with the results of analytical

tests, presented by Fig. 5, we observe their high qualitative similarity. Hence the results of
simulation tests confirm these which have resulted from the analytical research.
Quantitative comparative evaluation of analytical and FEM methods is shown in Fig. 8.
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Fig. 7. Influence of rotational speed on: (a) contact angles αi and αo, (b) contact loads Qi and Qo, for
preload 1000N; the solid line relates to a combined thrust of the rotating ball and the ring, the dashed

line relates to the thrust of the rotating ball solely

Fig. 8. Comparative evaluation of analytical and FEM methods for the assesment of the influence of
rotational speed (centrifugal load from the ball and ring combined) on the contact loads: (a) Qi, (b) Qo,

for the preload 1000N

A high degree of consistence is demonstrated by both calculation methods, i.e. analytical
method and FEM for the contact load on the outer raceway (Fig. 8b). For the inner raceway
(Fig. 8a), there are observed greater differences between both methods.
Thus, an opinion can be formulated, stating that FEM tests confirm the results of analytical

tests, which constitutes a certain verification of the extended analytical model.

4.2. Experimental verification of the extended model

As has already been mentioned, experimental verification of the developed model can be
performed through indirect methods. There are no technical possibilities for direct measurement
of neither contact angles in the bearing nor contact loads. However, there exists a possibility of
direct measurement of torque on the driving shaft, which is the friction torque in the bearing.
Since the friction torque in the bearing is a direct function of contact loads (Musiał and Styp-
-Rekowski, 1999; Styp-Rekowski, 1999), then, its measurement represents indirect information
on the magnitude of these loads. The friction torque is also a function of coefficients of friction
which should be assumed arbitrarily, guided by information provided in technical literature.
At the Department of Machine Technology of the Silesian University of Technology in Gli-

wice, there has been developed a research site which facilitates measurement of the torque on
the driving shaft, the preload of angular bearings and the rotational speed.
A system of a spindle box, in which the spindle and two angular bearings are located, is

mounted on the torque sensor made by Kistler, type 7292. The spindle drive comes from a
special motor with a steplessly adjustable speed up to 18.000 rotations/min. The preload of
bearings can be adjusted steplessly and measured by a sensor of the axial load manufactured by
Kistler, type 9102A.
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At that site, there have been performed several tests consisting in measurement of the friction
torque for certain selected values of rotational speeds and for certain values of bearing preloads
(Muszyński, 2017).
As we were interested exclusively in the motion resistance of bearings depending on rolling

friction of balls on bearing raceways, the bearings alone have been bereft of lubricant.
Figure 9 shows examples of the obtained results of tests of the motion resistance of two angu-

lar bearings. Figure 9a presents the influence of preload and Fig. 9b, the influence of rotational
speed on the friction torque of bearings with no lubricant.

Fig. 9. Examples of measurements of motion resistance at the research site: (a) influence of preload,
(b) influence of rotational speed

Thus we are speaking of the resistance resulting from rolling friction of balls which are rolling
on the raceways of the bearings.
Musiał and Styp-Rekowski (1999) and Styp-Rekowski (1999) showed an analytical model of

bearings motion resistance in function of contact loads, in the following form

M1(T ) =
(dm
D
+
1
2

) j=Z−1∑

j=0

Qjfkj (4.1)

where: M1(T ) is the friction torque of the bearing, Qj – j-th equivalent load at the contact site
of the ball and raceway, Z – number of balls in the bearing, dm – pitch diameter of the bearing,
D – diameter of the ball, fkj – j-th rolling friction coefficient of the ball on the raceway.
For verification, a developed extended contact model has been assumed (Kosmol, 2016), in

which

Qj = Qi +Qo (4.2)

where: Qi, Qo are contact loads on the internal i and external o raceway. In the model, the rolling
friction coefficients are the same for every ball in the bearing. The value of this coefficient has
been assumed arbitrarily.
For such assumptions, the total friction torque of the bearing can be presented as follows

M1(T ) = Z
(dm
D
+
1
2

)
(Qi +Qo)fk (4.3)

By converting relationship (4.3) and assuming M1(T ) =Mop, we can write down

Qi +Qo =
Mop

2Z
(
dm
D +

1
2

)
fk

(4.4)

where Mop is the friction torque measured at the research site.
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In relationship (4.4), the fact has been considered that at the research site there are two
angular bearings.

For the tested angular bearings FAG 7013B, relationship (4.4) assumes the following form

Qi +Qo =
Mop

309.7fk
[N] (4.5)

where Mop is in Nmm and fk in mm.

Relationship (4.5) allows indirect verification of the developed extended contact model thro-
ugh comparing the sum of contact loads calculated analytically and determined experimentally
for arbitrarily assumed rolling friction coefficients.

Figure 10 portrays a comparison of the sum of contact loads Qi+Qo determined on the basis
of experimental research as per relationship (4.5), with recourse to the extended model and with
recourse to the classical model and the given FEM simulation results.

Fig. 10. Comparison of sums of contact loads Qi +Qo obtained from experimental research and
(a) analytical tests, (b) FEM simulation: Fa + Fc + Fcr – extended model, Fa + Fc – classical model,

fk = 0.0029 – friction coefficient, Fa = 500N – preload of the bearing

The comparison of the sums of contact loads obtained from the experimental research (rela-
tionship (4.5)) with the analytical tests and FEM obtained from the extended model (Fig. 10)
demonstrates their reasonable consistence, but qualitatively only. Over 6000 rpm, an increase
in the experimental sum of contact loads is much more similar to the results obtained for the
extended model than for the classical model. This can be interpreted as an indirect confirmation
of the correctness of the extended model. But below 6000 rpm, the experimental and theoretical
results differ. It means that the motion resistance depends not only on the friction torque due
to load (4.1) but on other resistances, for example on the spinning effect or cage resistance, too
(Kosmol, 2016).

Figure 10 presents also the results in the form of the sum of contact loads for the classical
model. They show that the sums of contact loads are explicitly smaller (by approx. 20% and
more) from the results obtained from the extended model and from the experiment.

The results shown in Fig. 10 have been obtained by fine-tuning of the friction coefficient fk
(see the relationship (4.5)) for the best match with the analytical results and FEM. The value
of the friction coefficient fine-tuned in that way amounts to approx. 0.0029, i.e. it is in the range
which has been presented in publications on angular rolling bearings, i.e. 0.002-0.005.
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5. Summary

The article presents a new contact model of an angular bearing, called the extended model. The
model takes into account the effects of the centrifugal load caused by the rotating ring of the
bearing and the issue of elasticity. Present models, encountered in literature and referred to in
the article as classical, consider the centrifugal force caused by the rotating ball only. Results of
analytical research on the extended model and FEM simulations show explicitly that the contact
angles of bearings, and thus the contact loads, differ very much from those values obtained in the
classical model. These differences are disadvantageous while designing bearing assemblies, since
the contact loads are greater than those obtained in the classical model. This means, among
others, that the present structures with angular contact bearings are in reality subject to greater
loads than the constructor has envisaged.
The motto of the article is to design analytical calculation models in such a form which would

enable the constructor to estimate the contact loads using just a standard scientific calculator
or MS Excel type applications, so that there would be no need for solving complex models using
numerical methods.
The article also features the results of verification of the developed extended model. The

verification encompassed both, FEM numerical analysis and experimental investigation. The
results of the verification (experimental research and FEM simulation) have confirmed relative
consistence with the results of the analytical examination developed on the basis of the extended
model. They have shown that the present classical model leads to an erroneous evaluation of
contact loads in the bearing.
Hence, the article formulates a viewpoint that for engineering purposes, the suggested exten-

ded contact model enables calculation of contact loads in angular bearings with a sufficient
practical accuracy.
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The following article describes selected aspects of numerical modeling of the process of
bonding metal alloys with consideration for micro-roughness. Plastic contact between two
deformable bodies is studied within a DEFROM FEM environment. The paper presents
selected numerical analysis results for an aluminum alloy. The mathematical model of surface
roughness has been created on the basis of the surface real profile. The dependence between
the tool lathe angle and the feed has been used to build a numerical model of roughness after
completion of the turning process. The article investigates the impact of wave roughness in
respect to the size effect and the possibility of cold welding as well as the simplification
process of real surface roughness.

Keywords: bonding process, FEM analysis, cold welding, wave roughness

1. Introduction

Methods of forming metals are widely used in industry increasing production rates. They are
characterized by high accuracy, repeatability of dimensions and shapes as well as excellent
surface quality. It is possible to apply them on the micro scale, however, it results in specific
new technological problems, the so called “size effect”, caused by the objects small dimensions,
especially when the method employs specimens with dimensions smaller than 1mm. In micro-
-scale, the entire volume of the material is treated as its surface without distinctions into layers.
This is the reason why methods used in carrying out experiments as well as those used in physical,
analytical and numerical analyses should always account for scale. Piwnik and Mogielnicki (2010)
investigated the influence of the scale effect during the process of micro-extrusion. The results of
their numerical simulations showed that extrusion forces increase significantly with very coarse
surfaces.
Literature contains numerous studies related to elastic-plastic contact between surfaces. Sun

and his team (Sun et al., 2013) investigated the process of flattening sinusoidal surfaces from
the perspective of the effect of plastic deformation on wear parameters. Manoylovet et al. (2013)
studied elastic-plastic contact of dry surfaces to establish their wear parameters while Wang
et al. (2007) examined elastic-plastic contact in the extrusion process in relation to microvillic
roughness. Matsumoto et al. (2014) studied elastic-plastic contact in the extrusion process uti-
lizing the retreat and advance pulse ram motion on a servo press. The effects of scale were also
studied by Zhang et al. (2003) in respect to micro-mechanical friction during metal forming.
Furthermore, literature shows an analytical approach to solving the issue of full plastic contact
using statistical tools (Ma et al., 2010). Abdo and Farhgang (2005) investigated elasto-plastic
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contact of rough surfaces and compared forming methods and models with the results of their
own experiments while Cai and Bhushan (2005) developed a numerical approach to modeling
elastic-plastic contact of uneven surfaces investigating multi-layered elastic/plastic surfaces. Po-
ulios and Klit (2013) also studied this kind of problem. The way they approached the issue was
both innovative and very interesting since before them, situations in which both contact surfaces
were elastic-plastic had not been considered.
The final item which must be included in the above-mentioned review of literature is the semi-

-analytical model of elastic-plastic contact. Zhang et al. (2014) presented the impact of surface
roughness on the effectiveness of the elastic-plastic area of contact. Additionally, similar works
dealing with modeling of elasto-plastic surface contact with boundary roughness (Brzoza and
Pauk, 2007) and (Buczkowski and Kleiber, 1992) contact problems connected with a nonlinear
interface compliance can also be found in literature. The article presents a new approach to
modeling entirely plastic rough contact areas of two aluminum alloy deformable bodies which
take into consideration the parameters of wavy roughness on the obtained values of stress, strain,
and strain rate fields in micro-scale. These fields are also used to determine strain forces as well
as to investigate the influence of wavy roughness on the possibility of cold welding during the
bonding process.

2. Modeling of roughness

In the process of modeling metal forming processes, it is possible to distinguish many models of
friction. The appropriate selection of a friction model mainly depends on friction conditions. An
excellent comparison of friction models occurring during metal forming processes was presented
by Tan (2002). On the basis of this list and the commonly accepted laws describing friction
models, it is possible to distinguish two laws describing problems connected with elastic-plastic
issues. The FEM environments implement these two laws as necessary dependencies describing
the impact of stress and deformation caused by friction:
— Coulomb’s law – describes friction in the elastic range

µ =
Ff
N
=
τfA

σnA
=
τf
σn
⇒ τf = µσn (2.1)

— constant shear stress law – for plastic friction

τf = fσ = m
σ√
3
= mk (2.2)

where: τf is the frictional stress [MPa], N – normal force [N], Ff – frictional force [N], A –
contact area [mm2], µ – friction coefficient, m – frictional shear factor 0 ¬ m ¬ 1, k – shear
yield strength [MPa], σ – effective stress [MPa], f – friction factor.
The simplest way to describe a micro-roughness model is through the use of Fourier series

(2.3) which is also practical for the analysis of periodic signals. When it comes to numerical
analyses, this method of describing roughness is the easiest and makes it possible to investigate
the influence of both wavelengths and wave amplitudes, which is very useful in the analysis of
the process of cold welding:
— for integer N  1, the Fourier series is expressed as

SN =
A0
2
+

N∑

i−1

Ai sin
(2πix
T
+ ϕi
)

(2.3)

— for i = 1, A0 = 0, ϕ1 = 0, T = 2π, equation (2.3) takes the form

SN = A1 sinx (2.4)
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Equation (2.4) is used for describing the geometry of surfaces after the turning process. Figure 1
presents the dependency between surface micro-roughness after turning with the simplest form
of the Fourier series equation.

Fig. 1. (a) Stages of modeling physical roughness. (b) The stress-strain curve of aluminum alloy
6061-T0, the strain values in the deformation environment are multiplied ten times

Equation (2.5)1 describes the dependency between the lathe feed during the turning process
and the maximum height of the roughness profile, whereas equation (2.5)2 is a well-known
fundamental law describing the dependence between the feed rate, the radius of the corner and
the arithmetic average values of the roughness profile

Rt = p
tanκ tan κ′

tanκ+ tanκ′
Ra =

p2

32r
(2.5)

where: Rt is the theoretical maximum roughness [mm], Ra – arithmetic average values of the
roughness profile, p – feed [mm/rev], κ – primary and secondary lead angle of the lathe [◦],
r – radius of the corner.
Selecting turning parameters in the machining process, such as the feed, primary and secon-

dary lathe angle as well as the value of radius of the corner, results in surface roughness having
a sinusoidal character, which is a good method for representing work results (D’Addona and
Raykarb, 2016). As was shown by Griffin et al. (2017), the real-time adjustment of other turning
parameters such as rotation speed, tool pressure and tool wear (new tools in machining) or the
use of acoustic emission signals allows a decrease in the distribution of height roughness. The
use of acoustic emission signals in real-time control of parameters during the turning process
produces surfaces without any defects such as waviness and height of roughness less than the
parameter Rt. Griffin’s work (Griffin et al., 2017) shows that proper steering of cutting parame-
ters during the machining process results in Rt parameter values nearly equal to Ra. Hence in
our considerations of this issue, the roughness parameter Rt is used instead of the parameter Ra.
During the bonding process, small vertices of roughness disappear much faster than high ver-
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tices, and the calculation of two extreme positions of roughness (Fig. 2b) allows calculation of
mean values of the height profile which will be the closest to that of the real roughness profile.

3. Finite element analysis of the bonding process

This paper presents a numerical study of the bonding process (Fig. 1a). Using the Finite Element
Method (FEM), the authors have performed a numerical analysis of a model only within the
plastic aspect of material deformation within the DEFORM environment. The numerical experi-
ment was conducted on samples having dimensions of ∅1× 0.75mm made of 6061-T0 aluminum
alloy on the assumption of specimen symmetry. The material stress-strain curve is presented in
(Fig. 1b). The total displacement of the upper die used in the experiment was 1.37mm with
the direction of movement also being marked. The speed of the upper die during the bonding
process was equal to 0.02mm/s while the starting temperature was 20◦C.
The plastic model is based on the HMH criterion as well as the isotropic material hardening

model developed by Ottosen and Ritismanm (2005). The contact between the elements in FEM
analysis is defined in the following manner: the dies are rigid (III and IV), samples show only
plastic behavior (I and II) and the contact in pairs is assumed without the coefficient of friction.
The discrete model of specimens has been made using 4500 quad elements for each sample.

Fig. 2. (a) A diagram of the analysis of the bonding process. (b) Wave roughness profile: a, c, e wave
in contact throughout the entire geometry (“wg” for short); b, d, f wave only in contact at its peak

(“tow” for short)

The first wave (a, b) has an amplitude equal to10 µm and a length of 63µm (Fig. 2b), the
second (c, d) has an amplitude of 20µm and a length of 63µm and the third wave (e, f) has
an amplitude equal to 40µm and a length of 63µm. Two variants of the same wave are also
considered to examine the impact of wavy roughness on the assumption that f = 0. In the case of
(b, d, f) only, the contact on the wave peak is considered while in (a, c, e), the contact is evaluated
throughout the entire wave geometry. These two variants of wave positions allow a certain lack
of perfect congruency of specimens relative to one other. Having the two extreme wave positions
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makes it possible to investigate the discrepancies in the results of any wave positions relative to
one another and to calculate an average value. We should add that the roughness, microstructure
as well as surface phenomena (adsorption etc.) play a significant role in welding technologies
(including cold welding) which was confirmed in the work of Danwood et al. (2015). At the end
of this Section we must stipulate however, that omission of the influence of the shear factor and
creation of a friction model based only on micro-cutting does not adequately describe the entire
frictional process. Such an approach to the modeling allows a quantitative description of the
entire problem or differentiation between phenomena occurring during micro-cutting and the
impact of the surface force in the frictional process. Further quantitative analysis of the friction
process will allow a better understanding of the phenomena occurring in both friction and wear
processes.

4. Effective stress-strain distribution

In attempting the analysis of effective plastic strain maps, it is necessary to identify fields of
effective stress because their distributions are the same. After analyzing the charts of effective
plastic strain (Fig. 3) it is clear that the material has a more homogeneous strain distribution
for the “wg” contact than for the “tow” contact. Additionally, the “tow” contact displays a
substantial strengthening of the material at vertices of wave roughness.

Fig. 3. Maps of the effective plastic strain for the upper die displacement equal to 0.5mm

Fig. 4. Maps of the effective plastic strain for the upper die displacement equal to 1mm

During further movement of the upper die equal to 1mm, the effective plastic strain for
each wave (Fig. 4) is homogeneously distributed. What is essential is that the whole process
can be considered to be “cold” since the speed of the upper die, equal to 0.02mm/s, caused a
temperature increase by only about 5◦C. This small increase in temperature allows making an
assumption that no phase transitions occur within the material. Based on the obtained stress
and strain results, it is necessary to draw attention to the fact that the wave roughness has
become flattened but has not been sheared off. This proves that the elements can not become
bonded during the process because the oxidation of the surfaces is not eliminated through
friction. Adjustment of bonding process parameters such as making the strain rate greater or
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the pressure higher does not create a plastic weld because contact surfaces are oxidized. The only
proven way to make cold welding possible, described by Tang et al. (2009), is to previously purify
the surfaces from contaminants and oxides and to conduct the entire process in a vacuum. In
their experiment, they flattened copper-water micro heat pipe ends to achieve cold welds where
plastic welds in a vacuum were obtained after the deformation of a copper tube at approximately
one and a half of its yield strength. During their work, Tang et al. (2009) did not determine the
criterion of cold welding but only determined an approximate starting point of the process of
plastic welding on the compression force curve.

5. Impact of micro-roughness

Before we begin our discussion on the results obtained for contact surfaces, it is necessary to take
another look at the diagram in Fig. 2a to ensure that the results of the analysis are being read
correctly. In the zone of the plastic contact, it is possible to see the impact of the parameters
of wave roughness. An increase in the amplitude of the wave causes a significant increase in the
plastic strain in the area of contact (Fig. 5). A higher rise in strain is particularly observable
in respect to the “tow” contact (Fig. 3). The growth of the strain during the bonding process
is maintained despite the high deformation of the material. The upper die displacement equal
to 1mm (Fig. 5) causes a reduction in the obtained strain values between different waves. On
the basis of this measurement, we can conclude that further deformation of the material does
not cause plastic welding of contacting elements because most of the roughness vertices have
already been flattened.

Fig. 5. Strain distribution for the upper die displacement equal to 0.5mm

When it comes to the micro-scale effect, Fig. 5 shows that a four-fold increase in the wave
amplitude causes a 2-fold increase in the plastic strain for the “tow” contact. This effect varies
(Fig. 6) and, at larger deformations, disappears much later for the “wg” contact than for the
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“tow” contact. Since this does not occur on the macro scale, it must be accredited to the micro-
-forming processes.

Fig. 6. Strain distribution for the upper die displacement equal to mm

Table 1. Maximum, minimum and average strain values

Average strain values
Die displ.

a c e b d f
Max Min

[mm]

0.5 0.4 0.49 0.39 0.37 0.56 0.69 1.21 0.2
1 1.36 1.32 1.21 1.43 1.59 1.45 2.34 0.55

During the analysis of the contact zone, it is also important to determine the average strain
values since, on their basis, a specific relationship between the increase of plastic strain and the
wave height can be established. Looking at Table 1, it is necessary to pay attention to the fact
that a rise in wave height only causes an increase in the average strain value at the beginning of
the bonding process (die displacement equal to 0.5mm). For “tow” contact surfaces an increase
between wave b and wave d was equal to 0.19 (33%) while between wave b and wave f it reached
0.32 (46%), but no such a dependency was observed for the “wg” contact. Further deformation
(die displacement equal to 1mm) for “wg” contact resultef in a decrease of the average strain
value between wave a and wave c equal to 0.04 (2.9%) and between wave a and wave e equal to
0.15 (11%) while no such dependency was observed for the “tow” contact.
An analysis of the maximum shear stress on contact surfaces shows that vertices of micro-

-roughness are compressed rather than sheared, a fact which is confirmed by data in graphs
of the effective plastic strain and shear stress. The authors emphasize this fact because it is
essential to the performed analysis. A greater share of shear stress, no less than 57%, than that
of the normal stress in the effective stress is a prerequisite for obtaining plastic welds.
Looking at Fig. 7, it is possible to observe that the impact of micro-roughness on the distri-

bution of shear stress is much less than that on of the effective plastic strain. The differences
between different waves and positions of fields are small. Displacement of the upper die equal
to 1mm (Fig. 8) shows that the distribution of shear stress is much more uneven than that of
the effective plastic strain. Disturbances occurring only at the ends of measurement fields have
no significant impact on the bonding process.
The dependence between wave height and high deformation of specimens in the bonding

process cannot be seen by studying the received average values of shear stress presented in
Table 2. An analysis of the obtained average shear stress values shows a diminishing difference
between any wave and its positions as the sample deformation increases. Additionally, a study
of the average shear stress values proves that their share in the effective stress is less than 52%,
making creation of a plastic weld impossible.
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Fig. 7. Shear stress distribution for the upper die displacement equal to 0.5mm

Fig. 8. Shear stress distribution for the upper die displacement equal to 1mm

Table 2. Maximum, minimum and average stress values

Average strain values
Die displ.

a c e b d f
Max Min

[mm]

0.5 93 94 84 97 105 102 121 60
1 117 116 116 119 121 120 131 105

The results of strain rate distribution in the initial stage of specimen deformation (upper
die displacement equal to 0.5mm) along with the data presented in Fig. 9 show a substantial
influence of the wave amplitude. The impact of the parameters of wave roughness decreases
with an increase in sample deformation. Figure 10 shows that the importance of wave parameters
remained significant only for wave e. Further deformation causes the influence of wave roughness
on the strain rate distribution to disappear all together. The last two graphs of the strain
rate distribution indicate a significant growth in the deformation speed and a homogeneous
distribution of these values on both contacting surfaces. This fact suggests that the point where
there is an increase in the rate of high strain determines weld formation, something that has
been proven in the work of Piwnik et al. (2011, 2014). In this case, the anastomosis of both
contact surfaces does not occur because flattened vertices of roughness are too highly oxidized.
An analysis of Table 3 shows that the values of average strain rate decrease as sample

deformation increases for any contact (“wg” and “tow”). The first step of deformation (upper
die displacement equal to 0.5mm) shows a decrease in the average strain rate between waves
a and c equal to 0.001 (4.3%), between a and e equal to 0.003 (13%), between b and d equal
to 0.002 (8.3%), and between b and f equal to 0.004 (16%). Further deformation (upper die
displacement equal to 1mm) results in a decrease of the average strain rate between waves a
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Fig. 9. Strain rate distribution for the upper die displacement equal to 0.5mm

Fig. 10. Strain rate distribution for the upper die displacement equal to 1mm

Table 3. Maximum, minimum and average stress values

Average strain values
Die displ.

a c e b d f
Max Min

[mm]

0.5 0.023 0.022 0.02 0.024 0.022 0.02 0.046 0.01
1 0.041 0.041 0.038 0.041 0.04 0.039 0.055 0.018

and c of less than 1%, between a and e equal to 0.003 (7.3%), between b and d equal to 0.001
(2.4%), and between b and f equal to 0.002 (4.8%).

6. Strain work of “grains”

When analyzing the presented issue, we should also consider the aspects of grain micro-
-mechanics. Based on the work of Ortiz et al. (2007), the average grain size of aluminum al-
loy 6061 is approximately 30µm long and about 13µm wide. These values are an average, and
their approximation is intended to indicate the number of grains in one vertex of roughness.
Based on these estimates, we can establish that one grain accrues for wave a, b, two grains
accrue for wave c, d, and three grains accrue for wave e, f. The surface roughness resulting
from the turning process changes the properties of these grains and, grains near the surface will
display varying values of yield strength. Insignificant differences between the yield strength of
single grains of the contact surfaces can affect the cold welding process because the fast local
growth of the coefficient of friction on the two different, newly created surfaces of a medium,
can cause formation of local welds. A different strain rate of both surfaces causes an increase in
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the coefficient of friction. A prerequisite for this increase is a more significant share of the shear
stress in the effective plastic stress. Tiny pieces of this material, 1µm×1µm in size, have been
isolated and the strain calculated (6.1) along the trajectory of plastic flow (Fig. 11.)

W =
∫∫

A

σε̇ dA Wτ =
∫∫

A

στ ε̇ dA (6.1)

where: W is the strain work [J], Wτ – strain work of shear [J], ε̇ – effective strain rate [1/s],
A – grain surface area [µm2], σ – effective plastic stress [MPa], στ – abs. max shear [MPa].

Fig. 11. Trajectory of the material plastic flow

Fig. 12. (a) Effective strain rate. (b) Strain rate of shearing

The results of deformation studies show that the effective strain under stress (Fig. 12a) is
much higher than shear stress (Fig. 12b). These results also suggest that further deformation
of specimens will not result in a plastic weld because the share of shear stress in the effective
plastic stress is too small, and the oxidation of the surfaces cannot be removed through friction.
In analysis of the obtained graphs presenting the deforming forces, it is also possible to see that
the increase of the plastic flow intensity results in considerable energy demand for carrying out
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the bonding process. At points P1 and P2, a significant energy demand occurs much earlier than
at other points and increases for the upper die displacement equal to 0.76mm (13.6 J, 6.8 J) then
slowly decreases and increases gradually for the upper die displacement of 0.9mm (9.5 J, 4.7 J).
A slow exponential growth for the energy demand can be seen in points P3 and P4. Point P5
seems to be the most interesting because at the beginning of the bonding process it shows an
almost linear increase of the energy demand at 0.92mm (10 J, 5.1 J) with a sinusoidal energy
demand at 1.1mm (10.8 J, 5.5 J) and then a rapid exponential growth at 1.37mm (29 J, 14.5 J).
At any set of points the share of shear strain is less than 57% in relation to the effective strain
which makes it impossible to obtain a plastic weld. If the test surfaces are free of contaminates
and are not oxidized then the first plastic welds would occur at point P5. The choice of points
at which energy is measured is random, and the real starting point of weld formation must be
determined in an experimental study. Although this would not allow creation of a plastic weld it
would at least confirm the presented hypothesis that cold welding of materials is possible under
large plastic deformation during the bonding process as proven in the previously mentioned
works (Tang et al., 2009) where plastic welds were achieved with flattened copper-water micro
heat pipe ends in vacuum after deformation of approximately one and a half of the yield strength.

7. Conclusions

Analysis of the bonding process between two perfectly plastic bodies revealed the influence of
roughness at the micro-scale and enabled formulation of a hypothesis that metal alloys can
be cold welded. The following have been observed in micro-scale: tremendous impact of the
wave amplitude on the obtained values of plastic strain in the initial stages of deformation,
growth equal to 33% for 2-fold wave amplitude and 46% for 4-fold wave amplitude. The wave
amplitude as well as its relative position to other waves impact its rate of decay and, with
increasing deformation of specimens, on the obtained values of strain, strain rate and stress. A
decrease in strain rate values has also been observed with the increasing wave amplitude within
the range from 2.4% to 16%. Based on the map of the strain and stress distribution as the
specimen deformation increases, it can be concluded that an increase in the wavelength has a
lesser impact on the obtained values and on the rate of decay of wave roughness. Analysis of
the bonding process from the perspective of cold welding revealed that an insufficient share of
shear stress, less than 57%, relative to effective plastic stress makes it impossible to remove the
oxidized layer of the material, which prevents the surfaces from bonding. An increase in the wave
roughness and grain size effect promotes the effectiveness of the cold welding process. The strain
along the trajectory of the material plastic flow is probably the site of plastic weld formation.
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In this paper, numerical and experimental modal analysis of a segmented wind turbine blade
assembled with a steel threaded shaft and a nut are presented. The blade segments are built
by a 3D printer using ABS material. The experimental modal parameters identification has
been achieved using the Eigen system Realization Algorithm (ERA) method for different va-
lues of the blade segments assembly force caused by the nut tightening torque. Furthermore,
a three dimensional finite element model has been built using DTK18 three node triangular
shell elements in order to model the blade and the threaded shaft structure, taking into
account the additional stiffness caused by the nut tightening torque. This study covers the
blade segments assembly force effects on the rotating blade vibration characteristics. The
numerical model is adjusted and validated by the identified experimental results. This work
highlights the significant variation of the natural frequencies of the segmented wind turbine
blade by the assembling load of the segments versus blade rotating speed.

Keywords: segmented wind turbine blade, experimental modal analysis, shell element mo-
deling, assembling load

1. Introduction

In recent years, due to the dramatic increase of energy demands, the concerns about environ-
mental pollution resulting from energy extraction have made development of renewable energy
more and more important for a sustainable future. Wind energy is considered as one of the most
profitable renewable energy sources. To extract more energy from wind, manufacturers aim at
increasing the wind turbine blade size, which led many researchers to investigate emerging pro-
blems like vibration, in order to reduce wind turbine component failures and extend their life
cycle. Modal or resonance frequencies must be investigated during the blade design process whe-
re the blade natural frequencies must be well above the wind turbine working frequencies, see
McKittrick et al. (2001). Maalawi and Negm (2002) employed the Euler Bernoulli beam theory
and presented an optimization model for the design of a typical wind turbine blade structure
in order to make an exact placement of natural frequencies of the blade to avoid resonance.
Therefore, wind turbine blade modal analysis was established by experimental and theoretical
studies. For instance, an experimental modal analysis of a wind turbine using accelerometers
was performed by Molenaar (2003). The identified natural frequencies were used to validate
the presented wind turbine modeling approach. To improve the calibration process of the blade
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structural model parameters, Griffith et al. (2009) developed a hybrid calibration approach using
experiments.

The FEM is the most widely used in the wind turbine blade development for investigating
their dynamic behavior. The Beam Element Method, in which the blade is idealized as a canti-
lever beam have been used in many researches by dint of its several merits such as simplicity of
formulation. Park et al. (2010) proposed an analytical procedure based on the Beam Element
Method to examine blade natural frequencies in relation with its operating speed. Sheibani and
Akbari (2015) developed a blade beam finite element model with an arbitrary cross section,
ignoring the effects of rotational speed and pitch angle on the natural frequencies and the mode
shapes. Several researchers tried to verify the finite element model experimentally to ensure the
model validity. Actually, a scaled-down wind turbine blade model has been built to validate
the numerical model by testing the built model and comparing the obtained experimental re-
sults with those determined by the numerical study. Tartibu et al. (2012) represented the wind
turbine blade by some simplified shapes of a stepped beam to establish experimental and nu-
merical modal analyses. Some discrepancies were observed for highest frequencies between the
measured and the computed natural frequencies. Sami et al. (2014) extracted the fundamental
flapwise and edgewise modal frequencies of a composite wind turbine blade using the Finite
Element Method. The extracted frequencies were validated experimentally from modal testing
using an electrodynamics shaker. Dhar (2006) developed a wind turbine model using Finite Ele-
ment Method and proposed a methodology to design a small-scale test set-up of the full-scale
wind turbine to reach structural invariants which were used to design structural components of
a wind turbine. The most common method to measure vibration is to attach accelerometers to
the blade and tap it with a hammer or excite it with a mechanical shaker. Experimental modal
analysis of a 19.1 meter wind turbine blade was established by Larsen et al. (2002) to determine
the blade natural frequencies, damping and mode shapes. It was also stated that there was a
good agreement between the obtained results from the experimental work and those obtained
by the FEM analysis. Abdulaziz et al. (2015) applied the Buckingham π-Theorem to develop an
approach in which measurements and analysis of a scaled-down model can be used to predict
the performance of full-scale wind turbine blades. The obtained results were used to predict and
validate numerical solutions using ANSYS software of the full-scale blade. White dealing with
an object with small mass, mass of the accelerometer changes resonant frequencies of the tested
scaled-down blade in which this method would be inappropriate. Therefore, modal tests were
performed by Kim et al. (2011) using the embedded fiber Bragg grating (FBG) sensors and the
laser Doppler Vibrometer to investigate dynamic characteristics of a wind turbine blade. The
tested blade was 1/23 scale of 750 kW blade. Natural frequencies obtained from FBG sensors
were found to be consistent with those from the laser Doppler Vibrometer. Ha et al. (2015)
used the optical deformation measurement technique called Digital Image Correlation (DIC)
to measure the natural frequencies, damping ratios and mode shapes of a blade excited by a
shaker. Due to geometricas complexity of the wind turbine blade, a precise numerical model of
the blade requires the use of shell elements rather than beam elements. Bayoumy et al. (2013)
applied the absolute nodal thin plate element to model the complex shape of the wind turbine
blade structure, to show the transient response of the blade due to gravitational and aerody-
namics forces. Kang et al. (2014) developed a geometrically exact shell element for a rotorcraft
based on assumptions of arbitrarily large displacements and rotations and small strain. The shell
finite elements were compared with the beam element for the modeling of three typical blade
structures. Modal analysis was established by Branner et al. (2007) using the FEM software
Nastran. The wind turbine blade FEM model comprised 8-node shell elements. The FEM model
was updated and validated against measurement results for the non rotating blade, identified by
means of experimental modal analysis. To reduce the blade manufacturing and transport costs,
a new approach was proposed to decompose the blade into several parts. Many segmentation



Numerical and experimental analysis of a segmented wind turbine blade... 87

techniques were proposed by Saldanha et al. (2013) and Broehl (2014). Nevertheless, the deve-
lopment of segmented blades remains an engineering problem and a tough challenge. Most of
the work related to segmentation of wind turbine blades, by Bhat et al. (2015a,b) and Saldanha
et al. (2013), shows that the natural frequency and static displacement versus the blade length
can be considered as the primary parameters to design a segmented wind turbine. Yangui et al.
(2016) studied the dynamic behavior of a segmented wind turbine blade using the three node
triangular shell element DKT18. To validate the accuracy and reliability of the developed model,
the obtained numerical results were compared to benchmark problems and modal analysis using
ANSYS software. Several researchers tried to develop a numerical model to study the dynamic
behavior of a wind turbine blade taking into account several external effects such as aerodynamic
load, gyroscopic and rotation speed effects, see Hamdi et al. (2014). However, they ignored the
assembly effort of the segments ehich must be studied in priority during design of the segmented
blade.
In the present work, an attempt has been made to address this requirement by investigating

natural frequencies and mode shapes of a segmented horizontal axis wind turbine blade sub-
jected to the assembling load. Experimental modal analysis of a scaled-down segmented blade,
assembled by a thread shaft and a nut has been performed using the laser Doppler Vibrometer.
The ERA method is used to identify the blade modal parameters, i.e. natural frequencies and
damping. The three node triangular shell element DKT18 is adopted in this paper to model
the segmented blade and the thread shaft structure. The assembling load effects are assumed
to concentrate in the thread shaft, seeing that its section is very small compared to the blade
segments section. Displacements between segments are also neglected in the blade modeling.
The developed FEM model parameters have been adjusted by the obtained experimental results
to highlight the significant influence of the assembling load produced by the tightening torque
versus the rotating speed on the natural frequencies of the wind turbine blade.
This paper is structured as follows. In Section 2, the assembled blade numerical model is

presented. Section 3 is dedicated to the measuring system and the modal identification proce-
dure. The experimental results are discussed in Section 4 to adjust and validate the developed
numerical model. In the conclusions Section, some final reflections are raised.

2. Blade numerical model

In this Section, the three node triangular shell element DTK18 is used to develop the wind
turbine blade model. It consists of five segments assembled together with a steel threaded shaft,
as demonstrated in Fig. 1.

Fig. 1. Segmented wind turbine blade model

For rotating blades modeled by three nodes triangular shell elements, it has been demon-
strated in previous works (Yangui et al., 2016) that the blade equation of motion can be written
as

Mq̈+Cq̇+ (Ke +KR)q = F (2.1)
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where M, C, Ke, KR, and F are the global mass matrix, damping matrix, elastic stiffness
matrix, centrifugal stiffness matrix and the global force vector, respectively.
Considering the presence of the tightening torque applied by the nut to assemble the blade

segments, an additional strain energy increases the blade structure rigidity. Logically, the same
solicitation, i.e. traction, will be applied by blade rotation and the tightening torque on the
threaded shaft. Thus, this additional stiffness matrix may be assumed to have the same form
of the centrifugal stiffness matrix, proportional to the nut tightening torque and depending on
threaded shaft geometry.
The global tightening torque stiffness matrix KS can be formulated as

KS(i, j) =
Cs
RsLs

Tp
KR(i, j)
|KR(i, j)|

(2.2)

where Cs, Rs, and Tp are, respectively, the tightening torque, threaded shaft radius and a
proportional coefficient that will be empirically determined.
The resulting equations of motion are obtained as

Mq̈+Cq̇+ (Ke +KR +KS)q = F (2.3)

3. Experimental analysis

3.1. Experimental procedure

The 3D printing technology has been used to manufacture the blade segments. Teeth con-
nected with holes in the segments interfaces were designed to prevent relative displacements
between the segments. Thus, friction effects between the segments are neglected. The measuring
system is shown in Fig. 2, which consists of an impact hammer to excite the blade structure,
laser Vibrometer, charge amplifier, and a data acquisition system with a computer to process
and display signals.

Fig. 2. Test stand for the assembled blade

To localize the measuring and excitation points, the blade has been discretized into 32
measuring points. In the third point, the blade is excited along the vertical direction (flap
direction) and the horizontal direction (edge direction), as shown in Fig. 3. The vertical motion
at all localized points is measured using the laser Vibrometer.
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Fig. 3. Horizontal and vertical blade excitation

3.2. Analysis procedure

A schematic representation of the computation and validation process is shown in Fig. 4.
The process starts from the time data of the excitation force F (t) and the velocity response V (t)
to which the FFT is applied in order to determine the measured Frequency Response Functions
(FRF) Hme(f). The Eigen system Realization Algorithm (ERA) identification method is used
to find the system poles and residues to identify natural frequencies ωi, damping ratios ξi and
vibration mode shapes Φi.

Fig. 4. Computational and validation process scheme

The reconstructed impulsion response hre is determined according to the number of mode N
by the equation

hre(t) =
N∑

i=1

Φieλit (3.1)



90 M. Yangui et al.

where the eigenvalues λi are written as

λi = −ωiξi ± jωi
√
1− ξ2i (3.2)

The identified modal parameter validation is based on the comparison between the measured
and the reconstructed impulse responses as well as transfer functions.

4. Results and discussion

4.1. Experimental modal parameter identification

The presented analysis procedure has been applied to the 32 measured signals as regard to
the vertical excitation. Figure 5 shows the measured excitation force and velocity response of
the seventh node.

Fig. 5. Excitation force and the seventh node velocity response

Using the measured signals, the transfer function in addition to the impulse response has
been determined, Fig. 6.

Fig. 6. Seventh node transfer function and impulse response

Table 1 presents the first five natural frequencies and damping ratios identified using the
ERA method.
For each of the 32 nodes, the reconstructed impulse response and transfer function is deter-

mined and re-plotted with those obtained from measurement to validate the identified modal
parameter. Figure 7 shows some of the measured and reconstructed fitted curves.
An acceptable agreement is obtained between the measured and the reconstructed impul-

se responses as well as the transfer functions. So, the identified modal parameters have been
validated.
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Fig. 7. Measured and reconstructed impulse responses and transfer functions: (a) Node 9, (b) Node 15,
(c) Node 21, (d) Node 26
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Table 1. The identified natural frequencies and damping ratios

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

ω [Hz] 19.5 95.7 226.5 314.3 407.6
ξ [%] 1.08 0.93 0.75 1.14 1.19

4.2. Experimental mode shape identification

To estimate the blade mode shape for each identified natural frequency, the previous process
is repeated regarding the horizontal excitation direction. Figure 8 shows the transfer functions
of the measured signals in the seventh node with respect to the excitation direction.

Fig. 8. Vertical and horizontal excitation transfer functions

Lower than 250Hz, two natural frequencies are more clearly observed from the transfer
function of the horizontal excitation than from the vertical excitation. Table 2 presents the
identified natural frequencies of the measured signals in the seventh node with respect to the
horizontal excitation direction, using the ERA method.

Table 2. The identified natural frequencies with respect to the horizontal excitation

Mode order Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

F [Hz] 19.4 27.2 95.8 194.8 226.4

Therefore, the natural frequencies determined by the vertical excitation present the blade
flapwise or torsional mode. The other two mode shapes present the blade edgewise or torsional
mode. The identified eigenvectors have been normalized in order to plot the blade mode shape
as shown in Fig. 9.

4.3. Mechanical characteristics adjustment

To adjust the mechanical characteristics of the numerical model corresponding to the printed
3D model, an initial frequency analysis has been carried out in which the contacts between the
blade segments are assured by teeth insertion in holes and conserved by the nut without applying
the assembling preload to avoid tightening torque effects. The blade has length L = 500mm
and thickness h = 3mm. The material blade segment properties are E = 2.4GPa, ν = 0.38
and ρ = 1140 kg/m3. The threaded shaft material properties are E = 210GPa, ν = 0.3 and
ρ = 7850 kg/m3. E, ν and ρ are, respectively, the elastic modulus, Poisson’s ratio and density.
Table 3 shows a comparison between the obtained natural frequencies by the developed FEM
model and those identified through the experimental setup.
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Fig. 9. The segmented blade mode shapes: (a) 1st mode (1st flapwise mode), (b) 2nd mode
(1st edgewise mode), (c) 3rd mode (2nd flapwise mode), (d) 4th mode (1st torsional mode),

(e) 5th mode (3rd flapwise mode)
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Table 3. The blade without preload of the threaded shaft: Natural frequencies before adjustment
of the elastic modulus

Mode order FEM Experimental Diff [%]

1 18.37 17.4 5.28
2 25.21 24.8 1.62
3 90.19 85.7 4.97
4 187.91 180.2 4.10
5 214.07 219.2 2.34

To match the elastic modulus of the numerical model with the built model, an iterative
process has been done to adjust the first natural frequency obtained by FEM with that obtained
from experimental analysis. Thus, the adjusted elastic modulus is Er = 2.25GPa.

Table 4. The blade without preload of the threaded shaft: Natural frequencies after adjustment
of the elastic modulus

Mode order FEM Experimental Diff [%]

1 17.4 17.4 0
2 24.19 24.8 2.45
3 84.25 85.7 1.69
4 178.79 180.2 0.78
5 213.71 219.2 2.5

As long as the maximum difference is about 2.5%, the presented numerical model is validated,
at least without the threaded shaft preload effects, and the adjusted elastic modulus puts the
numerical model much closer to reality.

4.4. Threaded shaft preload effects

To determine the proportional tightening torque coefficient Tp, a tightening torque
Cs = 0.6Nm is applied by the nut. The proportional tightening torque coefficient is determined
by adjusting the first natural frequency obtained from the numerical model to that identified
through experimental study. Thus, the determined tightening torque coefficient is Tp = 1.62.
Table 5 shows the first five natural frequencies determined by the FEM and the experimental
study.

Table 5. Natural frequencies of the blade with the threaded shaft preload: Cs = 0.6Nm

Mode order
The threaded shaft preload Cs = 0.6Nm
FEM Exp Diff [%]

1 19.5 19.5 0
2 27.2 26.7 1.83
3 95.8 93.5 2.4
4 194.8 197.2 1.21
5 226.8 234.4 3.24

To validate the chosen torque proportional coefficient, the second torque Cs = 1Nm is
applied.
Table 4 shows that the maximum difference is about 3.62% between the FEM modeling and

the experimental results. So, the assumed stiffness matrix form for the threaded shaft preload
is adequate. Furthermore, from Tables 5 and 6, it is observed that the blade natural frequencies
are proportional to the tightening torque.



Numerical and experimental analysis of a segmented wind turbine blade... 95

Table 6. Natural frequencies of the blade with the threaded shaft preload: Cs = 1Nm

Mode order
The threaded shaft preload Cs = 1Nm
FEM Exp Diff [%]

1 23.8 24.1 1.24
2 31.81 30.9 2.86
3 113.43 110.6 2.49
4 214.48 207.8 3.11
5 243.35 252.5 3.62

4.5. Rotating blade frequencies analysis

Several researchers have investigated the effects of the rotating speed on the blade natural
frequencies. However, those researches limited their examinations to simple blade shapes, or
they ignored the effects of the segments assembling load. In this study, based on the adjusted
numerical model of the segmented shell type wind turbine blade, the natural frequencies are in-
vestigated taking into account both the rotation speed and the effects of the segments assembling
load.

Fig. 10. Natural frequency variation versus rotating speeds for various tightening torque:
(a) 1st natural frequency, (b) 2nd natural frequency, (c) 3rd natural frequency, (d) 4th natural

frequency, (e) 5th natural frequency

The segments assembling load influences the rotating blade natural frequencies as illustrated
in Fig. 10. Natural frequencies variations maintain the same curve shape for different tightening
torque, as regards to the rotating speed increase. Furthermore, an increase in the natural frequ-
encies is clearly affected by the applied tightening torque. Interestingly, the tightening effect on
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modal frequencies is clearly more dramatic than the effects stemming from the blade rotation.
From the first two natural frequencies variation curves, it is observed that the additional stiff-
ness generated by the tightening torque attenuates the rotating speed effects on variation of the
natural frequencies.

5. Conclusions

In this study, natural frequencies and mode shapes of a segmented wind turbine blade have
been established by experimental and numerical studies. The segmented blade shape assembled
with a threaded shaft and a nut has been modeled using linear triangular shell elements. The
proposed numerical model has been adjusted through experimental study to better approach the
real system. The identified modal parameters using the ERA method were validated by recon-
structing the measured impulse responses and transfer functions. The tightening torque effects
on the natural frequencies of a non rotating segmented blade were investigated by experimen-
tal means and incorporated into the numerical model to study their influence on the dynamic
behavior of the rotating blade. The obtained numerical results present a good correlation with
those identified by the experimental study. The results show the increase of the blade natural
frequencies of all modes due to increasing tightening torque applied by the nut to assemble the
blade segments, in addition to an increase in the rotational speed.
The adjusted numerical method presented in this study can be used to evaluate vibration

characteristics of the segmented wind turbine blade with a complex shape, taking into conside-
ration the segments assembly load. This study is limited to the rotation speed and tightening
torque effects, and can be extended by taking into account the aerodynamic effect. Interestingly,
friction effects between the blade segments will be considered in the future adjustment of the
numerical model.
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The paper presents an inverse kinematic model for a centrifuge motion simulator used to
verify newly defined absolute acceleration profiles. The modelling is concerned with a human
training centrifuge with three degrees of freedom. The values of kinematic parameters have
been obtained for this three-jointed manipulator. Validation of the developed model has been
performed by comparing the results obtained from the centrifuge motion simulator with the
results of numerical simulations. The simulation revealed that the inverse kinematic model
enabled calculation of the angular displacement, velocity and acceleration of the links that
are needed for the given linear acceleration of the simulator cabin.
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1. Introduction

High-performance aircraft pilots as well as civilian aerobatic pilots are exposed to high linear
accelerations during flight (Newman, 2015). In order to properly prepare for work in this environ-
ment, pilots are evaluated and trained to increase their acceleration tolerance level (Wojtkowiak,
1991). This training is carried out in a specially designed centrifuge motion simulator or, so-
called, human training centrifuge (HTC) (Dančuo et al., 2012b; Truszczyński and Kowalczuk,
2012). From the standpoint of classical mechanics, the task of the HTC is to achieve accelera-
tions through rotations around three axes that simulate the load the pilot is exposed to in a real
flight. This type of simulator makes it possible to create high and prolonged linear accelerations.
Moreover, the centrifuge provides a safe ground-based platform to train pilots, especially in the
field of increasing pilot’s awareness about unwanted effects of accelerations, such as G-induced
loss of consciousness or spatial disorientation. In addition, the HTC is an important tool for
researchers to understand the changes taking place in human physiology during accelerative
stress.
In this paper, a dynamic flight simulator has been considered, namely the HTC shown in

Fig. 1, manufactured by the AMST-Systemtechnik GmbH (Austria), located at the Military
Institute of Aviation Medicine (Warsaw, Poland).
The gondola/cabin of the centrifuge is assembled on an eight-meter-long arm and allowed

longitudinal accelerations (in the direction from pilot’s head to foot) to be achieved in the range
from −3g to +16g (g is the Earth’s gravitational acceleration) with the maximal onset rate
of acceleration (G-onset rate) at n = 14.5g/s. Additionally, the gyroscopic suspension of the
cabin allowed it to achieve transversal and lateral accelerations in the range of ±10g and ±6g,
respectively.



100 R. Lewkowicz, G. Kowaleczko

Fig. 1. Dynamic flight simulator – human training centrifuge HTC-07

2. Problem formulation

Within the centrifuge simulator, there is a pre-programmed standard open loop mode that con-
tains predefined nonlinear profiles of the absolute acceleration in the centre of the cabin. In
these profiles, which are independent for each of the three axes of the pilot’s head-fixed coor-
dinate system, a positive or negative acceleration that is constant for given periods of time is
determined. When this acceleration profile is created, the angular accelerations in the indivi-
dual links of the simulator motion system may be exceeded (Table 1). There is also a problem
concerning hypogravity (< 1g), which cannot be obtained in this simulator. In that case, the
simulator software reports an error, which is then eliminated using a trial and error method.
This problem makes it difficult to define more complex acceleration profiles that should not be
tested on a real device. The solution to this problem should be sought in the inverse kinematics
of the HTC’s motion system. The inverse kinematics of the centrifuge motion simulator will be
based on calculating the angular position, velocity and acceleration of each motion system link.
This approach will make it possible to indicate maximum values of angular acceleration that
are necessary to achieve a given linear acceleration of the simulator cabin. In this way, how the
position of individual links of the motion system should change over time in order to achieve
the desired movement of the cabin will be determined.

3. Physical model of the HTC simulator

A centrifuge motion simulator is modelled as a three-joint manipulator (Fig. 2) with rotational
axes, where the pilot’s head is considered to be the end-effector (Crosbie, 1988). The model
consists of three links: arm, ring and cabin (Fig. 2).
The arm rotation around the vertical axis is the main motion that achieves the desired

acceleration force. The arm carries a gimballed cabin system with two rotational axes providing
pitch and roll capabilities. The task of the roll and pitch axes is to direct the acceleration force
into the desired direction. The pilot’s head is placed in the intersection of the cabin roll and
pitch axes. The arm rotation angle is denoted by ψA, the roll ring rotation angle by ϕR and
the pitch cabin rotation angle by θC . The centrifuge has the following parameters: arm length
dA = 8m, roll and pitch axis rotation range of ±360◦. Other parameters of the simulator motion
system kinematics are shown in Table 1.
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Fig. 2. A physical model of the centrifuge motion simulator HTC-07

Table 1. Motion capabilities of the HTC-07 simulator (AMST-Systemtechnik GmbH, 2011)

Parameter zc-axis yc-axis xc-axis

Maximum acceleration rate [g/s] 14.5 6 10
Maximum angular acceleration [rad/s2] 2.82 8 5

4. Kinematics of the centrifuge motion simulator

The forward kinematics that is related to the simulator motion system geometry is used
to calculate the linear acceleration components of the end-effector (the pilot’s head), whe-
re GH = [GxH , GyH , GzH ]

T with respect to the centrifuge variables ψA, φR and θC (the-
se angles are determined in the next Section). Thus, for a given joint coordinate vector
q = [ψ̈A, ψ̇A, θC , θ̈C , φR, φ̈R]T, the forward kinematics equation must be solved as follows

GH = f(q) (4.1)

where f is a nonlinear, continuous and differentiable function. The simulator kinematic model
can be derived by different methods, such as the Lagrange equation (Siciliano et al., 2009; Wu
et al., 2010), the Newton-Euler method (Grotjahn et al., 2004; Tsai, 1999) and the virtual work
principle (Wu et al., 2009, 2013; Zhao and Gao, 2009). The method based on the Lagrange
formulation is conceptually simple and systematic. The method based on the Newton-Euler for-
mulation yields a model in a recursive form. It is composed of forward computation of velocities
and accelerations of each link, followed by backward computation of forces and moments in
each joint (Wu et al., 2010). This algorithm is computationally more efficient because it exploits
the typically open structure of the manipulator kinematic chain (Djuric et al., 2012; Sicilia-
no et al., 2009). On the other hand, the Newton-Euler procedure is very difficult to use in an
advanced control application because of the closed structure, as the expense of calculation is
considerably high (Gherman et al., 2012). Despite this, the Newton-Euler equations of motion
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are used to model the kinematics of centrifuge motion simulator due to the fact that these equ-
ations incorporate all accelerations that act on the individual links of the motion system (Chen
and Repperger, 1996; Dančuo et al., 2012a; Kvrgic et al., 2014; Vidaković et al., 2012). During
kinematic modelling of the centrifuge, the small elastic deformation of the centrifuge links is
neglected.

4.1. Coordinate frames and matrices determining relations for centrifuge links

This Section defines coordinate frames for the centrifuge links (Fig. 2) and matrices that
determine their relations. The centrifuge links and their coordinate frames are denoted by using
the Euler angle convention. The centrifuge base coordinates are denoted by Ox0y0z0 (the Earth-
-fixed system), the arm coordinates by AxAyAzA (link 1), the roll ring coordinates by RxRyRzR
(link 2), the cabin coordinates by CxCyCzC (link 3) and the pilot head-fixed coordinates system
by HxHyHzH . The pilot’s head is placed in the intersection of the cabin roll and pitch axes,
therefore xC = xH , yC = yH , and zC = zH . To determine the mutual position of the defined
coordinate systems, the following angles are used (Fig. 2):
• ψA – the yaw angle between the x0-axis and the yA-axis. This angle, enlarged by 90◦,
provides coverage of the y0-axis with the yA-axis, in this way defining the position of
the Earth-fixed coordinate system Ox0y0z0 relative to the arm-fixed coordinate system
AxAyAzA (link 1),
• φR – the roll angle between the zA-axis and the zP -axis. This angle determines the position
of the arm-fixed coordinate system AxAyAzA (link 1) relative to the ring-fixed coordinate
system RxRyRzR (link 2),
• θC – the pitch angle between the zP -axis and the zC-axis. This angle determines the
position of the ring-fixed coordinate system RxRyRzR (link 2) relative to the cabin-fixed
coordinate system CxCyCzC (link 3).

To derive the kinematic equations for the motion simulator, the matrices for the relation
between the centrifuge link coordinate frames are defined. These transformation matrices are
obtained for the Z → Y → X rotation convention of the coordinate systems in the following
way:
— L0/A – matrix for transformation from the Earth-fixed coordinate system Ox0y0z0 to the
arm-fixed coordinate system AxAyAzA

L0/A = Lzr(90
◦)Lz0(−ψA) (4.2)

where

Lz0(−ψA) =



cosψA − sinψA 0
sinψA cosψA 0
0 0 1


 Lzr(90

◦) =



0 −1 0
1 0 0
0 0 1


 (4.3)

— Lxr(φR) – matrix for transformation from the arm-fixed coordinate system AxAyAzA to the
ring-fixed coordinate system RxRyRzR

Lxr(φR) =



1 0 0
0 cosφR sinφR
0 − sinφR cosφR


 (4.4)

— Lyp(θC) – matrix for transformation from the ring-fixed coordinate system RxRyRzR to the
cabin-fixed coordinate system CxCyCzC

Lyp(θC) =



cos θC 0 − sin θC
0 1 0
sin θC 0 cos θC


 (4.5)
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The matrix L0/C for transformation from the cabin-fixed coordinate system, CxCyCzC , to the
Earth-fixed coordinate system, Ox0y0z0, is determined by multiplying transformation matrices
(4.2)-(4.5), in the following way

L0/C = Lyp(θC)Lxr(φR)L0/A (4.6)

By using the convenient shorthand notation c = cos and s = sin, the components of the trans-
formation matrix (4.6) L0/A = Lzr(90

◦)Lz0(−ψA) (4.2) become the following

L0/C =



sψAcθC + cψAsφRsθC cψAcφR −sψAsθC + cψAsφRcθC
−cψAcθC + sψAsφRsθC sψAcφR cψAsθC + sψAsφRcθC

cφRsθC −sφR cφRcθC


 (4.7)

Assuming that ψA = 0, for further calculations matrix (4.7) is reduced to the form

L0/C(ψA=0) =



sinφR sin θC cosφR sinφR cos θC
− cos θC 0 sin θC
cosφR sin θC − sinφR cosφR cos θC


 (4.8)

On the basis of these transformational matrices, the equations of forward kinematics that relate
to the velocities and accelerations of the links and the end-effector-pilot’s head are developed in
the next Section.

5. Linear acceleration acting on the pilot’s head

The linear acceleration components at the intersection point of the roll (link 2) and pitch (link 3)
axes are: the normal (radial) an, tangential at and gravitational g accelerations (Fig. 3). From
these accelerations, the orthogonal components Gx0, Gy0, and Gz0 for the normal, tangential
and vertical accelerations, respectively, are calculated as follows


Gx0
Gy0
Gz0


 =
1
g



−an
−at
g


 =



dAψ̇

2
A/g

−dAψ̈A/g
1


 (5.1)

where dA is the simulator arm length, ψ̇A and ψ̈A are angular velocity and acceleration of the
arm (link 1), respectively.
The link angles φR and θC , angular velocity ψ̇A and acceleration ψ̈A of the arm define the

orthogonal components GxC , GyC and GzC of the resultant vector GC that are experienced by
the pilot. Based on equations (4.8) and (5.1), the resultant vector GC experienced by the pilot
can be found from

[GxC , GyC , GzC ]
T = L−10/C(ψA=0)[Gx0, Gy0, Gz0]

T (5.2)

The transverse GxC , lateral GyC and longitudinal GzC components of the acceleration GC that
act on the pilot’s head are

GxC = sin θC(Gx0 sinφR +Gz0 cosφR)−Gy0 cos θC
GyC = Gx0 cosφR −Gz0 sinφR
GzC = cos θC(Gx0 sinφR +Gz0 cosφR) +Gy0 sin θC

(5.3)

Equations (5.3) develop the inverse kinematics algorithm which determines the link angles that
are required to generate a desired trajectory of the cabin-centrifuge and accelerations in the
centrifuge axes.
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Fig. 3. The acceleration components at the intersection point of the roll and pitch axes

6. An inverse kinematics of the cabin simulator

The inverse kinematics is defined as the problem of determining a set of appropriate joint
configurations for which the end effector (the pilot’s head) moves to desired positions as smoothly,
rapidly and as accurately as possible. The inverse kinematics of the centrifuge motion system is
first based on calculating the angular displacement, velocity and acceleration of the links that
are needed for the given linear acceleration of the simulator cabin. Then, taking into account the
limitations of the motion system (Table 1), it is checked whether this system can achieve such
accelerations. If it cannot, the maximum successive link angular accelerations that the motion
system can achieve are calculated. The inverse kinematics for the centrifuge motion simulator
can be described by the relationship

[ψ̈A, ψ̇A, θC , θ̈C , φR, φ̈R]T = f−1[GxH , GyH , GzH ]
T (6.1)

where f−1 is a nonlinear, continuous and differentiable function that performs the inverse trans-
formation to the function f , (4.1). There are two distinct methods for solving Eq. (6.1) of inverse
kinematics, namely iterative and analytical. The iterative method gives the solution by solving
an approximation of the system, and by updating the system with the output from the solver
for each iteration until it converges. The analytical method solves the whole system at once;
however, the complexity of it arises when large chains of joints attempt to be solved. The most
prominent among iterative methods are based on the Jacobian matrix, which describes the non-
linear and configuration dependent transformation between velocities in the joint configuration
coordinates and the task spaces. There are several versions of Jacobian-based methods, such as
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the Jacobian Transpose (Wolovich and Elliott, 1984), damped least squares (Wampler, 1986),
damped least squares with singular value decomposition (Wampler, 1986), selectively damped
least squares (Buss and Kim, 2005) and several extensions (Baillieul, 1985; Nakamura and Ha-
nafusa, 1986). An iterative method can be also viewed as an optimization task solved with
general-purpose methods (neural networks (Tejomurtula and Kak, 1999) and genetic algorithms
(Nearchou, 1998)), but those approaches are usually computationally ineffective.
Due to small chains of joints (a centrifuge simulator is a three-joint manipulator), direct and

analytical computations of inverse kinematics are chosen. Based on the acceleration vector GC
components, Eqs. (5.3), the link angles in each joint in the system are derived. To determine
the angular accelerations and velocities of the arm (link 1), ring (link 2) and cabin (link 3), the
following calculation algorithm for the inverse kinematics is used (Kvrgic et al., 2014).

Step 1: Determination of the arm angular acceleration ψ̇A. The angular acceleration ψ̇A is
derived from Eq. (5.1) that describes linear acceleration components at the intersection point of
the roll and pitch axes (Fig. 3). The resultant acceleration of this point is a sum of the normal an,
tangential at, and gravitational g acceleration. This acceleration is as follows

a2A = d
2
Aψ̇
4
A + d

2
Aψ̈
2
A + g

2 (6.2)

For a positive angular acceleration ψ̈A, the angular velocity ψ̇A in the i-th moment of time is
equal to

ψ̇A(i) = ψ̇A(i− 1) + ψ̈A(i)dt (6.3)

By substituting (6.3) to equation (6.2), the resultant acceleration takes the form

a2A(i) = d
2
A[ψ̇A(i− 1) + ψ̈A(i)dt]4 + d2Aψ̈2A(i) + g2 (6.4)

After calculations have been performed, this equation becomes

a2A(i) = d
2
A[ψ̇
4
A(i− 1) + 4ψ̇3A(i− 1)ψ̈A(i)dt + 6ψ̇2A(i− 1)ψ̈2A(i)dt2] + d2Aψ̈2A(i) + g2 (6.5)

and then

a2A(i)− g2
d2A

= ψ̇4A(i− 1) + 4ψ̇3A(i− 1)ψ̈A(i)dt + 6ψ̇2A(i− 1)ψ̈2A(i)dt2 + ψ̈2A(i) (6.6)

By reducing equation (6.6) to the form of a quadratic equation

[1 + 6ψ̇2A(i− 1)dt2]ψ̈2A(i) + 4ψ̇3A(i− 1)ψ̈A(i)dt + ψ̇4A(i− 1)−
a2A(i)− g2

d2A
= 0 (6.7)

it is possible to obtain its solution in the form of two roots

ψ̈A(i) =
−2ψ̇3A(i− 1) dt±

√
−2ψ̇6A(i− 1)dt2 − ψ̇4A(i− 1) + [1 + 6ψ̇2A(i− 1)dt2]k(i)

1 + 6ψ̇2A(i− 1)dt2
(6.8)

where

k(i) =
a2A(i)− g2

d2A
(6.9)

Kvrgic et al. (2014) noted that equation (6.8) is valid for the movement that has a positive
acceleration onset. For a negative acceleration onset, the discriminant −2ψ̇6A(i− 1)dt2 − ψ̇4A(i−
1) + [1 + 6ψ̇2A(i− 1)dt2]k(i) is mostly negative, which means that this equation cannot be used
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directly. Vidaković et al. (2012, 2013) proposed a solution in the form of a Jacobi elliptic function,
which describes the arm angular velocity as

ψ̇A(t) =
4
√
ksn( 4
√
kt+ 4
√
kC1,−1) (6.10)

where k is constant for every interpolation period of time and is given by Eq. (6.9), sn is a
Jacobian elliptic function and C1 is the constant obtained from the value of angular velocity
from the previous interpolation period.
After equation (6.10) has been developed in Taylor series expansions of the Jacobi elliptic

function (Wrigge, 1981), it becomes

ψ̇A(i) =
4

√
k(i)
(
t1(i) −

t51(i)
10
+
t91(i)
120
− 11t

13
1 (i)
15600

+
211t171 (i)
3536000

)
(6.11)

where t1(i) = 4
√
k(i)(dt + C1).

Equation (6.11) describes the arm angular velocity, ψ̇A(i), for each i-th interpolation period
of time. The angular acceleration, ψ̈A(i), of the arm for every interpolation period of time is
calculated as

ψ̈A(i) =
ψ̇A(i+ 1)− dotψA(i)

dt
(6.12)

Another approach to solve the problem of calculation of the negative acceleration was proposed
by Liwen et al. (2015). The researchers generated both a trapezoidal G-load curve and three-
-axis G-load commands using a real-time motion planning algorithm with two G-dimensional
interpolation. Dančuo et al. (2018) and Vidaković et al. (2012) indicated that equation (6.8)
could be also solved numerically for a small time increment dt→ 0.
Step 2: Determination of the angular velocity ψ̇A of the arm (6.3) and accelerations components
(5.1) at the intersection point of the roll and pitch axes (Fig. 3).

Step 3: Determination of the roll ring angle φR based on equation (5.3)2, which describes the
lateral acceleration GyC . Expressing sinφR and cosφR by using the tangent function

cosφR =
1√

1 + tan2 φR
sinφR =

tan φR√
1 + tan2 φR

(6.13)

and by substituting these functions to equation (5.3)2, multiplying both sides by
√
1 + tan2 φR,

and then raising to the power, the following expression is obtained

G2x0 − 2Gx0Gz0 tan φR +G2z0 tan2 φR = G2yC (1 + tan
2 φR) (6.14)

After the next transformation, Eq. (6.14) is reduced to the form

(G2z0 −G2yC ) tan
2 φR − 2Gx0Gz0 tanφR +G2x0 −G2yC = 0 (6.15)

for which the roots are the following

tanφR =
2Gx0 ±

√
4G2x0 − 4(G2z0 −G2yC )(G2x0 −G2yC )

2(G2z0 −G2yC )
(6.16)

By substituting Gz0 = 1 to Eq. (6.16), and then performing manipulations, the following result
is obtained

tanφR =
Gx0 ±GyC

√
1 +G2x0 −G2yC

1−G2yC
(6.17)
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For G2x0 + 1  G2yC , the roll ring angle is equal to

φR = arctan
Gx0 +GyC

√
1−G2yC +G2x0

1−G2yC
(6.18)

otherwise

φR = arctan
Gx0
1−G2yC

(6.19)

If GyC < 0, and G
2
yC > 1, the roll ring angle is equal to φR = φR + π. The angular velocity φ̇R

and acceleration φ̈R of the ring (link 2) are determined as follows

φ̇R(i) =
φR(i)− φR(i− 1)

dt
φ̈R(i) =

φ̇R(i)− φ̇R(i− 1)
dt

(6.20)

Step 4: Completion of the pitch cabin angle θC calculation. This angle can be derived from
equation (5.3)1 that describes the lateral acceleration GxC or based on Eq. (5.3)3 which defines
the longitudinal acceleration GzC . Equations (5.3)1 and (5.3)3 indicate that it is not possible
to obtain simultaneously the desired values of GxC and GzC acceleration, even if they do not
exceed the limit ranges (Table 1). Therefore, to determine the pitch cabin angle, Eq. (5.3)1 is
used. For the known lateral acceleration GxC , using similar substitution (6.13) for the pitch
cabin angle θC , equation (5.3)1 takes the form

GxC =
tan θC√
1 + tan2 θC

(Gx0 sinφR +Gz0 cosφR)−Gy0
1√

1 + tan2 θC
(6.21)

Performing analogous transformations (6.14) and (6.15) as for the angle of tilting the ring, the
above equation takes the form

G2xC (1 + tan
2 θC) = tan2 θC(Gx0 sinφR +Gz0 cosφR)2

− 2Gy0 tan θC(Gx0 sinφR +Gz0 cosφR) +G2y0
(6.22)

By substituting Gx0 sinφR + Gz0 cosφR = d, and then performing some manipulations, a qua-
dratic equation is obtained

(d2 −G2xC ) tan
2 θC − 2Gy0d tan θC +G2y0 +G2xC = 0 (6.23)

for which the roots are the following

tan θC =
Gy0d±GxC

√
d2 −G2y0 −G2xC

d2 −G2xC
(6.24)

For (d2 +G2y0)  G2xC , the pitch cabin angle θC is equal to

θC = arctan
Gy0d+GxC

√
d2 +G2y0 −G2xC

d2 −G2xC
(6.25)

otherwise, if (d2+G2y0) < G2xC , it is not possible to obtain the desired transverse acceleration GxC .
Then equation (6.21) takes the form

θC = arctan
Gy0

d−G2xC/d
(6.26)
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The angular velocity θ̇C and acceleration of the cabin θ̈C (link 3) are determined as follows

θ̇C(i) =
θC(i) − θC(i− 1)

dt
θ̈C(i) =

θ̇C(i)− θ̇C(i− 1)
dt

(6.27)

A centrifuge is capable of simulating all three load components, but simulating a pure GzC
profile becomes a problem due to motor limitation. A pure GzC training profile is a profile
without the transverse GxC and lateral GyC loads. The transverse load GxC in the centrifuge
is a result of the tangential acceleration at (Fig. 3) and has a large value at the beginning
and at the end of planetary arm motion. The greater the tangential acceleration is, the greater
is the GxC acceleration. The emergence of the large tangential acceleration at decreases the
angular velocity of the arm motion and has negative effects on the overall centrifuge perfor-
mance (Dančuo et al., 2013). These effects are minimized by adjusting the pitch cabin angle by
θC = arctan(at/

√
a2n + 1).

Equations (6.3), (6.8), (6.18), (6.20), (6.25) and (6.27) compose a system of 8 ordinary
differential equations that describe an inverse kinematics model of the HTC motion simulator.
Based on these equations, the centrifuge kinematic parameters: ψA, ψ̇A, ψ̈A, φR, φ̇R, φ̈R, θC ,
θ̇C , and θ̈C are calculated in three phases, according to the algorithm described by Kvrgic et al.
(2014).

7. Verification of the inverse kinematics model

The presented inverse kinematics model of the HTC motion simulator has been tested using
numerical calculations. The simulation was performed for the GxC , GyC and GzC acceleration
forces profile (Fig. 5, solid line), which was generated by the software of the HTC control system.
This acceleration forces profile changes as follows:

• starting from 1g with G-onset rate n = 0.2g/s up to the baseline level (1.41g),
• constant baseline level at 1.41g,
• increase of the acceleration with G-onset rate n = 3g/s up to 6g,
• constant acceleration at 6g,
• decrease of the acceleration with G-onset rate n = −3g/s up to the baseline level (1.41g).

Additionally, for calculations the following data, namely dA = 8m, g = 9.81m/s2, time step
dt = 0.005 s and Matlab/Simulink MathWorks software, have been used. Figures 4-7 present the
results of numerical simulations (dotted line) plotted together with the corresponding parameters
which were recorded during operation of the HTC simulator (solid line). The figures show:

• angular velocity ψ̇A and acceleration ψ̈A of the arm (link 1) (Fig. 4),
• GxC , GyC , and GzC acceleration forces profile (Fig. 5),
• angle φR, angular velocity φ̇R and acceleration φ̈R of the roll ring (link 2) (Fig. 6),
• angle θC , angular velocity θ̇C and acceleration θ̈C of the pitch cabin (link 3) (Fig. 7).

The calculated angular velocity of the arm ψ̇A (dotted line on the upper plot in the Fig. 4),
which is responsible for generating the centripetal acceleration an, largely covers the envelope of
the angular velocity obtained from the HTC control system (solid line). The difference between
the two curves of ψ̇A (Fig. 4, model vs. HTC) is noticeable only during a decrease in the
acceleration from 6g to 1.41g with G-onset rate n = −3g/s (Fig. 5). The maximum of this
difference is approximately 0.2 rad/s. A similar difference was found in the study by Vidaković
et al. (2012).
In Fig. 5, the GxH , GyH , and GzH components of the absolute acceleration force obtained

by equations (5.3) are given. The curves are very close to each other, except for the phase of
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Fig. 4. Angular velocity and acceleration of the centrifuge arm

Fig. 5. Components of the absolute acceleration
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deceleration (negative angular acceleration ψ̈A shown in Fig. 4), when a small difference has
appeared. The maximum error of the absolute acceleration does not exceed the value of 0.2g
(GzH ).
From Fig. 6, it is clear that the presented angle φR, angular velocity φ̇R and acceleration φ̈R of

the roll ring (link 2) provide good results. A difference between the desired (HTC) and calculated
(model) angle φR is minimal. The angle φR is derived from equation (6.17) and depends on Gx0
acceleration (5.1). Thus, the observed difference in the calculated angle φR comes from angular
velocity of the arm ψ̇A (Fig. 4) which affects Gx0 acceleration. Moreover, according to equation
(6.20), the angular velocity φ̇R, and acceleration φ̈R of the roll ring are calculated on the basis
of the angle φR. Therefore, these parameters curves (model vs. HTC) are also different.

Fig. 6. Kinematic parameters of the roll ring: angle, angular velocity and acceleration

Figure 7 shows the angle θC , angular velocity θ̇C and acceleration θ̈C of the pitch cabin
(link 3) obtained by equations (6.25), and (6.27), respectively. A difference between the desired
(solid line) and calculated (dotted line) angle θC appears only for the phase of deceleration
(negative angular acceleration ψ̈A, shown in Fig. 4) of the arm. Similar to the kinematic para-
meters calculated for the ring (link 2), the observed difference in the calculated angle θC (6.25)
depends on the centrifuge arm movement (angular acceleration of the arm ψ̈A, which affects Gy0
acceleration (5.1)). The angular velocity θ̇C and acceleration θ̈C of the roll ring (Fig. 7) are
calculated based on equation (6.27). Therefore, the differences between two curves (model vs.
HTC) of these parameters are easily observed.
The obtained kinematic model is not completely accurate, but the calculated link accelera-

tions, velocities and angles do not differ much from their actual values. It is a concern, especially
for maximum and minimum values indicating whether the limit ranges (Table 1) have not been
exceeded to achieve the desired values of the acceleration vector GC components. In order to
eliminate the differences between the desired (HTC) and calculated (model) parameters for the
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Fig. 7. Kinematic parameters of the pitch cabin: angle, angular velocity and acceleration

movement having a negative acceleration onset, Kvrgic et al. (2014) proposed a simple solution
in which the values of the positive G-onset rate n of the same magnitude are reversed.

8. Conclusions

The purpose of the work is to present a way to solve the problem of correctly defining complex
acceleration profiles that are recreated by a centrifuge motion simulator. The proposed solution,
in the form of an inverse kinematic model of the centrifuge, indicates not only the exceeded
limit values of the parameters, but also their changes over time. The simulation has revealed
that the developed inverse kinematic model makes it possible to calculate the angular displace-
ment, velocity and acceleration of the links, which is needed for the given linear acceleration of
the simulator cabin. Simulation performed in Simulink proved the correctness of the presented
expressions for angular displacement, velocity and acceleration of the centrifuge links. The pre-
sented algorithm achieved the predefined profile of absolute acceleration in the centrifuge cabin
where the onset rate of the absolute acceleration is constant. The developed model of the inverse
kinematics can be used for computer simulation of motion of the centrifuge simulator system.
Through an overview of the behaviour of the model under various operating conditions, it is
possible to predict how a real system will behave.
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The paper presents results of the preliminary strength design using the method of stati-
cally admissible discontinuous stress fields (SADSF) of two new and interesting thin-walled
structures based on double-tee sections. Although these constructions are intended to carry
torsion moment loads, all their surfaces are accessible from outside. The paper is completed
with the selected results of linearly-elastic FEM analyses of the presented solutions. They
show surprisingly good strength properties and significantly higher load-carrying capacity
comparing to structures designed in an intuitive way. The objectives of the paper, among
other things, are as follows: popularization of the SADSF method, presentation of its new
solutions and confirmation of practical usefulness in the design of thin-walled structures.
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1. Introduction

Due to their properties, thin-walled structures are commonly applied, and the methods concer-
ning strength design are intensively developed and represent the centre of interests of scientists.
The main difficulty encountered in designing these systems is that even apparently minor

changes in their constructional details or changes in boundary conditions may cause large and
non-local changes in stress and deformation fields (e.g. Bodaszewski, 2013). For this reason, the
design methods based on intuitive or iterative improvements, including contemporary, quickly
developed methods of topology optimization (Bendsoe and Sigmund, 2003; Huang and Xie, 2010;
Mróz and Bojczuk, 2003), must be applied with great caution.
The paper presents a method which does not make use of iterative procedures and uses

statically admissible, discontinuous stress fields, and is justified by the lower-bound theorem
of limit analysis and is called SADSF (Szczepiński, 1968; Dietrich et al., 1970; Frąckiewicz et
al., 1986; Szczepiński and Szlagowski, 1990; Szlagowski, 1990; Zowczak, 2004; Bodaszewski and
Szczepiński, 2005; Bodaszewski, 2013).
A manner of formulating the design problem typical for this method is presented in Fig. 1a

(Bodaszewski, 2013). The only data is: limit load at the boundary Sp reduced to two pairs of
forces Ph, geometry of this part of the boundary (dimensions: L, h, e), and the yield point of
the structure material σY .
One should notice that analogical formulations which use only the data on boundary condi-

tions, appear during designing each new structure.
In order to solve the presented problem using the SADSF method, it is necessary to con-

struct a statically admissible, discontinuous stress field, which would satisfy the given boundary
conditions and specify the structure configuration, i.e. number, spatial positioning and system
of mutual connections of component elements as well as determine the shape and dimensions of
these elements. Therefore, this field will completely define the sought for structure.
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Statically admissible stress fields satisfy only the equilibrium equations and static boundary
conditions and do not infringe the assumed yield condition. The SADSF method assumes making
use of discontinuous fields wherein lines of discontinuity are sections of straight lines which
cause that stress states are homogenous within any area. During construction of the fields, one
strives for a situation where the yield condition is achieved within all or at least as many areas
as possible. Moreover, it is assumed that the constructed spatial fields consist of plane fields
fragments.
Basic difficulty during construction of such fields is that for arbitrarily selected networks of

lines of stress discontinuities (division to homogenous areas), there is usually no solution. At
the beginning, even the arrangement of conditions that need to be set is unknown, and one
must notice that these are non-linear equations and inequalities which include singularities, and
usually large number of variables (Bodaszewski, 2004, 2005). This causes that direct approaches
in the SADSF method cannot be applied.
These difficulties are bypassed within the scope of the application version of the SADSF

method, created especially for engineers. An engineer does not have to solve any new statically
admissible stress fields. He or she uses a set of ready-made library fields (Fig. 1b) of a low level
of complexity, which are delivered together with the software. The fields are assembled into more
complex ones in such a way that the assumed boundary conditions and equilibrium conditions
are satisfied.
At the moment, the most advanced package of the application version is SADSFaM (Boda-

szewski, 2013). It is based on the concept of a multi-level idea of constructing complex fields and
allows simple design of even the most complex thin-walled structures consisting of flat elements.
In this idea, the library fields of the package, presented in Fig. 1b, represent the fields of

level I and are oriented at designing thin-walled structures. Flat and spatial solutions of average
complexity made of them are the fields of level II. Fields such as these are constructed and
catalogued by a designer in order to use them as fragments – usually repeating ones – of even
more complex fields, which represent solutions of the considered problems (e.g. Fig. 1c and 1d)
and are classified as fields of level III or higher. A fragment of the existing library of fields of
level II is presented in Fig. 1e (Bodaszewski, 2013).
The satisfaction of the criterion of yield condition utilized in the SADSF method, within as

many areas as possible, does not lead to unequivocal solutions. This plurality of possible solutions
is useful from the standpoint of the designer because it allows satisfying additional conditions, for
example resulting from preliminary design assumptions or related to the simplicity of execution,
strength, etc. The number of solutions that may be constructed is limited to these which can be
assembled based on the fields available in the library.
Two new and original solutions of the problem, Fig. 1a, developed within the scope of the

paper are presented in Figs. 1c and 1d. They may be used, for example, as cross-beams of load-
-carrying frames of vehicles. All their surfaces are accessible from outside and, despite this, the
structures exhibit high rigidity to torsion.
The constructed statically admissible fields require application of systems of additional ele-

ments in the central part of the structures. In the solution from Fig. 1c, these elements have the
shape of letter X (solution denoted as Z2x93) while in the solution from Fig. 1d (the solution
denoted as Z2x94) they look like a rectangular pipe.
In each library field, one assumes realization of a plane state of stress, the result of which is

that the membrane state should be able to transfer the assumed load. Therefore, structures may
successfully utilize the load-carrying properties of materials used to build them. If any of their
elements is removed or not connected with welds at the edges, where the fields show non-zero
interactions, the load-carrying capacity would be reduced by one order. This is a cardinal error.
The designed structures are free of cardinal errors, therefore, one may expect their high

quality level.
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Fig. 1. Formulation and solutions of the complex field construction problem: (a) graphical illustration of
the design problem formulation; (b) library of ready-made particular solutions from SADSFaM software
package, without stress discontinuity lines; (c), (d) solutions: contours of statically admissible stress
fields which specify the sought for structures; (e) fragment of an existing library of a designer, without

stress discontinuity lines

These properties are proven by e.g. elastic FEM analyses of one of the developed solutions
included in the paper. They also show possible benefits emerging from utilization of the SADSF
method during designing the thin-walled structures. These properties are expected also based
on the conclusions presented, among other things, in the papers by Markiewicz (2007, 2013).

2. Basic information concerning SADSFaM package (Bodaszewski, 2013)

Examples of four types of library fields of SADSFaM package, which have been used to design
the solutions presented in the paper, are shown in Figs. 2a-d. As one can see, each of them
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satisfies different but relatively simple boundary conditions and is described within own local
coordinate system {a} and has individual designation (here: Hp, Ts, Ns1, s1).

Fig. 2. The library fields of the SADSFaM package, which are used in the solutions presented in the
paper and the interactions along the line of stress discontinuity Lαβ in the system related to this line

The field loads are described by external stress parameters hi, which are coordinates of
stress vectors applied at the edges. Location of loaded edges is described by external geometrical
parameters zi, which have the form of linear dimensions.
In the case of each of such fields, equilibrium equations for each stress discontinuity line

must be met. An example of such a line Lαβ separating two different homogenous stress areas
α and β, together with equilibrium conditions, is presented in Fig. 2e. As it can be seen, the

coordinates
(α)
σ22,

(β)
σ22 and

(α)
σ12,

(β)
σ12 must be equal. Only the coordinates

(α)
σ11 and

(β)
σ11 can differ

(if these were equal, the states of stress in both regions would be identical as well).
Satisfaction of these conditions on each of the field discontinuity line results in that its global

equilibrium equations must be identically satisfied. Therefore, not all parameters hi and zi can
be assumed as independent. Figures 2a-d show parameters, identified with asterisks, that are
assumed as independent, and their values may be given in the package.
As mentioned before, while assembling the library fields, the conditions of equilibrium at the

connecting edges must be satisfied. These conditions are called joining conditions and include:
• geometrical conditions, i.e. overlapping conditions of common border segments;
• static conditions, i.e. conditions concerning satisfaction of equality of mutual interactions
on these segments.

Each of the library fields in the complex solution is given its unique index s (inscribed in
quadrilateral rims), and thickness of its element is denoted as δ(s).
The package SADSFaM makes use of Treska’s yield criterion, so the stress coordinates given

on the boundaries of fields are calculated with reference to: k = σY /2 = 150MPa.

3. Construction of statically admissible stress fields

While designing the presented solutions, it is assumed that they will show symmetry of shape
and antisymmetry of internal forces with reference to three antisymmetry planes of the applied
load, which are denoted as AS1, AS2 and AS3 (Figs. 3 and 4).
The method of constructing a statically admissible field in the half of the solution Z2x93

(Fig. 1c), which is denoted as R 93, is presented in Fig. 3.
Two fields of level II of complexity, which are presented in Figs. 3a and 3b, are used. Thin

arrows in the figures show the resultants of interactions between the component fields and thick
arrows show the resultants of external reactions. Component numbers of the library fields are
also given together with the fields names in the tables next to these numbers.
The first field, denoted as Ad93-94 adjoins the boundaries Sp, satisfies boundary conditions

given therein and determines the shape and dimensions of flanges and web (Fig. 3a). This is a
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Fig. 3. Construction of the field in the antisymmetric half of the solution Z2x93 from Fig. 1c:
(a) field Ad 93-4, which determines shape and dimensions of flanges and web within the area
adjacent to Sp; (b) field Ad 93, which determines shape and dimensions of flanges within the area
adjacent to AS1 and additional skew elements; (c) field R 93, which represents half of the

solution Z2x93; (d) position of the library fields components, interactions between them and thickness
of their elements in the top half of the field R 93

modified, from the standpoint of satisfaction of parameters adopted at these boundaries, existing
solution R 91c (Fig. 1e). In the case of the solution concerning this field, it is enough to enter
data only for its antisymmetric half, which is presented in the top part of the drawing and then
the copy it using one of the package functionalities. This half consists of two fields Hp in the
flanges and five non-loaded fields Ns1 in the web. As one can see, it is assumed that the web
does not transfer any loads and it is provided only to “support” the geometry. Arrangement of
holes in this element and parameters of fields Ns1 can be adopted relatively arbitrarily.

The second field of level II, which determines the shape and dimension of the structure within
the space of introduced additional elements, is denoted as Ad 93. In order to derive it, it is only
necessary to solve and then copy its antisymmetric quarter, which is presented in the top part
of Fig. 3b. It consists of only three fields: s1, Ts and Hp.

The assumed method of load transfer through the component fields is shown in the bottom
part of Fig. 1b, wherein the paired library fields from the top half of the solutions (in spaced
form) together with interactions between them are presented.
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By combining the fields Ad93-94 and Ad 93, one gets the statically admissible field R 93, in
the half of the solution Z2x93, which is presented in Fig. 3c. This field is also qualified as the
field of level II of complexity.
The discussed Figs. 3a-c are mostly a sheet of screen copies provided by the SADSFaM pack-

age, complemented by selected dimensions and additional denotations. These figures, however,
do not include most of the numerical data. That is why, with the use of a graphic software,
one carries out additional Fig. 3d which presents the positioning of component fields in the
antisymmetric half of the fields from Fig. 3c (in spaced form). Dimensions and interaction values
given in this figure may be easily assigned to external parameters of the applied library fields
from Fig. 2. Transformation matrices, which specify the position of library fields in space, are
not discussed in this paper.
As one may see, normal interactions from the fields Hp (s = 13, 14) are taken over by the

fields s1 (s = 1, 3), and tangent interactions by the fields Ts (s = 2, 4), which perform pure
shear. The fields Hp and Ts are located one above another and represent together an extension
of flanges within the area where additional skew elements are introduced.
Balancing the tangent interactions at the external edges of the fields Ts (s = 2, 4) and s1

(s = 1, 3) necessitate introduction of additional, skew positioned, fields Hp (s = 5, 6). These
fields have different values of external parameters comparing to the fields Hp in the flanges.
Independent geometrical parameters of the component fields result from the given dimen-

sions: L, h, e and the adopted dimension t (Fig. 3) as well as geometrical conditions of joining.
One must notice that the tangent stress τ applied at the edges of the fields Hp (s = 13, 14)

adjacent to Sp is not given while entering data of these fields (it is only specified after introduction
of independent external parameters). After its determination, it is possible to determine the
thickness of elements of the fields Hp using the formula

MY = τδeh

Thicknesses of elements of the remaining fields are determined using the static joining con-
ditions. For example, at the common edge of the fields Hp (s = 14), s1 (s = 1) and Ts (s = 2)
such conditions have the following form

1.980kδ(14) = 1.992kδ(1) 0.198kδ(14) = 1.0kδ(2)

In the SADSFaM package, these conditions are arranged and solved automatically. The
obtained thicknesses are given in Fig. 3d.
The total thickness of the flange in the area with additional skew elements equals the sum

of thicknesses of elements of the fields Ts and s1: δp = δ(3) + δ(4) – layer superimposition of
these fields has not been performed (Szlagowski, 1990; Bodaszewski, 2004, 2005; Bodaszewski
and Szczepiński, 2005).
Only the thickness of elements of the not loaded web may be assumed arbitrarily. It is

assumed that it is the same as the thickness of flanges and equals δ.
The second of the complex fields, which is constructed for the half of the solution Z2x94

and denoted as R 94, is presented in Fig. 4c. The presentation method is similar to the previous
example.
This solution is derived by combining the already discussed field Ad 93-94 (Fig. 4a) with the

field Ad 94, which is presented in Fig. 4b.
As one may see, the fields s1 (s = 1, 5) play the same role here as in the previous solution

(Fig. 4d). One adopted reverse directions of interactions in the fields Ts (s = 2, 6), therefore, it
is possible to zero the total interactions on the free edges of the external flanges.
Tangent interactions from the fields Hp (s = 17, 18) and Ts (s = 2, 6) in this case sum

up and are balanced by tangent interactions from additionally introduced fields s1 (s = 3, 7).
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Fig. 4. Construction of the field in the antisymmetric half of the solution Z2x94 from Fig. 1d:
(a) field Ad 93-4; (b) field Ad 94, which determines the shape and dimensions of additional skew

elements and flanges in the area adjacent to AS1; (c) field R 94, which represents a half of the solution
to the problem Z2x94; (d) position of the library fields components, interactions between them and

thickness of their elements in the top half of the field R 94

Normal interactions from these additional fields, which act in the web plane, are balanced by
normal interactions from the skew located fields Hp (s = 4, 8).
Complete solutions of the problem from Fig. 1a are derived by combining two fields R 93

and two fields R 94, as shown in Figs. 5a and 5b. As one may see, the joining conditions, due
to symmetry of fields geometry and antisymmetry of internal forces, are satisfied identically.
The solutions R 93 and R 94 expand the designer library. Exemplary fields of such a library,

which includes hundreds solutions derived by Bodaszewski (2013), are presented in Fig. 1e. The
dots denote these fields which can be used to solve the problem from Fig. 1a.
The derived solutions Z2x93 and Z2x94 are, however, not too complicated fields. Based on

the fields in the designer library, solutions of the complete load-carrying frames of vehicles are
designed by connecting and copying them (Bodaszewski, 2013). The solutions presented in the
paper may be used as cross-beams in these frames.
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Interactions at the edges of the component fields show that the presented structures consist
of elements bent in their planes. They will, therefore, form bending axes, and stresses will
increment together with an increase in the distance from these axes. Obtaining a balanced
elastic equivalent stress in these elements is thus not possible. It is worth to remember when
analysing FEM results.

Fig. 5. Composing the derived complex fields R 93 and R 94 into complete solutions of the problem
from Fig. 1a

One must also notice that in the planes denoted in Fig. 5a and 5b as AS1, there are no
reactions towards perpendicular direction, which would generate a bimoment. In both cases,
the bimoment increases together with receding from the extreme sections, however, only to the
point of occurrence of additional skew elements. Then it decreases, and in the AS1 section it
equals zero. One must mention that near the sections with the greatest bimoment, there are the
greatest stress concentrations within the elastic range.

4. Properties of structures designed using the SADSF method

The thin-walled structures derived using the SADSF method have structure configurations ad-
apted to the applied load and are free of cardinal errors. However, the method itself is an
approximate one and assumes that, among other things, using the rigid-ideally plastic model
of material only considers the limit state of the structure corresponding to the beginning of
its collapse and assumes maintenance of the membrane state until it is reached. That is why,
studies of actual properties of the designed systems at stages and under working conditions,
which the SADSF method does not include (elastic, elastic-plastic or time-variable loads), ha-
ve been carried out since the beginning of its existence (e.g., Szczepiński, 1968; Dietrich et al.,
1970; Kapkowski and Stupnicki, 1973; Frąckiewicz et al., 1986; Szczepiński and Szlagowski, 1990;
Szlagowski, 1990; Bodaszewski, 1994; Zowczak, 2004; Markiewicz, 2007).
Good or very good properties at these stages proved under these research, require confor-

mation and examination of many case studies so that their results would be representative for
a considered class of thin-walled structures. Therefore, within the recent years, a wide range
research program has been initiated, which covered (Markiewicz, 2013):

• within the range of elastic-plastic deformations – examinations of yield zones development
using thermovision and actual mechanisms of collapse and paths of equilibrium within the
whole range of the applied loads;
• within the elastic range – analysis of distribution of the equivalent stress fields using FEM;
• at time-variable loads – estimated fatigue strength using the local strain-life method.

Research within the elastic-plastic range showed, among other things, the same limit load
capacities of their components, yielding of significant segments of volumes at the moment of
collapse and maintenance of membrane state domination for loads slightly less than the actual
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limit load. The collapse itself was however always caused by great deformation changes of the
geometry, and in each case the actual limit load was greater than the one assumed during design.
A few dozen thin-walled structures designed using the SADSF method were subjected to

FEM analyses within the elastic range, which was usually the operational one. Small defor-
mations and domination of membrane states, almost accurate equalization of equivalent stress
along free borders and relatively low stress concentrations were the rule in that case. It was also
found that the designed systems had strength properties far more better comparing to structures
designed using intuitive methods.
Results of the linearly-elastic FEM analyses of the structure Z2x94 present hereinafter com-

plement the results given in the aforementioned monograph and confirm the mentioned rules
within full extent.
Very good properties have been revealed while estimating fatigue strength. It turns out

that thin-walled structures designed using the SADSF method have a fatigue life longer by
few orders comparing to structures designed using traditional methods, and fatigue cracks can
initiate almost simultaneously at various locations.
Based on the performed studies, one may expect good load-carrying properties of the struc-

tures. Moreover, the case with poor strength conditions has not been reported so far.
Structures like these can be accepted straight away and in very rare cases further improved.

Improvements should apply to geometrical parameters (shape and dimensions of elements) the
change of which does not significantly affect the considered class of structures.

5. FEM analysis results

To show the quality of the designed structures within the linearly-elastic range, one presents
distribution of equivalent stresses derived by means of FEM for the structure model denoted as
Z2x94. These distributions were compared to distributions specified for a model of “regular”
double-tee section which is not designed using SADSF method and the structure of which is not
adapted to the torsion moment load. This model includes thus a cardinal error.
During the analyses, the shell model is used, which is approximated and does not allow

analysing local three-dimensional states formed within areas of component elements connections.
However, it still shows the scale of possible changes in load-carrying properties.
Structural diagrams of both models and the boundary conditions adopted during calculations

are presented in Figs. 6a and 7a.
The shape and dimensions of the model from Fig. 6a accurately corresponds to the solution

derived from SADSF. The value of the force F is selected so that the value of torsion moment
load equals to the half of the moment assumed in the design MY . Taking the accepted yield
point value: σY = 300MPa and assuming that, in the elastic state of stress, there exists an
ideally equalized state of stress, one should obtain the equivalent stress value at each point of
the analysed structure equal to: σeq = 150MPa.
The parameters of regular double-tee section model are adopted so that its weight approxi-

mately corresponds to the weight of the model designed in SADSF. Thickness of all elements
is 1.2mm, and width of flanges is fixed and equal to the greatest width derived from statically
admissible fields. This change forced minor widening of the membranes p1 and p2.
The boundary conditions adopted for this model are the same as in the model Z2x94. Only

the value of load is assumed to be 16.5-times less so that the level of the greatest equivalent
stresses in both models is approximately the same.
The derived distributions of equivalent stresses for the model Z2x94 are presented in Fig. 6.

Figure 6b shows the distribution of total equivalent stress (membrane and bending), however,
Fig. 6c shows a distribution from the component membrane state to the bending state in Fig. 6d.
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Fig. 6. The adopted boundary conditions and distribution of equivalent stresses calculated according to
Huber-Mises-Hencky criterion for the model Z2x94

Based on the results, one may determine that:

• domination of the membrane state: the derived value of the greatest equivalent stress from
the bending state reaches ca. 26% of the greatest value derived for the membrane state
(62/235 ≈ 0.26), and the distribution of total stress corresponds approximately to the
distribution of the membrane state (Figs. 6b and 6c);
• presence of minor local stress concentrations at various structure locations (e.g. indicated
by arrows, where: σeq = 235MPa, σeq = 225MPa), however, values in these locations are
similar;
• relatively good equalization of the equivalent stresses from the membrane state along the
free edges of flanges;
• occurrence of the greatest total equivalent stresses and from the membrane state on the
flange edges near the sections with the greatest bimoment;
• lack of load transfer in the membrane state through the web, wherein zero stress condition
is adopted in the design (Fig. 4);
• occurrence of the greatest stresses from the bending state near the extreme membranes,
which confirms that a small bimoment is introduced into these elements.

Rigidity of this model is: κ =M/φ ≈ 318Nm/deg; where:M is the applied torsional moment
value, φ – angle of rotation of the upper border of the membrane p1 (Fig. 6a) calculated based
on displacements of its extreme nodes.
In the case of the regular model of double-tee section (Fig. 7), it is found that:
• it is necessary to reduce the applied forces by 16.5-times in order to derive the level of
the greatest equivalent stress as in the case of the structure designed using the SADSF
method;
• load is transferred mostly through the bending state: value of the greatest equivalent
stress from the bending state is ca. 2.4-times greater than the greatest value derived for
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Fig. 7. The adopted boundary conditions and distribution of equivalent stresses calculated according to
Huber-Mises-Hencky criterion for the model of regular double-tee section

the membrane state (184/77 ≈ 2.4), and the distribution of the total stress corresponds
approximately to the distribution of the membrane state (Figs. 7b and 7d);

Rigidity of this model is: κ ≈ 6.2Nm/deg and is as much as 51-times (318/6.2 ≈ 51) less
comparing to rigidity of the model Z2x94.
The above presentation of the equivalent stresses distribution shows how radically one may

improve load-carrying properties and benefit from SADSF method application.

6. Conclusions

The application of the SADSF method, which does not make use of iterative procedures, can
be successfully utilized while designing thin-walled structures wherein even a minor change of
structural parameters may cause radical changes to load-carrying properties.
It may be applied already at the initial stage of designing, where only boundary conditions

are known. At this stage, major load-carrying properties of thin-walled systems are determined.
The package of the application version of SADSFaM is not limited by complexity of a designed

structure, it is easy to use and can be used by any engineer who knows the basics of statics.
This means that it can be widely used in many practical applications.
As presented in the paper, having the given boundary conditions, sometimes one may con-

struct a few solutions. This ambiguity can be used to search for such solutions which satisfy
additional criteria, covering e.g. technological or strength limitations.
The designed structures do not include cardinal errors. Their structure configurations are

adopted to transfer the assumed load, and one may expect in advance good load-carrying pro-
perties, radically better comparing to these systems designed using intuitive method.
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Current capabilities of the software in the application version of SADSF method as well as
good strength properties of the designed structures show that this method is more and more
popular among engineers.
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The Brazilian split test on a centrally holed disc (referred to as a ring-disc specimen) is an
important indirect method for determining the tensile strength of rock. This paper studies
the effect of the diameter d of the center hole and its position, defined by the eccentricity b
and the inclination angle of the eccentric hole, on the peak load, failure pattern and horizon-
tal stress of the disc specimen via laboratory experiments and numerical modeling using the
finite element method (FEM). Static Brazilian split tests are conducted on an intact disc
and three types of holed discs: C-specimens containing a central hole with different diame-
ters, EH-specimens with a horizontally eccentric hole and ER-specimens with a rotationally
eccentric hole.

Keywords: Brazilian test, rock, eccentric hole, strength, failure pattern

1. Introduction

Crack initiation, propagation and coalescence in rocks is often caused by tensile stress (Song
et al., 2001; Shang et al., 2008; Zhang et al., 2014; Huang and Zhu, 2018). Thus, it is very
important to determine the tensile strength of rocks. The Brazilian test is widely adopted as an
indirect method that benefits from the compressive strength of rocks being much higher than
their tensile strength. This test method has been widely used for more than 50 years (Mellor and
Hawkes, 1971) and was recommended by the International Society of Rock Mechanics as one
method to measure the tensile strength of rocks (ISRM, 1978) due to its simplicity of operation.
Using the Brazilian split test method, the indirect tensile strength σt is given by the following
analytic elastic solution (ISRM, 1978)

σt =
2Pt
πDt

(1.1)

where Pt is the peak vertical load and D and t are the diameter and the thickness of the disc,
respectively.
The conventional Brazilian split test methods include flat loading platens, flat platens with

cushion, flat loading platens with small diameter rods as well as curved loading jaws and others
(Perras and Diederichs, 2014). Because the vertical load is applied in a narrow range of the disc
using the above methods, crack initiation may occur at the position of the loading points, which
may produce inaccurate results (Fairhurst, 1964; Mellor and Hawkes, 1971). To determine the
tensile strength of brittle materials more precisely, discs with different shapes (Fowell, 1995;
Lambert and Ross, 2000; Tong et al., 2007; Dai et al., 2010; Keles and Tutluoglu, 2011; Cai,
2013; Surendra, 2013; Hua et al., 2015; Riazi et al., 2015; Lin et al., 2015, 2016) have been
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proposed, including ring specimens that are placed under a pair of radial loads (Hobbs, 1964;
Hudson, 1969). Significant stress and steep stress gradients appear in the specimens, which causes
initiation and propagation of the resulting cracks (Wang et al., 2014). Fischer et al. (1995) and
Hossain et al. (2006) studied the features of both stress development and failure of discs with a
central hole. Steen et al. (2005) investigated how the fracture patterns of discs are controlled by
the size of the hole based on their horizontal diameters. A calculation of the tensile strength for
discs with a hole located in their vertical or horizontal diameters was given by Hobbs (1965).
In this study, laboratory Brazilian split tests and numerical modeling using the finite ele-

ment method (FEM) are conducted on three types of holed discs: discs with a central hole
(C-specimen), discs containing a horizontally eccentric hole (EH-specimen) and discs with a
rotationally eccentric hole (ER-specimen), which have rarely been studied in previous research.
Based on the laboratory tests, the peak load and failure pattern of the discs are investigated.
Moreover, the horizontal stress field in addition to the position and value of the maximum ho-
rizontal tensile stress are analyzed using the FEM. The simulated results further demonstrate
the influence of the diameters and positions of the holes on the peak load and failure pattern of
holed Brazilian disc specimens.

2. Test program

2.1. Specimen preparation

The tested sandstone specimens are light gray in color with some dark spots and lack vi-
sible cracks, holes and other defects. The average bulk density is 2.36 g/cm3. The dimensions
of the disc specimens obtained from a sandstone block are 30mm in thickness T and 50mm in
diameter D after coring and grinding. In addition, an inner round hole with a smooth wall
was drilled in the disc using high-strength ceramic bits. Three types of holed specimens –
C-specimens, EH-specimens and ER-specimens – were manufactured, as illustrated in Fig. 1.
In the figure, d is the diameter of the hole, b is the eccentricity (the distance between the two
centers of the hole and disc), and α is the angle between the horizontal line and the line segment
connecting the centers of the disc and the hole. To recognize the two centers, two referenced
lines are marked on the disc specimens. As shown in Fig. 1, VL is the vertical diameter line
and the loading direction, and IL is a horizontal radial line for the C-specimens and an inclined
radial line passing through the centers of the hole and the disc for the ER-specimens.

Fig. 1. Disc specimens containing a round hole: (a) C-specimen (α = 0◦, b = 0 and d is variable);
(b) EH-specimen (α = 0◦, d = 6mm and b is variable); (c) ER-specimen (b = 15mm, d = 6mm and

α is variable)
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2.2. Experimental scheme

Radial loading tests were conducted to investigate the strength and failure pattern of the discs
with a hole of different diameters, eccentricities and inclination angles. The tests were performed
using a DNS100 servo-controlled machine with the maximum loading capacity of 100 kN. The
displacement-control mode with a constant loading rate of 3.33×10−4mm/s was adopted. During
the tests, a vertical load and a vertical displacement were recorded automatically by the test
system. The geometry and location of the hole in the disc specimens are listed in Table 1,
where two repeated tests for each specimen were conducted. As indicated in the table, the hole
diameter d of the C-specimen (numbered Z1-1 to Z5-2) ranged from 4mm to 12mm with an
interval of 2mm; the eccentricity b ranged from 0mm to 20mm with an interval of 5mm in the
EH-specimens (numbered P1-1 to P4-2); and the ER-specimen (numbered Q1-1 to Q6-2) had
an inclination angle α of 0◦ to 90◦ with a 15◦ interval. The three intact specimens (referred to as
without a hole) were numbered W1 to W3, separately. Based on the study by Mellor and Hawkes
(1971), the calculated strength from the tests on the ring specimens was much higher than that
by a direct tensile test when the hole diameter was very small. Thus, the same hole diameter of
6mm for the EH-specimens and ER-specimens was considered moderate. The eccentricity was
fixed at 15mm in the ER-specimens.

Table 1. Geometry and location of the hole in the disc specimens

Specimen∗
d b α

Specimen∗
d b α

Specimen∗
d b α

[mm] [mm] [◦] [mm] [mm] [◦] [mm] [mm] [◦]

Z1-1 4 0 – P1-2 6 5 0 Q3-1 6 15 45
Z1-2 4 0 – P2-1 6 10 0 Q3-2 6 15 45
Z2-1 6 0 – P2-2 6 10 0 Q4-1 6 15 60
Z2-2 6 0 – P3-1 6 15 0 Q4-2 6 15 60
Z3-1 8 0 – P3-2 6 15 0 Q5-1 6 15 75
Z3-2 8 0 – P4-1 6 20 0 Q5-2 6 15 75
Z4-1 10 0 – P4-2 6 20 0 Q6-1 6 15 90
Z4-2 10 0 – Q1-1 6 15 15 Q6-2 6 15 90
Z5-1 12 0 – Q1-2 6 15 15 W1

Intact
specimens

Z5-2 12 0 – Q2-1 6 15 30 W2
P1-1 6 5 0 Q2-2 6 15 30 W3

∗ Z represents the specimen with a central hole;
P represents the specimen with a hole of varying eccentricities;
Q represents the specimen with a hole of varying inclination angle;
W represents intact specimens

3. Experimental results

3.1. Deformation and failure of the intact sample

Figure 2 gives the vertical load-displacement curves of the three intact specimens. Overall,
the three load-displacement curves of the intact discs are similar in strength and deformation.
The shape of the curves is slightly concave-up at the beginning stage due to gradual densification
of the sample with micro defects. With an increase in the vertical load, the load-displacement
curves gradually develop into the linear elasticity segments. The curves are characterized by a
sudden force drop to zero, suggesting brittle failure immediately after the peak load.
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Fig. 2. Load-displacement curves of intact disc specimens

The peak loads of the three intact specimens are 9.60 kN, 8.88 kN and 9.87 kN. The correspon-
ding tensile strengths calculated by Eq. (1.1) are 4.89MPa, 4.52MPa and 5.02MPa, respectively.
The dispersion coefficient (ratio of standard deviation to the mean) of the tensile strengths is
only 4.4%, implying that the tested sandstone samples exhibited good homogeneity. The frac-
tures of the intact specimens occurred only in the vertical direction through the approximate
centers of the discs, as shown in Fig. 3. Additionally, distinctly opening fractures at the top or
bottom of the specimens such as in W2 and W3 are observed. Hence, the center initiation, which
is the basic hypothesis in the Brazilian split test, may be doubtful for the intact disc owing to
the end effect observed in this study.

Fig. 3. Failure of intact specimens: (a) specimen W1; (b) specimen W2; (c) specimen W3

3.2. Strength of the holed disc

The relationship between the peak load and the ratio of the diameter of the center hole to
that of the disc d/D for C-specimens is presented in Fig. 4a. The results indicate that with the
increasing diameter d of the center hole, the peak load of the discs decreases gradually, especially
when the ratio d/D is less than 0.12. When the ratio d/D is greater than 0.2, the peak load
decreases rapidly. However, for the ratio d/D in the range of 0.12 to 0.2, the peak load has only
a small reduction from 4.32 kN to 4.08 kN (the average values of two of the same specimens, the
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same below) with a decrease of approximately 5.55%. With an increase in the diameter ratio
d/D ranging from 0.08 to 0.12 and 0.2 to 0.24, the peak load decreases by 18.48% and 33.09%,
respectively.
The relationship of the peak load versus the eccentricity for EH-specimens is presented in

Fig. 4b. The curve demonstrates that the peak load of EH-specimens generally increases with
the increasing eccentricity when 2b/D is less than 0.4. However, the peak load reaches a plateau
after the ratio 2b/D exceeds 0.4. As a result, for the discs with a horizontally eccentric hole,
when the eccentricity is larger than 0.4 times the radius (50mm) of discs, the hole has little or
even no effect on the peak load.
With an increased inclination angle α for the ER-specimen, the peak load exhibits first a

slight increase and then gradually decreases, with a maximum of 9.02 kN and a minimum of
4.67 kN observed at α = 15◦ and 90◦ separately, as shown in Fig. 4c. The average peak load of
the ER-specimens with an inclination angle of 15◦ is 9.02 kN, which is close to 9.45 kN of the
intact specimens. Thus, the tensile stress around the hole has the maximum value when the
hole is located on the vertical diameter of the disc while the hole with an inclination angle less
than 45◦ has little effect on the peak load of the discs.

Fig. 4. Peak load of the disc containing a hole versus (a) the ratio of d/D (α = 0◦ and b = 0mm);
(b) the ratio of 2b/D (α = 0◦ and d = 6mm) and (c) the inclination angle α (b = 15mm and d = 6mm)

3.3. Failure of the holed disc

Fig. 5. Failure patterns of C-specimens (α = 0◦ and b = 0): (a) d/D = 0.08; (b) d/D = 0.12;
(c) d/D = 0.16; (d) d/D = 0.20; (e) d/D = 0.24. Note: above is the failure pattern and below is the
sketch; VL and IL represent marked/referenced lines; C denotes a crack; I and II denote failure

pattern I and failure pattern II, respectively
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Figures 5 and 6 show the failure patterns of the holed specimens, which can be classified into
five types, illustrated in Table 2.

Fig. 6. Failure patterns of EH-specimens (α = 0◦ and d = 6mm) and ER-specimens (b = 15mm
and d = 6mm). Note: I, III, IV and V represent failure patterns I, III, IV and V, respectively

The characteristics of each failure pattern are described as follows.
Failure pattern I: Two cracks propagate in a straight manner in the load direction. The stra-

ight cracks connect the points at the top and bottom of the hole with the upper and lower
loading points. This failure pattern is found only when the hole is located at the verti-
cal diameter of the discs, e.g., the C-specimens except for the specimen of Z4-1 and the
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Table 2. Failure patterns of the holed discs

Failure pattern Specimens Characteristics

I

Z1-1, Z1-2 (C-specimen,
d = 4mm)
Z2-1, Z2-2 (C-specimen,
d = 6mm)
Z3-1, Z3-2 (C-specimen,
d = 8mm)
Z5-1, Z5-2 (C-specimen,
d = 12mm)
Q6-1, Q6-2 (ER-specimen,
α = 90◦)

• Two straight cracks
• Cracking along the load line
• Initiated from and propagated
through the top and the bottom of
the hole

II
Z4-1, Z4-2 (C-specimen,
d = 10mm)

• Two straight cracks and an arc
crack
• The straight cracks are similar to
the two in pattern I
• The arc crack passes through a
loading point at the left or right
side of the hole

III

P1-1, P1-2 (EH-specimen,
b = 5mm)
Q4-1 (ER-specimen, α = 60◦)
Q5-1, Q5-2 (ER-specimen,
α = 75◦)
Q6-1, Q6-2 (ER-specimen,
α = 90◦)

• An arc ipsilateral crack pair
• The endpoints of the arc cracks
are the top or bottom of the hole
and the position close to/at one of
the load points
• Two arc cracks have an
approximately top-bottom
symmetric distribution with the
axis of the horizontal diameter

IV

P2-1, P2-2 (EH-specimen,
b = 10mm)
P3-1, P3-2 (EH-specimen,
b = 15mm)
Q1-1, Q1-2 (ER-specimen,
α = 15◦)
Q2-1, Q2-2 (ER-specimen,
α = 30◦)
Q3-1, Q3-2 (ER-specimen,
α = 45◦)

• An approximately straight crack
and an arc crack
• The approximately straight crack
propagates in the loading direction
• The arc crack passes through the
loading point and points to the
hole, then turns to the line of
loading and coalesces at a point
that lies on the straight crack

V
P4-1, P4-2 (EH-specimen,
b = 20mm)
Q4-2 (ER-specimen, α = 60◦)

• An approximately straight crack
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ER-specimens with an inclination angle of 90◦ (namely Q6-1 and Q6-2). Notably, there
is no conspicuous opening failure at the specimen boundary adjacent to loading points,
which might suggest that the straight cracks initiated at the wall of the hole and propa-
gated towards the loading points along the vertical diameter direction.

Failure pattern II: Three cracks including two straight cracks and one arc crack developed.
This failure pattern appears only in the C-specimens with a hole diameter of 10mm,
whereas pattern I occurred in all other C-specimens. The two straight cracks are similar to
the features of pattern I in formation, and the arc crack connected one of the load points
and the left/right side of the hole.

Failure pattern III: An arc ipsilateral crack pair developed at the upper and lower halves of
the specimen separately. The two arc cracks exhibited an approximately up-down sym-
metric distribution with the axis of the horizontal diameter. The endpoints of the arc
cracks were the top or bottom of the hole boundary and the position close to/at one of
the load points. This failure pattern occurred in the EH-specimens of 2b/D = 0.2 and
the ER-specimens of α  60◦. In addition, one of the ER-specimens with an α of 60◦
was also fractured with that pattern, but the failure of the other ER-specimens exhibited
failure pattern IV (described in the next section). Because of the special position of the
hole in specimens Q6-1 and Q6-2 (ER-specimens with α of 90◦), their failure patterns are
classified into failure pattern III and pattern I.

Failure pattern IV: This failure pattern is similar to the failure features of the intact speci-
mens. The main crack (approximately straight) grew in the vertical diameter of the disc,
and a secondary arc crack developed at the position adjacent to the loading point. The
arc crack intersected with the approximately straight crack, and one of the endpoints of
the arc crack was one of the loading points. That failure pattern primarily occurred in the
EH-specimens with 2b/D = 0.4 and 0.6 and the ER-specimens of α ¬ 45◦.

Failure pattern V: For the EH-specimen with the eccentricity b of 20mm (where the ratio
of 2b/D = 0.8), only an approximately straight crack was produced along the vertical
diameter direction, which was similar to the intact specimen W1. In addition, the specimen
numbered Q4-2 with α of 60◦ also broke with that failure pattern.

Based on the above observations, the following can be concluded:

• The failure of all the C-specimens occurred under failure pattern I except for the specimens
with a hole diameter of 10mm, which followed pattern II.
• Three failure patterns appeared in the EH-specimens with different eccentricity b: when
the disc had an eccentricity of 0 (i.e., C-specimen), pattern I occurred. With an increased
eccentricity, the failure pattern developed into pattern III (b = 5mm) and pattern IV
(b = 10mm and 15mm). When the eccentricity b was 20mm, failure pattern V occurred.
• The ER-specimens had four failure patterns changing from pattern IV (α = 10◦, 30◦
and 45◦) to pattern V (α = 60◦), pattern III (α = 60◦, 75◦ and 90◦) and pattern I
(α = 90◦) with the increasing inclination angle α.

4. Numerical modeling to determine the location of crack initiation

According to the test results, the peak loads and the failure patterns of the holed discs are
affected by the parameters of the hole diameter d, the eccentricity b, and the inclination angle α.
The characteristics of the crack initiation in Brazilian discs are the basis for studies of fracture
mechanical properties. Based on the basic theory of fracture mechanics, the potential location
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Fig. 7. Contour plots of the horizontal stress (compressive stress is positive, and tensile stress is
negative) of the (a) intact disc and EH-specimen with an eccentricity of (b) b = 0, (c) 2b/D = 0.2,
(d) 2b/D = 0.4, (e) 2b/D = 0.6, (f) 2b/D = 0.8. Note: EH-specimens have the same hole diameter

of 6mm; M○ is the position of maximum tensile stress

of crack initiation in a disc specimen is where the tensile stress is maximal. Therefore, the finite
element method (FEM) is used to analyze the distribution of the horizontal stress, particularly
tensile stress in the holed disc specimens. The geometry of discs built in ANSYS was the same
as for the experimental specimens, i.e., the hole diameter d of the C-specimen ranged from 4
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to 12mm with an interval of 2mm, the eccentricity b ranged from 0 to 20mm with an interval of
5mm in the EH-specimens (hole diameter d = 6mm) and the inclination angle α ranged from 0◦

to 90◦ with an interval of 15◦ for the ER-specimens. The 2D linear elastic constitutive model was
adopted in ANSYS to reveal the distribution of stress in the holed discs. In accordance with the
Brazilian split test method, a pair of balanced point loads of 10 kN was applied in the vertical
diameter direction, which was approximately the peak load of the tested intact specimens. The
linear-elastic model constructed for simulation had Poisson’s ratio and Young’s modulus of 0.25
and 5.12GPa, respectively. Poisson’s ratio and Young’s modulus used here were the same as
those of the rock samples measured by uniaxial compression test.
The contour plots of horizontal stress of the numerical simulations are illustrated in Figs. 7

and 8, where compressive stress is positive and tensile stress is negative, and the position of the
maximum tensile stress is marked by a circled letter M. The variations in the maximum tensile
stress with the diameter d of the center hole, the eccentricity b and the inclination angle α
are presented in Fig. 9. Within the intact disc, the horizontal stress exhibits a symmetrical
distribution with the vertical and horizontal diameter line of the disc as the axis of symmetry
(Fig. 7a). At the positions adjacent to the load points, the horizontal stress shows compression.
The tensile stress appears in other areas, especially at the center of the disc where a maximum
value of 0.13 MPa is observed.
Within the C-specimen, except for the locations near the load points, most of other regions

exhibit tensile stress, as shown in Fig. 7b. The contour of tensile stress exhibits an “8” shape,
and the center of the “8” is located at the hole around which the maximum tensile stress is
attained due to concentration of stress. The horizontal stress distributions are similar and only
differ in values within the C-specimens. Thus, the horizontal stress of the C-specimen with a
diameter of 6mm is illustrated in Fig. 7b. As shown in Fig. 9a, as the ratio d/D is increased from
0.08 to 0.24, the maximum tensile stress exhibits a distinct increase from 0.69 to 0.95MPa, an
increase of approximately 37.68%. This explains the decrease in the peak load of the C-specimen
with an increased diameter of the central hole (See Fig. 4a).
The horizontal stress and the position of the maximum tensile stress in the EH-specimens

change gradually with the eccentricity, as shown in Figs. 7 and 9b, respectively. However, the
maximum tensile stress always appears at the boundary of the hole, except for the EH-specimen
with the ratio 2b/D of 0.8 (b = 20mm), for which the maximum is at a point located at the
vertical load line and off the center of the disc (Fig. 7f). That explains why the failure pattern
of the EH-specimen evolves from a straight crack to an arc crack then back to a straight crack
again with an increased eccentricity b. The maximum tensile stress of the EH-specimen decreases
with the eccentricity, and when the ratio 2b/D is 0.8, the maximum is 0.13MPa, which is equal
to that of the intact disc. This finding agrees with the variation in the peak load presented in
Fig. 4b, which exhibits a gradual increase tending toward the peak load of the intact disc. For
the ER-specimens, the maximum tensile stresses are all observed at the boundary of the hole
(Fig. 8). Only a negligible decrease of 0.41% is found when the inclination angle α increases
from 0◦ to 15◦, which explains why the peak load of the ER-specimens exhibits only a slight
increase between the angle intervals presented in Fig. 4c.
An interesting characteristic of the horizontal stress in the holed discs from the FEM simu-

lation is that almost all the locations of the maximum tensile stress are at the boundary of the
hole except the EH-specimen with an eccentricity of 20mm. In addition, the angle β defined
in Fig. 10a is the deflection angle of the segment between the center of the hole and the point
of crack initiation (namely maximum tensile stress, when there are two maximums the point
refers to above that point) off the vertical radius line of the disc. The changes of the β with the
eccentricity b and the inclination angle α are shown in Figs. 10b and 10c. When the ratio 2b/D
is 0 or 0.2, the β is 0◦, which means that the position of the maximum tensile stress is located at
the boundary point of the vertical diameter of the hole. As the ratio 2b/D is increased from 0.4
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Fig. 8. Contour plots of the horizontal stress of the ER-specimens with inclination angles of
(a) α = 15◦, (b) α = 30◦, (c) α = 45◦, (d) α = 60◦, (e) α = 75◦, and (f) α = 90◦; M○ is the position of

maximum tensile stress

to 0.6, the deflection angle β increases from 6.51◦ to 13.05◦. When the ratio is 0.8, the position
of the maximum tensile stress lies on the vertical load line, and the angle β increases to 63.89◦.

For the ER-specimens (Fig. 10c), the angle β increases after first decreasing and then decre-
ases again with an increased inclination angle α. The maximum β is approximately 25◦-26◦ in
the cases of α ranging from 45◦ to 60◦. The angle β achieves a minimum of 0◦ when α = 90◦.
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Fig. 9. Variation in the maximum tensile stress (absolute value) of (a) C-specimen, (b) EH-specimen,
(c) ER-specimen

Fig. 10. (a) Sketch of the position of the maximum tensile stress at the boundary of the hole.
Note: β is the deflection angle of the segment between the center of the hole and the point of the

maximum tensile stress off the upper vertical radius. Curves of the deflection angle β versus the ratio of
(b) 2b/D and (c) the inclination angle α

5. Conclusions

• The three parameters of the holes – diameter d, eccentricity b and the inclination angle α
– have significant influences on the peak load and the failure pattern of the holed discs.
The peak load decreases with the increasing diameter of the central hole. The peak load
of the EH-specimens gradually increases to that of intact specimens with the increasing
eccentricity b. For the ER-specimen, the peak load exhibits first a slight increase and then
a distinct decrease with the increasing inclination angle α (the maximum is observed at
α = 15◦ and 30◦, and the minimum is found at α = 90◦).
• When the holes are located along the vertical diameter of the discs, i.e., the C-specimens
and the ER-specimens with an inclination angle α of 90◦, the failure pattern generally
exhibits two straight cracks between the top and bottom sides of the hole and load points.
For the EH-specimens, with the increasing eccentricity b, the failure is characterized by
the pattern changing from two straight cracks to an arc crack and then a straight crack
again. The failure of the ER-specimens is similar to that of the EH-specimens, but the
ends of the discs do not evolve into a straight crack.
• The position and value of the maximum tensile stress changes with the eccentricity b and
the inclination angle α. All the positions are located on the boundaries of the holes. There
is a deflection angle β between the upper vertical radius of the holes and the connecting
line of the position of the maximum tensile stress and the center of the holes. The angle β
increases as the ratio 2b/d increases. With the increasing inclination angle α, the angle β
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first decreases and then decreases again after an obvious increase when the angle α ranges
from 15◦ to 60◦. When the hole lies at the center of the disc, the angle β has a constant
value of 0◦. Variations in the stress field and the position of the maximum horizontal tensile
stress result in different failure patterns.
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In this paper, linear-elastic Rayleigh beams with a periodic structure are considered. Dy-
namics of such beams is described by partial differential equations with non-continuous
highly oscillating coefficients. The analysis of dynamic problems using the aforementioned
equations is very often problematic to perform. Thus, other simplified models of Rayleigh
beams are proposed. Some of these models are based on the concept of the effective stiffness.
Among them, one can distinguish the theory of asymptotic homogenization. However, in the-
se models, the size of the mesostructure parameter (the size of a periodicity cell) is often
neglected. Therefore, a non-asymptotic averaged model of the periodic beam is introduced,
called the tolerance model, which is derived by applying the tolerance averaging technique
(TA). The obtained tolerance model equations have constant coefficients, and in contrast to
other averaged models, some of them depend on the size of the periodicity cell.

Keywords: periodicity cell, Rayleigh beam, tolerance averaging technique

1. Preface

Beams are the simplest representations of periodic structures. Numerous examples of engineering
applications, for instance in acoustic isolations, are the main reason for interest in such objects.
In such beams, one can distinguish a small repetitive element called the periodicity cell. Periodic
objects can represent approximate models of some complex systems.
Propagation of the elastic wave and linear vibrations in periodic beams are considered in

many papers. Vibration band gaps were investigated by Xiang and Shi (2009) by the diffe-
rential quadrature method. A comprehensive research on inhomogeneous beams vibrations was
presented by Hajianmaleki and Qatu (2013). The transfer matrix method, adapted in analysis
of flexural wave propagation in a beam on an elastic foundation and in investigating natural
frequencies of non-uniform beams, can be found in Yu et al. (2012) and Xu et al. (2016), re-
spectively. Wave propagation in beams with periodically varying stiffness is considered in Chen
(2013) by the use of the multireflection method. In this paper, linear-elastic Rayleigh beams with
a periodic structure are considered. Dynamics of such beams is described by partial differential
equations with non-continuous highly oscillating coefficients. The analysis of dynamic problems
using the aforementioned equations is very often problematic to perform. Thus, other simplified
models of Rayleigh beams are proposed. Some of these models are based on the concept of the
effective stiffness. Among them, one can distinguish the theory of asymptotic homogenization
introduced in works by Kohn and Vogelius (1984), Papanicolau et al. (1978), Bakhvalov and
Panasenko (1989), Sánchez-Palencia (1980) and Zhikov et al. (1994). The microperiodic beam
equilibrium equations in frames of the homogenization theory were studied by Kolpakov (1991,
1998, 1999). However, in governing equations of these models, the size of the mesostructure
parameter (the size of the periodicity cell) is often neglected. Therefore, a non-asymptotic ave-
raged model of the periodic beam is introduced. This model is called the tolerance model and is
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derived by applying the tolerance modelling technique, c.f. Woźniak et al. (2008), Awrejcewicz
(2010), Woźniak and Wierzbicki (2000). The obtained tolerance model equations have constant
coefficients and, in contrast to other averaged models, some of them depend on the size of the
periodicity cell. The proposed method can be adopted to any differential equations with highly
oscillating coefficients. The suggested approach, in contrast to the asymptotic homogenization,
enables analysis of the mesostructure size. The method found numerous applications in structu-
ral mechanics. Macro-dynamics of microperiodic elastic beams was analysed by Mazur-Śniady
(1993). Geometrically nonlinear vibrations of slender mesoperiodic beams were investigated in
the paper by Domagalski and Jędrysiak (2016). The method was widely applied in the analysis
of microstructured plates: thin plates with an elastic periodic foundation, Jędrysiak (2003), ho-
neycomb lattice-type plates, Cielecka and Jędrysiak (2006), geometrically nonlinear thin plates,
Domagalski and Jędrysiak (2015) and thin functionally graded plates, Jędrysiak (2013, 2014)
and Kaźmierczak and Jędrysiak (2011). The TA technique was also applied in plates stabili-
ty problems, cf. Jędrysiak (2000) and Jędrysiak and Michalak (2011). The tolerance averaging
technique was also applied in the analysis of wavy type plates Michalak (2001) and many other
engineering problems.
In this paper, a new tolerance model of a Rayleigh beam with weakly slowly-varying functions

is proposed Tomczyk (2013), Jędrysiak (2017). Natural boundary conditions are also obtained
and presented for a newly derived tolerance model. The presented tolerance model equations
are used to determine natural vibration frequencies and natural forms of vibrations. Solutions
obtained from the proposed model are compared with those corresponding to the finite element
model. The paper is arranged as follows: basic assumptions of the inhomogeneous Rayleigh
beams are presented in Section 2. The elemental and essential basis of the tolerance averaging
technique are quoted in Section 3. The main model equations for examples considered in this
paper are derived in Section 4. The numerical methods of solution, validation of the model, final
results and comparison with the finite element method are presented in Section 5. Finally, the
discussion and conclusions are given in Section 6.

2. Formulation of the problem

A beam made of a linear-elastic material, associated with a three-dimensional Cartesian co-
ordinate system Oxyz is considered. The beam axis is collinear with the x-axis of the local
coordinate system. The problem can be treated as one-dimensional, so that there is defined a re-
gion Ω ≡ [0, L] occupied by the beam, where L is the beam length. The considered beam consists
of many repetitive elements, called periodicity cells. The basic cell is defined as ∆ ≡ [−l/2, l/2],

Fig. 1. A periodicity cell

where l ≪ L is length of the cell and is named the mesostructure parameter. The following de-
notations are introduced: lateral deflection w = w(x, t), lateral stiffness EJ = E(x)J(x), mass
per unit length µ = µ(x), rotational moment of inertia per unit length ϑ = ϑ(x) and transverse
load q = q(x, t). Furthermore, let ∂k = ∂k/∂xk be the k-th derivative of a function taken with
respect to the x coordinate, and the overdot stands for the derivative taken with respect to time.
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Thus, the strain and kinetic energy of the beam can be described in the following form

W = 1
2
EJ∂2w∂2w K = 1

2
µẇẇ +

1
2
ϑ∂ẇ∂ẇ (2.1)

The Lagrangian function L = L(x, t, w, ẇ, ∂ẇ, ∂2w) is defined as

L =W −K− qw (2.2)

The equations of motion are given by Hamilton’s principle

δA = δ
t1∫

t0

L∫

0

L dx dt =
t1∫

t0

L∫

0

δL dx dt = 0 (2.3)

After some common variation calculus operations, the equation of motion of the Rayleigh beam
with highly oscillating non-continuous coefficients is obtained

∂2(EJ∂2w) + µẅ − ∂(ϑ∂ẅ) = q (2.4)

3. Tolerance modelling

3.1. Preliminary notions

The main objective of this paper is to propose a new averaged model of the Rayleigh beam.
This new approach is based on the concept of weakly slowly-varying functions. The averaged
equations of the periodic beam are derived using the tolerance modelling technique. The fun-
damental concepts of the tolerance modelling approach – tolerance relations, slowly-varying
functions (SV ), tolerance periodic functions (TP ), fluctuation shape functions (FSFs) and ave-
raging operation, are outlined in the monographs by Woźniak and Wierzbicki (2000), Woźniak
et al. (2008), Awrejcewicz (2010). There are introduced the following denotations: ∆(x) ≡ x+∆,
Ω∆ ≡ {x ∈ Ω : ∆(x) ∈ Ω}, x ∈ Rm. Subsequently, a subset ∆ of Rm is called the periodicity
cell with l as a cell dimension. Every cell ∆(x), x ∈ Ω∆, refers to the cell in Ω with the center
at x. The averaging operator for an arbitrary integrable function f is defined by

〈f〉(x) = 1
l

∫

∆(x)

f(y) dy x ∈ Ω∆ y ∈ ∆(x) (3.1)

The micro-macro decomposition is a fundamental operation of the tolerance averaging tech-
nique. It states that the transverse deflection of the beam w(x, t) (unknown of the partial diffe-
rential equations describing behavior of the microheterogeneous structure) can be decomposed
into: the unknown averaged displacement W (x, t) (a weakly slowly-varying function in the pe-
riodicity direction) and the highly oscillating fluctuation of the displacement, represented by the
known highly oscillating ∆-periodic fluctuation shape function hA(x) multiplied by the unknown
fluctuation amplitude V A(x, t) – weakly slowly-varying (WSV ) in the periodicity direction. In
this case, the micro-macro decomposition becomes

w(x, t) =W (x, t) + hA(x)V A(x, t) A = 1, . . . , N W (·), V A(·) ∈WSV 2d (Ω,∆)

(3.2)

From now, W (x, t) is a new basic kinematic unknown and V A(x, t) is an additional kinematic
unknown. The uppercase integer states that the unknown functions are assumed to be weakly
slowly-varying up to the second derivative order. The function F (·) will be referred to as the
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weakly slowly-varying with respect to the cell∆ and the tolerance given by δ ≡ (α, δ0, δ1, . . . , δR),
if and only if the following condition is satisfied

∃(x, y) ∈ Ω2
[
(x

α≈ y) ⇒ F (x)
δ0≈ F (y) ∧ ∂kF (x)

δk≈ ∂kF (y), k = 1, 2, . . . , R
]

(3.3)

where ∂0F (·) ≡ F (·).
Under the above conditions, it can be written F ∈WSV R

δ (Ω,∆). In the applications of the
tolerance modelling, the tolerance parameter α = l is known a priori as a certain mesostructure
length, whereas values of the tolerance parameters δ0, δ1, . . . , δR can be determined only a poste-
riori, i.e. after obtaining a solution to the considered initial-boundary value problem. The highly
oscillating fluctuation shape functions hA are postulated a priori in every problem under con-
sideration and describe the unknown fields oscillations caused by the structure inhomogeneity.
Apart from the restriction of l-periodicity, the FSFs have to satisfy the following conditions

〈µhA〉 = 0 〈µhAhB〉 = 0 forA 6= B
∂mhA ∈ O(l2−m) A,B = 1, . . . , N

(3.4)

Another assumption is the tolerance averaging approximation. For the purposes of this article,
the following denotations are introduced. Let e, f ∈ L2loc(R) be the known l-periodic func-
tions and let F ∈ WSV 1d (0, L), d ≡ (l, δ0, δ1). By the tolerance averaging of eF + f∂1F is
meant 〈eF + f∂1F 〉T (x) ≡ 〈e〉F (x) + 〈f〉∂1F (x) for every x ∈ (l/2, L − l/2). The tolerance
averaging approximation is an approximation of 〈eF + f∂1F 〉(x) by 〈eF + f∂1F 〉T (x) for every
x ∈ (l/2, L − l/2). Thus, the tolerance averaging approximation has the form

〈eF + f∂1F 〉(x) = 〈eF + f∂1F 〉T (x) +O(l) d ≡ (l, δ0, δ1) (3.5)

where e(·), f(·) are the known functions and F (·) is unknown in the initial-boundary value
problem under consideration.

3.2. The averaged model equations

The averaging operation is performed, after substituting micro-macro decomposition (3.2)
into Lagrangian (2.2). Thus, the variation of the averaged action functional can be written as

δA = δ
t1∫

t0

L∫

0

〈Lh〉 dx dt =
t1∫

t0

L∫

0

δ〈Lh〉 dx dt = 0 (3.6)

Knowing that

− κ = ∂2w = ∂2W + ∂2(hAV A) = ∂2W + ∂(∂hAV A + hA∂V A)

= ∂2W + ∂2hAV A + 2∂hA∂V A + hA∂2V A

− δκ = ∂2δW + ∂2hAδV A + 2∂hA∂δV A + hA∂2δV A

−M = EJ∂2w = EJ(∂2W + ∂2hBV B + 2∂hB∂V B + hB∂2V B)t

(3.7)

the Lagrangian variation is

δL = δW − δK − qδw =Mδκ− µẇδẇ − ϑ∂ẇ∂δẇ − qδw (3.8)

Finally

t1∫

t0

L∫

0

δK dx dt =
t1∫

t0

L∫

0

(µẅδw + ϑ∂ẅ∂δw) dx dt (3.9)
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and

δL =Mδκ+ (µẅ − q)δw + ϑ∂ẅ∂δw (3.10)

Let micro-macro decomposition (3.2) be substituted into the components of the Lagrangian
and averaged over a periodicity cell. It should be noted that

δw = δW + hAδV A (3.11)

The variation of the averaged bending energy gives

〈δL〉 = 〈Mδκ〉 = 〈M〉∂2δW + 〈M∂2hA〉δV A + 2〈M∂hA〉∂δV A + 〈MhA〉∂2δV A (3.12)

where

〈M〉 = 〈EJ〉∂2W + 〈EJ∂2hB〉V B + 2〈EJ∂hB〉∂V B + 〈EJhB〉∂2V B

〈M∂2hA〉 = 〈EJ∂2hA〉∂2W + 〈EJ∂2hA∂2hB〉V B + 2〈EJ∂2hA∂hB〉∂V B

+ 〈EJ∂2hAhB〉∂2V B

〈M∂hA〉 = 〈EJ∂hA〉∂2W + 〈EJ∂hA∂2hB〉V B + 2〈EJ∂hA∂hB〉∂V B + 〈EJ∂hAhB〉∂2V B

〈MhA〉 = 〈EJhA〉∂2W + 〈EJhA∂2hB〉V B + 2〈EJhA∂hB〉∂V B + 〈EJhAhB〉∂2V B

(3.13)

The total variation of the Lagrangian is

δL = 〈M〉∂2δW +
(
〈ϑ〉∂Ẅ + 〈ϑ∂hA〉V̈ A

)
∂δW +

(
〈µ〉Ẅ + 〈µhA〉V̈ A − 〈q〉

)
δW

+
(
〈M∂2hA〉+ 〈µhA〉Ẅ + 〈µhAhB〉V̈ B + 〈ϑ∂hA〉∂Ẅ

+ 〈ϑ∂hA∂hB〉V̈ B − 〈qhA〉
)
δV A + 2〈M∂hA〉∂δV A + 〈MhA〉∂2δV A

(3.14)

After some transformations

δL =
[
∂2〈M〉 − ∂

(
〈ϑ〉∂Ẅ + 〈ϑ∂hA〉V̈ A

)
+ 〈µ〉Ẅ + 〈µhA〉V̈ A − 〈q〉

]
δW

+
(
〈M∂2hA〉 − 2∂〈M∂hA〉+ 〈µhA〉Ẅ + 〈µhAhB〉V̈ B + 〈ϑ∂hA〉∂Ẅ

+ 〈ϑ∂hA∂hB〉V̈ B + ∂2〈MhA〉 − 〈qhA〉
]
δV A + ∂

(
〈M〉∂δW

)

+ ∂
[(
〈ϑ〉∂Ẅ + 〈ϑ∂hA〉V̈ A − ∂〈M〉

)
δW
]

+ ∂
(
〈MhA〉∂δV A

)
− ∂
[(
∂〈MhA〉 − 2〈M∂hA〉

)
δV A
]

(3.15)

This leads to a system of differential equations

δW : ∂2〈M〉 − ∂
(
〈ϑ〉∂Ẅ + 〈ϑ∂hA〉V̈ A

)
+ 〈µ〉Ẅ + 〈µhA〉V̈ A − 〈q〉 = 0

δV A : 〈M∂2hA〉 − 2∂〈M∂hA〉+ 〈µhA〉Ẅ + 〈µhAhB〉V̈ B

+ 〈ϑ∂hA〉∂Ẅ + 〈ϑ∂hA∂hB〉V̈ B + ∂2〈MhA〉 − 〈qhA〉 = 0

(3.16)

and natural boundary conditions

(
〈ϑ〉∂Ẅ + 〈ϑ∂hA〉V̈ A − ∂〈M〉

)
δW
∣∣∣
L

0
+ 〈M〉∂δW

∣∣∣
L

0
+ 〈MhA〉∂δV A

∣∣∣
L

0

+
(
∂〈MhA〉 − 2〈M∂hA〉

)
δV A
∣∣∣
L

0
= 0

(3.17)
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The N + 1 differential equations for the macro-deflection and its fluctuation amplitudes are

∂2〈M〉 − 〈ϑ〉∂2Ẅ − 〈ϑ∂hA〉∂V̈ A + 〈µ〉Ẅ + 〈µhA〉V̈ A − 〈q〉 = 0
〈M∂2hA〉 − 2∂〈M∂hA〉+ 〈µhA〉Ẅ + 〈µhAhB〉V̈ B + 〈ϑ∂hA〉∂Ẅ
+ 〈ϑ∂hA∂hB〉V̈ B + ∂2〈MhA〉 − 〈qhA〉 = 0

(3.18)

The weight-averaged bending moments have the following form





〈M〉
〈M∂2hA〉
〈M∂hA〉
〈MhA〉





=




〈EJ〉 〈EJ∂2hB〉 〈EJ∂hB〉 〈EJhB〉
〈EJ∂2hA〉 〈EJ∂2hA∂2hB〉 〈EJ∂2hA∂hB〉 〈EJ∂2hAhB〉
〈EJ∂hA〉 〈EJ∂hA∂hB〉 〈EJ∂hA∂hB〉 〈EJ∂hAhB〉
〈EJhA〉 〈EJhA∂2hB〉 〈EJhA∂hB〉 〈EJhAhB〉









∂2W
V B

2∂V B

∂2V B






(3.19)

where W (x, t), V A(x, t) and their derivatives are the new kinematic unknowns. Together with
the averaged equation of motion, the following natural boundary conditions (for x = 0, L) with
averaged coefficients are obtained

〈ϑ〉∂Ẅ + 〈ϑ∂hA〉V̈ A − ∂〈M〉 = 0 or δW = 0

〈M〉 = 0 or ∂δW = 0

∂〈MhA〉 − 2〈M∂hA〉 = 0 or δV A = 0

〈MhA〉 = 0 or ∂δV A = 0

(3.20)

It is worth mentioning that expressions (3.20) reduce to classic natural boundary conditions for
a homogeneous beam (Fung, 1965). Moreover, the underlined coefficients are dependent on the
mesostructure size l. The external load is assumed to be zero in the analysis of natural vibrations
of the beam.

4. Examples of applications

In this Section, the derived averaged model is adapted in a study of some special problems.
The object under consideration is a simply supported beam with length L. The beam has a
rectangular cross section and is made of some small repetitive elements. The periodicity cell,
presented in Fig. 1, has a symmetrical shape and is divided into three segments. The segment
material and geometrical properties may vary depending on each case.
One of the most significant components of the tolerance modelling is determination of the

fluctuation shape functions. The fluctuation shape functions can be assumed as forms of eigenvi-
brations one the periodicity cell. In this model, FSFs are obtained from finite element analysis
of the periodicity cell, although the common practice is to use approximate solutions such as
l-periodic trigonometric functions.
In order to obtain a system of algebraic equations of motion, the Galerkin method is applied.

The trial solutions are assumed in the form of truncated trigonometric series

W (x, t) =
Mw∑

m=1

Xm(x)Wm(t) V A(x, t) =
MA
V∑

n=1

Y A
m (x)V

A
m (t) A = 1, . . . , N (4.1)

where the weight functions Xm and Y A
m are chosen to satisfy the boundary conditions of a simply

supported beam

Xm(x) = sin
mπx

L
Y A
m =






sin
nπx

L
for A ∈ ESF

cos
(n− 1)πx

L
for A ∈ OSF

(4.2)
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The functions Xm and Y A
m satisfy the assumed boundary conditions at x = 0, L, where ESF and

OSF stands for an even and odd fluctuation shape function respectively. The known relation
is solved with respect to the unknown trial function coefficients (Zienkiewicz et al., 2013). The
number of terms in the expansion results from the condition of convergence of the solution. In
order to obtain the natural frequencies of the beam, the eigenproblem of the dynamic stiffness
matrix is solved. In the numerical solutions, the size of the matrix is limited to the finite value

Fig. 2. The considered beam

5. Results and discussion

This Section is dedicated to the analysis of free vibrations of a Rayleigh beam. The beam has
length L = 1.0m and is composed of 10 periodicity cells with length l = 0.1m and cross
section width b = 0.01m. Three different beams with variable cross section height hM , Young’s
modulus EM and mass density ρM are analyzed. For each beam, there are considered three
individual cases. The properties of the central periodicity cell segment – height hR = 0.008m,
Young’s modulus ER = 205GPa and density ρR = 7850 kg/m3 are constant in all analyzed
cases.
As an example, 3 cases: A, B and C are analyzed. For each case, one of the material or

geometrical parameter of the periodicity cell has an individual value. The values of hM , EM
and ρM parameters for all cases are presented in Table 1.

Table 1. Analyzed-cases

Case hM [m] EM [GPa] ρM [kg/m3]

A1 0.004

205.000

7850.00A2 0.005
A3 0.006
B1

0.008

3925.00
B2 1962.50
B3 981.25
C1 102.500

7850.00C2 51.250
C3 25.625

In order to validate the tolerance model, a finite element method procedure is applied in
Maple software. The finite element model is assembled with 30 Rayleigh beam elements with
Hermitian polynomials and the consistent mass matrix. As a result, the model has 31 nodes
with 62 degrees of freedom.
The natural frequencies, which are obtained using the tolerance averaging technique (TA)

and the finite element method (FE), are compared in Table 2. The validation of first 22 natural
frequencies for cases A2, B2 and C2 for the mesostructure α = 0.5 is performed. The TA model
results are presented as gray dots, and the FE model as black rings. The received values of
frequencies are given in [Hz]. The first five natural frequencies for cases A2, B2, C2 are listed in
Table 2. 80.878 Hz, 147.330 Hz, and 73.581Hz are the least derived values of natural frequencies
in cases A2, B2, and C2, respectively. The relative error does not exceed 2% for the first five
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frequencies. It is noticeable that the presented bandwidth is not entirely continuous and uniform.
Among all obtained frequencies in Fig. 3, separated bands of frequencies can be observed –
the chains preceded and followed by some intervals. These interruptions in the bandwidth,
highlighted with gray backgrounds, are called band gaps. In case A, the first band interval
reveals between the 9th and 10th natural frequency. The difference between these frequencies
arrives at 3133Hz. Another gap appears between the 20th and 21st natural frequency. In this
case, the difference rises to 8454Hz. In case B, the gaps occur between the 10th, 11th and 20th,
21st free vibration frequencies, and the intervals in the bandwidth reach 7657 and 14164Hz,
respectively. In case C, the band gaps reveal at the same frequencies as in case A, and the
magnitudes of the interludes are 3663Hz and 7171Hz, respectively.

Table 2. Natural frequencies for case A2, B2 and C2

ωi
A2 B2 C2

TA FE |∆ω|
|ωFE |

TA FE |∆ω|
|ωFE |

TA FE |∆ω|
|ωFE |

n [Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]
1 80.878 80.971 0.115 147.330 147.314 0.011 73.581 73.659 0.105
2 322.607 324.108 0.463 589.309 589.054 0.043 293.269 294.534 0.430
3 722.358 730.114 1.062 1325.846 1324.555 0.097 655.683 662.294 0.998
4 1274.964 1300.213 1.942 2356.475 2352.406 0.173 1154.338 1176.231 1.861
5 2043.391 2036.098 0.358 3679.510 3669.598 0.270 1843.340 1834.854 0.462

Fig. 3. Comparison of natural frequencies bandwidth of the considered beam for α = 1/2,
case A2, B2, C2

In Figs. 4-6, the band gaps neighborhood is shown. The tolerance solutions are represented
by solid lines, and the finite element solutions are represented by dashed lines. In this case, the
presented frequencies are functions of the saturation parameter α. All frequencies are presented in
relation to the constant value – the natural frequency obtained from the finite element method.
As a result, the solutions are presented in the dimensionless form. The first two gaps in the
observed bandwidth range are analyzed. In cases A and C, the analyzed frequencies are increasing
with the argument of a function. In case B, a decreasing relationship can be observed. In the
enclosed figures, two types of band gaps can be noticed. The first type of the gap is between
the same frequencies in the entire domain of the mesostructure parameter. The second type of
the gap changes its character along with the α parameter. The following relationship can be
observed: the compared models have the best convergence for low natural frequencies and low
values of the α parameter.
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Fig. 4. Band-gap neighboring eigenfrequencies as a function of the α parameter, case A

In Table 3, the eigenmodes of the considered beam model for α = 1/2 are compared. It
can be noticed that in B2 case the band gaps occur in different places in comparison with A2,
B2 and C2 cases (Fig. 3). What is more, there is a difference in the order of symmetrical and
antisymmetrical eigenmodes (cf. Table 3).

6. Final remarks

In this paper, the authors present a new averaged model of a linear-elastic periodic Rayleigh
beam. Dynamics of the beam is described by partial differential equations with non-continuous
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Fig. 5. Band-gap neighboring eigenfrequencies as a function of the α parameter, case B

highly oscillating coefficients. The exact model equations are transformed into a form that can
be solved numerically.

The new model implements the notion of weakly slowly-varying functions. The proposed
equations are derived using the tolerance averaging approach. In contradiction to other homo-
genized models, the tolerance averaging technique allows one to observe some averaged effective
properties of a structure. Despite the inhomogeneity of the structure, this new model introduces
some new unknowns – averaged deflection. It also allows one to observe some dynamic properties
of the beam, depending on the size of the periodicity cell.
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Fig. 6. Band-gap neighboring eigenfrequencies as a function of the α parameter, case C

The solutions derived from tolerance averaging have been compared with the finite element
model solutions. The finite element model has 31 nodes with 62 degrees of freedom.

In this paper, 3 cases have been compared: A, B and C. A good agreement has been obtained
between the two methods in all analyzed cases. What is more, there is an evident dependency
between the occurrence of band gaps and the shape of eigenmodes. Therefore, the proposed
solution enables one to formulate model equations which can be solved with known numerical
methods (e.g. Galerkin method). That is why the suggested technique can be used in the para-
metric analysis of the structures under consideration. The problems that can be considered in



152 M. Świątek et al.

Table 3. Comparison of natural frequency bandwidths of the considered beam for α = 1/2

Case ω9 ω10 ω11 ω20 ω21

A2

TA

FE

B2

TA

FE

C2

TA

FE

future works are: forced vibrations of inhomogeneous Rayleigh beams, greater diversity of boun-
dary conditions, analysis of structural and material heterogeneity of the beam and a viscoelastic
subsoil.
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The present paper deals with forced vibrations of a homogeneous, isotropic thermoelastic
double porous microbeam subjected to moving load, in context of Lord-Shulman theory
of thermoelasticity with one relaxation time. The Laplace transform has been applied to
obtain expressions for the axial displacement, lateral deflection, volume fraction field and
temperature distribution. A numerical inversion technique has been used to recover the
resulting quantities in the physical domain. Effects of velocity and time parameters are
shown graphically by plotting axial displacement, lateral deflection, volume fraction field
and temperature distribution against distance. Some particular cases are also deduced.

Keywords: double porosity, thermoelasticity, Lord-Shulman theory, microbeam, moving load

1. Introduction

Recently, dynamical analysis of engineering structures subjected to moving loads has gained gre-
at importance. Vehicle-bridge interactions are a vast area of interest in the moving load problem.
Advances in transport technology and automobile engineering have resulted in high speeds and
heaviness of vehicles and other moving bodies. As a result, corresponding structures have been
subjected to vibration and dynamic stress much higher than ever before. The engineering struc-
tures with moving loads often come out in buildings, bridges, railways and cranes. Beam type
structures are widely used in many fields like civil, mechanical and aerospace engineering. Many
researchers have investigated dynamical behavior of beams on elastic foundations subjected to
moving loads, especially in railway engineering. The modern trend towards higher speeds in the
railways has further intensified the research in order to accurately predict the vibration behavior
of railway tracks.
Pores or fractures can be observed in engineering structures due to reasons like erosion,

corrosion, fatigue or accidents which affect the dynamic behavior of the entire structure to a
considerable extent. This leads to the development of the double porosity model which has its ap-
plications in geophysics, rock mechanics and many branches of engineering like civil engineering,
chemical engineering and the petroleum industry. Biot (1941) proposed a model for porous me-
dia with single porosity. Later on Barenblatt et al. (1960) introduced a model for porous media
with a double porosity structure. The double porosity model consists of two coexisting degrees
of porosity in which one corresponds to the porous matrix and the other to the fissure matrix.
Nunziato and Cowin (1979) developed a nonlinear theory of an elastic material with voids.

Later, Cowin and Nunziato (1983) developed a theory of linear elastic materials with voids for
mathematical study of the mechanical behavior of porous solids. In this theory, the skeletal
materials are elastic, and interstices are void of material, hence an additional degree of freedom,
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the volume fraction of the void, is added. Iesan and Quintanilla (2014) derived a theory of ther-
moelastic solids with a double porosity structure by using the theory developed by Nunziato
and Cowin (1979). Darcy’s law was not used in developing that theory. So far, not much work
has been done on the theory of thermoelasticity with the double porosity based on the model
proposed by Iesan and Quintanilla (2014). Recent investigations have been started in the the-
ory of thermoelasticity with double porosity which has a significant application in continuum
mechanics. Kumar et al. (2015) applied the state space approach to a boundary value problem
for thermoelastic materials with double porosity.
The dynamic behavior of different isotropic structures subjected to moving loads has been

investigated by many researchers. Olsson (1991) studied the dynamic problem of a simply sup-
ported beam subjected to a constant force moving at a constant speed. The linear dynamic
response of a simply supported uniform beam under a moving load of constant magnitude and
velocity was investigated by Michaltsos et al. (1996). Rao (2000) studied the dynamic response of
a multi-span Euler-Bernoulli beam due to moving loads. Mehri et al. (2009) presented the linear
dynamic response of uniform beams with different boundary conditions under a moving load
based on the Euler-Bernoulli beam theory. Sharma and Grover (2011) analysed a thermoelastic
vibrations in micro-/nano-scale beam resonators with the presence of voids. Kargarnovin et al.
(2012) studied the dynamic response of a delaminated composite beam under the action of a
moving oscillatory mass. Esen (2015) investigated the transverse and longitudinal vibrations of
a thin plate which carried a load moving along an arbitrary trajectory with variable velocity.
Kumar (2016) studied the response of a thermoelastic beam due to the thermal source in the
modified couple stress theory. Kaghazian et al. (2017) investigated free vibrations of a piezo-
electric nanobeam using nonlocal elasticity theory. Zenkour (2017) studied the thermoelastic
response of a microbeam embedded in visco-Pasternak’s medium based on GN-III model.
In the present work, forced vibrations of a homogeneous, isotropic thermoelastic double

porous microbeam, subjected to a moving load in the context of Lord-Shulman theory of ther-
moelasticity has been investigated. The Laplace transform has been applied to find expressions
for axial displacement, lateral deflection, volume fraction fields and temperature distribution.
The resulting quantities are obtained in the physical domain by using a numerical inversion
technique. Variations of the axial displacement, lateral deflection, volume fraction field and tem-
perature distribution against the axial distance are depicted graphically to show the effect of
the velocity parameter. Some particular cases have also been deduced.

2. Basic equations

Following Iesan and Quintanilla (2014) as well as Lord and Shulman (1967); the field equations
and the constitutive relation for a homogeneous isotropic thermoelastic material with a double
porosity structure in the absence of body forces, extrinsic equilibrated body forces and heat
sources can be written as

µ∇2ui + (λ+ µ)uj,ji + bϕ,i + dψ,i − βT,i = ρüi
α∇2ϕ+ b1∇2ψ − bur,r − α1ϕ− α3ψ + γ1T = κ1ϕ̈
b1∇2ϕ+ γ∇2ψ − dur,r − α3ϕ− α2ψ + γ2T = κ2ψ̈

(2.1)

and

(
1 + τ0

∂

∂t

)
(βT0u̇j,j + γ1T0ϕ̇+ γ2T0ψ̇ + ρC∗Ṫ ) = K∗∇2T (2.2)

tij = λerrδij + 2µeij + bϕδij + dψδij − βTδij (2.3)
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where λ and µ are Lame’s constants, ρ is mass density, β = (3λ + 2µ)αt, αt is linear thermal
expansion, C∗ is specific heat at a constant strain, ui are displacement components, tij is the
stress tensor, κ1 and κ2 are coefficients of equilibrated inertia, ϕ is the volume fraction field
corresponding to pores, and ψ is the volume fraction field corresponding to fissures, K∗ is the
coefficient of thermal conductivity, τ0 is the thermal relaxation time, κ1 and κ2 are coefficients
of equilibrated inertia, and b, d, b1, γ, γ1, γ2 are constitutive coefficients, δij is Kronecker’s delta,
T is the temperature change measured form the absolute temperature T0 (T0 6= 0), a superposed
dot represents differentiation with respect to time variable t.

3. Formulation of the problem

We consider a homogeneous, isotropic thermoelastic double porous microbeam having dimen-
sions: length L (0 ¬ x ¬ L), width a (−a/2 ¬ y ¬ a/2) and thickness h (−h/2 ¬ z ¬ h/2)
in a Cartesian coordinate sytem Oxyz as shown in Fig. 1. The microbeam undergoes bending
vibrations of a small amplitude about the x-axis such that the deflection is consistent with the
linear Euler-Bernoulli theory. Therefore, the displacements can be written as

u1 = u = −z
∂w

∂x
u2 = 0 u3 = w(x, t) (3.1)

where w is the lateral deflection and u is the axial displacement.

Fig. 1. Geometry of the beam

The equation of motion for forced vibrations of the beam can be written as

∂2M

∂x2
+ ρA

∂2w

∂t2
= F (x, t) (3.2)

where A = ah is the cross-section area, M is the flexural moment of cross section of the micro-
beam and F (x, t) is the applied moving load. By substituting Eqs. (2.3) and (3.1) into Eq.(3.2),
we obtain the equation of motion for forced vibrations of an Euler-Bernoulli thermoelastic double
porous microbeam subjected to moving load as

(λ+ 2µ)I
∂4w

∂x4
+ ρA

∂2w

∂t2
− ∂2Mϕ

∂x2
− ∂2Mψ

∂x2
+
∂2MT

∂x2
= F (x, t) (3.3)

where F = F0δ(x− vt) is the applied moving load, v is its velocity, δ is the Dirac delta function,
t is time in seconds, I = ah3/12 is the moment of inertia of the cross-section and Mϕ, Mψ are
the volume fraction field moments, and MT is the thermal moment of the beam given by

Mϕ = b

h/2∫

−h/2

aϕz dz Mψ = d

h/2∫

−h/2

aψz dz MT = β

h/2∫

−h/2

aTz dz (3.4)
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Equations (2.1)2,3 and (2.2) with the help of Eq. (3.1) can be written as

α
(∂2ϕ
∂x2
+
∂2ϕ

∂z2

)
+ b1
(∂2ψ
∂x2
+
∂2ψ

∂z2

)
+ bz

∂2w

∂x2
− α1ϕ− α3ψ + γ1T = κ1

∂2ϕ

∂t2

b1
(∂2ϕ
∂x2
+
∂2ϕ

∂z2

)
+ γ
(∂2ψ
∂x2
+
∂2ψ

∂z2

)
+ dz

∂2w

∂x2
− α3ϕ− α2ψ + γ2T = κ2

∂2ψ

∂t2

K∗
(∂2T
∂x2
+
∂2T

∂z2

)
=
(
1 + τ0

∂

∂t

)[
−βT0z

∂

∂t

(∂2w
∂x2

)
+ γ1T0ϕ̇+ γ2T0ψ̇ + ρC∗Ṫ

]

(3.5)

4. Solution of the problem

For the present microbeam, we assume that there is no flow of heat and the volume fraction
fields across the surfaces (z = ±h/2) so that ∂T/∂z = ∂ϕ/∂z = ∂ψ/∂z = 0 at z = ±h/2. For a
very thin beam, assuming that the volume fraction fields and temperature increment in terms
of sin(πz/h) function along the thickness direction one obtains

ϕ(x, z, t) = Φ(x, t) sin
πz

h
ψ(x, z, t) = Ψ(x, t) sin

πz

h
T (x, z, t) = Θ(x, t) sin

πz

h
(4.1)

Introducing non-dimensional variables as

x′ =
1
L
x u′ =

1
L
u t′x =

tx
E

Φ′ =
L

α
Φ Ψ ′ =

L

α
Ψ Θ′ =

β

E
Θ

t′ =
c1
L
t τ ′0 =

c1
L
τ0 F ′0 =

L2

ah2(λ+ 2µ)
F0

(4.2)

where c21 = (λ+ 2µ)/ρ and E = µ(3λ+ 2µ)/(λ + µ) is Young’s modulus.
Making use of Eqs. (4.1) in Eq. (3.3) and with the aid of Eqs. (4.2), yields (after suppressing

primes)

∂4w

∂x4
+ a1

∂2w

∂t2
− a2

∂2Φ

∂x2
− a3

∂2Ψ

∂x2
+ a4

∂2Θ

∂x2
= F0δ(x− vt) (4.3)

On multiplying Eqs. (3.5) by z and integrating them with respect to z from −h/2 to h/2 and
after using Eq.(4.2), we obtain (suppressing primes for convenience)

a5
∂2Φ

∂x2
− a6Φ+ a7

∂2Ψ

∂x2
− a8Ψ + a9

∂2w

∂x2
− a10Φ− a11Ψ + a12Θ =

∂2Φ

∂t2

a13
∂2Φ

∂x2
− a14Φ+ a15

∂2Ψ

∂x2
− a16Ψ + a17

∂2w

∂x2
− a18Φ− a19Ψ + a20Θ =

∂2Ψ

∂t2

(4.4)

and

∂2Θ

∂x2
− a21Θ =

(
1 + τ0

∂

∂t

)[
a22

∂

∂t

(∂2w
∂x2

)
+ a23

∂Φ

∂t
+ a24

∂Ψ

∂t
+ a25

∂Θ

∂t

]
(4.5)
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where

a1 =
ρc21L

I(λ+ 2µ)
a2 =

2bα
Iπ2(λ+ 2µ)L

a3 =
2dα

Iπ2(λ+ 2µ)L

a4 =
2E

Iπ2(λ+ 2µ)
a5 =

α

κ1c21
a6 =

απ2L2

κ1c21h
2

a7 =
b1
κ1c21

a8 =
b1π
2L2

κ1c21h
2

a9 =
bhπ2L2

24ακ1c21
a10 =

α1L
2

κ1c21
a11 =

α3L
2

κ1c21

a12 =
γ1EL

3

αβκ1c21
a13 =

b1
κ2c21

a14 =
b1π
2L2

κ2c21h
2

a15 =
γ

κ2c21

a16 =
γπ2L2

κ2c
2
1h
2

a17 =
dhπ2L2

24ακ2c21
a18 =

α3L
2

κ2c
2
1

a19 =
α2L

2

κ2c
2
1

a20 =
γ2EL

3

αβκ2c21
a21 =

π2L2

h2
a22 = −

β2T0hc1π
2

24EK∗

a23 =
αβT0γ1c1
EK∗

a24 =
αβT0γ2c1
EK∗

a25 =
ρC∗c1L

K∗

The initial conditions of the problem are assumed to be homogeneous and are taken as

w(x, t)
∣∣∣
t=0
=
∂w(x, t)
∂t

∣∣∣
t=0
= Φ(x, t)

∣∣∣
t=0
=
∂Φ(x, t)
∂t

∣∣∣
t=0
= Ψ(x, t)

∣∣∣
t=0
=
∂Ψ(x, t)
∂t

∣∣∣∣∣
t=0

= 0

Θ(x, t)
∣∣∣
t=0
=
∂Θ(x, t)
∂t

∣∣∣∣∣
t=0

= 0

(4.6)

These initial conditions are supplemented by considering that the two ends of the microbe-
am are clamped and remain at zero increment of the volume fraction fields and temperature.
Mathematically, it can be written as

w(x, t)
∣∣∣
x=0,L

=
∂w(x, t)
∂x

∣∣∣∣∣
x=0,L

= 0 Φ(x, t)
∣∣∣
x=0,L

= 0

Ψ(x, t)
∣∣∣
x=0,L

= 0 Θ(x, t)
∣∣∣
x=0,L

= 0

(4.7)

5. Solution in the Laplace transform domain

Applying the Laplace transform defined by

f(s) = L[f(t)] =
∞∫

0

f(t)e−st dt (5.1)

to Eqs. (4.3)-(4.5) under initial conditions (4.6), and after some simplifications, we obtain

( d10

dx10
+B1

d8

dx8
+B2

d6

dx6
+B3

d4

dx4
+B4

d2

dx2
+B5

)
(w,Φ, Ψ,Θ) = (f1, f2, f3, f4)e−

s
v
x (5.2)

where B1, B2, B3, B4, B5, f1, f2, f3, f4, are given in Appendix I.
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The solution to system of Eqs. (5.2), in the Laplace transform domain, can be written as

w = H1e−
s
v
x +

5∑

i=1

(Die−mix +Di+5emix)

Φ = H2e−
s
v
x +

5∑

i=1

g1i(Die−mix +Di+5emix)

Ψ = H3e−
s
v
x +

5∑

i=1

g2i(Die−mix +Di+5emix)

Θ = H4e−
s
v
x +

5∑

i=1

g3i(Die−mix +Di+5emix)

(5.3)

where

Hi =
fiν
10

s10 +B1s8ν2 +B2s6ν4 +B3s4ν6 +B4s2ν8 +B5ν10
i = 1, 2, 3, 4

and g1i, g2i, g3i; (i = 1, 2, 3, 4, 5) are given in Appendix II.
Here ±mi, i = 1, 2, . . . , 5 are the roots of the characteristic equation

m10 +B1m8 +B2m6 +B3m4 +B4m2 +B5 = 0

Therefore, the corresponding expressions for the axial displacement in the Laplace transform
domain can be written as

u = −z dw
dx
= −z

[ 5∑

i=1

(−miDie−mix +miDi+5emix)−
s

v
H1e−

s
v
x
]

(5.4)

Boundary conditions (4.7) in the Laplace transform domain take the form as

w(x, s)
∣∣∣
x=0,L

=
dw(x, s)
∂x

∣∣∣∣∣
x=0,L

= 0 Φ(x, s)
∣∣∣
x=0,L

= 0

Ψ(x, s)
∣∣∣
x=0,L

= 0 Θ(x, s)
∣∣∣
x=0,L

= 0

(5.5)

By substituting Eqs. (5.3) into boundary conditions (5.5), we obtain a system of ten linear
equations in the matrix form as

AD = E (5.6)

where

A =




1 1 1 1 1 1 1 1 1 1
b1 b2 b3 b4 b5 a1 a2 a3 a4 a5
−m1 −m2 −m3 −m4 −m5 m1 m2 m3 m4 m5
−m1b1 −m2b2 −λ3b3 −m4b4 −m5b5 m1a1 m2a2 m3a3 m4a4 m5a5
g11 g12 g13 g14 g15 g11 g12 g13 g14 g15
g11b1 g12b2 g13b3 g14b4 g15b5 g11a1 g12a2 g13a3 g14a4 g15a5
g21 g22 g23 g24 g25 g21 g22 g23 g24 g25
g21b1 g22b2 g23b3 g24b4 g25b5 g21a1 g22a2 g23a3 g24a4 g25a5
g31 g32 g33 g34 g35 g31 g32 g33 g34 g35
g31b1 g32b2 g33b3 g34b4 g35b5 g31a1 g32a2 g33a3 g34a4 g35a5




ai = emiL bi = e−miL i = 1, 2, 3, 4, 5

D =
[
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

]T

E =
[
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

]T
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and

E1 = −H1 E2 = −H1e−
s
v
L E3 =

s

v
H1 E4 =

s

v
H1e−

s
v
L

E5 = −H2 E6 = −H2e−
s
v
L E7 = −H3 E8 = −H3e−

s
v
L

E9 = −H4 E10 = −H4e−
s
v
L

By solving the above system of equations (5.6), we obtain the values of unknown parameters Di,
i = 1, 2, . . . , 10.
This completes the solution of the problem in the Laplace transform domain.
In order to determine the axial displacement, lateral deflection, volume fraction field and

temperature distribution in the physical domain, we will adopt a numerical inversion method
given by Honig and Hirdes (1984).
In this method, the Laplace domain f(s) can be inverted to the time domain f(t) as

f(t) =
1
t1
exp(Ωt)

[1
2
f(Ω) + Re

N∑

k=1

f
(
Ω +
ikπ
t1

)
exp
( ikπt
t1

)]
0 < t1 < 2t

where Re is the real part and i is the imaginary unit. The value of N is chosen sufficiently large
and it represents the number in terms of the truncated Fourier series such that

f(t) = exp(Ωt)Re
[
f
(
Ω +
iNπ
t1

)
exp
( iNπt

t1

)]
¬ ε1

where ε1 is a prescribed small positive number. Also, the value of Ω should satisfy the relation
Ωt ≃ 4.7 for faster convergence, Tzou (1996).
Particular cases

i) If τ0 = 0 in equations (5.6), it yields corresponding expressions for the thermoelastic double
porous microbeam in context of the coupled theory (CT) of thermoelasticity.

ii) If b1 = α3 = γ = α2 = γ2 = d → 0 in equations (5.6), we obtain the corresponding
expressions for the thermoelastic single porous microbeam (thermoelastic microbeam with
voids).

6. Numerical results and discussion

Numerical computations have been done for a copper like material microbeam. The material
parameters are taken as in Kumar et al. (2015): λ = 7.76·1010 Nm−2, C∗ = 3.831·103 m2s−2K−1,
µ = 3.86 · 1010 Nm−2, K∗ = 3.86 · 103 Ns−1K−1, T0 = 298K, ρ = 8.954 · 103Kgm−3,
αt = 1.78·10−5K−1, α2 = 2.4·1010 Nm−2, α3 = 2.5·1010 Nm−2, γ = 1.1·10−5 N, α = 1.3·10−5 N,
γ2 = 0.219 · 105Nm−2, κ1 = 0.1456 · 10−12 Nm−2s2, b = 0.9 · 1010Nm−2, α1 = 2.3 · 1010 Nm−2,
κ2 = 0.1546 · 10−12 Nm−2s2, τ0 = 0.01 s.
The aspect ratio of the beam is fixed as L/h = 10, a/h = 0.5, z = h/6. When h is varied,

L and a change accordingly with h. For the microscale beam, we take the range of the beam
length L = (1− 10) · 10−6m. The plots are prepared by using the dimensionless variables for a
wide range of the beam length when, unless otherwise stated, L = 4.0, a = h/2 and z = h/6.
The software MATLAB has been used to find the values of axial displacement, lateral de-

flection, volume fraction field and temperature distribution. Variations of these quantities with
respect to the axial distance have been shown in Figs. 2-5 to indicate the effects of velocity and
time parameters. In Figs. 2 and 3, solid line, small and big dashes lines correspond to the values
of velocity v = 1.0, 2.0 and 3.0, respectively with the fixed value of time t = 0.15, whereas in
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Figs. 4 and 5, solid line, small and big dashes lines correspond to the values of time t = 0.15,
0.175 and 0.2, respectively with the fixed value of velocity v = 1.0.

Effect of the velocity parameter

In Fig. 2a, it is noticed that the value of axial displacement u initially decreases in 0 < x < 1,
then increases in 1 ¬ x < 2.8 and again decreases slowly and steadily in the remaining region.
It is also found that the magnitude of u decreases with an increase in the value of velocity v
near the source application point while the trend gets reversed as moving away from the source.
Figure 2b depicts that the lateral deflection w decreases in 0 < x < 1, increases in 1 ¬ x ¬ 2.2
and then becomes stationary as x  2.2. The amplitude of variation is higher near the point
of application of the source while as moving away from the source, the values become almost
stationary for all the values of velocity v. Figure 3a shows that the volume fraction field ϕ
initially decreases sharply in 0 < x < 1, then increases abruptly in 1 ¬ x < 3.5 and then
decreases slowly and steadily in the remaining region. Also, the magnitude of ϕ decreases as v
increases near the source application point while the trend gets reversed away from the source.
From Fig. 3b, it is clear that the value of temperature distribution T initially increases in the
region 0 < x < 1 and decreases monotonically as x  1. It is also evident that the magnitude
of T increases with an increase in velocity v.

Fig. 2. (a) Axial displacement u and (b) lateral deflection w versus axial distance x

Fig. 3. (a) Volume fraction field ϕ and (a) temperature distribution T versus axial distance x
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Effect of the time parameter

In Fig. 4a, it is noticed that the value of axial displacement u initially decreases in 0 < x < 1,
then increases in 1 ¬ x < 2.8 and again decreases in the remaining region. Also, the magnitude of
u increases with an increase in the value of time t. Figure 4b depicts that the lateral deflection w
decreases in 0 < x < 1 and then increases afterwards as x  1. It is found that as time t increases,
the magnitude of w decreases. Figure 5a shows that the volume fraction field ϕ is oscillatory in
nature. The value of ϕ initially decreases in the range 0 < x < 1, then increases in 1 ¬ x < 3.5
and then decreases in 3.5 ¬ x < 5.3 and again starts increasing slowly as x  5.3. The magnitude
value of ϕ also increases with an increase in the value of time t. From Fig. 5b, it is clear that
the value of temperature distribution T initially increases in the region 0 < x < 1 and decreases
monotonically as x  1. It is also found that the magnitude of T decreases with an increase in
the value of time t.

Fig. 4. (a) Axial displacement u and (b) lateral deflection w versus axial distance x

Fig. 5. (a) Volume fraction field ϕ and (b) temperature distribution T versus axial distance x
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7. Conclusions

In the present work, forced vibrations of an Euler-Bernoulli thermoelastic double porous micro-
beam, in context of Lord-Shulman theory of thermoelasticity, subjected to moving load has been
investigated. Effects of velocity and time parameters are shown graphically on axial displace-
ment, lateral deflection, volume fraction field and temperature distribution. All field quantities
are observed to be very sensitive towards the velocity as well as time parameters.

• It is observed that the amplitude of variation is higher near the application point of the
source while the values become almost stationary as moving away from the source due
to the effect of velocity. The values of axial displacement u and volume fraction field ϕ
decrease with an increase in the velocity v near the application point of the source, whereas
an opposite trend of variation is noticed away from the source. The values of lateral
deflection w also decrease as the velocity parameter increases near the point of application
of the source and becomes stationary as moving away from the source. The magnitude of
temperature distribution T gets greater with an increase in the velocity parameter.
• Due to the effect of time parameter, the values of axial displacement u and volume frac-
tion field ϕ increase with an increase in the value of time t, whereas an opposite trend
and behavior of variation is observed in the case of lateral deflection w and temperature
distribution T , i.e. the values of w and T decrease as there is an increase in the value of
time t.

This type of study is useful due to its physical application in many fields of engineering like
civil, mechanical, aerospace and industrial sectors. The results obtained in this investigation
should prove to be beneficial for researchers working on the theory of thermoelasticity with the
double porosity structure. The introduction of the double porous parameter to the thermoelastic
medium represents a more realistic model for further studies.

Appendix I

a26 = s(1 + τ0s) a27 = −s(1 + τ0s)a22 a28 = −s(1 + τ0s)a23
a29 = −s(1 + τ0s)a24 a30 = −[a21 + s(1 + τ0s)a25]
n1 = −(a6 + a10 + s2) n2 = −(a8 + a11)
n3 = −(a18 + a14) n4 = −(a16 + a19 + s2)
r1 = a5a15 − a7a13 r2 = a5(a15a30 + n4)− a13n2 + n1a15 − a7(a13a30 + n3)
r3 = n1(a15a30 + n4) + a5(n4a30 − a20a29)− a7(n3a30 − a20a28)− n2(a13a30 + n3)
+ a12(a13a29 − a15a28)

r4 = n1(n4a30 − a20a29) + a12(n3a29 − n4a28) + n2(a20a28 − n3a30)
r5 = a9a15 − a7a17 r6 = a9(a15a30 + n4)− a7(a17a30 − a20a27)− n2a17 − a12a15a27
r7 = a9(n4a30 − a20a29) + a12(a17a29 − n4a27)− n2(a17a30 − a20a27)
r8 = a9a13 − a5a17 r9 = a9(a13a30 + n3)− n1a17 − a5(a17a30 − a20a27)− a12a10a27
r10 = a9(n3a30 − a20a28)− n1(a30a17 − a27a20) + a12(a17a28 − n3a27)
r11 = a27(a5a12 + a7a13)

r12 = a9(a13a29 − a15a28) + a5(n4a27 − a17a29) + a27(n1a15 + g3a13)− a7(a17a28 − n3a27)
r13 = a9(n3a29 − n4a28)− n1(a17a29 − n4a27)− n2(a17a28 − n3a27)
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B1 =
r2 + a2r5 − a3r8 − a4r11

r1
B2 =

a1r1s
2 + a2r6 − a3r9 − a4r12 + r3

r1

B3 =
a1r3s

2 + a2r7 − a3r10 − a4r13 + r4
r1

B4 =
a1r3s

2

r1
B5 =

a1r4s
2

r1

f1 =
1
v7
F0(r1s6 + r2s4v2 + r3s2v4 + r4v6) f2 = −

1
v7
F0(r5s6 + r6s4v2 + r7v4s2)

f3 =
1
v7
F0(r8s6 + r9s4v2 + r10v4s2) f4 = −

1
v7
F0(r11s6 + r12s4v2 + r13v4s2)

Appendix II

g1i = −
r5m

6
i + r6m

4
i + r7m

2
i

r1m6i + r2m
4
i + r3m

2
i + r4

g2i =
r8m

6
i + r9m

4
i + r10m

2
i

r1m6i + r2m
4
i + r3m

2
i + r4

g3i = −
r11m

6
i + r12m

4
i + r13m

2
i

r1m6i + r2m
4
i + r3m

2
i + r4

i = 1, 2, . . . , 5
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Application of the linear six-parameter shell theory to the analysis of orthotropic tense-
grity plate-like structures is proposed in the paper. A continuum model of a tensegrity
plate with the self-stress state included is used. The tensegrity module, which is based on
4-strut expanded octahedron modules with additional connecting cables is proposed as an
example. Different planes of support of the structures are taken into account and thus dif-
ferent reference surfaces of the plate model are considered. The self-stress state and some
geometrical parameters are introduced for parametric analysis.
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1. Introduction

The concept of tensegrity structures covers trusses consisting of isolated compressed elements
(struts) inside a continuous net of tensioned members (cables) (Motro, 2003; Skelton and Oli-
veira, 2009). The specificity of these structures lies in infinitesimal mechanisms balanced with
self-stress states. Tensegrity as a structural system offers many advantages over conventional
structural systems. Proper actuation can keep it stiff during deployment without requiring
external members, which is the main benefit of the system. The tensegrity concept has found
applications in civil engineering structures such as towers (Schlaich, 2004; Gilewski et al., 2015),
bridges (Gilewski and Kasprzak, 2011) and domes (Gómez-Jáuregui, 2010). Tensegrity based
on spatial reticulated systems are double-layer tensegrity grids (Gómez-Jáuregui et al., 2012)
with two parallel horizontal networks of members in tension forming the top and bottom layers.
The grid nodes are linked by vertical and inclined bracing members in compression and tension.
These systems can be treated as tensegrity plate-like structures. Examples are Kono’s struc-
ture (Kono et al., 1999) and Blur building (Crawfordt, 2016; Gilewski et al., 2016). Tensegrity
plate-like structures can also be built with tensegrity modules, such as a simplex or an expanded
octahedron. Even very simple tensegrity structures have complex geometry and unique features.
Their structural behaviour can be explained using a continuum model of a three-dimensional
tensegrity plate-like structure (Al Sabouni-Zawadzka et al., 2016).
In the paper, a continuum model of the plate is used. The model includes the effect of

self-stress initially applied to the tensegrity structure. In the analysis, a linear six-parameter
shell theory (Chróścielewski et al., 2004; Pietraszkiewicz, 2016) is proposed. In considerations,
the shell theory is simplified by assuming that the plates have no curvature. As a result, the
two-dimensional plate model for moderately thick plates is obtained for both membrane and
bending deformations. Additionally, different planes of support of tensegrity plate-like struc-
tures are taking into account, thus different reference planes of the plate model – the lower
surface, the middle surface and the upper surface are considered. The proposed approach allows
one to analyse the influence of self-stress states and some geometrical parameters on average
displacements, strains and internal forces in the structures.
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The model used in the paper is valid for all structures composed of tensegrity modules with
orthotropic properties.

2. Material and methods

2.1. Linear six-parameter shell theory for the orthotropic model

Developments of the theory of elastic shells have been widely discussed in papers and mono-
graphs. In the paper, the six-parameter (six-field) shell theory is used (Burzyński et al., 2016;
Chróścielewski et al., 2004, 2011, 2016; Pietraszkiewicz, 2016; Witkowski, 2011). This kinematic
model is formally equivalent to the Cosserat continuum with six independent degrees of freedom:
three translations and three rotations (with the drilling degree of freedom). It is assumed that
translations and rotations are small, i.e., the linear six-parameter shell theory can be used. As
one of the first, the linear constitutive equation for Cosserat continuum was derived by Nowac-
ki (1971). In this approach, the linear six-parameter shell theory is applied to the analysis of
tensegrity plate-like structures.
The rectangular plate of a constant thickness h in the Cartesian coordinate system (x1, x2, z)

is considered (Fig. 1). According to the Hencky-Boole kinematic hypothesis, a displacement field
in the 3D space is described as

ũ(xα, z) = u(xα) + zβ(xα) for α = 1, 2 (2.1)

where u is the translation vector and β is the rotation vector of the reference surface (2D)

u(xα) = [uα, w]T β(xα) = [φα, ψ]T (2.2)

The proposed approach, compared to the classical five-parameter theory, includes additionally
third independent non-vanishing rotation – the drilling degree of freedom ψ (rotation about the
normal to the surface).

Fig. 1. Geometry of a 3D plate-like body

In a plate, there is no curvature, wchich means that the curvature of tensors is equal to zero,
consequently, a model analysed in the paper is simpler than that shown by Chróścielewski et
al. (2004) and by Pietraszkiewicz (2016). Consequently, the linear six-parameter shell theory is
simplified. Below the reduced relations and equations are showed:
— the kinematic relations

γαβ = uα,β − ǫαβψ γα3 = φα + w,α καβ = φα,β κα3 = ψ,α (2.3)

where γαβ , γα3, καβ , κα3 are the strain components and ǫαβ is the Ricci symbol,
— the internal forces

Nαβ =

z2∫

z1

Sαβ dz Nα3 =

z2∫

z1

Sα3 dz

Mαβ =

z2∫

z1

Sαβz dz Mα3 =

z2∫

z1

Sα3z dz

(2.4)
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where Sαβ and Sα3 are the stress components,
— the equilibrium equations

Nαβ,α + fβ = 0 Nα3,α + f3 = 0

Mαβ,α +Nβ3 +mβ = 0 Mα3,α + ǫαβNαβ +m3 = 0
(2.5)

where fβ, f3, mβ, m3 are the external loads.
Internal forces (2.4) depend on the reference surface. In the paper, three different reference

surfaces of the plate model are considered: the lower ΩL, the middle ΩM and the upper ΩU . In
the mentioned approaches, the domains of the plate are defined as follows (Fig. 1)

ΩL = {xK : xα ∈ Π−, z ∈ 〈z1, z2〉; z1 = 0, z2 = h}
ΩM = {xK : xα ∈ Π, z ∈ 〈z1, z2〉; z1 = −h/2, z2 = h/2}
ΩU = {xK : xα ∈ Π+, z ∈ 〈z1, z2〉; z1 = −h, z2 = 0}

(2.6)

Consequently, limitation of integrations (2.4) for each surface follows from the domains defini-
tions.
A complete six-parameter linear shell theory containing the drilling rotation ψ, two work-

conjugate drilling bending measures κα3 and two drilling couples Mα3 is presented in the paper.
The constitutive equation for the linear theory of elasticity is expressed as

Sij = DijklEkl i, j, k, l = 1, 2, 3 (2.7)

where Sij is the component of the stress tensor, Ekl is the component of the strain tensor and
Dijkl is the component of the fourth-rank tensor of elasticity. In general, a tensor of elasticity
contains 36 independent components, but taking into account the symmetry of strain energy
21 distinct components can be set out. The number of independent components is further re-
duced if the material has symmetry planes. There are exactly eight different sets of symmetry
planes (Chadwick et al., 2001). One of them is orthogonal symmetry (orthotropic material).
This material requires 9 elastic constants in a two-dimensional case.
In the paper, the orthotropic tensegrity plate-like structures based on the Reissner-Mindlin

theory are discussed. For this model, the tensor of elasticity can be written as a matrix
{Dijkl} ≡ d which contains 6 nonzero independent components

B01111 = d11 B02222 = d22 2B02323 = d44
2B01313 = d55 2B01212 = d66 B01122 = d12

(2.8)

The stress tensor and the strain tensor are written as

Sij =
{
S11 S22 S23 S13 S12

}T
Ekl =

{
E11 E22 2E23 2E13 2E12

}T
(2.9)

where

E11 = γ11 + zκ11 E22 = γ22 + zκ22 E23 =
1
2
(γ23 + zκ23

E13 =
1
2
(γ13 + zκ13) E12 =

1
2
(γ12 + γ21 + zκ12 + zκ21)

(2.10)

Stress components (2.9)1 are received from constitutive equations (2.7). Next, taking into account
the lower, middle and upper reference surfaces, the internal forces (2.4) are calculated

N11 = h0d11γ11 + h0d12γ22 + h1d11κ11 + h1d12κ22
N22 = h0d12γ11 + h0d22γ22 + h1d12κ11 + h1d22κ22
N12 = h0d66(γ12 + γ21) + h1d66(κ12 + κ21)

N13 = α0h0d55γ13 + α1h1d55κ13 N23 = α0h0d44γ23 + α1h1d44κ23

(2.11)
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and

M11 = h1d11γ11 + h1d12γ22 + h2d11κ11 + h2d12κ22
M22 = h1d12γ11 + h1d22γ22 + h2d12κ11 + h2d22κ22
M12 = h1d66(γ12 + γ21) + h2d66(κ12 + κ21)

M13 = α1h1d55γ13 + α2h2d55κ13 M23 = α1h1d44γ23 + α2h2d44κ23

(2.12)

where hi (i = 0, 1, 2) are parameters depending on the reference surfaces (values are shown in
Table 1) and αi (i = 0, 1, 2) are shear correction factors.
The problem of determining the shear factor was created in the Timoshenko beam theory,

which takes into account the transverse shear deformation and the rotatory inertia (Khorshidi
and Shariati, 2017; Obara and Gilewski, 2016; Timoshenko and Gere, 1961). Within the general
six-parameter shell model used here, the shear correction factors α0 and α2 are introduced into
the constitutive equations for the respective transverse shear stress resultants and stress couples
(Chróścielewski et al., 1997). The values of two correction factors α0 = 5/6 and α2 = 7/10, with
detailed derivation of these values, were arrived by Pietraszkiewicz (1979). The more information
about the shear factors and the influence of different values of these factors on the results of
static and dynamic behaviour of shell structures can be found in Chróścielewski et al. (2000).
In the paper, additionally a correction factor α1 is introduced. This factor is significant if the
lower surface or the upper surface is used as the reference plane.
The closed form of the equilibrium equations for a plate (x1 ∈ 〈0, a〉 and x2 ∈ 〈0, b〉) and a

plate strip (x1 ∈ 〈0, a〉 and x2 ∈ (−∞,+∞)) can be obtained by inserting Eqs. (2.11) and (2.12)
into Eq. (2.5).

2.1.1. Plate

The behaviour at any point of the considered plate is defined by generalized displacements q
and the corresponding to them internal forces Q

q = q(x1, x2) = [u1, u2, ψ, φ1, φ2, w]T

Q = Q(x1, x2) = −[f1, f2,m3,m1,m2, f3]T
(2.13)

The first three displacements in (2.13)1 describe the membrane state and the last three – the
bending state. In general, these states are coupled. Equilibrium equations (2.5) for the plate can
be written as

Lq = Q (2.14)

where

L =




h0L1 h0L4 0 h1L1 h1L4 0
h0L4 h0L2 0 h1L4 h1L2 0
0 0 α2h2L3 α1h1L5 α1h1L6 α1h1L3

h1L1 h1L4 −α1h1L5 h2L1 − α0h0d55 h2L4 −α0h0L5
h1L4 h1L2 −α1h1L6 h2L4 h2L2 − α0h0d44 −α0h0L6
0 0 α1h1L3 α0h0L5 α0h0L6 α0h0L3




(2.15)

where

L1 = d11
∂2

∂x21
+ d66

∂2

∂x22
L2 = d66

∂2

∂x21
+ d22

∂2

∂x22
L3 = d55

∂2

∂x21
+ d44

∂2

∂x22

L4 = (d12 + d66)
∂2

∂x1∂x2
L5 = d55

∂

∂x1
L6 = d44

∂

∂x2
(2.16)
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2.1.2. Plate strip

The behaviour of the considered plate strip, with width a, is defined by generalized displa-
cements q̃ and the corresponding to them internal forces Q̃

q̃ = q̃(x1) = [u1, ψ, φ1, w]T Q̃ = Q̃(x1) = −a2[f1,m3,m1, f3]T (2.17)

Equilibrium equations (2.5) for the plate strip can be written as

L̃q̃ = Q̃ (2.18)

where

L̃ =




A0L̃1 0 A1L̃1 0
0 B2L̃1 aB1L̃2 B2L̃1

A1L̃1 −aB1L̃2 −a2B0 +A2L̃1 −aB0L̃2
0 B1L̃1 aB0L̃2 B0L̃1


 (2.19)

where

L̃1 =
d2

dξ2
L̃2 =

d

dξ
ξ =

x1
a

Ai = hid11 Bi = αihid55 for i = 0, 1, 2
(2.20)

The parameters Ai and Bi depend on the reference surfaces. The formulas of these parameters
are shown in Table 1. For the plate strip, as in the case of the plate, the membrane state and
the bending state are coupled.

Table 1. Formulas of the parameters hi, Ai and Bi for the reference surfaces

Parameters Lower surface Middle surface Upper surface

h0 h h h

h1 h2/2 0 −h2/2
h2 h3/3 h3/12 h3/3
A0 hd11 hd11 hd11
A1 h2d11/2 0 −h2d11/2
A2 h3d11/3 h3d11/12 h3d11/3
B0 α0hd55 α0hd55 α0hd55
B1 α1h

2d55/2 0 −α1h2d55/2
B2 α2h

3d55/3 α2h
3d55/12 α2h

3d55/3

Solving the set of differential equations (2.18) it is possible to obtain explicit formulas of the
displacement and internal force. The mentioned formulas are described as follows

u1(ξ) = C5 + C6ξ +
3A1
aA0

C4ξ
2 − a2

2A0
f1ξ
2 +

a3E1
6

f3ξ
3

ψ(ξ) = C7 + C8ξ +
a2

2
(D1f3 −D0m3)ξ2

φ1(ξ) = −
1
a

(
C2 + 2C3ξ + 3C4ξ2 +

6
a2B0E0

C4 +
B1
B0
C8
)
− a

B0
(1 +B1D1)f3ξ

− a3E0
6

f3ξ
3 + aD1m3ξ +

1
B0

m1 −
A1
A0B0

f1

w(ξ) = C1 + C2ξ + C3ξ2 + C4ξ3 +
a4E0
24

f3ξ
4

(2.21)
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and

N11(ξ) = −
2A1
a2

C3 +
A0
a
C6 − af1ξ −

A1
B0
(1 +B1D1)f3 +A1D1m3

N13(ξ) = −
6

a3E0
C4 − af3ξ −

A1
A0
f1 +m1

M11(ξ) = −
2A2
a2

C3 −
6

a2E0
C4ξ +

A1
a
C6 −

aA1
A0

f1ξ +
a2

2
(A1E1 −A2E0)f3ξ2

− A2
B0
(1 +B1D1)f3 +A2D1m3

M13(ξ) = −
6B1

a3B0E0
C4 +

1
aD0

C8 + a(B1D1 −B2D2)m3ξ −
A1B1
A0B0

f1 +
B1m1
B0

(2.22)

where

Di =
Bi

B0B2 −B21
Ei =

Ai
A0A2 −A21

for i = 0, 1, 2 (2.23)

The results for the plate and plate strip can be used in analysis of different types of ortho-
tropic systems, such as beams, plate strips, plates or more complicated multi-module plate-like
structures. The displacement and internal force functions of these systems depend on the com-
ponents of elastic matrix (2.8).
To illustrate the proposed approach, a continuum orthotropic model of the tensegrity plate-

-like structure is used. The internal and external plane of support of the structure is taken into
account. For tensegrity systems, the components of the elastic matrix depend on stiffness of
cables and struts and on the level of self-stress.

2.2. Orthotropic tensegrity plate-like structure

The orthotropic model of a tensegrity plate-like structure is based on the energetic equ-
ivalence between the discrete tensegrity repeatable element and the continuum model of the
orthotropic material element shown in Fig. 2 (Al Sabouni-Zawadzka and Gilewski, 2016; Ke-
biche et al., 2008). This approach can be used to a chosen structure of repeatable tensegrity
elements creating plate-like structures.

Fig. 2. Views of expanded four-strut octahedron modules with additional cables (doted line)
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A system of fully connected, repeating expanded four-strut octahedron modules with addi-
tional cables (Al Sabouni-Zawadzka et al., 2016) is used as an example. The system is orthotropic
for the following geometric parameters x/X = 0.65, y/Y = 0.3 and z/Z = 0.56. This system
consists of struts, regular cables and connecting cables, which are described by the following
coefficients

n =
(EA)cable
(EA)struct

m =
(EA)conection
(EA)struct

σ =
S

(EA)struct
(2.24)

where E is the Young modulus, A is cross section area and S is the axial force. The coefficients
n and m describe the proportions of member properties, and σ describes the level of self-stress
in tensegrity structures.
The self-stress state is the most important feature of tensegrity structures. This state makes

the structure as strong as the self-supporting structure and stabilizes the infinitesimal mecha-
nisms occurred in tensegrity structures. The impact of the self-stress state in the structure is
taken into account by using the geometric stiffness matrix.
The coefficients of elastic matrix (2.8) of the tensegrity plate-like structure are as follows:

d11 =
2EA
h2

δ11 d22 =
2EA
h2

δ22 d12 =
EA

h2
δ12

d44 =
EA

h2
δ23 d55 =

EA

h2
δ13 d66 =

EA

h2
δ12

(2.25)

where

EA = (EA)struct δ12 = 0.845615n − 0.105243σ
δ11 = 1 + 1.52325n + 0.13125m + 0.129225σ δ13 = 1.26604n − 0.153207σ
δ22 = 1 + 1.35912n + 0.35m+ 0.137028σ δ23 = 1.51283n − 0.168813σ

(2.26)

3. Results and discussion

Displacements and the internal forces for tensegrity plate-like structures, as a function of pa-
rameters (2.26), and, in consequence, coefficients (2.24) are determined. The jointly supported
rectangular plate and plate strips with different kinds of boundary conditions are discussed. The
different planes of support in tensegrity plate-like structures are analysed. The results of the
analysis are described using L for the lower surface, M for the middle surface and U for the
upper surface.
The displacements and internal forces are presented in the closed form. Displacements as a

function of coefficients n and σ are presented in the form of graphs. Constants Ci (i = P,F,M)
are not taken into account in the graphs.

3.1. Jointly supported rectangular plate

The first example is the jointly supported plate with a sinusoidal load (Fig. 3)

f3(x1, x2) = −q0 sin
πx1
a
cos

πx2
b

(3.1)

Solving equation (2.14) by applying the Fourier sine and cosine series that satisfy the boun-
dary conditions, leads to determining the displacements for the lower, the middle and the upper
surface. The closed form of solutions for the maximum deflection wmax = w(0.5a, 0.5b) for a
square plate (b = a) are as follows
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Fig. 3. Rectangular plate jointly supported

wMmax = CP
(144α20a4β0 + h2π2β2 + 12α0a2h2π2β3

α0(β1β2 + β4)

)

wLmax = w
U
max = CP

(4(36α0α3a4β0 + α2h2π2β2)β1 + 12a2h2π2(4α0α2β1β3 − β5)
α3(β1β2 + β4)β1

) (3.2)

where

CP =
a2q0

EAhπ4
β0 = δ13δ23 β1 = δ13 + δ23

β2 = h2π2[δ12(2δ22 − 3δ12) + 2δ11(δ12 + 2δ22)]
β3 = δ13(δ12 + 2δ22) + δ23(δ12 + 2δ11) β4 = 24α0a2δ13δ23(δ11 + δ22 + 3δ12)

β5 = 3α21[δ
2
13(δ12 + 2δ22) + δ

2
23(δ12 + 2δ11)− 4δ12δ13δ23]

(3.3)

For any rectangular plate, the decoupling of bending and membrane behaviour occurs only for
the middle reference surface. It means that for this surface the displacements describing the
membrane state are equal to zero: uM1 (ξ) = uM2 (ξ) = ψM (ξ) = 0. For the lower and the upper
surface, the vertical displacements are the same (3.2)2, and the membrane displacements are as
follows: uL1 (ξ) = −uU1 (ξ), uL2 (ξ) = −uU2 (ξ) and ψL(ξ) = −ψU (ξ). The rotations φα(ξ) do not
depend on the reference surface: φL1 (ξ) = φ

M
1 (ξ) = φ

U
1 (ξ) and φ

L
2 (ξ) = φ

M
2 (ξ) = φ

U
2 (ξ). For the

analysed plate, the displacements depend on three shear correction factors αi (i = 0, 1, 2) and
on the parameter

α3 = 4α0α2 − 3α21 (3.4)

However, if the middle reference surface is considered only one shear factor α0 occurs.
The paper refers to the application of the linear six-parameter shell theory to the analysis of

orthotropic tensegrity plate-like structures. These systems are double-layer tensegrity grids. To
establish values of the shear correction factors for such a plate, it is necessary to build and next
to verify the proper model which should be based on the knowledge of the modelled material and
the phenomenon. The aim of future research will establish values of the three shear correction
factors within the six-parameter linear theory of elastic tensegrity plate-like structures and test
their influence on numerical results of static behavior of such structures.
Now, to illustrate the influence of the reference plane on the behaviour of tensegrity structu-

res, it is that the assumed values of the shear factors are: α0 = 5/6, α2 = 7/10 (Chróścielewski
et al., 1997, 2000; Pietraszkiewicz, 1979; Witkowski, 2011; Woźniak, 2001) and α1 = 8/10. The
last correction factor has been assumed so that parameter (3.4) is positive definite.
On the basis of Eq. (3.2), the influence of the self-stress and stiffness of cables and struts

on the displacement in tensegrity plate-like structures can be estimated in a simple way. The
parametric analysis can be carried for any moderately thick plates. As an example, results for the
thickness to length ratio h/a = 0.25, on the assumption m = n, are shown in Fig. 4. Formulas
(3.2) are valid only for n > 0.2σ.
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Fig. 4. Maximum deflection of the plate

3.2. Plate strips

The displacements and the internal forces for plate strips are determined based on Eqs. (2.21)
and (2.22). These formulas depend on boundary conditions. Plate strips with the force mass
f3(x1) = −q0 taken into account are studied. Three kinds of support, i.e., cantilever (Fig. 5a),
simply supported (Fig. 5b) and clamped-clamped (Fig. 5c) are considered. The formulas of the
maximum deflection are derived:
— the cantilever plate strip

wMmax = CM
[
6
1
δ11
+
4
α0

(h
a

)2 1
δ13

]
wLmax = w

U
max = CM

[
6
1
δ11
+ 16

α2
α3

(h
a

)2 1
δ13

]
(3.5)

— the simply supported plate strip

wMmax = CM
[5
8
1
δ11
+
1
α0

(h
a

)2 1
δ13

]
wLmax = w

U
max = CM

[1
4
1
δ11
+ 4

α2
α3

(h
a

)2 1
δ13

]
(3.6)

— the clamped-clamped plate strip

wMmax = CM
[1
8
1
δ11
+
1
α0

(h
a

)2 1
δ13

]
wLmax = w

U
max = CM

[1
8
1
δ11
+ 4

α2
α3

(h
a

)2 1
δ13

]
(3.7)

where CM = −a4q0/(8EAh). In these cases, the deflection functions depend on the correction
factors αi (i = 0, 1, 2, 3) but for the middle references surface only on the factor α0.

Fig. 5. Plate strips: (a) cantilever, (b) simply supported, (c) clamped-clamped

For all analysed plate strips, displacements describing the membrane state are equal to zero
only for the middle reference surface: uM1 (ξ) = ψ

M (ξ) = 0. For the lower and the upper surfaces,
the axial displacement is a polynomial function of the degree three, and for each surface there
is an equality: uL1 (ξ) = −uU1 (ξ). The drilling rotation is a polynomial function of the degree two
and ψL(ξ) = −ψU (ξ). The rotations φα(ξ) do not depend on the reference surface, and for each
surface: φL1 (ξ) = φ

M
1 (ξ) = φ

U
1 (ξ) and φ

L
2 (ξ) = φ

M
2 (ξ) = φ

U
2 (ξ).

For the cantilever and the clamped-clamped plate strip, the internal forces do not depend on
the reference surface. The membrane force and the drilling couple are equal to zero: N11(ξ) = 0,
M13(ξ) = 0, and the transverse force and the bending couple are as follows:
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— the cantilever plate strip

N13(ξ) = −aq0(1− ξ) M11(ξ) = −
a2q0
2
(1 + 2ξ − ξ2) (3.8)

— the clamped-clamped plate strip

N13(ξ) = −
aq0
2
(1− 2ξ) M11(ξ) =

a2q0
12
(1− 6ξ + 6ξ2) (3.9)

For the simply supported plate strip, the transverse force and the bending couple do not depend
on the reference surface, as for previous cases

N13(ξ) = −
aq0
2
(1− 2ξ) M11(ξ) = −

a2q0
2
(ξ − ξ2) (3.10)

the drilling couple is equal to zero M13(ξ) = 0, but for the lower and the upper surface, the
constant axial force occurs additionally

NL
11(ξ) = −NU

11(ξ) = −
a2q0
8h

NM
11 (ξ) = 0 (3.11)

Internal forces (3.8)-(3.11) do not depend on geometric and physical properties of tensegrity
plate-like structures. Based on Eqs. (3.5)-(3.7), the influence of the self-stress and the stiffness
of cables and struts on the displacement in tensegrity plate-like structures can be estimated. As
an example, the parametric results, for h/a = 0.25, on the assumption m = n, are represented
graphically in Figs. 6-8. Values of the correction factors are assumed like for the analysed jointly
supported plate. Formulas (3.5)-(3.7) are specified only for n > 0.121σ.

Fig. 6. Maximum deflection of the cantilever plate strip

Fig. 7. Maximum deflection of the simple-supported plate strip

4. Conclusions

The paper proposes the application of the linear six-parameter shell theory to the analysis of
orthotropic tensegrity plate-like structures. The continuum model of the plate is used. The
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Fig. 8. Maximum deflection of the clamped-clamped plate strip

parametric analysis including the self-stress and selected geometrical parameters of tensegrity
are considered. In the analysis, different planes of support of tensegrity plate-like structures
are taken into account. The proposed approach helps one to understand unique properties and
structural behaviour of tensegrities.
Comparing the obtained results, it can be noticed that displacements depend on the reference

surface. Additionally, the influence of the self-stress level on the displacements also depends on
the reference surface – is bigger when the lower (or upper) surface is considered. It means that the
plane of support of tensegrity structures significantly affect the displacements. Furthermore, the
results of parametric analysis shown that the influence of the self-stress level on the displacements
decreases with an increase in the stiffness of cables (the parameter n increases).
The closed form of the displacements and the internal forces obtained in the paper simplifies

calculations. It is not necessary to describe the whole complex tensegrity structures with the use
of computational methods. The closed formulas can be useful in the design process and construc-
tion of different types of tensegrity systems, such as beams, plates or more complex structures.
Additionally, the obtained in the paper functions of the displacements and the internal forces
can be used for analysis of orthotropic plate strips with any external loads and any boundary
conditions.

References

1. Al Sabouni-Zawadzka A., Gilewski W., 2016, On orthotropic properties of tensegrity struc-
tures, Procedia Engineering, 153, 887-894

2. Al Sabouni-Zawadzka A., Gilewski W., Kłosowska J., Obara P., 2016, Continuum model
of orthotropic tensegrity plate-like structures with self-stress included, Engineering Transactions,
64, 4, 501-508

3. Burzyński S., Chróścielewski J., Daszkiewicz K., Witkowski W., 2016, Geometrically
nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter
shell theory, Composities Part B, 107, 203-213

4. Chadwick P., Vianello M., Cowin S.C., 2001, A new proof that the number of linear elastic
symmetries is eight, Journal of the Mechanics and Physics of Solids, 49, 2471-2492

5. Chróścielewski J., Kreja I., Sabik A., Witkowski W., 2011, Modeling of composite shells
in 6-parameter nonlinear theory with driling degree of freedom, Mechanics of Advanced Materials
and Structures, 18, 403-419

6. Chróścielewski J., Makowski J., Pietraszkiewicz W., 2004, Statics and Dynamics of Mul-
tifold Shell: Nonlinear Theory and Finite Element Method (in Polish), IPPT PAN, Warszawa

7. Chróścielewski J., Makowski J., Stumpf H., 1997, Finite element analysis of smooth, folded
and multi-shell structures, Computer Methods in Applied Mechanics and Engineering, 41, 1-46



178 P. Obara

8. Chróścielewski J., Pietraszkiewicz W., Witkowski W., 2000, On shear correction fac-
tors in the non-linear theory of elastic shells, International Journal of Solids and Structures, 47,
3537-3545

9. Chróścielewski J., Pietraszkiewicz W., Witkowski W., 2016, Geometrical nonlinear FEM
analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model, ZAMM,
96, 2, 191-204

10. Crawfordt, 2016, Transgender Architectonics: The Shape of Change in Modernist Space, Ro-
utledge, New York

11. Gilewski W., Kasprzak A., 2011, Tensegrities in bridge structures (in Polish), Acta Scientiarum
Polonorum: Architectura, 10, 3, 35-43

12. Gilewski W., Kłosowska J., Obara P., 2015, Applications of tensegrity structures in civil
engineering, Procedia Engineering, 111, 242-248

13. Gilewski W., Kłosowska J., Obara P., 2016, Verification of tensegrity properties of Kono
structure and Blur Building, Procedia Engineering, 153, 173-179
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The Hamiltonian principle is applied to the nonlinear vibration equation of an axially moving
conductive beam in the magnetic field with consideration of the axial velocity, axial tension,
electromagnetic coupling effect and complex boundary conditions. Nonlinear vibration cha-
racteristics of the free vibrating beam under 1:3 internal resonances are studied based on
our approach. For beams with one end fixed and the other simply supported, the nonlinear
vibration equation is dispersed by the Galerkin method, and the vibration equations are so-
lved by the multiple-scales method. As a result, the coupled relations between the first-order
and second-order vibration modes are obtained in the internal resonance system. Firstly, the
influence of initial conditions, axial velocity and the external magnetic field strength on the
vibration modes is analysed in detail. Secondly, direct numerical calculation on the vibration
equations is carried out in order to evaluate the accuracy of the perturbation approach. It
is found that through numerical calculations, in the undamped system, the vibration modes
are more sensitive to the initial value of vibration amplitude. The amplitude changes of the
first-order and second-order modes resulting from the increase of the initial amplitude value
of the vibration modes respectively are very special, and present a “reversal behaviour”. La-
stly, in the damped system, the vibration modes exhibit a trend of coupling attenuation with
time. Its decay rate increases when the applied magnetic field strength becomes stronger.

Keywords: magneto-elastic, conductive beam, internal resonance, axially moving, multiple
scales

1. Introduction

Axial motion structures and devices are widely used in the the engineering in form of magnetical-
ly levitated trains, electromotors, and telphers. When such components work in an environment
with an electromagnetic field there appears a number of multi-physics coupling effects such as
force, electricity and magnetism, which affect safety and reliability of the system. A great num-
ber of in-depth theoretical studies have been carried out on such traditional problems of axially
moving beams, plates and strings. For an axial motion system, Chen et al. (2010) and Ding and
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Chen (2010) studied nonlinear forced vibration of an axially moving viscoelastic beam. As a
result, the influence from the axial velocity and boundary conditions on the structure vibration
frequency and dynamic stability was analyzed. Hu et al. (2015) established a coupled nonlinear
magneto-elastic vibration equation of the axial motion of a conducting plate, and investigated
nonlinear vibration and chaotic motion of the plate. Pellicano (2005) obtained the complex dy-
namic response of an axial motion system under the external excitation load from a needle.
Based on the generalized integral transform technique (GITT), Yan et al. (2015) investigated
nonlinear dynamic behavior in the transverse vibration of an axially accelerating viscoelastic
Timoshenko beam with an external harmonic excitation. Sahoo et al. (2015, 2016) analyzed the
nonlinear transverse vibration of an axially moving beam subject to two-frequency excitation.
Analytical and numerical approach was applied to find the steady-state and dynamic behavior
of an axially accelerating viscoelastic beam subject to two-frequency parametric excitation in
the presence of internal resonance. Pratiher and Dwivedy (2009) and Pratiher (2011) studied
non-linear dynamics of a soft magneto-elastic Cartesian manipulator with a large transverse
deflection. In addition, the non-linear response of a magneto-elastic translating beam having a
prismatic joint for higher resonance conditions was studied by them. Wu (2007) investigated
dynamic instability of a pinned beam subjected to an alternating magnetic field and thermal
load with nonlinear strain, and made of a physically nonlinear thermoplastic material. Apply-
ing Hamilton’s principle, the equation of motion with a damping factor, the induced current
and thermal load was derived. Wang et al. (2011) proposed an H method for vibration con-
trol of an iron cantilever beam with axial velocity by applying a non-contact force through
permanent magnets. For the internal resonance, Li et al. (2017) investigated magneto-elastic in-
ternal resonances of a rectangular conductive thin plate with different size ratios. They obtained
amplitude-frequency response equations of 1:3 internal resonances by Galerkin and multi-scale
methods. Mao et al. (2016a,b) firstly studied the forced vibration response of a pipe conveying
fluid and super-harmonic resonances of a super-critical axially moving beam, with 3:1 internal
resonance. Parametric and 3:1 internal resonance of axially moving viscoelastic beams on elastic
foundation was analytically and numerically investigated by Tang et al. (2016).
In this paper, the internal resonance of an axially moving conductive beam in the magnetic

field is investigated. The magnetic elastic vibration equation is to be obtained for the axially
moving beam in a magnetic field, and 1:3 internal resonances are to be analyzed as well.

2. The vibration equation

The mechanical model of an axially moving conductive beam in a constant magnetic field is
shown in Fig. 1. The magnetic field intensity is described by B0(0, B0y, 0); where l, h and b
denote length, height and width of the beam, respectively; the axial speed is c.

Fig. 1. An axially moving conducting elastic beam in a magnetic field. The letters x, y and z represent
cartesian coordinates, and Jex denotes the x-axis component of the induced current density caused by

the moving beam in an external magnetic field

The magneto-elastic vibration equation of the axially moving current carrying beam in the
transverse magnetic field, shown as Eq. (2.1), is derived from the Hamilton variational principle.
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Interested readers are referred to the work of Hu and Wang (2017) for the derivation and origin
of this vibration equation

ρA
∂2w

∂t2
+ 2ρAc

∂2w

∂x∂t
+
[
ρAc2 − F0x −

3
2
EA
(∂w
∂x

)2]∂2w
∂x2
+ σ0AB20y

∂w

∂t

+ EI
∂4w

∂x4
+ σ0cAB20y

∂w

∂x
= 0

(2.1)

where w(x, t) is the transverse displacement of the beam. E, ρ, σ0 denote Young’s modulus,
material density and conductivity, respectively. F0x is the axial tension, and I is the area moment
of inertia. The rectangular cross section is A = b× h. t is the time variable.

3. Magneto-elastic internal resonance

For the one end fixed and the other simply supported boundary condition, the expression is

w
∣∣
x=0
= 0

∂w

∂x

∣∣∣∣∣
x=0

= 0 and w
∣∣
x=l
= 0

∂2w

∂x2

∣∣∣∣∣
x=l

= 0 (3.1)

The assumed displacement solution satisfying the particular boundary condition is described
in the following form

w =
2∑

n=1

Qn(t)Xn(x) (3.2)

where Q(t) denotes the amplitude of the mode, and the function Xn(x) is determined by

Xn(x) = cosh pnx− cos pnx− ςn(sinh pnx− sin pnx)

ςn =
cosh pnl + cos pnl
sinh pnl + sin pnl

pn =
(4n + 1)π
4l

When Eq. (3.2) is substituted into Eq. (2.1), the vibration differential equations of the axially
moving beam in the magnetic field are derived by the Galerkin method

ρA
2∑

n=1

AniQ̈n(t) +
2∑

n=1

(cAσ0B20yBni + ρAc
2Cni − F0xCni + EIDni)Qn(t)

+
2∑

n=1

(2ρAcBni + σ0AB20yAni)Q̇n(t)−
3
2
EA(S1iQ31 + S2iQ

3
2 + S3iQ1Q

2
2 + S4iQ

2
1Q2) = 0

(3.3)

where i = 1, 2 and the coefficients are provided in Appendix I.
After the coefficients of Eq. (3.3) are simplified, the differential equations of transverse vi-

bration of the beam can be obtained by the dimensionless method

q̈1(τ) + g21q1(τ) = −εµ11q̇1(τ)− εµ12q̇2(τ) + ε(s11q31 + s21q32 + s31q1q22 + s41q21q2)
q̈2(τ) + g22q2(τ) = −εµ21q̇1(τ)− εµ22q̇2(τ) + ε(s12q31 + s22q32 + s32q1q22 + s42q21q2)

(3.4)

where ε denotes a small parameter. The main coefficients are shown below, and the others are
provided in Appendix I

qn(τ) =
Qn(t)
l

τ = ωnt q̇1(τ) =
Q̇n(t)l
ωn

q̈1(τ) =
Q̈n(t)l
ω2n

ωn = p21

√
EI

ρA
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3.1. Perturbation approach

The displacement w(x, t) is spread out into a combination of time and space variables.
Adopting the assumed mode form of the first two order truncation in space, Eq. (3.2), so the
nonlinear vibration equation, has been dispersed by the Galerkin method and rearranged by
dimensionless processing from Eqs. (3.2)-(3.4). Finally, it can be solved by the multiple-scales
method. The derivations of Eq. (3.5) are referred to the solution by the multiple-scales method
(Li et al., 2017; Hu and Wang, 2017). It is worth noting that the multi-scale method, a widely
used but complex solving process, is a mature and an effective nonlinear solution theory (Nayfeh
and Mook, 1979)

a′1(T1)g1 +
1
2
µ11a1(T1)g1 =

1
8
s41a

2
1(T1)a2(T1) sin γ

a′2(T1)g2 +
1
2
µ22g2a2(T1) = −

1
8
s12a

3
1(T1) sin γ

γ′(T1) = σ +
(9s11
8g1
− s42
4g2

)
a21(T1) +

(3s31
4g1
− 3s22
8g2

)
a22(T1)

+
(3s41a1(T1)a2(T1)

8g1
− s12a

3
1(T1)

8g2a2(T1)

)
cos γ(T1)

(3.5)

where a1(T1) and a2(T1) denote the amplitudes of the first-order and second-order modes of the
system, and γ(T1) denotes the phase angle. g1 and g2 denote the natural frequency of the first-
-order and second-order modes of the system, and σ = (g2 − 3g1)/ε is the tuning parameter of
g1 and g2. sij denote the coefficients of nonlinear terms (other definitions in the multiple-scales
method are provided in Appendix I).

3.2. System stability analysis

After having done the work above, the next step is to find the solution to Eqs. (3.5). For the
electromagnetically damped system, multiplying Eq. (3.5)1 by g

−1
1 a1 and Eq. (3.5)2 by g

−1
2 νa2,

where ν = s41g2/(s12g1), and adding the results together, we obtain

a′1a1 + νa
′
2a2 = −

1
2
µ11a

2
1 −
1
2
νµ22a

2
2 (3.6)

Equation (3.6) can be integrated for a no electromagnetically damped system is

a21 + νa
2
2 = E (3.7)

where E is a constant of integration, which is related to the initial energy of the system.
Changing the independent variable from T1 to a2 in Eq. (3.5)3, and using Eq. (3.5)2, we

obtain

−a31a2 sin γ
dγ

da2
=
8g2σ
s12

a2 + λ1a32 + λ2a
2
1a2 + (3νa1a

2
2 − a31) cos γ (3.8)

where

λ1 =
6g2s31
g1s12

− 3s22
s12

λ2 =
9g2s11
g1s12

− 2s42
s12

Using Eq. (3.7) and the result of integration of Eq. (3.8), we are able to acquire

a31a2 cos γ −
(4g2σ
s12
+
1
2
λ2E
)
a22 −

1
4
(λ2ν − λ1)a42 =M (3.9)

where M is a constant of integration.
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Setting a21 = Eξ, a
2
2 = Eν

−1(1−ξ) and eliminating γ from Eq. (3.5)1 and Eq. (3.9), we obtain
the following formula. At the same time, in order to simplify the expression, we introduce two
new functions F (ξ) and G(ξ) (Nayfeh and Mook, 1979)

16νg21
E2s241

(ξ′)2 = ξ2(1− ξ)− G2ν

E4
= F 2(ξ)−G2(ξ) (3.10)

where
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[
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ν

(4g2σ
s12
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1
2
λ2E
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(1− ξ) + E2

4ν2
(λ2ν − λ1)(1 − ξ)2

] (3.11)

To find the steady-state solutions of a1 and a2, we set a′1 = a
′
2 = γ

′ = 0 in Eqs. (3.5). Then,
the steady-state solution without damping is given by

sin γ = 0

a2σ +
(9s11
8g1
− s42
4g2

)
a21a2 +

(3s31
4g1
− 3s22
8g2

)
a32 +

(3s41a1a22
8g1

− s12a
3
1

8g2

)
cosnπ = 0

(3.12)

4. Numerical simulations

The model of the simulation is supposed to be a conductive axially moving beam of a copper
material. The main parameters are presented as follows: length of the beam is l = 0.3m, width
of the beam is b = 0.02m, height of the beam is h = 0.01m, axial tension is F0x = 30000 N,
elastic modulus is E = 108GPa, mass density is ρ = 8920 kg/m3.

4.1. System without electromagnetic damped

4.1.1. Vibration mode

Based on the numerical solution to Eqs. (3.5) without electromagnetic damping, graphs of
relevant vibration modes can be made as follows. Figures 2-5 describe vibration modes versus
time for different initial conditions and system parameters. They all show the same phenomenon
that the coupled first-order and second-order vibration modes change with time, which means
the system energy constantly exchanges between different vibration modes because of internal
resonance. On may find correlative descriptions about the internal resonance in the book by
Nayfeh and Mook (1979).
Figures 2a-2d show vibration modes versus time for different axial velocity and the initial

conditions a10 = a20 = 0.05, γ0 = 0. They show that both the variation amplitudes and the
intersections of vibration modes continuously grow up while the axial velocity c increases from
5m/s to 95m/s.
Figures 3-5 describe vibration modes versus time for different initial conditions when and the

axial velocity c = 5m/s. And the primary distinction between them is the emphasis on effects
of different parameters taken into account, in which the first picture focuses on the influence of
the initial value γ0, and the other two care about a0.
As the initial value of the phase angle γ0 moves on, the first-order and the second-order modes

have different manifestations, the former is overall upward and the latter goes down integrally,
see Fig. 3. In addition, the curves of vibration modes are intertwined when 0 < γ0 < 9.4, but
they will separate when γ0 goes beyomd that range.
Then, we investigate the influence of the initial value a0 on vibration modes when taking

γ0 = 0 and γ0 = 9.4, respectively. As shown in Figs. 4 and 5, the amplitude changes of the
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Fig. 2. Variation modes for the axial velocity c (a10 = a20 = 0.05, γ0 = 0). The letters g1 and g2
represent natural frequencies of the first-order and second-order vibration modes

Fig. 3. Variation modes for different initial conditions γ0 (a0 = 0.05,c = 55m/s)
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Fig. 4. Variation modes for different initial conditions a (γ0 = 0, c = 55m/s)

Fig. 5. Variation modes for different initial conditions a (γ0 = 9.4, c = 55m/s)
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first-order and second-order mode are very special, similar to “reversal behavior” in Figs. 4b,c
and Figs. 5b,c rather than the whole moving up and down in Fig. 3. From the contrast between
Figs. 3, 4 and 5, we can conclude that the vibration modes are more sensitive to the initial
amplitude of the vibration mode a0 than the phase angle γ0.
Subsequently, we have carried out direct simulations of equations Eq. (3.3) in order to eva-

luate the accuracy of the perturbation approach. When using different values of the initial
conditions, we obtained time-history graphs, phase-plane diagrams and Poincaré maps of the
vibration amplitudes q1 and q2.
Figures 6, 7 and 8 demonstrate the responses of the system for different initial conditions

a10 = a20 = q10 = q20 = 0.00055, a10 = a20 = q10 = q20 = 0.005 and a10 = a20 = q10 =
q20 = 0.012. Compared to the amplitudes a1 and a2 from the perturbation approach depicted
in (a) of Figs. 6-8, the numerical amplitudes q1 and q2 displayed in (b) of Figs. 6-8 present good
consistency. Besides, Figs. (c), (d) and (e), (f) describe the corresponding phase diagram and
Poincaré map of q1 and q2. It can be clearly seen that the responses of the system firstly change
from the periodic motion to period-2 motion and, finally, develop into chaotic motion when the
initial conditions q10 and q20 increase.

Fig. 6. Periodic motion of the system for the initial condition equal to 0.00055 (γ0 = 0, c = 55m/s);
(c) and (e) are phase diagrams of q1 and q2, (d) and (f) are Poincaré maps of q1 and q2

When we calculate and analyze the internal resonance of the system without electromagnetic
damping, the functions of F (ξ) and G(ξ) in Eq. (3.11) are plotted in Fig. 9a. Since ξ and a must
be real, F 2(ξ)  G2(ξ). The points where G(ξ) meets F (ξ) correspond to ξ′ = 0. It also means
that the vibration modes a′1 = a

′
2 = 0. The curve G3 which has two different crossing points with

F corresponds to the steady-state solution of ξ and, hence, a1 and a2. The points such as P1,
where G2 touches F and P2, where G4 touches F represent the unique steady-state solution
of ξ. On the other hand, Fig. 4 shows curves like G1 and G5 meeting F at no point, which
means that there is no steady-state solution in the system. In addition, we should note that
the steady-state motions are not always stable because any small outer disturbance would lead
to the curves G2 and G4 similar to other curves. Figure 9b shows characteristic graphs of the
vibration amplitude for different axial velocity. As shown in Fig. 9b, with an increase in the axial
velocity, the characteristic curve circle gradually narrows down and moves towards the origin.
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Fig. 7. Periodic motion of the system for the initial condition equal to 0.005 (γ0 = 0, c = 55m/s);
(c) and (e) are phase diagrams of q1 and q2, (d) and (f) are Poincaré maps of q1 and q2

Fig. 8. Periodic motion of the system for the initial condition equal to 0.012 (γ0 = 0, c = 55m/s);
(c) and (e) are phase diagrams of q1 and q2, (d) and (f) are Poincaré maps of q1 and q2

4.1.2. Electromagnetically damped system

Similarly, basing on the numerical solution to Eqs. (3.5) in the damped free vibration system,
we obtain the following decay graphs of vibration modes.
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Fig. 9. (a) The curve graph of F and G. (b) The characteristic graphs of the vibration amplitude
(sin γ = 0)

4.2. Electromagnetic damped system

Figure 10a reveals the decay graphs of vibration modes for different axial velocities (c =
5m/s, c = 55m/s, c = 95m/s). It should be observed that the axial velocity may exert a more
significant effect on the first-order mode than on the second one. Figure 10b exhibits the decay
graphs of vibration modes for different initial conditions a10 = 0.04, 0.05 and 0.06, as a result of
which their attenuation trend is almost the same, but the difference lies in that the larger the
initial value is, the more slender the waveforms of vibration mode are.

Fig. 10. The decay graphs of variation modes for different axial velocities and different initial
conditions: (a) B0y = 0.3T, γ = 9.4 and (b) B0y = 0.3T, γ = 0

Figures 11a-h show the decay graphs of vibration modes for different magnetic field strength
in the damped free vibration system. Graphs (a), (c), (e), (g) of vibration modes a1 and a2, at
the bottom of Fig. 11, are calculated by the perturbation approach, and curves (b), (d), (f), (h)
of q1 and q2, at the bottom of Fig. 11, are drawn from direct simulations of vibration equations
for the magnetic field strength B0y = 0.1T, B0y = 0.3T, B0y = 0.6T, B0y = 1.2T, respectively.
Thus, as reported by Nayfeh and Mook (1979) on the internal resonance phenomenon in the
damped system, the curves of vibration modes in our investigation exhibit the same trend of
coupled attenuation with time. Their decay rate will increase when the applied magnetic field
becomes stronger.
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Fig. 11. The system attenuation response for different magnetic field intensity (multistate and
numerical methods)

5. Conclusions

This work is mainly concerned with the 1:3 internal resonance problem of an axially moving
conducting elastic beam in a magnetic field. Based on our study, the magneto-elastic vibration
equation of the beam can be obtained and the vibration mode equations of free vibrating beams
can be obtained through the multi-scale method. Meanwhile, we have carried out direct simula-
tions of the vibration equations in order to evaluate the accuracy of the perturbation approach.

• In the system without electromagnetic damping, there are steady-state motions and so-
lutions, where the system energy is constantly exchanged between the first two coupled
vibration modes. The steady-state motion, however, is not always stable. As shown in
Fig. 9a, any small external disturbance can cause changes. In addition, the vibration am-
plitudes continuously increase while the axial velocity c enhances from 5m/s up to 95m/s.
As for the initial conditions, the amplitude changes of the first-order and second-order mo-
des resulting from an increase in the initial amplitude of vibration modes a10 and a20 (see
Appendix I). They are displayed in Figs. 4b,c and Figs. 5b,c. And unlike the whole up or
down motions caused by the increase of the initial phase angle γ0 (see Appendix I) shown
in Fig. 3, they present “reversal behaviour”. The vibration modes are more sensitive to the
initial amplitude of vibration modes, and the curves of vibration modes are intertwined
when the initial condition satisfies 0 < γ0 < 9.4, a10 = a20 = 0.05 but they separate for
phase angles beyond that range.
• Direct simulations of the vibration equations have been carried out in order to evaluate the
accuracy of the perturbation approach. Compared to the amplitudes from the perturbation
approach, see Figs. 6-8a, the amplitudes displayed in Figs. 6-8b present good consistency.
Meanwhile, the corresponding phase diagram and Poincaré map of the system are obtained,
which show that the responses of the system change firstly from the periodic motion
to period-2 motion and, finally, develop into chaotic motion when the initial conditions
increase.
• For the electromagnetically damped system, the vibration modes exhibit a trend of co-
upling attenuation with time. Its decay rate increases when the applied magnetic field
becomes stronger. Additionally, the axial velocity may exert a more significant effect on
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the first-order mode than on the second one. As for the initial amplitude of vibration mo-
des, the larger the initial value is, the slenderer the waveforms of vibration modes seem to
be.
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Appendix I

Coefficients of Eq. (3.3) (n = 1, 2; i = 1, 2)

Ani =
l∫

0

XnXi dx Bni =
l∫

0

dXn

dx
Xi dx
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Dni = P 4nAn1 Bii = 0 Aij = Cij = Dij = 0

Coefficients of Eqs. (3.4) (n = 1, 2; i = 1, 2, 3, 4)

g21 =
C11
A11
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A22
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Si1
ε

si2 = k2
Si2
ve

Definitions in multiple-scales method of Eqs. (3.5)

q1(τ, ε) = q11(T0, T1) + εq12(T0, T1) q2(τ, ε) = q21(T0, T1) + εq22(T0, T1)

q11 = A1(T1)eig1T0 +A1(T1)eig1T0 q21 = A2(T1)eig2T0 +A2(T1)eig2T0

where A is the conjugate of A, i is the imaginary unit.

An(T1) =
1
2
an(T1)eiβn(T1) n = 1, 2 γ(T1) = β2(T1)− 3β1(T1) + σT1

where T0 = τ and T1 = ετ are the time scales.
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We concentrated on evaluating the vibrational response of ideal and defected degenerated
carbon nanostructures under the influence of different boundary conditions. In addition,
an attempt has been made to investigate the relative deviation of the natural frequency of
imperfect systems and to study the effect of defected regions on vibrational stability of the
particles. It has been found that a single and pinhole vacancy defect have the least and the
most impact on the natural frequency of nanostructures. Furthermore, the effect of CNT
diameter on natural frequencies of low-dimensional systems has also been investigated in
this research.
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1. Introduction

In the recent decades significant attention has been paid to exploration of characteristics of
low-dimensional carbon structures including carbon nanotubes (CNTs) and their degenerated
nanostructures (Iijima, 1991; Chandra and Namilae, 2006; Yao et al., 2008, Imani Yengejeh
et al., 2014a,b, 2015a,b). Such nano-configurations possess outstanding physical, thermal and
mechanical properties and, therefore, seem to be effectively applicable in the industry domain
from manufacturing to aerospace engineering (Ruoff and Lorents, 1995; Lu, 1997; Imani Yen-
gejeh et al., 2015a,b). Innumerable studies have been conducted in order to find and explore
characteristics of CNTs. Prediction of tensile strength (of up to 63GPa) and Young’s modulus
(of nearly 1TPa) of CNTs was the most significant aim of those investigations (Tserpes and Pa-
panikos, 2007; Kuang and He, 2009; Imani Yengejeh et al., 2014b; Imani Yengejeh and Öchsner,
2015). Basically, there are two major categories for such studies: computational and experimen-
tal approaches. Continuum mechanics techniques such as the finite element method (FEM) and
molecular dynamics (MD) simulations have been the most highlighted computational appro-
aches to explore the characteristics of nanostructures (Mylvaganam et al., 2006, Hollerer and
Celigoj, 2013). Despite remarkable exploration on predicting the behavior of CNTs, far more
concentration is required to evaluate the mechanical behavior of CNTs and other types of low-
-dimensional particles such as nanocones, junction hybrids, fullerenes, etc. In the following, the
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most recent studies concerning the evaluation of vibrational property of carbon nanostructures
are presented.
Bogush et al. (2017) developed an approach to study molecular vibrations for symmetrical

systems. Their proposed method was applied to investigate vibrational characterization of the
fullerene molecule C60 and to study a relative comparison of theoretical results and experi-
mental data. Their study was mainly focusing on symmetrical models, and less attention was
paid to asymmetric structures. Following this, Mohammadian et al. (2017) explored the vibra-
tional response of linearly and angle-joined CNTs applying a molecular mechanics approach.
They divided their investigation into two main categories. First, the influence of the junction
region formation on natural frequencies of ideal hybrids was examined. Afterwards, the impact
of some defects on the vibrational behavior of those models was investigated. It was noted that
the frequencies and mode shapes were comparatively influenced by changing the location of the
connecting region. Furthermore, it was concluded that the frequency shift of the defective confi-
gurations with lower aspect ratios was more influenced by the degree of imperfections. Although
their research seemed to be effectively covering the behavior of defective low-dimensional tubes,
the impact of applied impurities on the specific regions of the hybrids was not fully addressed
in all details. Then, Ardeshana et al. (2017) suggested a novel method to explore vibrational
characteristics of carbon nanocones. Also, their analysis exhibited the impact of varied model
lengths on natural frequencies. Based on their findings, it was noted that increasing side length
of a nanocone with a constant apex angle results in a significant decline in the fundamental
frequency of the models. They also suggested that smaller lengths of nanocones are more likely
to be applicable as they exhibit remarkable variation in the fundamental frequencies. Despite the
comparatively comprehensive investigation, the behavior of imperfect low-dimensional particles
was not discussed in their study.
Undoubtedly, there are some significant gaps in this research area. The objectives of this

study is to explore and to predict the vibrational response of symmetric and asymmetric carbon
nano-configurations in their ideal and defective forms, namely linearly- and angle-joined CNTs,
open-tip carbon nanocone, open-end and capped CNTs, and fullerenes. These low-dimensional
structures possess unique properties and are applicable to the experimental area. Due to holding
such outstanding characteristics, prediction of their mechanical response is effectively essential
in the nanotechnology scope (Imani Yengejeh et al., 2016). There are several challenges in the
current paper, namely different boundary conditions, application of certain amount impurities
to a particular region of the models, and evaluation and comparison of the natural frequencies
of defect-free and manipulated low-dimensional configurations using FEM. The results of this
research is most likely to be reliable since the majority of nanostructures found in reality are
exposed to atomic and structural imperfection, and their mechanical characteristics will defini-
tely be affected by such defects. Therefore, the proposed study will explore the possible property
of imperfect degenerated nanostructures in detail.

2. Materials and approaches

The basic configuration of low-dimensional structures including homogeneous CNT, linearly-
and angle-joined CNTs, nanocones, cylindrical fullerenes and bucky-balls can be imagined as
pseudo two-dimensional (2D) single-layer sheets of graphene, as shown in Fig. 1.
Overall, seven different nanostructures have been modeled within this study, namely homo-

geneous CNT, one-side capped CNT, two-side capped CNT, open-tip nanocone, linearly- and
angle-joined CNT, and bucky-ball. Furthermore, three different boundary conditions have been
considered in simulations, i.e. free-free, fix-free, and fix-fix boundary conditions. The aim of
considering numerous models and various boundary conditions is to evaluate the behavior of
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Fig. 1. Single-layer graphene sheet as carbon precursor to cylindrical fullerene, bucky-ball, open-tip
nanocone, linearly-joined CNT and homogeneous CNT

different low-dimensional configurations under different boundary conditions, since they may
have a significant response in different circumstances. Following the modeling and simulation
of the ideal nanostructures, some common vacant sites, i.e. mono-, di-, tri-, and pinhole vacan-
cy defects have been introduced to the perfect models to evaluate the vibrational response of
low-dimensional configurations which are closer to the ones found in reality. Those mentioned
atomic impurities are illustrated in Fig. 2.

Fig. 2. Some common structural defects such as mono-, di-, tri- and pinhole vacancy introduced into
configuration of the studied CNT systems

The modeling and simulation procedure is carried out in three major steps. Firstly, the
spatial coordinates and connectivities of all nanostructures are imported to a commercial FE
package (MSC Marc) and the first natural frequency of ideal models is obtained. Next, some of
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the most common vacant sites are introduced to the defect-free configurations. These impurities
are applied to the perfect models via a custom code in MATLAB to the original models and
with the same impurity percentage (1%). In the final step, the fundamental frequency of defected
structures is acquired and compared to those with perfect configurations.

3. Results and discussions

The simulation procedure commenced with the evaluation of natural frequencies and mode
shapes of nanostructures. As an instance, Fig. 3 illustrates six mode shapes of an open-tip
nanocone with original and vibrated configurations with the fix-free boundary condition.

Fig. 3. Six vibrational mode shapes of an open-tip nanocone

Within this simulation, 1% of four common vacant sites are introduced to the low-dimensional
structures and their first natural frequencies are obtained and also compared. Figure 4 shows the
overall deviation in the natural frequencies of imperfect homogeneous CNT under the influence
of various boundary conditions. Generally, the major change occurred in the fix-fix boundary
condition. Nevertheless, the significant deviation happens for the fix-free boundary condition
when the lower region is manipulated by impurities where the natural frequency is reduced
by nearly 40% by introducing the pinhole vacancy defect in the structure of the model. The
configuration with the free-free boundary condition has a comparatively moderate decline in
which the maximum decrease occurs to the model with the pinhole vacancy introduced to the
middle of the structure.
Comparing the change in the natural frequencies of one-side capped CNTs, as shown in Fig. 5,

it is noted that a significant change occurs in the structure with the fix-free boundary condition.
More specifically, the overall change for the fix-free model with single, double, triple, and pinhole
vacancy defects is obtained to be approximately 13%, 14.5%, 16%, and 23%, respectively.
Figure 6 represents the comparative deviation in the natural frequency of two-side capped

CNTs under the influence of three different boundary conditions. Based on the computational
results, the overall trend of both the free-free and fix-fix boundary conditions are quite similar in
spite of a comparatively larger decline for the free-free boundary condition. Due to the symmetric
configuration of the model under these two boundary conditions, the vibrational response of the
structure under the introduction of defects either in upper and lower sides of the systems is
similar. In contrast to the free-free and fix-fix boundary condition, the vibrational response of
the two-side capped CNT has a quite different trajectory. While the vacant sites decrease the
natural frequency of the model up to maximum 18% for the impurities introduced to the upper
side and middle of the structure, the change is significantly highlighted when the defect is applied
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Fig. 4. Change in the natural frequency in % for a defective homogenous CNT under different boundary
conditions

to the lower region of the system where the maximum deviation exceeds 35% in the case of the
pinhole vacancy defect.
The vibrational response of linearly-joined CNTs has been evaluated for different boundary

conditions, including free-free, fix-fix, wider tube fix, and thinner tube fix. As shown in Fig. 7,
the fundamental frequency of imperfect hybrids reduces significantly, particularly in the case
of the thinner tube fix boundary condition. More specifically, the overall change in the natural
frequency of straight hybrids is nearly 5% for a single vacancy defect and reaches nearly 45% in
the worst case which belongs to the thinner tube fix boundary condition. It is noticeable that
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Fig. 5. Change in the natural frequency in % for a defective one-side capped CNT under different
boundary conditions

the thinner fix CNTs reduces the vibrational stability of the structures in comparison with their
wider counterparts.

Similarly to straight hybrids, the natural frequencies of imperfect angle-joined CNTs are
evaluated under four major boundary conditions, namely free-free, fix-fix, zigzag tube fix, and
armchair tube fix. Figure 8 illustrates the overall trend of deviation in the fundamental frequency
of the imperfect bending junction. It is noted that the applied impurities on the zigzag tube
have a greater influence on the natural frequency of the system in comparison with the armchair
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Fig. 6. Change in the natural frequency in % for a defective two-side capped CNT under different
boundary conditions

CNTs. Furthermore, the vibrational stability of the angle-joined CNT under the fix-fix boundary
condition is shown to be noticeable. A comparison of the straight and angle-joined hybrids
indicates that the bending structures possess a relatively higher strength in vibrational stability.

Based on the results illustrated in Fig. 9, it is noted that the deviation in the natural frequen-
cies of nanocone varies according to the defected region. More specifically, in the case of fix-free
boundary conditions, the most highlighted changes in the natural frequency are reported when
the atomic defects are introduced to the lower region of the structure. The maximum deviation
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Fig. 7. Change in the natural frequency in % for a defective linearly-joined CNT under different
boundary conditions
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Fig. 8. Change in the natural frequency in % for a defective angle-joined CNT under different boundary
conditions
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Fig. 9. Change in the natural frequency in % for a defective open-tip nanocone under different
boundary conditions
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observed in the cases of the cone base fix and cone tip fix is reported to be approximately 10%
and 35%, respectively. Apart from some occasional high deviations, the nanocone is noted to be
a typical low-dimensional structure which has a significant vibrational stability in comparison
with other degenerated nanostructures.

The obtained results from Fig. 10 reveal the fact that the bucky-ball possesses the highest
vibrational stability and has the lowest decline in the natural frequency in comparison with the
other low-dimensional particles. The change in the natural frequency of the bucky-ball under
free-free and fix-fix boundary conditions is reported to be between 1% up to nearly 9% in the
case of the pinhole vacancy defect.

Fig. 10. Change in the natural frequency in % for a defective bucky-ball under different boundary
conditions
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4. Conclusion

In this study, several low-dimensional structures including nanocones, linearly- and angle-joined
CNTs, bucky-balls, etc. have been simulated in their perfect and defective forms, and their vi-
brational stability has been evaluated by applying a FE approach. The introduced imperfections
are the most common vacant sites, namely mono-, di-, tri-, and pinhole vacancy defects which
are applied to the perfect configurations using a custom code in MATLAB. An attempt has
been made to evaluate natural frequencies of numerous nanostructures under different bounda-
ry conditions. It has been indicated that the natural frequency of the low-dimensional systems
decreases with the introduction of atomic modifications. Furthermore, the models have diffe-
rent responses according to their boundary conditions. It is also concluded that bucky-ball and
linearly-joined CNT have the least and the most deviations in the natural frequencies, respec-
tively. The significant point of this research is that the applied impurities introduced to the
systems have various effects on the fundamental frequencies based on their position in the na-
nostructures. In addition, it is noted that the angle-joined CNT possesses a higher vibrational
stability in comparison with the straight hybrid. Finally, it is concluded that the tube diameter
holds a significant influence on the vibrational response of CNTs. The findings of this research
opens an avenue for the evaluation of the mechanical property of low-dimensional degenerated
systems; nevertheless, much more attention needs to be paid to other methods including density
functional theory (DFT), which is the future research objective of the authors.
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Boron nitride nanotubes (BNNTs) possess superior mechanical, thermal and electrical pro-
perties and are also suitable for biocomposites. These properties make them a favorable
reinforcement for nanocomposites. Since experimental studies on nanocomposites are time-
consuming, costly, and require accurate implementation, finite element analysis is used for
nanocomposite modeling. In this work, a representative volume element (RVE) of epo-
xy/BNNT nanocomposites based on multi-scale modeling is considered. The bonds of BNNT
are modeled by 3D beam elements. Also non-linear spring elements are employed to simu-
late the van der Waals bonds between the nanotube and matrix based on the Lennard-
-Jones potential. Young’s and shear modulus of BNNTs are in ranges of 1.039-1.041TPa and
0.44-0.52TPa, respectively. Three fracture modes (opening, shearing, and tearing) have been
simulated and stress intensity factors have been determined for a pure matrix and nanocom-
posite by J integral. Numerical results indicate that by incorporation of BNNT in the epoxy
matrix, stress intensity factors of three modes decrease. Also, by increasing the chirality
of BNNT, crack resistance of shearing and tearing modes are enhanced, and stress inten-
sity factor of opening mode reduced. BNNTs bridge the crack surface and prevent crack
propagation.

Keywords: boron nitride nanotube, epoxy, fracture modes, finite element model, multi-scale
method

1. Introduction

Nanostructures as a new class of materials are prevalently used in the recent years. One of the
most commonly used nanostructure is carbon nanotube (CNT), and one similar structure ne-
wer than CNTs is boron nitride nanotube (BNNT) (Chopra et al., 1995). BNNTs, like CNTs,
have extraordinary mechanical properties (Chopra and Zettl, 1998), high thermal conductivity
(Chang et al., 2005), and good resistance against oxidation at high temperature (Chen et al.,
2004). Despite their similar structures, BNNTs have different properties because BNNTs are
composed of various atoms (Fereidoon et al., 2015). Metal, semiconductor or insulator characte-
ristics of CNTs are highly depending on chirality, diameter, and number of walls, while BNNTs
behave independently as an insulator for low electric fields (Khaleghian and Azarakhshi, 2016;
Molani 2017). BNNTs are also found to be nontoxic to health and environment due to their che-
mical inertness and structural stability. Therefore, BNNT is particularly suitable for biological
applications.
The elastic properties of BNNTs have been theoretically investigated in many works. Slightly

different results were presented, all of which indicated a very high Young’s modulus, but slightly
smaller than CNTs. So BNNTs can be widely used as a structural reinforcement of matrix
materials (Zhi et al., 2010).
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First-principles, tight-binding, density functional and classical molecular mechanics appro-
aches have been performed to characterize properties of BNNTs. Young’s modulus of multi-
-walled boron nitride nanotubes (MWBNNTs) was obtained 1.22 0.24 TPa using thermal vibra-
tion amplitude analysis (Chopra and Zettl, 1998). Many researchers employed the tight-binding
method for calculating the axial Young’s moduli of zigzag and armchair BNNTs (Verma et al.,
2007). It is also observed that zigzag nanotubes have a higher Young’s modulus than armchair
ones. In another study, Akdim et al. indicated that Young’s modulus of BNNTs varied in the
range of 0.71 ∼ 0.83TPa and was slightly dependent on the tube diameter (Akdim et al., 2003).
Using ab-initio calculations based on the density functional theory (DFT), Young’s modulus

of DWBNNT was calculated and the estimated values for (2, 2) and (7, 7), (2, 2) and (9, 9) were
821 and 764GPa, respectively (Fakhrabad and Shahtahmassebi, 2013). Also, Young’s modulus
of SWBNNTs with vacancy and functionalization defects was calculated by Griebel et al. (2009)
using molecular dynamics (MD) simulation. They found that Young’s modulus decreased with
increasing defect concentration.
Young’s modulus of BNNTs was reported to be 1.1-1.3 TPa from an experimental test (Bet-

tinger et al., 2002). In another experimental effort, Young’s modulus of MWBNNT was obtained
895GPa (Wei et al., 2010). Suryavanshi et al. (2004) applied the electric-field-induced resonance
method and specified Young’s modulus as 0.8TPa.
Polymer nanocomposite combining polymers and nano-filler components have attracted re-

search attention from the academic and industrial communities due to their diverse functio-
nal applications, good processing and relatively low cost (Mohammadimehr and Mahmudian-
-Najafabadi, 2013). It is reported that nano-fillers such as particles and platelets can change
the crack propagation direction and consequently stop this (Rozenberg and Tenne, 2008). Crack
deflection as a result of nano-sized reinforcements in a matrix has been reported to have a si-
gnificant role in toughening (Sun et al., 2009). Nano-fillers can stop crack propagation along the
original direction and also result in branching if agglomeration is minimized (Rozenberg and
Tenne, 2008).
Lee et al. (2013) investigated the boron nitride nanoflake (BNNF) modification on epoxy

resin. It was noted that strength of epoxy resin increased while Young’s modulus did not si-
gnificantly change. The highest strength increase was obtained at 0.3wt.% BN content while
the highest toughness increase was achieved with 0.5 wt.% BN content. In another work, Ulus
et al. (2014) produced and investigated mechanical properties of boron nitride nanoplatelets
(BNNP)-multiwall carbon nanotubes/epoxy hybrid nanocomposites. Young’s modulus and ten-
sile strength values were obtained via tensile tests. It is seen that tensile strength of epoxy resin
increased from 60MPa to 75MPa (25% increases) at 0.5wt.% BNNP content.
Applications of boron nitride nanotubes/epoxy nanocomposites to adhesive joints and com-

posite laminates were reported by Jakubinek et al. (2016). Nanocomposites containing up to
7wt.% BNNTs were fabricated by planetary mixing. The effects of BNNT loading on viscosity,
tensile properties and fracture toughness were determined. The elastic modulus of nanocompo-
site increased progressively with the BNNT loading up to 5wt.%. While ultimate strain only
decreased with BNNT addition, the fracture toughness also reached a maximum around 5wt.%.
Ghorbanpour Arani et al. (2012a) analyzed the electro-thermo-elastic stress of a piezoelectric

polymeric thick-walled cylinder reinforced by BNNTs. They also investigated the electro-thermo-
-mechanical axial buckling behavior of a piezoelectric polymeric cylindrical shell reinforced with
a double-walled boron-nitride nanotube using the principle of minimum total potential energy
approach in conjunction with the Rayleigh-Ritz method (Ghorbanpour Arani et al., 2012b).
Bending and free vibration of a nonlocal functionally graded nanocomposite Timoshenko beam
model reinforced by SWBNNT were reported based on a modified coupled stress theory (Davar
and Sadri, 2016). Also, the effects of BNNTs on the elastic modulus of beta tricalcium phosphate
and hydroxyapatite were analyzed using a RVE model. The predicted elastic moduli of the
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β-TCP-BNNTs and HA-BNNTs composites showed 24.1% and 26.3% enhancement, respectively
(Davar and Sadri, 2017). They also investigated the effect of BNNTs on the stress-intensity factor
(KI) of a semi-elliptical surface crack in a wide range of matrices using a finite element model.
The results showed that a higher mismatch difference between the elastic modulus of the matrix
and BNNTs resulted in further reduction in KI value (Mortazavi et al., 2013).
Experimental studies on nanocomposites are time consuming, costly, and require accurate

implementation. Therefore, analytical, computational and theoretical approaches are attractive
methods of predicting mechanical properties of composites. Researchers usually employ a small
part of the whole composite, which is called the unit cell or RVE to avoid expensive and enormous
computational calculations (Gojny et al., 2005).
The experimental studies on nanocomposites are time-consuming, costly, and require accu-

rate implementation, so the analytical, computational and theoretical approaches are attractive
methods for nanocomposite simulation and predicting mechanical properties. In this work, a
representative volume element (RVE) of epoxy/BNNT nanocomposites based on multi-scale
modeling is considered.
Mechanical behaviors of BNNTs is studied using a three-dimensional finite element (FE)

model, named as the space frame model. Ansari et al. (2015) used DFT calculations to obtain
exact force constants of BNNT which are employed in determining the element properties.
Fundamental to these approaches, BNNTs are considered as geometric space frame structures
and can be analyzed by classical structural mechanics. In this paper, three-dimensional RVEs
with different chirality of BNNT are simulated and analyzed in three fracture modes. In all
fracture modes, the stress intensity factor of nanocomposites is determined and compared with
the pure matrix one.

2. Multi-scale modeling

In fracture mechanics based on the crack surfaces displacement, three crack modes of the opening
mode (tensile mode), shearing mode (sliding mode), tearing mode (out-of-plane) are considered.
Stress intensity factors of RVEs are determined using the J integral technique with ANSYS Pa-
rametric Design Language (APDL) based on finite element analysis. Similar loads and boundary
conditions are applied to both the neat matrix and nanocomposite in the three fracture modes,
and then their stress intensity factors are determined and compared together.
In the bottom-up analysis method, one firstly obtains the effective material constants using

a low-scale such as the nano, meso (Tserpes et al., 2008) or micro RVE model (Gibson et al.,
2007), then applies it in the high-scale FE simulation in which the material is assumed to be
equivalently homogeneous according to the theory of continuum mechanics. In the top-down or
global-local method, one firstly finds the properties in the local region of a macro-scale sample
under practical loads, then applies the resultant loads or displacements to the boundary of a
smaller region as a new input.

2.1. Nanotube

BNNTs atoms are bonded together with covalent bonds forming a hexagonal lattice. The
displacement of individual atoms under an external force is constrained by the bonds. Therefore,
the total deformation of the nanotube is a result of the interactions between the bonds. By
considering the bonds as connecting load-carrying elements, and the atoms as joints of the
connecting elements, BNNTs may be simulated as space-frame structures (Ansari et al., 2015).
The 3D FE model is developed using the ANSYS commercial FE code. The 3D elastic

BEAM4 element is used for modeling the bonds. The properties of these elements are obtained
by a linkage between the potential energy of bonds (from a chemical point of view) and the strain
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energy of mechanical elements (from a mechanical point of view). To represent the covalent bond
between boron and nitrogen atoms, a circular beam of length l, diameter d, Young’s modulus E,
and shear modulus G is considered (Ansari et al., 2015). The required properties of the beam
element are given in Table 1.

Table 1. The properties of beam elements for real BNNT (Ansari et al., 2015)

Diameter d 1.648 Å
Cross-sectional area A 2.132 Å2

Boron-nitrogen bond 1.45 Å
Polar inertia momentum Ixx 0.7250 Å4

Inertia momentum Izz = Iyy = I 0.3625 Å4

Young’s modulus E 4.2155 · 10−8 N/Å2
Shear modulus G 4.9437 · 10−9 N/Å2

A routine code has been created using the ANSYS macro language, for automatic generation
of FE models. The thickness of BNNT is considered as 0.34 nm and also, the center of the BNNT
wall is placed at the midsection of the tube thickness. The FE meshes, loading and boundary
conditions of (10, 10) BNNT with length of 80 Å are shown in Fig. 1. Young’s and shear modulus
of BNNT are found by tension and torsion loading. They are in ranges of 1.039-1.041 TPa and
0.44-0.52 TPa, respectively. The experimental and theoretical elastic moduli of BNNT are given
in Table 2. The current results are in good agreement with the simulation and experimental
values.

Fig. 1. FE meshes of BNNT (10, 10) with loading and boundary conditions

2.2. Inter-phase between nanotube and polymer

The bonding between the embedded BNNT and its surrounding polymer takes place through
vdW and electrostatic interactions in the absence of chemical functionalization. Since vdW
contributes more significantly by three higher orders of magnitude than electrostatic energy,
the electrostatic interactions can be neglected in comparison with vdW interactions (Gou et
al., 2004). So, only vdW interactions are considered between the BNNT and the matrix. The
vdW forces are most often modeled using the famous Lennard-Jones equation (Battezzatti et
al., 1975)

FV dW = 4
ε

r

[
−12
(σ
r

)12
+ 6
(σ
r

)6]
(2.1)
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Table 2. Elastic moduli from BNNT of simulation and experimental works

Elastic moduli [TPa] Reference

Young’s modulus

1.22± 0.24 Chopra and Zettl (1998)
1.022-1.112 Fereidoon et al. (2015)
0.862-0.94 Verma et al. (2007)
0.71-0.83 Akdim et al. (2003)
0.895 Fakhrabad and Shahtahmassebi (2013)
0.7-1.2 Gerieble et al. (2009)
0.7-1.2 Bettinger et al. (2002)
1.1-1.3 Wei et al. (2010)
0.764-0.821 Suryavanshi et al. (2004)
1 Chowdhury et al. (2010)

1.039-1.041 Current work

Shear modulus
0.42 Chowdhury et al., 2010
0.44-0.52 Current work

where r is the separation distance between the pair of atoms, ε is the bond energy at the
equilibrium distance, and σ is the van der Waals separation distance. The equilibrium distance
between atoms is 6

√
2σ. By introducing x as the distance from the equilibrium distance, the

Lennard-Jones force is represented in Eq. (2.2)2

x = r − 6
√
2σ

F (X) = −24 ε
σ

[
2
( σ

x+ 6
√
2σ

)13
−
( σ

x+ 6
√
2σ

)7]

σ =
σn + σm
2

ε =
√
εnεm

(2.2)

where m and n sub-indexes denote the matrix and nanotube, respectively. The Lennard-Jones
potential parameters (ε and σ) of the materials are given in Table 3. BNNT is a synthase
from boron and nitrogen atoms, therefore the Lennard-Jones potential parameters of BNNT
are approximately considered the average of boron and nitrogen parameter values. Also, these
values are represented in Table 3. The Lennard-Jones potential parameters for van der Waals
interaction between the BNNT and epoxy are determined as σ = 3.897 Å and ε = 0.00297 nNnm
by replacing L-J parameters of BNNT and epoxy. Also, the equilibrium distance between matrix
and nanotube is 0.4374 nm.

Table 3. Lennard-Jones potential parameters of the materials

Materials σ [Å] Reference ε Reference

Nitrogen 3.365
Chen et al. (2015)

6.281meV
Chen et al. (2015)

Zhang and Wang (2016) Zhang and Wang (2016)

Boron 3.453
Chen et al. (2015)

4.16meV
Chen et al. (2015)

Zhang and Wang (2016) Zhang and Wang (2016)

BNNT 3.409 –
5.2205meV-

–
0.00083642 nNnm

Epoxy 4.383 Yang et al. (2014)
1.519 kcal/mol-

Gou et al. (2004)
-0.1055 nNnm

The vdW interactions between the BNNT and the inner surface nodes of the surrounding
resin are modeled using a 3D non-linear spring element based on the corresponding data of the
force-displacement curve (Hemmatian et al., 2012). COMBIN39 element is used for this purpose
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and the parameters are adjusted to obtain a translational spring. A macro is written to create
elements between the BNNT and the inner surface of the surrounding resin nodes that their
distance is lower than 0.7 nm.

2.3. Matrix

SOLID45 elements are utilized for modeling of the matrix. This element is used for the
3D modeling of solid structures. SOLID45 is defined by eight nodes having three degrees of
freedom at each node: translations in the nodal x, y and z directions. Young’s modulus of the
epoxy matrix is considered as 2.9GPa (Fereidoon et al., 2013). Nanocomposites consisting of
%5 volume fraction of BNNT with length of 80 Å are simulated. The FE meshes of RVE used
for crack analysis are shown in Fig. 2. The elements of the crack tip are refined to increase the
accuracy of analysis as represented in Fig. 2.

Fig. 2. The FE meshes of nanocomposite RVE

Stress intensity factors of the neat matrix and nanocomposite are compared for similar
loading and boundary conditions. The loading and boundary conditions of three fracture modes
including the opening, shearing and tearing of the nanocomposite with 5Vo.% (5, 5) BNNT are
shown in Fig. 3. In order to apply the conditions of the opening mode, the middle nodes of
the RVE are fully built-in (zero displacement and rotation conditions), while the nodes of two
ends are subjected to tensile forces. In shearing and tearing modes, the nodes of the back of
the RVE are fully built-in (zero displacement and rotation conditions), while the middle nodes
are constrained in the Z direction. Shearing and tearing forces are applied to the front nodes of
these RVE’s.

Fig. 3. Loadings and boundary conditions of RVE for three modes
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Fig. 4. Displacement [Å] contours of the opening mode: neat matrix and nanocomposite
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Fig. 5. Displacement [Å] contours of the shearing mode: neat matrix and nanocomposite
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Fig. 6. Displacement [Å] contours of the tearing mode: neat matrix and nanocomposite
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3. Results and discussion

In this study, fracture analysis of an epoxy/BNNT nanocomposite reinforced with four chirality
(5, 5), (10, 10), (15, 15) and (20, 20) are implemented. It is observed that when nanotubes are
vertical to the crack path, the minimum stress intensity factor and the maximum effect on crack
resistance are achieved. In this condition, while the crack is in the middle of RVE (bridging
condition), this effect is stronger. Nanotubes with constant length and different chirality have
been used for the bridging condition.

Displacement contours of the neat matrix and nanocomposite in the opening, shearing and
tearing modes are shown in Figs. 4, 5 and 6, respectively. The dimension of displacement is
Angstrom.

The maximum displacement of RVE is decreased by adding BNNT, and this phenomenon
in the opening mode is evident. Diagrams of normalized stress intensity factors (ratio of the
nanocomposite stress intensity factor to that of the neat matrix) of the fracture modes are
plotted against chirality in Fig. 7.

Fig. 7. Normalized stress intensity factors against chirality

The results indicate that with the addition of BNNT to epoxy, the stress intensity factors
of three modes decrease. Also, by increasing the chirality and consequently, BNNT diameter,
the crack resistance of shearing and tearing modes enhances, and the stress intensity factor of
the opening mode reduces. Boron nitride nanotube bridges the crack path and resists against
crack propagation. On the other hand, the bridging arises in all three modes, and the stress
intensity factor decreases. This phenomenon is reported in experimental research about CNT
too (Mirjalili and Hubert, 2010). Therefore, adding the BNNT to the matrix improves the crack
resistance, which is considerable in the opening and tearing modes.

In modeling and simulation, the chirality, length, diameter, and weight percentage of the
nanotube are important. But in the experimental method, the weight percentage and range
of length and diameter is considered. Hence, appropriate verification between the results of
experimental and simulation is difficult. Also, based on literature review, the experimental and
simulation results do not deal with fracture behavior of BNNT/epoxy in the three modes. Multi-
scale simulations from nano to macro, or reversely, improve the specification of toughening
mechanisms.
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4. Conclusions

A three-dimensional FEM of BNNTs has been proposed. Nodes are placed at locations of boron
and nitrogen atoms, and bonds are modeled using three-dimensional elastic beam elements by
considering a linkage between molecular and continuum mechanics. The simulation performed
under minimal computational time by requiring minimal computational power. The determined
elastic moduli of BNNTs are in a good agreement with the real parameters. A three-dimensional
study of three fracture modes in epoxy/BNNT has been performed based on a multi-scale
method. Van der Waals bonds between the resin and nanotube are simulated by non-linear
spring elements based on the Lennard-Jones potential.
Stress intensity factors of three fracture modes have been computed by J integral. The effect

of BNNT on the stress intensity factor of nanocomposites and crack propagation is investigated.
The results indicated that BNNTs have a significant effect on preventing crack propagation. Also,
by adding a nanotube, stress intensity factors decreased and, consequently, the crack resistance
increased. The results indicated that the crack resistance improved by increasing the chirality
(radius). Finally, by adding BNNT to the matrix, the improvement of matrix fracture properties
is evident.
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In this paper, Buongiorno’s mathematical model is adopted to simulate both natural con-
vection and mixed convection of a nanofluid in square porous cavities. The model takes
into account the Brownian diffusion and thermophoresis effects. Both constant and varia-
ble temperatures are prescribed at the side walls while the remaining walls are maintained
adiabatic. Moreover, all boundaries are assumed to be impermeable to the base fluid and
the nanoparticles. The governing equations are transformed to a form of dimensionless equ-
ations and then solved numerically using the finite-volume method. Thereafter, effects of
the Brownian diffusion parameter, the thermophoresis number, and the buoyancy ratio on
the flow strength and the average Nusselt number as well as distributions of isocontours of
the stream function, temperature, and nanoparticles fraction are presented and discussed.

Keywords: natural convection, mixed convection, nanofluid, porous media, Buongiorno’s
model

1. Introduction

Heat transfer is a significant and widely explored engineering problem that, due to the lack of
energy resources, has become truly important. One efficient way to improve heat transfer and
to reduce energy consumption goes back to the use of porous media. This occurs since a porous
medium provides a large surface area for heat exchange. On the other hand, the flow field in a
porous medium is completely three-dimensional and irregular, which intensifies fluid mixing.
Further attempt to achieve higher heat transfer rates has led to adding nanoparticles to

working liquids and producing nanofluids. The added nanoparticles are usually made up of
metals or metal oxides with high thermal conductivity. So, the resulting fluid has a better thermal
efficiency than the base liquid. Going into the literature, one may find that heat transfer analysis
of nanofluid flows has been a hot topic among scientists over the past decade. Examples include
the studies of Ali et al. (2014), Ghasemi et al. (2016), and Rostamzadeh et al. (2016).
Different mathematical models have been adopted to describe heat transfer in nanofluids.

The simplest method with the least computational burden is the homogenous model. In this
model, the concentration of nanoparticles is taken constant over the entire flow field. It is also
assumed that the base liquid and the nanoparticles are in local equilibrium and move with the
same velocity and temperature. In spite of previous achievements of this model, some studies
have proved that more complex models provide better agreement with experimental data (e.g.,
Behroyan et al. (2016); Torshizi and Zahmatkesh, 2016).
Buongiorno (2006) introduced seven transport mechanisms which cause relative velocity be-

tween the nanoparticles and the base liquid, namely, inertia, Brownian diffusion, thermophoresis,
diffusiophoresis, Magnus effect, fluid drainage, and gravitational settling. After comparing the
diffusion time scales of these mechanisms he drew a conclusion that, in the absence of flow tur-
bulence, the Brownian diffusion and thermophoresis are the most important effects. Based on
this finding, he then developed a non-homogeneous but an equilibrium model for nanofluid flow
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and heat transfer that incorporates the effects of the Brownian diffusion and thermophoresis.
The Brownian diffusion occurs due to random variations in the bombardment of the base fluid
molecules against the particles. The thermophoresis phenomenon appears as a net force acting
in the opposite direction to the gradient of temperature and is a direct result of the differential
bombardment of the base fluid molecules in the vicinity of the particles (Zahmatkesh, 2008b).

There are many recent papers that deal with Buongiorno’s mathematical model (e.g., She-
ikholeslami et al., 2016; Kefayati, 2017a; Mustafa, 2017) but to the best of our knowledge, there
are no previous works in literature which compare the role of parameters appearing in this model
for both natural convection and mixed convection in porous media. Some simulation studies for
natural convection of nanofluids in porous cavities based on Buongiorno’s model are discussed
below.

Sheremet et al. (2014) simulated natural convection of nanofluids in shallow and slender
porous cavities. Their results demonstrated that an inverse relation existed between the ave-
rage Nusselt number and the buoyancy ratio. Conjugate natural convection of nanofluid in a
square porous cavity was discussed by Sheremet and Pop (2014a). They found that the Nus-
slet number was an increasing function of the buoyancy ratio and a decreasing function of the
thermophoresis number and the Lewis number. A simulation study of natural convection of a
nanofluid in a right-angle triangular porous cavity was reported by Sheremet and Pop (2015a).
That investigation showed that the average Nusselt number increased with the enhancement
of the Lewis number but any rise in the Brownian diffusion parameter, the buoyancy ratio or
the thermophoresis number made it lower. Sheremet et al. (2015) discussed natural convection
heat transfer of a nanofluid in a three-dimensional porous cavity. Their results led to the conc-
lusion that the average Nusselt number increased with the Brownian diffusion parameter and
decreased with the buoyancy ratio and the thermophoresis number. Sheremet and Pop (2015b)
analyzed natural convection of a nanofluid in a porous annulus. They indicated that an incre-
ase in the thermophoresis number and the buoyancy ratio led to deterioration in the average
Nusselt number while the Brownian diffusion parameter contributed neutrally. Ghalambaz et al.
(2016) investigated the influence of viscous dissipation and radiation on natural convection of a
nanofluid in a porous cavity and concluded that an increase in the Lewis number improved the
heat transfer but augmentation of the buoyancy ratio and the thermophoresis number decreased
it. More recently, natural convection and entropy generation of a non-Newtonian nanofluid in a
porous cavity was pointed out by Kefayati (2017b). The results demonstrated that rise of the
Lewis number, the thermophoresis number, and the Brownian diffusion parameter declined the
average Nusselt number, but the augmentation of the buoyancy ratio enhanced it.

The role of parameters appearing in Buongiorno’s mathematical model may depend on ther-
mal boundary conditions of the cavity. In this context, Sheremet and Pop (2014b) discussed
how imposition of a sinusoidal temperature distribution on the side walls may affect natural
convection of the nanofluid in a square porous cavity. They found that the average Nusselt
number was an increasing function of the buoyancy ratio and the thermophoresis number but a
decreasing function of the Lewis number and the Brownian diffusion parameter. More recently,
they extended their work to a wavy porous cavity (Sheremet et al., 2017). They found that the
dependence of the average Nusselt number to the pertinent parameters was similar to the square
cavity, which was in contrast to the aforesaid findings in uniformly heated/cooled cavities.

The current research deals with heat transfer of a nanofluid in square porous cavities. The
main purpose of this article is to analyze the effects of the buoyancy ratio, the Brownian dif-
fusion parameter and the thermophoresis number on the flow strength and the average Nusselt
number as well as developments of streamlines, isotherms and isoconcentrations. To provide a
critical analysis, computations are undertaken for various cases in natural convection and mixed
convection environments with both uniform and non-uniform wall temperatures.
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2. Problem definition and mathematical formulation

Both natural and mixed convection heat transfer in a square cavity filled with a nanofluid-
-saturated porous medium are analyzed in this study. A schematic diagram of the flow problems
is shown in Fig. 1, where x and y are the Cartesian coordinates and L is the size of the cavity.
Here, all walls are assumed to be impermeable to mass transfer. The horizontal walls are assumed
adiabatic while two different conditions are imposed on the side walls. In the first case, the
sidewalls are considered to be heated/cooled uniformly while in the second case, the sidewalls
are influenced by the existence of a sinusoidal temperature variation.
In this paper, Buongiorno’s mathematical model is used. Thanks to this approach, the nano-

fluid is considered as a two-component dilute mixture. The porous medium is assumed isotropic
and homogenous while the established flow is concerned to be steady, incompressible, Newtonian
and laminar. The Darcy model is employed for the momentum equation. Moreover, a local ther-
mal equilibrium is assumed between the nanoparticles, the base fluid and the porous medium.
The Boussinesq approximation is adopted to determine the variations of density in the body
force term within the momentum equation. Meanwhile, viscous dissipation, the work done by the
pressure change and radiation heat transfer are neglected. Additionally, the thermophoresis and
Brownian transport coefficients are assumed temperature-independent. On these assumptions,
the conservation equations for mass, momentum, energy and flow concentration are (Nield and
Bejan, 2013)

∇ · (V) = 0
0 = −∇P − µ

K
V + [Cρp + (1− C)ρf (1− β(T − Tc))]g

V · ∇T = αm∇2T + δ
(
DB∇C · ∇T +

DT

Tc
∇T · ∇T

)

ρp
ε
V · ∇C = −∇ · jp

(2.1)

Here, V is the Darcy velocity vector, P is pressure, T is temperature, C is the nanoparticles
fraction, g is gravitational acceleration (g = −gj), ρ is density, µ is dynamic viscosity, β is
the volumetric expansion coefficient, α is thermal diffusivity, ε is medium porosity, and K is
permeability of the porous medium. Meanwhile, DB is the Brownian diffusion coefficient, DT is
the thermophoretic diffusion coefficient, and δ is a parameter defined by δ = ε(ρcp)p/(ρcp)f with
cp being the specific heat. Moreover, the subscripts p, f , and m correspond to the nanparticles,
the base fluid and effective values, respectively.
In Eq. (2.1)4, jp is the nanoparticles mass flux. Based on Buongiorno’s model, the nanopartic-

les mass flux is made up of two parts, namely, Brownian diffusion jp,B, and thermophoresis jp,T .
Thus

jp = jp,B + jp,T = −ρpDB∇C − ρpDT
∇T
T

(2.2)

After using the Boussinesq approximation and taking the nanofluid as a dilute mixture, one
arrives at the following form of the momentum equation (Nield and Kuznetsov, 2009)

0 = −∇P − µ

K
V + [C(ρp − ρf0) + ρf0(1− β(T − Tc)(1 − C0))]g (2.3)

with subscript 0 standing for reference values.
To simplify this vector equation, cross-differentiation is adopted, which eliminates the pres-

sure term. So, the governing equations become

∂u

∂x
+
∂v

∂y
= 0 (2.4)
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and

0 = − µ
K

(∂u
∂y
− ∂v

∂x

)
+ g(ρp − ρf0)

∂C

∂x
− (1− C0)ρf0βg

∂T

∂x

u
∂T

∂x
+ v

∂T

∂y
= αm

(∂2T
∂x2
+
∂2T

∂y2

)

+ δ
{
DB

(∂C
∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

)
+
DT

Tc

[(∂T
∂x

)2
+
(∂T
∂y

)2]}

1
ε

(
u
∂C

∂x
+ v

∂C

∂y

)
= DB

(∂2C
∂x2
+
∂2C

∂y2

)
+
DT

Tc

(∂2T
∂x2
+
∂2T

∂y2

)

(2.5)

where u and v denote the velocity components in the x and y directions, respectively.
After introducing the stream function by u = ∂ψ/∂y and v = −∂ψ/∂x, the continuity

equation will be satisfied. Moreover, Eqs. (2.5) lead to

∂2ψ

∂x2
+
∂2ψ

∂y2
= −(1− C0)ρf0gKβ

µ

∂T

∂x
+
ρp − ρf0

µ
gK

∂C

∂x

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= αm

(∂2T
∂x2
+
∂2T

∂y2

)

+ δ
{
DB

(∂C
∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

)
+
DT

Tc

[(∂T
∂x

)2
+
(∂T
∂y

)2]}

1
ε

(∂ψ
∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y

)
= DB

(∂2C
∂x2
+
∂2C

∂y2

)
+
DT

Tc

(∂2T
∂x2
+
∂2T

∂y2

)

(2.6)

We now define the following parameters to make the above equations dimensionless

X =
x

L
Y =

y

L
Ψ =

ψ

αm
θ =

T − Tc
Th − Tc

Φ =
C

C0
Ra =

(1−C0)gKρf0β(Th − Tc)L
αmµ

Pe =
V0L

αm
Le =

αm
εDB

Nb =
δDBC0
αm

Nr =
(ρp − ρf0)C0

ρf0β(Th − Tc)(1− C0)
Nt =

δDT (Th − Tc)
αmTc

(2.7)

Here, Ra is the Rayleigh number, Pe is the Peclet number (with V0 being the inlet velocity),
Le is the Lewis number, Nb is the Brownian diffusion parameter, Nr is the buoyancy ratio, and
Nt is the thermophoresis number.
Substituting the dimensionless parameters into the governing equations yields

∂2Ψ

∂X2
+
∂2Ψ

∂Y 2
= −Ra

( ∂θ
∂X
−Nr ∂Φ

∂X

)

∂Ψ

∂Y

∂θ

∂X
− ∂Ψ

∂X

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
+Nb

( ∂Φ
∂X

∂θ

∂X
+
∂Φ

∂Y

∂θ

∂Y

)
+Nt

[( ∂θ
∂X

)2
+ (

∂θ

∂Y

)2]

Le
(∂Ψ
∂Y

∂Φ

∂X
− ∂Ψ

∂X

∂Φ

∂Y

)
=
∂2Φ

∂X2
+
∂2Φ

∂Y 2
+
Nt

Nb

( ∂2θ
∂X2
+
∂2θ

∂Y 2

)

(2.8)

Notice that the governing equations reduce to those of a regular fluid if one chooses
Nb = Nr = Nt = 0.
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The boundary conditions for the flow problems are:
Case I: Natural convection with a constant temperature at the side walls

Left wall: Ψ = 0 θ = 1 jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = 0 jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Horizontal walls: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

(2.9)

Case II: Natural convection with a sinusoidal temperature distribution at the side walls

Left wall: Ψ = 0 θ = sin(2πY ) jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = sin(2πY ) jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Horizontal walls: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

(2.10)

Case III: Mixed convection with a constant temperature at the side walls

Left wall: Ψ = 0.1Pe θ = 1 jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = 0 jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Inlet: Ψ = Y Pe θ = 0 Φ = 1

Bottom wall: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Upper wall: Ψ = 0.1Pe
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Outlet:
∂Ψ

∂X
= 0

∂θ

∂X
= 0

∂Φ

∂X
= 0

(2.11)

Case IV: Mixed convection with a sinusoidal temperature distribution at the side walls

Left wall: Ψ = 0.1Pe θ = sin(2πY ) jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Right wall: Ψ = 0 θ = sin(2πY ) jp = 0
(
or,Nb

∂Φ

∂X
+Nt

∂θ

∂X
= 0
)

Inlet: Ψ = Y Pe θ = 0 Φ = 1

Bottom wall: Ψ = 0
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Upper wall: Ψ = 0.1Pe
∂θ

∂Y
= 0

∂Φ

∂Y
= 0

Outlet:
∂Ψ

∂X
= 0

∂θ

∂X
= 0

∂Φ

∂X
= 0

(2.12)

The physical quantities related to the problems are the local and average Nusselt numbers
(Nu,Nu) and the local and average Sherwood numbers (Sh,Sh) (Sheremet and Pop, 2014b)
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Nu = − ∂θ
∂X

∣∣∣∣∣
X=0

Nu =
1
0.9

1∫

0.1

Nu dY

Sh = − ∂Φ
∂X

∣∣∣∣∣
X=0

Sh =
1
0.9

1∫

0.1

Sh dY

(2.13)

In the flow problems, we limit our attention to the Nusselt number since, at the side walls,
we have Sh = −(Nt/Nb)Nu.

3. Solution method

The governing equations constitute a system of nonlinear partial differential equations. In order
to discretize them, the finite-volume approach is adopted. By integrating the governing equations
over each control volume, a system of algebraic equations is produced, which is solved by the Tri-
-Diagonal Matrix Algorithm (TDMA). Appropriate relaxation is chosen on the basis of numerical
experiments. The iteration is terminated when changes between two consecutive iterations get
smaller than 10−5. The solution method has been implemented in FORTRAN software.
For the purpose of acquiring an acceptable grid for each current case, four different grid

independence tests have been carried out. The results indicated that the suitable grid systems
are 200 × 200 (Case I), 400 × 400 (Case II and Case III), and 300 × 300 (Case IV).
The employed Fortran code is essentially a modified version of a code built and validated

in the previous works (Zahmatkesh, 2008a, 2015; Zahmatkesh and Naghedifar, 2017). In order
to evaluate the accuracy of this code for simulation of nanofluid-saturated porous cavities with
Buongiorno’s model, the corresponding results have been compared with those of Sheremet et al.
(2014) in Table 1. Here, the average Nusselt numbers in a square porous cavity with isothermal
vertical walls and adiabatic horizontal walls saturated with the nanofluid are presented. The
compared results belong to Ra = 100, Le = 1, 10, 100, Nr = 0.1, 0.4, and Nb = Nt = 0.4.
Notice that there is a trustworthy similarity with that study. This assured us that our results
are reliable. So, we have applied the code to analyze the flow problems depicted in Fig. 1.

Table 1. Comparison of the present results with those of previous works at Ra = 100

Le Nr
Nu

Sheremet et al. (2014) Current study

1
0.1 3.8387 3.8108
0.4 2.7791 2.7617

10
0.1 4.6270 4.5575
0.4 4.0088 3.9637

100
0.1 4.6252 4.4401
0.4 4.3049 4.1542

4. Simulation results

In this Section, simulation results for both natural convection and mixed convection heat transfer
of the nanofluid are presented. The results are discussed for the following values of the pertinent
parameters: the Rayleigh number (Ra = 30, 100, 300), the Peclet number (Pe = 25), the Lewis
number (Le = 25), the buoyancy ratio (Nr = 0.05, 0.1, 0.5), the Brownian diffusion parameter
(Nb = 0.05, 0.1, 0.5) and the thermophoresis number (Nt = 0.05, 0.1, 0.5).
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Fig. 1. Physical models of the flow problem: (a) Case I: Natural convection with a constant temperature
at the side walls; (b) Case II: Natural convection with a sinusoidal temperature distribution at the side
walls; (c) Case III: Mixed convection with a constant temperature at the side walls; (d) Case IV: Mixed

convection with a sinusoidal temperature distribution at the side walls

Tables 2, 3, and 4 illustrate the numerical values of |Ψmax| and Nu for the four configurations
at Ra = 30, 100, 300, respectively. Here, |Ψmax| provides a measure of the convection vigor. In
a general way, the imposition of the sinusoidal temperature distribution on the sidewalls leads
to heat transfer enhancement both in the natural and mixed convection environments within
the current range of the Rayleigh number. This imposition also intensifies the flow strength in
the mixed convection case. In the natural convection problem, however, depending on the value
of Ra, the sinusoidal wall temperature may enhance or deteriorate the flow strength.

Table 2. Numerical values of |Ψmax| and Nu for the flow at Ra = 30

Ra = 30
Nb Nr Nt Nb = Nr = Nt

0.05 0.5 0.05 0.5 0.05 0.5 0.1

Case I
|Ψmax| 1.909 1.918 1.916 1.894 1.917 1.889 1.914
Nu 1.421 1.424 1.423 1.417 1.455 1.186 1.422

Case II
|Ψmax| 0.750 0.750 0.750 0.750 0.736 0.878 0.750
Nu 3.577 3.576 3.576 3.576 3.575 3.722 3.576

Case III
|Ψmax| 2.499 2.499 2.499 2.499 2.499 2.499 2.499
Nu 3.570 3.542 3.541 3.610 3.584 3.381 3.549

Case IV
|Ψmax| 3.370 3.362 3.364 3.377 3.351 3.462 3.366
Nu 4.613 4.610 4.611 4.616 4.590 4.914 4.611

Inspection of the numerical values of |Ψmax| in the conduction–dominated regime (i.e., Table 2
with Ra = 30) indicates that in Case I, increasing Nb leads to an insignificant growth in the
flow strength (maximum 0.47%) but rising Nr or Nt causes a slight drop in it (maximum 1.15%
and 1.46%, respectively). The results of Case II show that an increment in the thermophoresis
number from 0.05 to 0.5 intensifies the flow strength to about 19.29%. Nb and Nr, however,
contributes neutrally there. The results of Case III indicate that the value of |Ψmax| is not
dependent in this case to Nb, Nr, and Nt. Meanwhile, notice that all current parameters are
influential to the flow strength in Case IV. This is similar to Case I but the trends of the
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Table 3. Numerical values of |Ψmax| and Nu for the flow at Ra = 100

Ra = 100
Nb Nr Nt Nb = Nr = Nt

0.05 0.5 0.05 0.5 0.05 0.5 0.1

Case I
|Ψmax| 4.707 4.725 4.722 4.676 4.722 4.668 4.717
Nu 2.932 2.936 2.935 2.925 2.999 2.450 2.934

Case II
|Ψmax| 2.618 2.622 2.622 2.608 2.579 2.942 2.621
Nu 4.265 4.252 4.254 4.254 4.247 4.536 4.258

Case III
|Ψmax| 3.264 3.240 3.245 3.288 3.237 3.342 3.251
Nu 4.975 4.932 4.940 5.017 5.003 4.518 4.950

Case IV
|Ψmax| 5.435 5.459 5.456 5.398 5.412 5.728 5.449
Nu 5.512 5.500 5.503 5.530 5.468 5.987 5.506

Table 4. Numerical values of |Ψmax| and Nu for the flow at Ra = 300

Ra = 300
Nb Nr Nt Nb = Nr = Nt

0.05 0.5 0.05 0.5 0.05 0.5 0.1

Case I
|Ψmax| 9.813 9.847 9.841 9.749 9.843 9.709 9.831
Nu 6.082 6.083 6.083 6.073 6.214 5.111 6.083

Case II
|Ψmax| 6.270 6.286 6.284 6.181 6.222 6.756 6.282
Nu 7.553 7.534 7.535 7.585 7.525 7.933 7.537

Case III
|Ψmax| 8.02 7.952 7.958 8.094 7.953 8.094 7.981
Nu 8.181 8.061 8.100 8.262 8.168 7.488 8.128

Case IV
|Ψmax| 8.898 8.951 8.918 8.903 8.898 9.470 8.916
Nu 8.800 8.904 8.831 8.981 8.799 9.721 8.830

variations are quite distinct. Evidently, with the increase in Nb, a slight drop in the flow strength
appears (maximum 0.24%), but with an elevation in Nr or Nt, insignificant increases occur in
it (maximum 0.39% and 3.31%, respectively).
Scrutiny of the Nu values in Table 2 demonstrates that Nb and Nr possess a minor impact

on the average Nusselt number in all current cases. Notice that maximum deviations of Nu, as a
result of the tenfold increase in Nb and Nr, may not exceed 0.78% and 1.95%, respectively. The
pattern is completely different when we go to Nt, since this parameter affects the heat transfer
rate in all configurations. Specifically, a rise in Nt from 0.05 to 0.5 increases Nu to 4.11% and
7.06% in Case II and Case IV with sinusoidal wall temperatures, but decreases it to 18.49% and
5.66% in Case I and Case III with constant wall temperatures, respectively. This controversy
in the effect of the thermophoresis number on the heat transfer of cavities with uniform wall
temperatures and those with non-uniform wall temperatures is in agreement with the previous
findings in the natural convection environment, as pointed out previously.
The results presented in Table 3 belonging to Ra = 100 indicate that, in Case I, the variations

of |Ψmax| with Nb, Nr and Nt are similar to those of Ra = 30. The corresponding deviations
are +0.38%, −0.97%, and −1.14%, respectively. In Case II and III, the consequences of the
pertinent parameters on the flow strength are no longer negligible at this Rayleigh number. In
Case II, the tenfold increase in Nb, Nt, and Nr leads to 0.15% and 14.07% growths and a 0.53%
drop in |Ψmax|, respectively. The deviations are −0.74%, +3.24%, and +1.33% in Case III and
+0.44%, +5.84%, and −1.06% in Case IV, respectively. Analysis of the average Nusselt number
is also interesting. Similarly to what appeared at Ra = 30, it is evident that Nb and Nr are not
so influential on Nu prediction at Ra = 100. Maximum changes of Nu by increasing Nb and Nr
are +0.14% and −0.34% in Case I, −0.30% and 0% in Case II, −0.86% and +4.93% in Case III,
and −0.22% and +0.49% in Case IV, respectively. The effect of the theromophoresis number on
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the heat transfer rate is more remarkable. Specifically, a rise in Nt from 0.05 to 0.5 increases
Nu to 6.80% and 9.49% in Case II and IV but decreases it to 18.31% and 9.69% Case I and III,
respectively.
Table 4 indicates that when Ra = 300, then Nb, Nr, and Nt affect the value |Ψmax| in all the

problems. Notice that maximum variations of |Ψmax| as a result of the increase inNb are +0.35%,
+0.26%, −0.85% and +0.60% in Case I, II, III, and IV, respectively. The corresponding values
due to a rise in Nr are −0.93%, −1.64%, +1.71%, and −0.17%. The results also demonstrates
that a rise in Nt from 0.05 to 0.5 results in 8.58%, 1.77% and 6.43% increase in the flow strength
in Case II, III, and IV, respectively, but decreases the value |Ψmax| to 1.36% in Case I.
Numerical values of the average Nusselt number in Table 4 indicate that an increase in Nb

from 0.05 to 0.5 leads to +0.02%, +0.01%, −1.47%, and +1.18% deviations in heat transfer in
Case I, II, III, and IV, respectively. The corresponding changes due to a rise in Nr are −0.16%,
+0.66%, +2.0%, and +1.70%. The alternation of Nt also brings −17.75%, +5.42%, -8.33%, and
+10.48% variations in the average Nusselt number.
The thermophoresis parameter is found to be the most effective coefficient in the current

cases. In order to provide a better picture about the consequences of this parameter on di-
stributions of isocontours of the stream function, temperature and nanoparticles fraction, the
corresponding contours for the flow problems are provided in Figs. 2-5, which belong to Ra = 100
with both Nt = 0.05 and Nt = 0.5.

Fig. 2. Isocontours of the stream function, temperature and nanoparticles fraction for Case I at
Ra = 100, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)

Figure 2 shows the isocontours of the stream function (left), temperature (middle) and
nanoparticles fraction (right) for Case I. Regardless of the value of Nt, a single convective cell
appears inside the cavity with an ascending flow near the left wall and a descending flow near the
right wall. It is evident that a growth in Nt does not have a significant effect on the streamlines
and isothermal lines but makes the nanoparticles distribution more non-homogeneous.
The streamlines, isotherms and isoconcentrations of Case II are provided in Fig. 3. Obvio-

usly, four convective cells appear here within the cavity. The convective cells located in the
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Fig. 3. Isocontours of the stream function, temperature and nanoparticles fraction for Case II at
Ra = 100, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)

bottom-left/top-right parts of the cavity are rotating clockwise but those located in the bottom-
-right/top-left parts are counter-clockwise vortices. The appearance of these circulations is at-
tributed to the imposition of the sinusoidal temperature distribution on the side walls in this
case. Cores of the convective cells are located close to the side walls due to large temperature
gradients there. The distributions of Ψ and θ are symmetric with respect to X = 0.5. It is evi-
dent that the Nt promotion leads to variations in all characteristics noticeably. Obviously, the
streamlines pattern is changed in a way of growing the two top convective cells. Moreover, the
bottom half of the cavity experiences more intensive heating while the opposite side transfers
less heat. The main variations with Nt are related to the isoconcentrations. The Nt elevation
causes a more non-homogeneous nanoparticles distribution. This is similar to Case I, but the
effect is more remarkable here.
Figures 4 and 5 depict the isocontours of the stream function, temperature and nanoparticles

fraction for Case III and IV, respectively. They correspond to the mixed convection environment.
The effect of theNt promotion on the distribution of the contour plots bears a strong resemblance
to what is observed in the natural convection cases.

5. Concluding remarks

A critical analysis of natural and mixed convection of a nanofluid in square porous cavities has
been presented here using Buongiorno’s mathematical model. The findings of this study can be
summarized as:

(1) Imposition of a sinusoidal temperature distribution on the sidewalls leads to heat transfer
improvement both in the natural and mixed convection environments.

(2) The consequence of the thermophoresis number on the flow strength and the average
Nusselt number is more prominent than the Brownian diffusion parameter and the ther-
mophoresis number.
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Fig. 4. Isocontours of stream the function, temperature and nanoparticles fraction for Case III at
Ra = 100, Pe = 25, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)

Fig. 5. Isocontours of the stream function, temperature and nanoparticles fraction for Case IV at
Ra = 100, Pe = 25, Le = 25 with different values of Nt (up: Nt = 0.05; down: Nt = 0.5)
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(3) With an increase in the thermophoresis number, progressive changes occur in the isoconto-
urs of the stream function, temperature and nanoparticles fraction, and the nanoparticles
distribution becomes more non-homogeneous.

(4) With the sinusoidal wall temperatures, the heat transfer rate is an increasing function of
the thermophoresis number, but in a cavity with uniform wall temperatures, depending
on the value of the Rayleigh number, an increase in Nt may enhance or deteriorate the
average Nusselt number.

(5) The Brownian diffusion parameter and the buoyancy ratio have almost no effect on Nu in
the natural convection but with an increase in Ra, they become gradually more influential
in the mixed convection.
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The subject of the article is the evaluation of the strength of revision implants made of
titanium or tantalum alloy, used during bone reconstruction of a hip joint while potentially
using additional stabilizing screws, necessary due to significant bone loss. The article provides
a preliminary strength analysis of implants, indispensable for further evaluation of strength
limitations due to the risk of implant damage depending on the structure and number of
additional screw holes. In the human locomotor system, the hip joint is the joint with the
most load, hence the main problem is to establish an adequate load model which ought to be
assumed for the needs of implant strength analysis. It is found necessary to perform a short,
analytical review of the existing hip joint load models from the point of view of choosing
the proper one, considering evaluation of implant strength by means of numerical studies
using FEM. Differences in the implant load distribution depending on the used material are
shown.

Keywords: implant, implant strength, prosthesis, hip joint, material loss

1. Introduction

The treatment method that WHO considers the one which completely resolved symptoms and
deformations resulting from Degenerative Joint Disease (DJD) is currently the primary Total
Hip Replacement (THR). With higher life expectancy of patients, the number of people suffe-
ring from advanced degenerative lesions of joints is growing (DJD). Having reduced mortality
resulting from heart and cardiovascular diseases within the last two decades, the number of
patients suffering from DJD and treated with THR has grown. It has become a wider problem,
also in reference to biological and mechanical aspects of prostheses degenerating bone tissue,
which is currently the object of a few technical studies, e.g. evaluating the strength of bone
cement in configuration with titanium implants and decreased quality of bone tissue (Benouis et
al., 2016). Together with the number of primary joints replacements, the number of secondary-
-revision procedures is also growing, consisting in replacing prostheses with the new ones, e.g.
due to pelvic bone or femur defects. Unfortunately, they are often implanted in acetabulum bone
with bone losses that need procedures using modular reconstruction implants. These implants
must possess appropriate strength and elasticity, enabling own load, must provide a reliable
and multidirectional primary stabilization in bone tissue and secondary osseointegration of bone
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tissue in the implant. Thus, it is more and more common to use porous revision implants du-
ring joint reconstruction, which allows one to replace bone tissue with metal elements. The
most commonly used are so called “full” ones, which possess only the external porous structure
(most often hydroxyapatite layer) (Dorman et al., 2011) and “trabecular metal” type of implants
with full spatial porous architecture enabling reconstruction of the bone tissue into the implant
(Dorman et al., 2011). The applied implants are made of titanium and its alloys or of tanta-
lum. The percentage composition of the applied metals is up to the producer. In most cases,
titanium implants are made of titanium alloy with addition of rare metals such as Vanadium
(Ti-6Al-4V-ELI) and Niobium (Ti-6Al-7Nb). In the case of spatial tantalum implants, only a
tantalum foam sintered powder is used. It is the material with better bone biocompatibility and
more biologically neutral for the organism, in comparison with rare metals used in titanium
alloys. The implants are manufactured in different shapes and sizes, which allows one to fully or
partially adjust them to bone losses, leading to reconstruction of anatomy with proper biome-
chanics of the joint. The essence of proper implant functioning is, apart from osteointegration
and mechanical strength, lowest risk of allergic effects or cytotoxicity of metal ions (especially
in the case of implants containing vanadium and niobium, each interference or damage of the
structure during implantation may result in rare metal ions secretion). Standard manufactured
implants contain primary holes which enable stabilization with a patient’s bone by means of
screws (Bobyn et al., 1999; Dorman et al., 2011; Hacking et al., 2000). The elements are in-
terconnected using polymethylmethacrylate (PMMA) (Bobyn et al., 1999; Hacking et al., 2000;
Meneghini et al., 2010). Each implant is characterized by proper elasticity, resulting from the
applied metal i.e. Young’s elasticity modulus E, determining linear strength. It has to be borne
in mind, however, that when mechanically interfering with an implant (related to drilling ad-
ditional fixing holes) during non-standard stabilization, the fatigue strength of an implant Rz
may decrease as well as further damages may occur. It results from the change in strain and
may require remodeling of stiffness and strength. Performed preliminary studies are supposed
to evaluate the strength of tantalum “trabecular metal” type of implants and titanium mixed
with niobium (Ti-6Al-7Nb) implants, which possess standard holed enabling stabilization with
a patient’s bone using screws. The research material presented in the article constitutes a star-
ting point for research of strength evaluation of implants weakened by the holes drilled for the
needs of potential additional stabilization and, at the same time, draws attention to the risk of
mechanical consequences of excessive weakening of an implant and secondary biological risk of
leaving drilling products behinds, especially those of rare metals.

2. State of hip joint load

In order to evaluate the risk of mechanical consequences of excessive weakening of an implant,
it is decided appropriate to define the state of load by means of Finite Element Method (FEM).
The main problem is to define the implant load model which must be assumed for the purpose
of such an analysis. From the point of view of mechanics, precisely theory of machines and
mechanisms, a hip joint is a III-class kinematic pair – spherical, enabling reciprocal spherical
movement. In the human movement system, the hip joint is one of the biggest kinematic nodes,
possessing three degrees of freedom (s = 3). The occurrence of additional degrees of freedom,
connected with an incomplete close of the node is defined as hip joint instability (Harris, 1992).
Transferring loads of the spine to lower extremities by means of pelvis, involving the hip joint
occurs in conditions of a very complex movement (Fig. 1). It has to be borne in mind, that the
hip joint together with skeletal system of the pelvic rim, connects the upper part of the human
body with lower extremities by means of a complex system of muscles, tendons and ligaments.
Interactions between the femur head and acetabulum as well as stresses of the muscle system
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taking part in movement, determines the state of load of the entire skeletal system of the hip
joint. The load of the hip joint is directly dependent on body weight and activities performed
by a human during walking – it constitutes a complex system of forces and moments. In the hip
joint, movement may occur around three main axes. Usually, a particular movement caused by a
contraction of the appropriate muscle is prevalent and determines the essential function of the hip
joint to which a system of external and internal forces is applied. The external forces are: weight
related to body mass, support actions, and forces resulting from interactions of other objects
with the human body. The internal forces are mainly forces resulting from muscle interactions.
Evaluation of directions and values of these forces is very difficult due to a large number of
muscles and place of their application (muscle attachments) (Madej, 2008). Furthermore, values
and directions of loads occurring in the hip joint vary in different phases of gait (Bergman et
al., 1993, Bergman et al., 2001; Będziński and Ścigała, 2004; Dąbrowska-Tkaczyk, 1999; Dragan,
1992; Madej and Ryniewicz, 2007; Popovic et al., 2004, Włodarski, 2005).

Fig. 1. Transfer of loads from the spine to lower extremities (Będziński, 1997)

During gait, the center of gravity of the body S also changes, and moves in the direction
opposite to the loaded extremity (Fig. 2). Additionally, the loads in the hip joint depend on
phases of foot contact with the ground. Movements in other planes occur: bow-hyperextension,
ante-version and retroversion, as well as rotational movements.

The rule is to simulate static conditions in the load phase of one extremity, standing on
both feet and in the phase of heel contact with the ground. Additionally, in vivo research is
performed on the values of forces occurring in the hip joint in different phases of gait, especially
in the phases, in which the highest load occurs: while standing on one foot, going up the stairs,
getting up a chair. The values of forces occurring in the hip joint in patients with implanted a
telemetric Moore-type implant were studied by Rydell. The research was continued by Bergman
and Rohlmann, who defined vectors of forces influencing endoprosthesis head in a patient with
full hip alloplasty (Dragan, 2004).

In experiments on biomechanics of hip joint, mechanical properties, especially stiffness and
strength against impact stresses of constructed implants, are studied and physiological models
of force and load distribution in the hip joint before and after endoprosthesis implantation are
devised. Thus, the most often conducted research applies computer techniques using numerical
simulation based on physical models, with holographic interferometry method or with application
of resistance strain gauges (Dragan, 2004; Madej, 2008).
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Fig. 2. The course of forces expressed as percentage of the body weight in the hip joint load in the gait
cycle (according to Bergman) (Będziński, 1997)

3. Identification of the hip joint load model

The research on hip joint mechanics in numerous research centers has lod to creation of multi-
ple models of the hip joint load, e.g. Pauwels’, Maquet’s, Bombeli’s, Huiskes’, Bergman’s and
Będziński’s models (Bergman et al., 1993, 1995; Bernakiewicz and Będziński, 1999; Będziński,
1997; Bombeli, 1983; Maquet, 1985; Pauwels, 1976). Researchers, in their majority, agree that
while modelling the hip joint load, the following have to be taken into consideration (Będziński,
1997):

• gluteus muscles, for lateral-medial loads,
• biceps femoris muscle, significant in front-to-back interactions,
• iliotibial band of abductors (tractusiliotibialis),
• band of abductors, more significant in femur load than band of adductors,
• a group of rotator muscles, during simulation of the extremity movement in the sagittal
plane, which causes – due to their function and location – turning moment of femur.

In the light of all the above, the identification of hip joint load model is an exceptionally
difficult and crucial task, considering theoretical studies aimed at strength evaluation from the
perspective of e.g. deformation or risk of implant damage.
One of the most common hip joint load models is Pauwels’ model, which presents two cases

of the hip joint load: two-feet load and standing on one lower extremity (Fig. 3a). The resultant
vector of the force R is directed at the rotation point, which is the anatomical center of the
femur head. In Pauwels’ model, it is assumed that during unilateral extremity load, the total
value of the force loading hip joint results from the interaction between the body weight and
forces of periarticular muscles (Madej, 2008).
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Fig. 3. (a) Hip joint load model (according to Pauwels) during movement, the phase of one leg load:
S5 – body center of gravity, impact of torso, hand-arms, head, without the other lower extremity,
K – resultant force of body weight impact, M – abductor muscle impact, R – resultant reaction of
impact on the femur head (Bernakiewicz, 1994). (b) Model of two-armed lever modelling loads of the

femur head while standing on one leg (Będziński, 1997)

Relations of loads in the hip joint are brought to a two-armed lever, in which the point of
support is in the middle of the hip joint (Fig. 3b). Such an attitude towards the issue constitutes a
significant simplification of a complex state of load in the hip joint, dependent on various factors
(Będziński, 1997; Pauwels, 1976). Analysis of loads based on a two-armed lever is approximately
valid only in the case of the state of balance, when the body center of gravity is in the coronal
plane. Performing any kind of movement will cause a change in the location of the body center
of gravity, which results in the change in the state of load – directions and values of forces
coming from groups of muscles which become activated in order to maintain balance of the
body (Będziński, 1997).

The role of iliotibial band is presented differently by Maquet’s model (Fig. 4a), which is a
modification of Pauwels’ model. In Maquet’s model, tension of the external band of thigh fascia
lata is caused by the abductor muscle. The band is simulated as a tie running along the femoral
shaft from the knee joint to pelvic bone. The tie is based on the great trochanter of the femur
and can slide on it. The impact of the iliotibial band modeled in this way gives an additional
horizontal force, which stabilizes the hip joint. Due to a different, in comparison with other
models, consideration of the impact of muscles, Maquet’s model is more accurate in terms of
the upper anatomy of the lower extremity (Będziński, 1997; Madej, 2008).

Both hip joint load models (Maquet’s and Pauwels’) present a system of forces impacting
the pelvis (together with the upper part of the lower extremity) only in the coronal plane.

The model of the hip joint load, additionally considering the role of rotator muscles Ru which
cause turning of the femur in relation to the pelvis (Fig. 4b), based on Maquet’s model, is shown
by Będziński (Będziński and Ścigała, 2004; Będziński, 1997). In this model, the iliotibial band
can also move along the external surface of the great trochanter of femur. The loading system is
constituted by the resultant forces of the hip joint: impact of the weight of torso on the femur
head R, abductors Ma and the iliotibial band M , T (sliding on the great trochanter of femur)
and rotational forces Ru. The author states (Będziński and Ścigała, 2004; Będziński, 1997; Madej
and Ryniewicz, 2007; Madej, 2008; Ryniewicz and Madej, 2001, 2002) that the devised model
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Fig. 4. (a) Maquet’s hip joint load model (Będziński, 1997). (b) Będziński’s model (devised at Zakład
Doświadczalnej Analizy Konstrukcji Inżynierskich i Biomechanicznych) (Będziński and Ścigała, 2004;

Będziński, 1997)

results from experimental studies conducted on physical models. The model groups the basic
forces acting within functioning of the hip joint.
The aim of the analysis of the state of strain and deformation in an endoprosthesis of the

hip joint, having an analytically revised model of the loads of this joint, is to assume the spatial
hip joint load model according to Będziński.

4. Hip joint load

While defining loads for the needs of the studies, the model devised at Division of Experi-
mental Analysis of Engineering and Biomechanical Structures of Wrocław University of Science
and Technology by prof. R. Będziński has been assumed, as well as literature data taken from
M. Bernakiewicz’s PhD Dissertation (Bernakiewicz, 1999), and a unique software for analyzing
gait HIP98, which enables to define values of forces and moments for each case of movement.
The value of load for the studies is assumed based on Table 1 (Madej, 2008), in which values
of the resultant force F acting upon the femur head in the case of performing movement are
compiled. The values obtained from HIP98 software for different velocities of gait of particular
patients and various phases – have been assumed after (Madej, 2008), based on literature (Berg-
man etal, 2001; Bernakiewicz, 1999; Bernakiewicz and Będziński, 1999). The aim of obtaining a
comparative reference in terms of reliability of literature data, own studies have been performed
at Clinic of Orthopedics and Rehabilitation of the 2nd Faculty of Medicine of Medical University
of Warsaw, which include cases of patients (taking into account sex) occurring most often sta-
tistically, considering weight and load. The studies were performed for the following conditions:
an 80 cm step forward without weight transfer and with total temporary transfer of weight to
one foot and leap (maximum temporal result) of 100 cm from the platform for different weights
(Table 2).
While performing a comparative analysis, it was concluded that in none of the cases the

value of 1000N of patient’s body weight was exceeded. Arbitrarily, in strength analysis, it was
decided to assume a certain surplus of load impacting the hip implant, the value of the vector of
the resultant force F = 300N. The load was assumed with a slight reserve of value in the light
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Table 1. Values of reaction forces on the femur head for particular patients (Madej, 2008)
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

Phase of gait
Patient Phase of heel contact Phase of standing

with the ground on one foot
Resultant force % 100 BW Fx Fy Fz F Fx Fy Fz F

H.S.
body weight
860N

Slow gait
49 17 216 222 47 19 188 195

3.81 km/h
Normal gait

49 22 231 237 42 16 175 181
4.41 km/h
Fast gait

55 23 268 274 46 12 181 187
5.11 km/h

P.F.
body weight
980N

Slow gait
29 43 215 221 35 34 234 239

3.08 km/h
Normal gait

29 35 197 202 30 23 206 209
3.71 km/h
Fast gait

29 30 187 192 33 26 207 211
4.46 km/h

K.W.
body weight
980N

Slow gait
61 17 202 212 68 3 205 216

3.81 km/h
Normal gait

67 20 230 240 59 −1 179 189
4.05 km/h
Fast gait

73 19 251 262 58 4 167 177
4.64 km/h

Average
for all
patients

Slow gait
47 27 214 221 51 25 217 224

3.60 km/h
Normal gait

47 23 210 216 54 8 200 207
4.09 km/h
Fast gait

52 26 237 244 47 1 180 186
4.74 km/h

of not sufficient knowledge of the actual state of the hip joint load, according to the authors,
with regard to not yet fully identified parameters of this load.

5. Geometry and conditions of the hip joint load

The assumed geometry of the cup implant system subject to strength analysis in conditions of the
static load is shown in Fig. 5. The analyzed implants are a standard version, having preliminary
holes which enable stabilization with a patient’s bone using screws. For the assumed geometry of
the model, tetra-meshing is applied, i.e. uneven division of the solid model continuum into finite
elements of Tet1o type (quadratictetrahedron) is applied. Three identical cylindrical elements
symbolize screws, which are screwed during a surgical procedure.
Strength analysis has been performed for the “trabecular metal” type of implants and tita-

nium implants with the addition of niobium (Ti-6Al-7Nb), which possess primary holes enabling
stabilization with a patient’s bones using screws.
Mechanical properties for materials:

• “trabecular metal” – are assumed based on the article (Medlin et al., 2004)
Young’s modulus Poisson’s Yield strength Tangent modulus

[MPa] ratio [MPa] [MPa]

3100 0.35 48.2 (±5.9) 310
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Table 2. Values of forces without and with transfer of weight on one foot and during leap

Sex
Weight Step forward Step forward Leap
[N] without [N] with [n] [N]

M 780 220 760 790
M 870 270 880 910
K 560 190 550 570
K 630 200 620 640
K 720 220 720 730
M 880 240 880 890
M 670 220 680 700
K 770 210 770 770
M 710 220 720 740
M 680 210 690 690
K 720 210 710 710
M 740 220 740 750
K 810 210 810 780
K 510 180 500 520
K 550 190 550 550
M 760 220 750 760
K 780 200 780 780
K 810 200 800 810
M 800 220 800 820
K 620 200 620 620
M 640 220 640 650
M 680 220 680 680
M 590 210 590 600
K 670 210 660 670
M 750 220 750 760
M 910 250 900 930
M 870 230 830 840
K 710 220 700 720
K 770 210 760 770
K – female, M – male

• titanium alloy with addition of niobium (Ti-6Al-7Nb) – assumed based on article (Li et
al., 2014)

Young’s modulus Poisson’s Yield strength Tangent modulus
[MPa] ratio [MPa] [MPa]

110000 0.36 min 800 (880-950) 5000

The analyzed case is the one of the implant load being in contact with the pelvic bone, as
shown in Fig. 6. The pelvic bone is modeled conventionally, as a slice of a spherical cylinder, to
which an augment cup implant is attached by means of 500N tension screws (Fig. 6a), the pelvic
bone is fixed (Fixed Support), as illustrated in Fig. 6b (blue spherical surface). The direction
of impact of the acetabulum force F on the augment is illustrated by Fig. 7a. The load system
of the implant by vectors of screw tension forces F = 500N (axial forces resulting from fixing
the cup augment to the pelvis) and the vector of the resultant force F = 300N is illustrated by
Fig. 7b.
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Fig. 5. Meshing process continuum of the cup implant model

Fig. 6. Fixing the implant (cup augment) to the pelvic bone: (a) tension of screws (500N), (b) fixed
support of the pelvic bone (blue spherical surface)

Fig. 7. System of implant (cup augment) load: (a) vector of the resultant force F = 300N impacting the
augment, (b) vectors of screw tension forces F = 500N (axial forces resulting from fixing the augment

to the pelvis) and the vector of the resultant force

Distribution (maps) of strain reduced according to HMH Hypothesis (Huber-Mises-Hencky
hypothesis of specific energy of shear modulus) obtained by means of FEM analysis for the
case of the “trabecular metal” type of implants and titanium implants with addition of niobium
(Ti-6Al-7Nb) are shown in Figs. 8 and 9. Distributions (maps) of total deformations of the cup
augment for these two cases of implant materials are shown in Figs. 10 and 11, respectively.
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Fig. 8. Map of reduced strain according to HMH – “trabecular metal” tantalum implant loaded with a
300N force

Fig. 9. Map of reduced strain according to HMH – titanium Ti-6Al-7Nb implant loaded with a 300N
force



Strenghth analysis of hip joint replacement revision implant 245

Fig. 10. Map of total deformations – “trabecular metal” tantalum implant loaded with a 300N force

Fig. 11. Map of total deformations – titanium Ti-6Al-7Nb implant loaded with a 300N force

In neither of the analyzed cases the values of reduced strains HMH reach the assumed
ductility border ReTantalum = 48.2MPa and ReT itanium = 800MPa. For the assumed maximum
force F = 300N loading of implants, the highest values of reduced strain HMH reach about 46%
Retm = 22.3MPa for the “trabecular metal” tantalum implant and 6.5% ReT i = 52MPa for
titanium Ti-6Al-7Nb implant, respectively. The maximum values of the reduced strain according
to HMH occur around the fixing holes and are connected with the concentration of strains around
them.

Local concentrations of strains around holes result from screw tension forces, and are connec-
ted with the assumed boundary conditions. In the actual system, where the analyzed implant
will cooperate fixed to the pelvic bone (especially after it bonds with the bone), the risk of
implant damage as a result of strain concentration will not occur. It has to be stressed, ho-
wever, that the maximum total deformations occur in the lower rim of the cup implant and
may result from the pressure of the augment on the pelvic bone due to uneven pressure during
acetabulum impact. The values of maximum deformations amount to about 0.607mm for the
“trabecular metal” tantalum implant, and to 0.383mm for the titanium implant respectively.
It can be noticed, however, that the total deformations around the holes for the implant made
of the “trabecular metal” material are about 50% smaller, and do not exceed approximately
0.3mm. For the implant made of Ti-6Al-7Nb, a slight displacement of the simulated pressure of
the augment to the pelvic bone occurred (along the lower rim of the cup implant towards the
sharp edge), thus relatively higher values of total deformations around the hole occur, amounting
to approximately 80% of the maximum, but do not exceed 0.3mm.

The analyzed issue is considered as a static analysis. Apart from the value of the load force F ,
a fatigue character of the operation of the analyzed system, subject to permanent movement
load, ought to be noticed.
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6. Conclusions

The conducted preliminary simulation studies enable strength evaluation of “trabecular metal”
tantalum implants and titanium implants with addition of niobium (Ti-6Al-7Nb). The results
of performed numerical analyses indicate that implants with standard holes (i.e. without me-
chanical interference connected with non-standard stabilization with a patient’s bone) fulfill the
strength requirements in conditions of the maximum strain in the assumed implant load system.
It has to be kept in mind, however, that during non-standard stabilization connected with

drilling additional fixing holes, the implant fatigue strength Rz may decrease, which may lead
to further damage. So far, it has not been studied how mechanical interference with the implant
structure and their modification by drilling more holes influences the mechanical properties
of such a system, i.e. change in implant ductility in terms of implant strength after drilling
additional holes. The reports on the strength of the structure after drilling the holes, as well
as after prolonged functioning of such implants, are scarce (Bobyn et al., 1999; Levine et al.,
2006; Meneghini et al., 2010; Meneghini et al., 2010). Attention needs to be drawn to a series of
significant issues connected with the risk of:

• decreasing strength and elasticity of an implant modified with holes,
• damage to prosthesis articulation caused by pieces of metal which remain after drilling
and/or prior loosening of the implant,
• migration of particles in the circulatory system, nephrotoxicity while using alloys with ad-
dition of Al, Ni and V, influence of metal ions and implant corrosion around the prosthesis
and weakening of implant osseointegration.

Further studies ought to identify:

• The influence of additional holes in medical implants made of Ti and Ta alloys on strength
properties of such implants. During bone reconstruction of the hip joint, it is often required
to perform additional holes for the needs of stabilization techniques connected with a
significant bone loss.
• The influence of dependence of the remaining in the surgical field mass of metal ions on
prosthesis tribology.
• The influence of the mass of tantalum and titanium particles and rare metal ions (such as
Ni and V) on body toxicity.
• The risk of influence of metal ions and implant corrosion on periarticular tissues, together
with the increase in the mass of tantalum and titanium, aluminum, niobium and vanadium
particles.

Furthermore, studies should to be aimed at:

• Development of implant material with high mechanical properties, least possibly suscep-
tible to weakening due to interference with the implant structure.
• Development of a technique of maximum removal of metal particles from the surgical field.

The above-mentioned issues define the authors’ goals in terms of further numerical studies
of implants made of the “trabecular metal” and Ti-6Al-7Nb material.
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In the paper, the numerical analysis of thermal processes proceeding in a 2D soft biological
tissue subjected to laser irradiation is presented. The transient heat transfer is described
by the bioheat transfer equation in Pennes formulation. The internal heat source resulting
from the laser-tissue interaction based on the solution of the diffusion equation is taken
into account. Thermophysical and optical parameters of the tissue are assumed as directed
intervals numbers. At the stage of numerical realization. the interval finite difference method
has been applied. In the final part of the paper, the results obtained are shown.
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1. Introduction

One of the common problems in mathematical modelling of biological systems is the significant
variation in the parameters that may result from, among others, individual characteristics. For
some parameters, imprecisions in the estimation of their values may be a result of different
measurement methods or specific features of tissues. The measurement is not often possible in
a living organism. This may cause the values of individual parameters found in the literature
to differ significantly from one another. It is also worth noting that tissue parameters may have
different values depending on their degree of thermal damage. For example, the value of the
scattering coefficient of tissue during the tissue damage process increases several times, what
could be observed as “whitening” of the tissue (Jasiński, 2015).
One of the most widely used mathematical tools to take into account uncertainties of para-

meters are sensitivity analysis methods. By using them, very different problems were analysed,
also in the field of heat transfer in the living organism (Jasiński, 2014; Kałuża et al., 2017;
Mochnacki and Ciesielski, 2016). The approach using interval or fuzzy numbers is slightly less
frequently used, although one can find works in which thermal processes in the human skin
or eye are under consideration (Jankowska and Sypniewska-Kaminska, 2012; Mochnacki and
Piasecka-Belkhayat, 2013; Piasecka-Belkhayat and Jasiński, 2011). The other initial-boundary
value problems for partial differential equations were also considered in many fields of science
(Gajda et al., 2000; Di Lizia et al., 2014; Nakao, 2017).
One can distinguish between two types of interval arithmetic: directed and classical (Dawood,

2011; Hansen and Walster, 2004; Markov, 1995; Popova, 1994). Classical interval arithmetic was
proposed in the 60s of the last century by Moore (1966). The two kinds of arithmetic differ
mainly in the definition of an interval and the set of arithmetic operations. A classical interval
x = [a, b] is defined as a set of real numbers that are between the lower bound a and upper
bound b like x = {x ∈ R| a ¬ x ¬ b} while a directed interval is defined by only a pair of
real numbers as x = [a, b] where a, b ∈ R. Because of that, during successive calculations based
on the classical interval arithmetic and many computational methods, including methods based
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on finite differences applied, the widths of intervals increase what leads to the so-called range
overestimation problem (Hansen and Walster, 2004; Markov, 1995; Nakao, 2017). Using the
directed interval arithmetic, it is possible to obtain the point (degenerated) interval [0, 0] = 0 by
subtraction of two identical intervals a−a = [0, 0] and the point interval [1, 1] = 1 as the result of
the division a/a = 1, which is impossible when applying the classical interval arithmetic. From a
practical point of view, it is the most important one and causes the directed interval arithmetic
to be popular in numerical applications (Dawood, 2011; Piasecka-Belkhayat and Korczak, 2016,
2017).
Modelling of laser-biological tissue interactions requires appropriate mathematical descrip-

tion. It is known that the scattering dominates over the absorption in soft tissues for wavelengths
between 650 and 1,300 nm (so-called biological window). Because of this, usually the radiative
transport equation is taken into account (Dombrovsky and Baillis, 2010). There are several mo-
difications in the discrete ordinates method or statistical Monte Carlo methods which are used
to solve this equation (Banerjee and Sharma, 2010; Welch, 2011). In some cases, it is possible to
approximate the light transport using the diffusion equation (Dombrovsky et al., 2013; Fasano
et al., 2010; Jacques and Pogue, 2008).
Modelling of the laser energy deposition is the first step in the modelling of physical processes

proceeding in biological tissues subjected to a laser beam. Next, the temperature distribution
must be calculated by making use of the bioheat transfer equation. The Pennes equation is
the earliest one known but is probably still the most popular and widely used (Abraham and
Sparrow, 2007; Majchrzak and Mochnacki, 2017; Paruch, 2014). The newest achievements in
this field are based on the porous media theory (GDPL equation, generalized dual-phase lag
equation) which takes into account the heterogeneous structure of biological tissue (Jasiński et
al., 2016; Majchrzak and Mochnacki, 2017; Majchrzak et al., 2015).
The last step in the analysis of the tissue heating process is to estimate the degree of its

destruction (Abraham and Sparrow, 2007; Henriques, 1947; Jasiński, 2018). The Arrhenius in-
jury integral is the most frequently applied tool for this purpose, although other models (e.g.
thermal dose) are also used (Mochnacki and Piasecka-Belkhayat, 2013). The Arrhenius scheme
assumes the exponential dependence between temperature and the degree of tissue destruction.
Furthermore, it refers only to the irreversible tissue damage, however, there are models which
allow one to take into account the withdrawal of tissue injury in the case of temporary, small
local increasing of temperature (Jasiński, 2014, 2018).
The purpose of this paper is to analyse the phenomena occurring in the laser-treated soft

tissue wherein thermophysical and optical parameters are defined and treated as directed interval
numbers. The analysis is based on the bioheat transfer equation in the Pennes formulation,
whereas, to describe the light distribution in tissue the steady-state diffuse approximation is
used. The degree of tissue destruction is also estimated by the use of the Arrhenius scheme. At
the stage of numerical realisation, the interval finite difference method is used (Majchrzak and
Mochnacki, 2016, 2017; Mochnacki and Suchy, 1995).

2. Formulation of the problem

A transient heat transfer in biological tissue is described by the Pennes equation. The interval
form of this equation can be expressed in the form (Abraham and Sparrow, 2007; Jankowska
and Sypniewska-Kaminska, 2012; Jasiński, 2014; Paruch, 2014)

x ∈ Ω : c
∂T

∂t
= λ∇2T +Qperf +Qmet +Qlas (2.1)

where λ [Wm−1K−1] is the interval thermal conductivity, c [Jm−3K−1] is the interval volumetric
specific heat, Qperf , Qmet and Qlas [Wm

−3] are the interval internal heat sources containing
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information connected with the perfusion, metabolism and laser irradiation, respectively, while
T = T (x, t) [K] is the interval temperature.
In this paper, the 2D domain of homogeneous biological tissue of a rectangular shape Ω

subjected to the laser action is considered (Fig. 1).

Fig. 1. The domain considered

Equation (2.1) is supplemented by the Robin condition assumed on the external boundary of
tissue Γ0, which is subjected to laser irradiation while on the remaining parts of the boundary Γc
the no-flux condition is accepted

x ∈ Γ0 : q(x, t) = α(T − Tamb)
x ∈ Γc : q(x, t) = 0

(2.2)

where α [Wm−2K−1] is the convective heat transfer coefficient and Tamb is temperature of the
surroundings. The initial distribution of temperature is also known

x ∈ Ω, t = 0 : T (x, t) = Tp (2.3)

In the current work, the metabolic heat source Qmet [Wm
−3] is assumed as a constant interval

parameter while the perfusion heat source is described by the formula

Qperf(x, t) = cBw[TB − T (x, t)] (2.4)

where w [s−1] is the interval perfusion coefficient, cB [Jm−3K−1] is the volumetric specific heat of
blood and TB corresponds to the arterial temperature (Abraham and Sparrow, 2007; Mochnacki
and Piasecka, 2013).
The source function Qlas connected with the laser heating is defined as follows (Jasiński et

al., 2016)

Qlas(x, t) = µaφ(x)p(t) (2.5)

where µa [m
−1] is the interval absorption coefficient, φ(x) [Wm−2] is the interval total light

fluence rate and p(t) is the function equal to 1 when the laser is on and equal to 0 when the
laser is off.
The total interval light fluence rate φ is the sum of the interval collimated part φc and diffuse

part φd (Banerjee and Sharma, 2010; Dombrovsky et al., 2013)

φ(x) = φc(x) + φd(x) (2.6)

The collimated fluence rate is given as (Jasiński et al., 2016)

φc(x) = φ0 exp
(
−2x

2
2

r2

)
exp(−µ′tx1) (2.7)
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where φ0 [Wm−2] is the surface irradiance of laser, r is the radius of the laser beam and µ′t [m
−1]

is the interval attenuation coefficient defined as (Banerjee and Sharma, 2010)

µ′t = µa + µ
′
s = µa + (1− g)µs (2.8)

where µs and µ
′
s [m

−1] are the interval scattering coefficient and the effective scattering coeffi-
cient, respectively, while g is the anisotropy factor.
To determine the interval diffuse fluence rate φd, the steady-state optical diffusion equation

should be solved (Dombrovsky et al., 2013; Welch, 2011)

x ∈ Ω : D∇2φd(x)− µaφd(x) + µ′sφc(x) = 0 (2.9)

where

D =
1

3[µa + (1− g)µs]
=
1
3µ′t

(2.10)

is the interval diffusion coefficient.
Equation (2.9) is supplemented by the boundary conditions on the boundaries Γ0 and Γc

x ∈ Γ0, Γc : −Dn · ∇φd(x) =
φd(x)
2

(2.11)

where n is the outward unit normal vector.
Damage of biological tissue resulting from temperature elevation is modelled by the Arrhenius

injury integral, and its interval version considered in this paper is defined as (Abraham and
Sparrow, 2007; Fasano et al., 2010; Henriques, 1947; Mochnacki and Piasecka-Belkhayat, 2013)

Ψ(x, tF ) =
tF∫

0

P exp
[
− E

RT (x, t)

]
dt (2.12)

where R [Jmole−1K−1] is the universal gas constant, E [Jmole−1] is the activation energy and
P [s−1] is the pre-exponential factor while [0, tF ] is the considered time interval. The criterion
for tissue necrosis is Ψ(x)  1.

3. Method of solution

In this paper, both analyzed equations: the Pennes equation and the steady-state optical dif-
fusion equation have been solved using the interval finite difference method (Mochnacki and
Piasecka-Belkhayat, 2013). The information about the directed interval arithmetic are presen-
ted in (Dawood, 2011; Piasecka-Belkhayat, 2011; Popova, 2011).
In order to determine the function Qlas at the internal node (i, j) (cf. equation (2.5)),

steady-state optical diffusion equation (2.9) is solved. The uniform differential grid of dimension
2n× 2n with spacing h/2 is used here (Fig. 2). Using such a differential grid, it is easier to take
into account boundary conditions (2.11), because a part of the nodes is located exactly on the
boundary Γ0 and Γc. In addition, one can distinguish common grid nodes for the temperature
and diffuse fluence rate.
The following differential quotients are used

(∂2φd
∂x21

)

i,j
=
φdi+1,j − 2φdi,j + φdi−1,j

(h/2)2
(∂2φd
∂x22

)

i,j
=
φdi,j+1 − 2φdi,j + φdi,j−1

(h/2)2
(3.1)
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Fig. 2. Five-point stencil and differential grid

and then the approximate form of equation for the internal node (i, j) (i = 1, 2, . . . , 2n − 1,
j = 1, 2, . . . , 2n− 1) is as follows

φdi,j = C1Φdi,j + C2φci,j (3.2)

where (superscripts “−” and “+” denote the beginning and the end of the interval, respectively)

Φdi,j = φdi−1,j + φdi+1,j + φdi,j+1 + φdi,j−1
= φ−di−1,j + φ

−
di+1,j + φ

−
di,j+1 + φ

−
di,j−1, φ

+
di−1,j + φ

+
di+1,j + φ

+
di,j+1 + φ

+
di,j−1]

(3.3)

while

C1 =
4D

16D + h2µa
=

4[D−,D+]
16[D−,D+] + h2[µ−a , µ+a ]

=
[4D−, 4D+]

[16D− + h2µ−a , 16D+ + h2µ+a ]

=
[ 4D−

16D− + h2µ−a
,

4D+

16D+ + h2µ+a

]

C2 =
µ′sh
2

16D + µah2
=

h2[µ
′−
s , µ

′+
s ]

16[D−,D+] + h2[µ−a , µ+a ]
=

[h2µ′s, h
2µ
′+
s ]

[16D− + h2µ−a , 16D+ + h2µ+a ]

=
[ h2µ

′−
s

16D− + h2µ−a
,

h2µ
′+
s

16D+ + h2µ+a

]

(3.4)

while for boundary nodes (cf. equation (2.11))

D
φd1,j − φd0,j

h/2
=
1
2
φd0,j → φd0,j = C3φd1,j

−Dφdn,j − φdn−1,j
h/2

=
1
2
φdn,j → φdn,j = C3φdn−1,j

D
φdi,j − φdi,0

h/2
=
1
2
φdi,0 → φdi,0 = C3φdi,1

−Dφdi,n − φdi,n−1
h/2

=
1
2
φdi,n → φdi,n = C3φdi,n−1

(3.5)

where

C3 =
4D
4D + h

=
4[D−,D+]
4[D−,D+] + h2

=
[4D−, 4D+]

[4D− + h2, 4D+ + h2]
=
[ 4D−

4D− + h2
,
4D+

4D+ + h2
]
(3.6)
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It should be pointed out that the system of equations (3.2) is solved using the iterative method.
The differential quotients approximating the derivatives appearing in the Pennes equation

(2.1) are defined in a similar, as previously, manner

(∂2T
∂x21

)

i,j
=
T i+1,j − 2T i,j + T i−1,j

h2

(∂2T
∂x22

)

i,j
=
T i,j+1 − 2T i,j + T i,j−1

h2

∂T

∂t
=
T
f
i,j − T

f−1
i,j

∆t

(3.7)

where ∆t denotes the time step while f − 1 and f are the subsequent time levels.
By introducing this formulas into (2.1), and after some mathematical operations for the

internal nodes (i = 1, 2, . . . , n, j = 1, 2, . . . , n), one obtains

T
f
i,j = A2T

f−1
i,j +A1Υ

f−1
i,j +A3 (3.8)

where

Υ
f−1
i,j = T

f−1
i+1,j + T

f−1
i−1,j + T

f−1
i,j+1 + T

f−1
i,j−1 =

[
(T f−1i+1,j)

− + (T f−1i−1,j)
− + (T f−1i,j+1)

− + (T f−1i,j−1)
−,

(T f−1i+1,j)
+ + (T f−1i−1,j)

+ + (T f−1i,j+1)
+ + (T f−1i,j−1)

+
]

(3.9)

while

A1 =
λ∆t

ch2
=
∆t[λ−, λ+]
h2[c−, c+]

=
[∆tλ−,∆tλ+]
[h2c−, h2c+]

=
[∆tλ−

h2c−
,
∆tλ+

h2c+

]

A2 = 1−A1 −
wcB∆t

c
= [1−A−1 , 1−A+1 ]−

cB∆t[w−, w+]
[c−, c+]

= [1−A−1 , 1−A+1 ]

−
[cB∆tw−

c−
,
cB∆tw

+

c+

]
=
[
1−A−1 −

cB∆tw
−

c−
, 1−A+1 −

cB∆tw
+

c+

]

A3 =
∆t

c
(wcBTB +Qmet +Qlas) =

∆t

[c−, c+]
(cBTB [w−, w+] + [Q−met, Q

−
met] + [Q

−
las, Q

−
las])

=
[∆t(cBTBw− +Q−met +Q

−
las)

c−
,
∆t(cBTBw+ +Q+met +Q

+
las)

c+

]

(3.10)

The “boundary” nodes are located at the distance 0.5h from the boundary of the domain. This
approach gives a better approximation of the Neumann and Robin boundary conditions, but
the final form of the interval FDM equation for the boundary nodes are obtained in similar way.
More details of this approach can be found in (Jasiński et al., 2016; Majchrzak and Mochnacki,
2016, 2017).
On the basis of equation (3.8), the temperature at the node (i, j) for the time level can be

found on the assumption that the stability condition for an explicit differential scheme is fulfilled
(Mochnacki and Suchy, 1995).

4. Results of computations

At the stage of numerical computations, a 2D homogeneous tissue domain of size 4×4 cm during
laser irradiation (Fig. 1) has been considered. The uniform differential grid with 40 × 40 nodes
is introduced (Fig. 2). As has been already mentioned, the values of the effective scattering
coefficient are different for the native and thermally-damaged (denaturated) tissue, so the two
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simulations have been conducted (for µ′s = µ′s nat and µ
′
s = µ′s den). The optical (µa, µ

′
s) and

thermophysical (λ, c, w,Qmet) parameters of the tissue are assumed as the directed interval
numbers in form (Dombrovsky et al., 2013; Popova, 2011)

p = [p− 0.025p, p + 0.025p] (4.1)

where p denotes the parameter.
The following data have been assuming in calculations: λ = 0.609Wm−1K−1,

c = 4.18MJm−3K−1, w = 0.00125 s−1, µa = 40m−1, µ′s nat = 1000m
−1, µ′s den = 4000m

−1,
Qmet = 245Wm−3, cB = 3.9962MJm−3K−1, TB = 37◦C, P = 3.1 · 1098 s−1,
E = 6.27 · 105 Jmole−1, R = 8.314 Jmole−1K−1, φ0 = 3 · 105Wcm−2, d = 2mm, texp = 25 s,
α = 10Wm−2K−1, Tamb = 20◦C, Tp = 37◦C, ∆t = 1 s.

Fig. 3. Distribution of the interval collimated fluence rate φc (x2 = 0)

Fig. 4. Distribution of the interval diffuse fluence rate φd (x2 = 0)

Figures 3-5 are associated with the light fluence distribution in the domain considered.
Figure 3 presents the distribution of the interval collimated fluence rate φc calculated on the
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basis of equation (2.7) while in Fig. 4 the distribution of the interval diffuse fluence rate φd
resulting from steady-state optical diffusion equation (2.9) is presented. The distribution of the
interval diffuse fluence rate φd is also presented in Fig. 5. It is visible that the area of scattering
is larger in the case of calculation with µ′s nat although the values of φd are lower than in the
case of calculation with µ′s den.

Fig. 5. Distribution of the interval diffuse fluence rate φd [kWm
−2]

The next figure is associated with the tissue temperature. In Fig. 6, the interval tissue
temperature history at the node N0(0, 0) (Fig. 1) obtained for the effective scattering coefficient
of native and denaturated tissue is presented. As can be seen, wider temperature intervals are
obtained in the case of denaturated tissue.

Fig. 6. History of interval tissue temperature at the node N0
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Fig. 7. History of the interval Arrhenius integral at the node N0

Fig. 8. Distributions of the interval Arrhenius injury integral for native tissue (µ′s = µ
′

snat)



258 A. Korczak, M. Jasiński

In Fig. 7, the history of the interval Arrhenius integral at the node N0 is shown. As expected,
due to the wider intervals obtained in the calculations with µ′s den, wider intervals for the interval
Arrhenius integral are also obtained for this variant of calculations. It is visible that tissue
destruction occurs first in the case of native tissue – the injury integral reaches the necrosis
criterion (Ψ  1) in the time interval [14,15] s while for calculation with µ′s den this criterion is
reached in the time interval [17,21] s.
The results associated with the tissue destruction are also presented in Figs. 8 and 9. In both

figures, the interval injury integral distributions for selected time steps are presented. The white
zone in these figures refers to the values of the injury integral below 0.01 (thermally untouched
tissue), the grey zone refers to the values 0.01 < Ψ < 1, so it is a partial damage area, and
the black zone illustrates the area in which the Arrhenius integral achieved the criterion of
tissue necrosis. In both cases, the coagulation zones obtained for the lower and upper bounds
of intervals are slightly different, however, in the case of destructed tissue the differences are
bigger.

Fig. 9. Distributions of the interval Arrhenius injury integral for denaturated tissue (µ′s = µ
′

s den)

5. Discussion

As has been mentioned before, the reason for the application of the directed interval arithmetic
was to take into account the inaccuracies of estimation of biological tissue parameters and their
effect on thermal damage to the tissue. It can be seen that the results associated with the tissue
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damage are quite reasonable for the assumed width of interval parameters. The differences
between the ranges of coagulation zones (Figs. 8 and 9) obtained for both assumed values of the
interval effective scattering coefficient µ′s nat and µ

′
s den are clearly visible. On the other hand,

the differences between the lower and upper bounds of the interval Arrhenius integral for both
cases of µ′s are not very big.
Of course, thermal damage can also expand after the impulse causing the temperature ele-

vation ceases, what happens also in the analysed cases for t > texp, and the thermal injury is
fully formed in less than 40 s.
Application of the Arrhenius integral also allows one to estimate the time after which the

given point of the domain considered is thermally damaged, i.e. the value Ψ reaches the necrosis
criterion. The results of this type are shown in Fig. 7. These results allow one to estimate the
time of tissue damage in a few second intervals – at the node N0 for the calculation with µ′s nat
[14,15] s while for the calculation with µ′s den [17,21] s. Such width of intervals can be accepted
as useful information from a practical point of view.
It should be pointed out that, in some cases, it is justified to assume a more restrictive

necrosis criterion, i.e. Ψ(x)  4.6 which corresponds to 99% of dead cells (e.g. laser cancer
therapy). This criterion is also fulfilled at the node N0 for the assumed width of the parameter
intervals – for calculation with µ′s nat [15,17] s, for calculation with µ

′
s den [19,25] s. These width

of intervals are a still reasonable outcome.
One should also note that an increase in the intervals for optical and thermophysical para-

meters leads to an increase in temperature intervals, which are the basic value in calculations of
the interval Arrhenius integral. This, in turn, may lead to a situation in which the lower bound
of the interval injury integral for a selected point of the domain considered would be below the
threshold of necrosis, whereas the upper bound would exceed this threshold.

6. Conclusions

In the paper, the analysis of the thermal damage of biological tissue subjected to laser impulse
has been presented, whereas, the optical and thermophysical parameters of tissue have been
treated as the directed interval numbers. That concerned two optical parameters: absorption
coefficient µa, effective scattering coefficient of tissue µ

′
s, and four thermophysical parameters:

thermal conductivity λ, volumetric specific heat c, perfusion coefficient w and metabolic heat
source Qmet. The combined effect of those parameters has been considered, although it is known
that not all of these parameters (or actual changes in parameters values) have the same influence
on the temperature level and, as a result, on the estimated value of tissue damage. It has been
described in numerous works related to e.g. sensitivity analysis (Majchrzak and Mochnacki,
2017; Mochnacki and Ciesielski, 2016). Of course, interval analysis for the individual parameters
of tissue is also possible to perform.
The directed interval arithmetic has already been effectively applied to the modelling of

bioheat transfer problems. Most of the works were based on the Pennes equation, although it is
possible to use a different bioheat transfer equation (Mochnacki and Piasecka-Belkhayat, 2013).
Of particular interest here is the use of the GDPL equation based on the theory of porous
bodies which binds the process of heat transfer with the inner tissue structure (Majchrzak and
Mochnacki, 2017; Majchrzak et al., 2015).
The modelling of the tissue thermal damage process also includes a number of other pro-

blems, e.g. methods of taking into account changes in parameter values caused by the degree of
tissue damage (Jasiński, 2015, 2018). Further work related to the application of directed inter-
val arithmetic in this area could concern these issues or the problems related with the use of
interval numbers in other algorithms related to thermal damage (Jasiński, 2015; Mochnacki and
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Piasecka, 2013). Because the interval arithmetic is a method developed by mathematicians in
order to put bounds on rounding errors and measurement errors in mathematical computation,
it could also be a useful approach to the modelling of various problems of bioheat transfer.
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The subject of the research is analysis of the influence of the damping effect on the dynamic
response of a plate. During the tests, the areas of dynamic stability and instability for the
plate with and without damping are compared. Besides, exact analysis of the nature of
the solution by applying criteria such as phase portraits, Poincaré maps, FFT analysis, the
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1. Introduction

The beginnings of studies concerning the dynamic stability of plates can be found in publications
from the middle of the twentieth century. The first publication regarding dynamic stability of
plates was presented by Zizicas (1952). In that paper, theoretical solutions for the joint supported
plate with a time-dependent load were reported. Subsequent years of research led to creation of
dynamic stability criteria which were divided into: geometric (Cooley and Tukey, 1965), energy
(Raftoyiannis and Kounadis, 2000) and failure ones (Petry and Fahlbusch, 2000).
One of the major criterion was a Budiansky-Hutchinson criterion (Hutchinson and Budian-

sky, 1966) which concerned rods and cylindrical shells with an axial load. They analyzed the
load in the form of a pulse of a finite and infinite duration. They proved that the loss of stability
of dynamically loaded constructions occurs when small load increments cause a rapid increase
of deflection. Budiansky was one of the authors of a similar criterion regarding cylindrical shells
with a transverse load – the Budiansky-Roth criterion (Budiansky and Roth, 1962). This cri-
terion was willingly used in research of other scientists who were involved in the similar topics
(Shariyat, 2007; Kubiak, 2007; Zhang et al., 2004).
Another important criterion is the Petry-Fahlbusch criterion (Petry and Fahlbusch, 2000).

The researchers said that the analysis of the stress state should determine the dynamic critical
load for the construction with a stable post-critical equilibrium path. Based on such an analysis,
it is possible to determine the load for which destruction of the structure takes place. According
to Petry-Fahlbusch’s theory, if the condition – the reduced stress is smaller or equal to the
boundary stress – is fulfilled at any time and at any point of the studied structure, then a
dynamic response of the construction under the pulse load is dynamically stable.
The next important criterion is the Volmir criterion (Volmir, 1972). He analyzed pulses of a

finite duration: a rectangular pulse and an exponentially decreasing pulse, pulses of an infinite
duration and a linearly increasing load. He studied pulses that caused both compression and
shear. Using the Bubnov-Galerkin (Michlin and Smolnicki, 1970) and Runge-Kutta (Collatz,
2012; Fortuna et al., 2005) methods, he said that the loss of stability of pulse loaded plates
occurs when the maximum deflection of the plates is equal to their thickness or half thickness.
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Ari-Gur and Simonetta (1977) proposed four criteria for the loss of stability. They described
the critical load depending on the following parameters: the measured deflection in the middle of
length and width of the plate and the intensity of load for plates fixed at all edges and loaded with
a pulse of half-wave shaped (a pulse of finite duration). The first concerns the value of deflection
and the intensity of the load pulse – if a slight increase in the load pulse intensity causes a
significant increase in the value of deflection then dynamic buckling takes place. According to
the second criterion – if a slight increase in the amplitude of the load pulse causes a decrease
in the value of deflection then dynamic buckling happens. The next two criteria are failure
criteria which are based on the response analysis of the loaded edge of a plate. According to the
third criterion – if a small increase in the force pulse amplitude causes a sudden increase in the
shortening value of the loaded edge of the plate then dynamic buckling occurs. According to the
fourth criterion – if a small increase in the pulse intensity of displacement of the loaded edge
causes a change in the reaction sign on the plate edge then dynamic buckling takes place.
The behavior of rod systems was analyzed by the finite element method by Kleiber et al.

(1987). They formulated a quasi-bifurcation criterion of dynamic stability for a construction
under a jump loaded (Heaviside pulse) by using properties of a tangent stiffness matrix in the
point of bifurcation. According to this criterion, the structure loses stability and the deflection
begins to grow boundlessly when the determinant of the tangent stiffness matrix is equal to
zero and the absolute value of the smallest eigenvalue is greater than the absolute value of the
nearest maximum reached by the smallest eigenvalue.
All the above criteria are widely used in the research of many scientists who deal with the

analysis of dynamic stability (Bolotin 1972; Hsu and Forman, 1975; Kołakowski, 2007; Kołakow-
ski and Kubiak, 2007; Kowal-Michalska, 2010; Kubiak et al., 2010; Mania and Kowal-Michalska,
2007; Moorthy et al., 1990; Wu and Shih, 2006).
However, the analysis of plate structures with application of dynamic criteria such as phase

portraits, Poincaré maps, FFT analysis, the largest Lyapunov exponents is less used (Alijani
et al., 2011a,b; Gilat and Aboudi, 2000; Touati and Cederbaum, 1995; Wang et al., 2010; Yeh
and Lai, 2002; Yuda and Zhiqiang, 2011). Therefore, this paper presents the influence of the
damping effect on the dynamic response of the plate using the above tools.

2. Studied plate

A square isotropic plate with dimensions b = l = 100mm, h = 1mm and material constants
E = 200GPa, ν = 0.3 is analyzed (Fig. 1). The analyzed plate is simply supported on the all
edges. The plate is loaded with a dynamic compressive load. The dynamic load means the load
that has been introduced suddenly and lasts for an infinitely long time.

Fig. 1. Studied plate
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2.1. The plate without damping

According to the research by Volmir (1972), the above plate can be described by the following
equation

ζ̈ + ω20
(
1− σ∗x

σ∗cr

)
ζ + ηζ3 = 0 (2.1)

After transformations, the test plate without damping can be described using the equation

ζ̈ +Ω20(1− k cos θt)ζ + ηζ3 = 0 (2.2)

where

k =
σ∗t /σ

∗
cr

1− σ∗0/σ∗cr
Ω20 = ω

2
0

(
1− σ∗0

σ∗cr

)

and ζ is the deflection of the plate, ω0 – natural frequency, σ∗cr – critical stress, σ
∗
0 – medium

stress, σ∗t – stress amplitude, η – parameter whose value is dependent on the boundary conditions.
Transform now equation (2.2) into a dimensionless form

ẍ+ a(1− k cosψτ)x+ bx3 = 0 (2.3)

where

a = 1− σ∗0
σ∗cr

b =
η

ω20
ẍ =

1
ω20
ζ̈ x = ζ x3 = ζ3 ψ =

θ

ω0

and τ is the dimensionless time. For the studied plate supported on all edges, the values of
parameters are: ω0 = 3014.3 rad/s, η = 0.23 rad/s2, σ∗cr = 72.3MPa. For the purpose of further
numerical analysis, equation (2.3) is replaced by two first-order differential equations

ẋ1 = x2 ẋ2 = −a(1− k cosψτ)x1 − bx31 (2.4)

2.2. The plate with damping

Introducing damping into equation (2.2) and transforming into a dimensionless form, one
obtains

ẍ+ cẋ+ a(1− k cosψτ)x+ bx3 = 0 (2.5)

where: c = 2h/ω0 – the dimensionless damping ratio, h = 0.02 (Kołakowski and Teter, 2013),
the other parameters are the same as for the plate without damping.
Writing equation (2.5) in the form of two first-order differential equations, we get

ẋ1 = x2 ẋ2 = −cx2 − a(1− k cosψτ)x1 − bx31 (2.6)

All studies are carried out for the following initial conditions: x1 = 0.01, x2 = 0.

3. Numerical analysis of the plate

Figure 2 shows the areas of dynamic stability and instability (circled areas) for the plate with-
out (a) and with (b) the damping effect after earlier presentation of the full compliance of the
results presented by Volmir (1972) and the results obtained with the dynamic tools for the plate
without the damping effect (Borkowski, 2017).
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Fig. 2. Graphs of dynamic stability and instability areas for the plate without (a) and with (b) the
damping effect

Both graphs in k − ψ/2Ω coordinates (ψ = θ/ω0, Ω = Ω0/ω0) by changing values of the
parameters σ0 and σt have been made. Calculations of the parameters k and ψ/2Ω changing
every 0.01 were executed. Figure 2 has been obtained by using the criteria of phase portraits,
Poincaré maps and FFT analysis.

Analyzing both charts, it can be concluded that there are larger areas of dynamic instability
for the plate without damping as against the plate with damping. In addition, small dynamic
stability areas within the dynamic instability range in both cases are observed (Figs. 3a and 3b).

Fig. 3. Detailed graphs of dynamic stability and instability areas for the plate without (a) and with (b)
the damping effect

For the plate without damping, the dynamic stability area is represented by a quasi-periodic
solution. In the range of dynamic instability, both quasi-periodic as well as chaotic solutions can
be specified.
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For the plate with damping, in the dynamic stability area the trajectory is heading to the
critical point. In the range of dynamic instability, the periodic solutions as well as the series of
period-doubling bifurcations, which lead to a chaotic response, are obtained.

Therefore, for the purpose of a more detailed analysis and presentation of the above solutions,
the criterion of the largest Lyapunov exponents has been used.

Figure 4 shows the areas of the chaotic solution (gray areas) for the plate without (a) and
with (b) damping. The dashed lines indicates the boundary for the dynamic stability/instability
areas which corresponds to the circled part in Fig. 2. Comparing the two graphs, it can be
clearly stated that the introduction of damping to the analyzed plate results in obtaining much
smaller areas of dynamic instability with a chaotic solution. Figure 5 presents a magnification of
Figs. 4a and 4b. Gray dots correspond to specific values and gray lines to ranges for the chaotic
solution.

Fig. 4. Graphs of areas representing the chaotic solution for the plate without (a) and with (b) the
damping effect

Fig. 5. The detailed graphs of areas representing the chaotic solution for the plate without (a) and
with (b) the damping effect
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In order to present the solutions more clearly, three points from Fig. 2 for individual ran-
ges have been selected. These points represent solutions from the area of dynamic stability –
(k = 0.50, ψ/2Ω = 0.30), from the area of dynamic instability with a periodic/quasi-periodic
solution – (k = 0.25, ψ/2Ω = 1.00) and from the area of dynamic instability with a chaotic
solution – (k = 1.50, ψ/2Ω = 0.30).
Analyzing the obtained results and using the criteria of phase portraits as well as Poincaré

maps, it can be concluded that the loss of dynamic stability is associated with a sudden increase
in the displacement x1 and velocity x2 (Figs. 6d, 6f, 6g, 6i) when compared to the dynamic
stability areas (Figs. 6a, 6c). According to the research presented in (Bazant and Cedolin, 2010),
the loss of stability is related to displacement of the phase trajectory into infinity. This is the
case when the analysis time corresponds to the period of natural vibration of a construction.
In order to use dynamic tools such as phase portraits or Poincaré maps, the presented research
concerns the analysis duration many times greater than the period of natural vibration. For a
long duration, the phase trajectory does not move into infinity. It achieves some limit values of
the displacement x1 and velocity x2, the value of which depends on the parameter k. However,
applying the criterion of phase portraits and analyzing the plate for both short and long analysis
duration, the same results are obtained.

Fig. 6. The plate without damping – phase portraits (a), (d), (g), FFT analysis (b), (e), (h) and
Poincaré maps (c), (f), (i) for the areas of dynamic stability (a), (b), (c), dynamic instability –
quasi-periodic solution (d), (e), (f) and dynamic instability – chaotic solution (g), (h), (i)

Applying FFT analysis, it can be concluded that it is possible to precisely determine domi-
nant frequencies in the stability range (Fig. 6b). Also in the instability range with a quasi-periodic
solution, dominant frequencies can be specified (Fig. 6e). In both cases, the appearance of two
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disproportionate to each other frequencies can be observed. The so-called two-dimensional torus
(2D torus) is created. In both Fig. 6b and Fig. 6e, the largest Lyapunov exponents are appro-
ximately equal to zero (λ1 = 0.000002, λ2 = −0.000002 – for the point k = 0.50, ψ/2Ω = 0.30;
λ1 = 0.000004, λ2 = −0.000004 – for the point k = 0.25, ψ/2Ω = 1.00). It should be noted that
the two zero Lyapunov exponents for the stability area are the result of the absence of damping
in the system (2.3). As a consequence, there is no attractor (attractors) to which the trajectory
would converge.
In the instability range with a chaotic solution (Fig. 6h), the frequency spectrum is con-

tinuous. It is not possible to specify the dominant frequencies. The amplitude of the tested
signal increases significantly, which is expressed in decibels. The value of the largest Lyapunov
exponent is positive (λ1 = 0.043531, λ2 = −0.043531).
Similarly to the plate without damping, the loss of stability for the plate with damping is

associated with a sudden increase in the displacement x1 and velocity x2 (Figs. 7d, 7f, 7g, 7i)
when compared to the dynamic stability areas (Fig. 7a). In the stability area – as a result of
the introduced damping – the trajectory goes to the critical point (Fig. 7a). The Lyapunov
exponents are negative (λ1 = −0.019993, λ2 = −0.020007) and there is no solution in the FFT
graphs (Fig. 7b) as well as Poincaré maps (Fig. 7c).

Fig. 7. The plate with damping – phase portraits (a), (d), (g), FFT analysis (b), (e), (h) and Poincaré
maps (c), (f), (i) for the areas of dynamic stability (a), (b), (c), dynamic instability – periodic

solution (d), (e), (f) and dynamic instability – chaotic solution (g), (h), (i)

In the areas of dynamic instability, a periodic solution has been obtained (Figs. 7d, 7e, 7f).
Together with the series of period-doubling bifurcations, it leads to a chaotic solution (Figs. 7g,
7h, 7i). Figures 7d, 7e, 7f show a solution with a period equal to 2. The FFT analysis (Fig. 7e)
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enables precise representation of the dominant frequencies. The Lyapunov exponents are negative
(λ1 = −0.020000, λ2 = −0.020000).
Similarly to the plate without the damping effect, in the areas of dynamic instability with

a chaotic solution, the frequency spectrum is continuous, and it is impossible to distinguish the
dominant frequencies (Fig. 7h). The amplitude of the signal also increases. The value of the
largest Lyapunov exponent is positive (λ1 = 0.043397, λ2 = −0.043397).

4. Summary

The subject of the research is to present the influence of the damping effect on the dynamic
response for an isotropic plate. The areas of dynamic stability and instability for the plate with
and without damping are compared. Additionally, using the criteria such as phase portraits,
Poincaré maps, FFT analysis, the largest Lyapunov exponents, the nature of the solution of the
analyzed plate has been presented.
After the tests, it can be concluded that the impact of damping causes changes in the

instability areas of the studied structure. In addition, the introduction of damping to the system
results in a significant difference in the occurrence of areas in which the solution is chaotic.
For the plate without damping, a quasi-periodic solution in the dynamic stability areas

has been observed. The occurrence of two disproportionate to each other frequencies as well
as formation of a 2D torus have been proved. Whereas, both the quasi-periodic as well as the
chaotic solution in the instability range have been specified.
For the plate with the damping effect in the area of dynamic stability, the phase trajectory

is going to the critical point. In the range of dynamic instability, the periodic solutions as well
as the series of period-doubling bifurcations, which lead to the chaotic response, have been
obtained.
In both analyzed cases (for the plate without and with damping), the loss of dynamic stabili-

ty is associated with a significant increase in the displacement x1 and velocity x2 in comparison
to the dynamic stability areas – the criteria of phase portraits and Poincaré maps. Using the
FFT analysis, the loss of dynamic stability results in inability to precisely specify the dominant
frequencies in the spectral signal (what is possible in the areas of dynamic stability), and a
significant increase in their amplitude is found. Implementing the criterion of the largest Lyapu-
nov exponents, it is possible to clearly present significant differences between the areas with a
chaotic solution for plates without and with the damping effect.
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In this paper, the influence of friction resistance and mutual contact interaction on dy-
namical properties of the cam-tappet mechanism is analyzed. A dynamical model of the
cam-tappet contact has been developed. Chosen results of numerical simulations of this
model are presented for cases with and without oil lubrication in contact zones. Various
phenomena accompanying the cam-tappet contact dynamics have been observed, e.g., chan-
ge of the global direction of tappet rotation, local oscillation of these revolutions, changes of
friction in function of frequency of the camshaft longitudinal vibrations. We confirm, that
the growing amplitude of camshaft longitudinal vibration causes an increase in the tappet
rotational speed, whereas its reducing to small values leads to stopping the tappet rotation.

Keywords: cam-tappet mechanism, friction, lubrication

1. Introduction

Many machines like combustion engines employ mechanisms forced by a roller or plane tappet
driven by cam devices. A characteristic feature observed in such mechanisms is the occurrence
of concentrated line contact between the touching surfaces. There exist conditions of elasto-
hydrodynamic lubrication (EHL) allowing variations of the friction type from the mixed to
the boundary one. The contact zone is loaded by the force changing both, in value and its
acting direction. The main component of the sliding velocity which results from the mechanism
operational cycle also varies. During the time when both surfaces remain in contact, additional
relative displacements, small in amplitude, may occur in peripheral, axial and normal directions
of the cam motion. They may be a result of torsional vibrations of the camshaft. The axial
displacements may result from bending vibrations and from forced displacement within the
axial clearance. Such displacements being normal to the contacting surfaces may arise from
changes of the loading force and bending vibrations of the camshaft. Obviously, they change the
course of contact loading.
The amount of friction between two lubricated sliding surfaces depends primarily on the

contacting materials, load, lubricant formulations and the lubrication regimes. Under boundary
and mixed lubrication conditions, where some asperities of both surfaces touch each other,
friction can be controlled by lubricant formulations and appropriate surface engineering.
Most studies on cam-follower contacts are addressed to friction and wear measurements for

investigating the influence of lubricant additives and surface coatings, finish and texture, see
Willermet et al. (1991), Soejima et al. (1999), Lindhom and Svahn (2006), Kano (2006), Lewis
and Dwyer-Joyce (2002). The friction force (or torque) is often calculated by subtracting the
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contributions of other components and inertia actions from the measured values, as in Kano
(2006), Baş et al. (2003).
The action of friction forces between the cam and tappet or the valve stem can cause tappet

or valve rotations. Their effects can become positive, as they decrease friction resistance between
contacting surfaces. The rotations are forced when the symmetry plane of the cam is displaced
relative to the tappet or valve axis. Such behavior was described in Jelenschi et al. (2011). For a
particular application, a specific amount of valve rotation is required to maintain even the sealing
level at the valve seat. Excessive amount of valve rotation will result in increased wear of the
contacting surfaces, limiting the engine lifetime. In the analysis described in Refalo et al. (2010),
a minimum engine speed of 3500 rpm was established as a target for valve rotation to begin.
Over a typical driving cycle, the valves can rotate at least once. The maximum value of valve
rotation can reach 15 rpm for any engine speed. Typical factors influencing valve rotation include
oil temperature, assembly variation, machining variability, valve deposits, engine vibrations and
engine temperature.
Hyundai in Kim et al. (2004) are described what influenced and contributed to valve rotation.

It was explained that during opening the valve also rotated along with the valve spring. Next,
during the closing phase, the valve moved back to its original position. As the speed of the
motion increased, there was a greater tendency for the valve to slide at both – the maximum
lift and the closing events. This sliding motion provides a rotational net movement over a given
lift event. All this motion is balanced by friction between each of the contact interfaces: between
the cylinder head, valve spring, valve, retainer, lock, drive mechanism, etc.
In the research described in Hiruma and Furuhama (1978) it was observed that such a

valve started to rotate after reaching the crankshaft speed of 3000 rpm. While speeding up the
crankshaft, the valve rotation increased rapidly. Before reaching the level of 3000 rpm at the
crankshaft, the valve did not rotate or it rotated in varying directions. Also in Beddoes (1992)
similar behavior of random nature and different directions of valve rotation was reported.
The main aim of this paper is to check if the occurrence of camshaft longitudinal vibrations

can decrease friction between the cam and tappet of the valve tip. Also analysis of dynamics of
cam-tappet contact is discussed.
The paper is organized as follows. In Section 2, profiles of the cam mechanism are briefly

described and illustrated. In Section 3, the dynamical model of the cam-tappet contact is in-
troduced. Results of numerical simulations of the cam-tappet dynamics in the case with and
without oil lubrication in the contact zones are demonstrated in Section 4. Finally, Section 5
contains discussion of the obtained results and conclusions.

2. Valve lift profiles in the cam mechanism

A very aggressive cam profile is the best when used with bucket tappets, as stated in Blair et al.
(2005). The base circle radius Rb of the cam equals 0.02m and the valve (and bucket tappet by
definition) stroke is 8.3mm. The bucket tappet is assumed flat. The bucket has the minimum
possible diameter (dt = 0.03m) in order to keep the declared width of the cam in full contact
conditions with the flat tappet surface throughout the working cycle. The design of cam profiles
was presented in Rothbart (2004). They can have a polynomial form

h = hmax
[
1 + C2

(θc − θc(hmax)
β

)2
+ Cp

(θc − θc(hmax)
β

)p
+ Cq

(θc − θc(hmax)
β

)q

+Cr
(θc − θc(hmax)

β

)r
+ Cs

(θc − θc(hmax)
β

)s (2.1)

where p = 22, q = 42, r = 62, s = 82 is a constant power and C2 = −pqrs[(p − 2)(q − 2)(r −
2)(s−2)]−1, Cp = 2qrs[(p−2)(q−2)(r−p)(s−p)]−1, Cq = −2prs[(q−2)(q−p)(r− q)(s− q)]−1,
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Cr = 2pqs[(r− 2)(r− p)(r− q)(s− r)]−1, Cs = −2pqr[(s− 2)(s− p)(s− q)(s− r)]−1 are constant
factors, β = π/3 – angle of rise, hmax – cam stroke.

Fig. 1. (a) Diagram of thevalve lift h against the crankshaft angle θc = CA (crankshaft angle degree).
(b) Diagram of the normal force Nc−t between the cam and tappet against the crankshaft

angle θc = CA. (c) The instantaneous radius of curvature Rc of the cam profile against the crankshaft
angle θc = CA

The shape of the valve lift h against the crankshaft angle φ = CA is presented in Fig. 1a.
The typical trace of the normal force Nc−t between the cam and tappet against φ = CA has
been assumed to be similar as that in Taraza et al. (1999) for the crankshaft speed 1320 rpm,
and is presented in Fig. 1b. The instantaneous radius of curvature Rc of the cam profile, shown
in Fig. 1c, can be calculated from the formula

Rc = Rb + h+
a

ω2c
(2.2)

where Rb is the base radius of cam, ωc – angular velocity of the crankshaft, a = d2l/dt2, l(t) –
varying displacement (Fig. 2b).

3. Modelling of the cam-tappet contact

Mathematical models allowing prediction of lubricant film-thickness and Hertzian pressures at
the cam/tappet contact were presented in Gecim (1992). The model can predict the changes in
the cam/tappet interface friction due to changing operating conditions. Also a model of tappet
spin allowing for slip at the cam/tappet interface has been included. Modelling the tappet spin
allows one to see the effects of the tappet crown radius and cam-taper angle on the interface
frictional loss. It is found that tappet rotation is affected by design and operating conditions,
and depends primarily on camshaft speed.
The use of advanced mathematical models to quantify power loss at cam/tappet contact,

tappet/bore contact and camshaft bearings was presented in Calabretta et al. (2010). Calculated
and measured friction data for the valve train of a high speed passenger car engine were compared
with those obtained from tests on a motored cylinder head test rig. The system friction was
measured and calculated across the operating speed range with different oil supply temperature.
The camshaft model considering both camshaft angular vibration and bending vibration was

presented in Guo et al. (2015). Each follower element was treated as a multi-mass system. The
lumped masses were connected by spring elements and damping elements. The contact force
model at the cam-tappet interfaces was developed based on the elasto-hydrodynamic lubrica-
tion theory of finite line conjunction. It was that bending vibration of the camshaft was mainly
in the normal direction at the cam-tappet interfaces. Bending vibration was mainly influenced
by overlapping of the inlet and exhaust cam functions of each cylinder. The angular vibra-
tion of the camshaft mainly focused at the fundamental frequency and the harmonic frequency
corresponding to the cylinder number.
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3.1. Description of the model

The present dynamic model of the tappet-cam assembly is shown in Fig. 2a for the camshaft
oscillating in the z direction and rotating about such an axis with a constant angular velocity ωc.
The tappet can rotate about its axis with the angle ε. It is assumed that friction torque MTt−p

between the bucket tappet and the valve stem of diameter d or between the tappet and pushrod
of cross-section diameter dp can be estimated as follows

MTt−p ≈
1
3
µt−pNc−tdp (3.1)

where µt−p is the friction coefficient between the tappet and pushrod, which may vary depending
on the amount of oil, sliding velocity of the pushrod against the tappet, and Nc−t represents
the load of contact zone equal to the normal force between the cam and tappet (Fig. 2b). The
friction between the tappet and pushrod is complex and of a mixed type, and sometimes even of
the boundary type, as wear debris and pollution can cumulate in the contact zone. The friction
coefficient can also vary with the loading in the contact zone and vibration amplitude. In order
to ignore the effect of variation of the friction coefficient µt−p on motion of the tappet, only
a constant value of that coefficient has been considered. For simplicity of calculations, it has
been assumed a constant value of the friction coefficient µt−p equal to the averaged one 0.2, and
diameter dp = 0.006m. The friction torque MTc−t between the cam and tappet is calculated
from the equation

MTc−t = µc−tNc−tAc1 sin(2πfc1t) (3.2)

Fig. 2. (a) Dynamic model of the tappet-cam assembly for the camshaft oscillating in the z direction
and rotating about such an axis. (b) The scheme of the cam-tappet contact; 1 – contact surface between
the tappet and pushrod, 2 – contact surface between the tappet and its guide, 3 – plane parallel to the
tappet frontal face and tangent to the cam surface, 4 – cam surface, 5 – camshaft, 6 – camshaft bearing,

7 – tappet guide

Longitudinal oscillations of the camshaft along the z axis have the amplitude Ac1 and fre-
quency fc1. The friction coefficient µc−t between the cam and tappet is complex and varies as
described further. The friction coefficient µt−g between the tappet and guide varies depending
on the amount of oil, sliding velocity of the tappet against its guide and load ib the contact zone.
For simplicity of calculations, it has been assumed a constant value of friction coefficient µt−g
equal to the averaged one, being 0.15. The friction torque MTt−g between the tappet and its
guide is calculated from

MTt−g =
1
2
µt−gFc−tdt =

1
2
µt−gµc−tNc−tdt (3.3)
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where diameter of the tappet equals dt = 0.03m. The balance of torques acting on the tappet
is described by a dynamical differential

Iy ε̈+MTt−g +MTt−p =MTc−t (3.4)

where Iy is the mass moment of inertia of the tappet with respect to the axis Y (see Fig. 2b).
Substituting Eqs. (3.1)-(3.3) into Eq. (3.4), we have

Iy ε̈+
1
2
µt−gµc−tNc−tdt +

1
3
µt−pNc−tdp = µc−tNc−tAc1 sin(ωc1t) (3.5)

where ωc1 = 2πfc1t.
The initial conditions correspond to the situation of the rest, i.e., ε(t = 0) = 0, ε̇(t = 0) = 0.

3.2. Lubrication in the contact zone between the cam and tappet

When the camshaft rotates and undergoes axial oscillations, the oil flow in the contact zone
between the cam and tappet becomes very complex. The cam motion against the tappet caused
only by camshaft rotation allows the occurrence of an oil film over the contact zone between
the tappet and cam. This film is characterized by varying thickness and dominant fluid motion
in the periphera θ direction. The characteristic central thickness of such an oil film is equal
to h0. Estimation of thickness h0 is described in Section 3.3. The cam motion against the tappet
caused only by camshaft longitudinal oscillations also results in varying thickness of the oil film
in the mentioned contact zone. However, the dominant fluid motion in the contact zone is in the
axial z direction. Averaged oil thickness of this oil film is equal to hv . Estimation of thickness hv
is described in Section 3.4. If camshaft motions occur both due to rotation and longitudinal
oscillations, the resulted oil film thickness h is higher than both h0 and hv. In real, the existence
of such two camshaft motions influences the oil thickness h in a very complex manner but, for
simplicity, it can be treated as a superposition. Therefore, it has been assumed that the oil
film thickness h ≈ h0 + hv , where h0 is the central oil film thickness due to camshaft rotation,
hv – averaged oil film thickness due to camshaft longitudinal oscillation. When both rotation
and axis oscillation of the camshaft occurs, the resulted normal force N res

c−t can be estimated
from the equation given in Section 3.3 and corresponding to the force Nt−c. Also the resulted
friction force F resc−t in this zone can be obtained from the equations given in Section 3.3 and
corresponding to the force Fc−t. In both these cases, the thickness h0 is substituted by h. Then
the friction coefficient µresc−tµc−t between the tappet and pushrod is estimated from the equation

µresc−t =
N res
c−t

T resc−t

(3.6)

3.3. Elasto-hydrodynamic lubrication and the contact force model due to rotation

High pressure developed between the cam profile and the tappet requires conditions of elasto-
-hydrodynamic (EHD) lubrication in the contact zone. At high pressure, the viscosity of the oil
increases exponentially with pressure, and an oil film can be maintained between the cam and
the tappet, as described in Teodorescu et al. (2003). The minimum oil thickness exists at the oil
exit, and the oil film can be assumed to stay nearly parallel along the lubricated zone. So the
oil film thickness can be estimated at the centre point of the lubricated zone. Calculation of the
central oil film thickness can be carried out from the equation

h∗0 = 1.67G
∗0.421U∗0.541W ∗0.059 exp(−96.775w∗s ) (3.7)
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developed by Rahnejat, and described in Teodorescu et al. (2005, 2007), Kushwaha et al. (2000),
for finite line concentrated contact conjunction for combined entraining and squeeze film actions.
The dimensionless parameters in Eq. (3.7) are described by the following formulas

h∗0 =
h0
RC

G∗ = α1EC U∗ = ueη0[ECRC ]−1

W ∗ = Nc−t[ECRCLC ]−1 w∗s =
ḣ0
ue

(3.8)

where h0 is the central oil film thickness, α1 – pressure viscosity coefficient, η0 – dynamic viscosity
at the inlet of contact, ue – oil entraining velocity, EC – effective elastic modulus, Nc−t – normal
load responsible for local deformation of the cam/tappet contact, RC – instantaneous radius of
curvature, LC = 0.014m – cam width. The symbol w∗s represents the squeeze-roll ratio, and its
range of applicability is given, by Rahnejat, between 0 and 0.005, and in the present analysis it
is assumed to be constant and equal to 0.005. The effective modulus can be calculated from the
equation

E−1C =
1
2
[(1− ν21)E−11 + (1− ν22)E−12 ] (3.9)

where E1 = 210GPa is the elastic modulus of the cam material, E2 = 210GPa – elastic modulus
of the tappet material, ν1 = 0.3 – Poisson’s ratio of the cam material, ν2 = 0.3 – Poisson’s ratio
of the tappet material.
The oil entraining velocity ue is calculated according to the formula

ue =
1
2
ωc(Rb + h(θ) + 2a(θ)) (3.10)

The value of Nc−t can be approximated using the following equation presented in Guo et al.
(2011)

Nc−t = Kc−t(h(θ)− yC − yT ) + Cc−t(v(θ)− ẏC − ẏT ) (3.11)

where yC is the displacement of camshaft bending motion, yT – displacement of the tappet,
Kc−t = 1.434·108 N/m, Cc−t = 115.292 Ns/m – contact stiffness and damping coefficient between
the cam and tappet, respectively, as given in Guo et al. (2011). Values of yC and yT are not
known, so their sum can be estimated in the following manner. Let us assume that the course of
the cam force F against time t is the same as the course of Nc−t. Hence, we have the relationship

Kc−t(yC + yT )≫ Cc−t(ẏC + ẏT ) (3.12)

so, from Eq. (3.3), the value of [yC+yT ](θ) can be estimated. It is represented by the approximate
formula

[yC + yT ](θ) ≈ [Kc−th(θ) + Cc−tv(θ)−Nc−t(θ)]
1

Kc−t
(3.13)

Then the sum of velocities [ẏC + ẏT ](θ) can be estimated from the equation

[ẏC + ẏT ](θ) = ωC
∂[yC + yT ](θ)

∂θ
(3.14)

and finally the corrected form of Nc−t can be calculated from equation (3.11). The friction for-
ce Fc−t between the cam and tappet is due to two different mechanisms, the asperity contact
(boundary part Tb) and the shear of lubricant (hydrodynamic part Tv), as described in Teodore-
scu et al. (2003, 2005), Yang et al. (1996). The asperity interaction model is based on the theory
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developed by Greenwood and Tripp (1971). The boundary friction Tb was determined by Guo
et al. (2011)

Tb = τ0Aa +mPa (3.15)

where τ0 = 2.0MPa is the Eyring shear stress, described in Rothbart (2004), m = 0.17 – pressure
coefficient of the boundary shear strength, described in Guo et al. (2011). Considering a Gaussian
distribution of the asperities heights and fixed asperity radius of curvature, the area Aa occupied
by the asperity peaks and the load Pa carried by the asperities are calculated as in Guo et al.
(2011)

Aa = π2(ζβσR)2AF2(λ) Pa =
8
√
2
15

π(ζβσR)2
√
σR
β
ECAF5/2(λ) (3.16)

where ζ is the asperity density, β – radius of curvature, σR = 0.4µm – composite surface
roughness parameter, A – Hertzian contact area, λ = h0/σR – constant. It has been assumed
that (ζβσR) = 0.055 and σR/β = 0.001, as in Guo et al. (2011). The Hertzian formula for the
contact of two cylinders can be used to calculate the contact area, see Patir and Cheng (1979)

ECA =

√
8
π
ECRCLCNc−t (3.17)

Two statistical functions F2(λ) and F5/2(λ) are defined by the equation

Fn(λ) =
1
2π

∞∫

h0/σ

(
s− h0

σR

)n
exp
(
−1
2
s2
)
ds (3.18)

They can be approximated by the following formulas

F2(λ) = −0.0018λ5 + 0.0281λ4 − 0.1728λ3 + 0.5258λ2 − 0.8043λ + 0.5003
F5/2(λ) = −0.0046λ5 + 0.0574λ4 − 0.2958λ3 + 0.7844λ2 − 0.0776λ + 0.6167

(3.19)

The viscous friction is given by

Tv = τ(A−Aa) (3.20)

where τ is the shear stress of the lubricant. Depending on the oil film thickness, the lubricant
may behave as a Newtonian or non-Newtonian oil film, as described in Teodorescu et al. (2003).
The behavior can be estimated by the Eyring shear stress τ0. If the shear stress is lower than
the Eyring shear stress τ0 then Newtonian behavior occurs, otherwise non-Newtonian behavior
takes place. So the shear stress can be expressed by the equation presented in Guo et al. (2011)

τ =





ηuS
h0

for τ ¬ τ0
τ0 + γSp∗ for τ > τ0

(3.21)

where η is the oil viscosity, η = η0 exp(α1p∗), η0 = 0.0057 Pa/s, α1 = 1.8 · 10−8m2/N, uS –
sliding velocity, γS = 0.08 – rate of change of shear stress with pressure, and p∗ – pressure on
the oil film described by the (Moraru, 2005)

p∗ =
Nc−t − Pa
A−Aa

(3.22)

The sliding velocity uS between the cam and tappet is calculated from the equation (Guo et al.,
2011)

uS = ωc(Rb + h(θ)) (3.23)

The total friction force Fc−t is given by the sum (Guo et al., (2011)

Fc−t = Tb + Tv (3.24)
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3.4. Elasto-hydrodynamic lubrication and the contact force model due to axis oscillations

The contact between the tappet and cam is considered as the case of two parallel plates
sliding relative to each other. The loading force Nc−t is balanced by the load Pa1 carried by the
asperities and by the hydrodynamic force Pv as well as by the squeeze force PS described as

Nc−t = Pa1 + Pv + Ps (3.25)

The load Pa1 carried by the asperities can be estimated from the following equation

Pa1 = A
(hv0− hv

c

)1/m
(3.26)

similarly to Yang et al. (1996). It should be remembered that A = 2bLC , where b is the Hertz
half-width of contact between the cam and tappet. The hydrodynamic force Pv, the squeeze
force PS and the velocity w are defined by formulas presented in Siczek (2016)

Pv =
6ηALcKpψv

h2v
Ps =

ηb2Aw

hv3
(3.27)

and

w = ḣv = −
[
Nc−t −A

(hv0 − hv
c

)1/m
− 6ηALcKpψv

h2v

] h3v
ηAb2

(3.28)

whereKp = 0.0265, ψ = 0.06 are coefficients characterizing hydrodynamic impacts in the contact
zone and hv0 is the oil film thickness, as described in Siczek (2016). The initial value of velocity
v = 0 and the film thickness hv is equal to hv0. The initial film thickness hv0 can be estimated
assuming that, in the initial conditions, the load Pa1 carried by the asperities is equal to Pa, see
(3.16)2. After obtaining the oil film thickness hv, the force Nc−t results from equations (3.25)-
-(3.27) and the friction force Tc−t in the axial z direction from (3.15)-(3.24) by substituting force
Fc−t by Tc−t, thickness h0 by hv and velocity us by v2 given by the equation

v2 = 2Ac1πf cos(2πfc1t) (3.29)

Then the friction coefficient µc−t between the tappet and pushrod is estimated from the equation

µc−t =
Fc−t
Nc−t

(3.30)

4. Results

The first set of numerically simulated results have been obtained for the case of a constant
(dry or mixed) friction coefficient µc−t occurring in contact between the cam and tappet, and
µt−p between the tappet and the pushrod, which are equal to 0.3. In Fig. 3, an exemplary
time-diagram of the Fc−t force obtained for the camshaft rotational speed ns = 1320 rpm, the
camshaft longitudinal oscillations of the amplitude Acl = 0.0001m and the frequency fcl = 1Hz,
is demonstrated. It is a single segment of the force sequence for a time period of 0.1 s. The entire
sequence includes a time period of 60 s. Subsequent time-diagrams of the tappet rotation angle ε
for various values of the frequency fcl are shown in Figs. 4a-d. The case of tappet rotation,
corresponding to Fig. 3, is shown in Fig. 4a. An increase in such an angle with time in almost
step-like manner can bee observed.
If the frequency fcl is significantly elevated, up to 10Hz, we can observe almost a linear

increase in the angle ε (see Fig. 4b). Cyclic variations of the direction of tappet rotation occur,
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Fig. 3. Time-diagrams of the force Fc−t between the cam and the tappet for the frequency of camshaft
longitudinal oscillations fcl = 1Hz. Values of remaining parameters: µc−t = µt−p = 0.3, ns = 1320 rpm,

Acl = 0.0001m

Fig. 4. Time-diagrams of the tappet rotation angle ε for various frequencies of the camshaft longitudinal
oscillations fcl: 1Hz (a), 10Hz (b), 20Hz (c), 100Hz (d). Values of remaining parameters:

µc−t = µt−p = 0.3, ns = 1320 rpm, Acl = 0.0001m

but the observed oscillations have a very small amplitude. Further growth of the camshaft
vibration frequency (fcl = 20Hz) causes reversal of the direction of tappet rotation. However,
as shown in Fig. 4c, cyclic variations of this direction have a quite large amplitude. The same
direction of tappet rotation and its increase with time t has been obtained for the frequency
fcl = 100Hz, as it is depicted in Fig. 4d. However, in this case, variations of the tappet rotation
direction are very small.
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In the next two diagrams (Figs. 5a and 5b) the influence of the amplitude change on tappet
rotation is demonstrated. In the case when the amplitude is doubled (Acl = 0.0002m) and the
frequency fcl = 10Hz, the obtained time history of the tappet rotation angle ε is shown in
Fig. 5a. It can be seen that an increase in the angle ε with time occurs in the same direction as
in the case of Acl equal to 0.0001, but 4.44 times greater than the last one. On the other hand,
reducing the amplitude to a half of the initial value (Acl = 0.00005 m and fcl = 10Hz) causes
stopping of the tappet rotation (see Fig. 5b).

Fig. 5. Time-diagrams of the tappet rotation angle ε for two different amplitudes of the camshaft
longitudinal oscillations Acl: 0.0002m (a), 0.00005m (b). Values of remaining parameters:

µc−t = µt−p = 0.3, ns = 1320 rpm, fcl = 10Hz

The results of numerical research corresponding to the case presented in Fig. 4b
(Acl = 0.0001m, fcl = 10Hz) but performed for two times larger rotational speed of the cam-
shaft, i.e., ns = 2640 rpm, are illustrated in Fig. 6. Comparison of Figs. 3b and 6 shows that
such doubling of the speed ns does not influence significantly the rotational dynamics of the
tappet. The increase in the angle ε in time still has almost a linear character, and the speed of
the tappet rotation is about 15% higher only.

Fig. 6. Time-diagrams of the tappet rotation angle ε for the camshaft rotational speed ns = 2640 rpm.
Values of remaining parameters: µc−t = µt−p = 0.3, fcl = 10Hz, Acl = 0.0001m

The second group of the results have been obtained for the case (f) when the oil is present
in the contact zones. Variations of mixed or hydrodynamic friction coefficients cause changes
in the loading and sliding velocity of the contacting surfaces. They result in varying friction
forces Fc−t (Eq. (3.24)) occurring in contact between the cam and tappet, and Ft−p (Eq. (3.1))
between the tappet and the push rod which have been calculated from the Reynolds equations.
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The time-diagram of the friction force Fc−t between the cam and tappet corresponding to the
graph shown in Fig. 4a (ns = 1320 rpm, fcl = 10Hz) is depicted in Fig. 7a. The oil lubrication
causes values of the friction forces to be a few times lower (2-4) than in the case of constant
friction coefficients µc−t and µt−p. Time histories of the tappet rotation angle ε are shown in
Fig. 7b. It is clearly visible that, similarly to the case presented in Fig. 4a, an increase in the
angle ε has almost a step-like character.

Fig. 7. Time-diagram of the force Fc−t between the cam and the tappet (a) and the tappet rotation
angle ε (b) for the case of oil lubrication. Values of others parameters: fcl = 1Hz, ns = 1320 rpm,

Acl = 0.0001m

In the case when the camshaft longitudinal oscillations frequency fcl is equal to 100Hz,
the time history of the friction force Tc−t between the cam and tappet is presented in Fig. 8a.
Such values of the friction force are much lower, even two orders in magnitude lower than in
the case of frequency fcl = 1Hz (see Fig. 7a). It is due to the dominant role of hydrodynamic
lubrication in both contact zones, between the cam and tappet and between the tappet and
pushrod, respectively. Such small values of friction forces also result in lack of tappet rotation,
as it is shown in Fig. 8b.

Fig. 8. Time-diagram of the force Fc−t between the cam and the tappet (a) and the tappet rotation
angle ε (b) for the case with oil lubrication. Values of others parameters: fcl = 100Hz, ns = 1320 rpm,

Acl = 0.0001m
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5. Summary and conclusions

We have carried out the analysis of friction resistance between the cam and its tappet for dif-
ferent values of the amplitude and frequency of camshaft longitudinal oscillations and camshaft
rotational speeds. Depending on these parameters or presence (or not) of oil lubrication, different
time diagrams of the tappet rotation angle ε are calculated and shown.
In the case of a constant value of the friction coefficient between the cam and tappet and

between the tappet and pushrod, the same camshaft rotational speed and the same values of the
oscillation amplitudes result with different shapes of time histories depending on the camshaft
longitudinal oscillation frequency. Some results are illustrated in Figs. 4a-d. They prove that
the increase in this frequency leads to a significant reduction of the average angular velocity
of tappet rotation and reversal of its direction of rotation. This velocity is represented by an
average slope of the time histories in Figs. 4a-d – its value is reduced from about 50 rad/s for
fcl = 1Hz (Fig. 4a) to about −1 rad/s (opposite direction) for fcl = 100Hz (Fig. 4d). Other
interesting phenomena detected during the analysis are:
• changes in the global direction of the tappet rotary motion (compare Figs. 4a,b with
Figs. 4c,d),
• cyclic variations in the direction of rotation with a relatively large amplitude (Fig. 4c),
which tend to zero with an increase in the frequency fcl, then the tappet rotates slowly
with an almost constant speed (Fig. 4d),
• step-like shape of the time-course of tappet rotation for small values of the frequency
fcl = 1Hz – one can observe revolutions interrupted with stopping periods (vertical sec-
tions of the diagram in Fig. 4a) what indicates the stick-slip character of the cam-tappet
dynamical contact (for am increasing frequency, the angular velocity of the tappet is sta-
bilized – see Fig. 4b).

Analyzing the influence of camshaft rotational speed and the amplitude of longitudinal oscilla-
tions, one can draw the following conclusions:
• growing amplitude of camshaft longitudinal vibration causes a considerable increase in the
tappet rotational speed (Fig. 5a), whereas its reduction to small values leads to stopping
of the tappet rotation (Fig. 5b),
• even a large increase in the camshaft rotational speed does not change significantly the
velocity of tappet revolutions (Fig. 6).

When the oil lubrication is applied to the contact zones between the cam and tappet and
between the tappet and pushrod, rather a large reduction of the friction force and tappet ro-
tational velocity takes place when compared to contact without any lubrication. This fact can
be treated as an obvious and expected effect. The comparison with corresponding cases without
lubrication (see Figs. 3 and 4a) indicates that after oil application the friction force declined
several times (Fig. 7a) and tappet rotations slowed at least 150 times (Fig. 7b).
However, our results demonstrate that further large reduction of friction can be obtained for

a high frequency of the camshaft longitudinal vibration. Comparison of the cases presented in
Figs. 7a and 8a displays that a hundredfold increase in the frequency causes almost a hundredfold
decrease in the friction force. This fact can be explained by the hydrodynamic lubrication effect
(squeeze effect) described in Guran et al. (1996). Hence, lack of tappet revolutions, depicted in
Fig. 8b, is not surprising due to the friction force which is too weak to maintain the rotations.
We can conclude that the presented phenomena, i.e., changes in the global direction of tappet

rotation, its local oscillations, the friction force dependence with the frequency and the other
facts mentioned above are effects of mutual interaction of camshaft rotations with its longitudinal
vibrations and possible different configuration of the phase synchrony between them. However,
an accurate identification and description of the mechanism governing such phenomena requires
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more detailed bifurcation analysis in the system parameter space. This is our task for the nearest
future and the results will be reported soon.
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