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FROM THE EDITORS

This special issue of JTAM (Vol. 56/2018, No. 2) is entirely devoted to the Polish Society of
Theoretical and Applied Mechanics (PSTAM), the Publisher of JTAM, on the occasion of its
60th anniversary.
PSTAM was established in 1958 as an initiative of eminent Polish mechanicians at that time

– Witold Nowacki, Wacław Olszak, Jerzy Mutermilch, Sylwester Kaliski, Witold Wierzbicki
and many other scientists having outstanding achievements and international recognition. The
initiators referred to a long tradition of Polish Mechanics going back to the time of Adam
Adamandy Kochanski (1631-1700) and then intensively developed in the 19th and 20th centuries
by world-known scientists like Jan Nepomucen Franke (1846-1918), Feliks Jasiński (1856-1899),
Marian Smoluchowski (1872-1917) and Maksymilian Tytus Huber (1872-1950). PSTAM was a
new scientific organization in Poland that entered into relation with the International Union
of Theoretical and Applied Mechanics (IUTAM) formed in 1949. Today PSTAM incorporates
more than 1000 members and considerably contributes to the development of Mechanics and
international scientific collaboration.
Exceptionally, this special issue includes invited papers only. Our invitations went to the

scientists whom we know for their excellent research, conference activities and top-level earlier
publications. It is an international group of authors. Part of them are members of the Editorial
Board of JTAM who usually do not publish in our Journal. We would like to emphasize that all
the invited papers have been reviewed within the standard editorial procedure of JTAM.
This special issue contains 16 articles reflecting research activities of the invited authors and

their research teams. The papers comprise the following thematic areas:

• Thermo-elastic phenomena in continua,
• Instability and bifurcations in machinery,
• Mechanical properties of materials and structures,
• Numerical methods in mechanics,
• Solid-fluid interactions,
• Dynamic contact problems,
• Modelling and simulation of structures.

The topics being presented indicate problems in Mechanics that attract attention of scientists
and are important for technological innovations and their applications in modern industry.
We would like to thank all the authors of the articles in this issue for accepting our invitation

and contributing to the publishing output of JTAM.
The Publisher is grateful to the Ministry of Science and Higher Education of Poland for

financial support aiming at increase of the scientific quality, impact and international reputation
of our Journal.

Włodzimierz Kurnik Zbigniew Kowalewski
Editor-in-Chief of JTAM Chairman of PSTAM
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FRACTIONAL HEAT CONDUCTION IN A SPHERE UNDER
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In this paper, the effect of a fractional order of time-derivatives occurring in fractional heat
conduction models on the temperature distribution in a composite sphere is investigated.
The research concerns heat conduction in a sphere consisting of a solid sphere and a spherical
layer which are in perfect thermal contact. The solution of the problem with a classical Robin
boundary condition and continuity conditions at the interface in an analytical form has
been derived. The fractional heat conduction is governed by the heat conduction equation
with the Caputo time-derivative, a Robin boundary condition and a heat flux continuity
condition with the Riemann-Liouville derivative. The solution of the problem of non-local
heat conduction by using the Laplace transform technique has been determined, and the
temperature distribution in the sphere by using a method of numerical inversion of the
Laplace transforms has been obtained.

Keywords: heat conduction, fractional heat equation, Robin boundary condition

1. Introduction

The classical heat conduction model based on the Fourier law has a non-physical property that
the heat propagates with an infinite speed (Özişik, 1993). This property is a consequence of
the dependence between the heat flux vector and the temperature gradient which is established
by the Fourier law. This disadvantage does not appear when the non-local time dependence
between the flux vector and the temperature gradient is assumed (Povstenko, 2014; Sur and
Kanoria, 2014). This assumption leads to a differential equation and/or boundary conditions
with derivatives of a non-integer order. The properties of fractional derivatives and different
analytical methods to solve fractional differential equations are presented in (Atanacković et
al., 2014; Klimek, 2009; Leszczyński, 2011; Magin, 2006; Mainardi, 2010; Povstenko, 2015).
Approximate numerical methods were applied to solving fractional initial-boundary problems
in numerous papers, for example in (Blaszczyk and Ciesielski, 2017; Ciesielski and Błaszczyk,
2013; Dimitrov, 2014).

The heat conduction modelled by using the fractional order derivative is the subject of many
papers. A mathematical model of one-dimensional heat conduction in a slab was proposed in
paper (Žecová and Terpák, 2015). The Grünwald-Letnikov derivative with respect to a time
variable was used. A solution to the problem of fractional heat conduction in a two-layered
slab with the Caputo time-derivative in the heat conduction equation was presented in (Kukla
and Siedlecka, 2015). Heat transfer for non-contacting face seals described by the time-fractional
heat conduction equation in the cylindrical coordinate system was considered in (Blasiak, 2016).
The fractional model of thermal energy transport in rigid bodies was derived in (Raslan, 2016).
The effect of the order of the Marchand-type derivative in the heat transfer equation on the
temperature distribution in a rigid conductor was numerically investigated. An application of
the fractional order theory to a problem of thermal stress distribution in a spherical shell was
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studied in (Zingales, 2014). In the paper by Atangana and Bildik (2013), the time fractional
calculus was employed in the mathematical model of groundwater flow. Applications of fractional
order systems to an ultracapacitor and beam heating problems were presented in (Dzieliński
et al., 2010). An application of fractional calculus in continuum mechanics to a problem of
linear elasticity under small deformation was shown in (Sumelka and Blaszczyk, 2014). Some
applications of the fractional calculus were also discussed in the papers (Abbas, 2012; Dalir and
Bashour, 2010; Rahimy, 2010).

Solutions to time-fractional heat conduction problems in a spherical coordinate system are
presented in many papers. In the paper by Ning and Jiang (2011), for the problem of fractional
heat conduction in a sphere, the method of the Laplace transform and the variable separation
were used. An analytical solution to the problem of the time-fractional radial heat conduction
in a multilayered sphere under the Robin boundary condition was presented by Kukla and
Siedlecka (2017). Fundamental solutions to the Cauchy problem and to the source problem of
the heat conduction fractional equation in a spherical coordinate system in an analytical form
were derived by article Povstenko and Klekot (2017).

The fractional heat conduction equation is complemented by initial and boundary conditions.
Mathematical and physical formulations of the initial and boundary conditions can be conside-
red in fractional heat conduction models (Povstenko, 2013). The mathematical formulations of
Dirichlet, Neumann and Robin boundary conditions are the same as these in the classical theory
of heat conduction. Also, the physical Dirichlet condition has the same form as the classical bo-
undary condition of the first kind, while the physical Neumann and the physical Robin boundary
conditions contain the fractional time-derivative. If two solids are in perfect thermal contact,
the physical formulation of the condition of heat flux equality through the contact surface also
contain the fractional time-derivative (Povstenko, 2013).

The solution to the problem of linear fractional heat conduction in a sphere under ma-
thematical boundary conditions can be determined in an analytical form. However, in solving
such problems of heat conduction under physical Neumann or Robin boundary conditions, an
approximate methods must be used. Application of the Laplace transform method to a linear
problem allows one to obtain a solution in the Laplace domain. For the fractional heat conduc-
tion problems under physical Neumann or Robin boundary conditions and physical continuity
conditions, the inverse Laplace transform in an analytical form can not be determined. The so-
lution to the problem is obtained by applying numerical inversion of the Laplace transform. The
methods for numerical inversion of the Laplace transform, which are used in the classical pro-
blems, can be also applied to the Laplace transform obtained in fractional analysis. A review of
the methods to numerical inversion of the Laplace transform was presented by Kuhlman (2013).
An application of selected methods to determine the inverse Laplace transform in fractional
calculus were presented in (Brzeziński and Ostalczyk, 2016; Sheng et al., 2011). Modification of
the method introduced by Gaver (1966) was presented in (Abate and Valkó, 2004; Valkó and
Abate, 2004).

In this paper, the fractional heat conduction problem in a solid sphere under the mathe-
matical and physical boundary condition is studied. The considered sphere consists of an inner
sphere and a spherical layer. We assume perfect thermal contact of the inner sphere and the
spherical layer which is modeled by mathematical or physical conditions. The exact solution of
the problem for the mathematical boundary condition and the solution in the Laplace domain
for the physical formulation of boundary and continuity conditions are presented. The effect of
the order of the Riemman-Liouville derivative in the Robin physical condition and in the contact
condition at the interface on the temperature distribution in the sphere has been numerically
investigated.
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2. Formulation of the problem

We consider the problem of heat conduction in a sphere which consists of a solid sphere occupying
the region 0 ¬ r ¬ r1 and a spherical layer defined by r1 ¬ r ¬ b, in the spherical coordinates
system. The time-fractional heat conduction in the inner sphere (i = 1) and in the spherical
layer (i = 2) is governed by the following equation

1

r2
∂

∂r

(
r2
∂Ti
∂r

)
=
1

ai

∂αiTi
∂tαi

i = 1, 2 (2.1)

where ai is the thermal diffusivity, λi is the thermal conductivity and αi denotes the fractional
order of the left Caputo derivative with respect to time t. The Caputo derivative is defined by
(Podlubny, 1999)

C
aD
α
t f(t) =

dαf(t)

dtα
=

1

Γ (m− α)

t∫

a

(t− τ)m−α−1 d
mf(τ)

dτm
dτ m− 1 < α < m (2.2)

We consider the case of a = 0 and α ∈ (0, 1]. Note, that the thermal diffusivity coefficient can be
interpreted as a measure of the distance on which the thermal front propagates in a medium at
the given time. The thermal conductivity is a measure of the ability of the medium to transfer
heat.

The condition at the centre of the sphere, the continuity conditions at the interface, the Robin
boundary condition on the outer surface and the initial condition are (Povstenko, 2013a,b)

|T (0, t)| <∞ T1(r1, t) = T2(r1, t) (2.3)

λ1D
1−β1
RL

∂T1
∂r
(r1, t) = λ2D

1−β2
RL

∂T2
∂r
(r1, t)

λ2D
1−β2
RL

∂T2
∂r
(b, t) = a∞

(
T∞(t)− T2(b, t)

) (2.4)

T (r, 0) = Fi(r) (2.5)

where a∞ is the outer heat transfer coefficient and T∞ is the ambient temperature. The left
Riemann-Liouville fractional derivative D1−βRL which occurs in equations (2.4) is defined by (Die-
thelm, 2010)

DβRLf(t) =
d

dt

( 1

Γ (1− β)

t∫

0

f(τ)

(t− τ)β dτ
)

0 < β ¬ 1 (2.6)

Conditions (2.4) for β1 = α1 and β2 = α2 for α1, α2 ∈ (0, 1) are called the physical conditions
(Rahimt, 2010; Raslan, 2016). If β1 = β2 = 1, the conditions are called the mathematical
conditions. In this case, the D0RL means an identity operator and can be omitted in equations
(2.4).

3. Solution to the problem

The fractional heat conduction problem defined by equations (2.1) and (2.3)-(2.5) can be trans-
formed to a new problem for functions Ui(r, t) by using the formula

Ui(r, t) = r (Ti(r, t) − T∞(t)) i = 1, 2 (3.1)
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Taking into account relationship (3.1) in equation (2.1) and conditions (2.3)-(2.5), we obtain a
formulation of the initial-boundary problem in the form

ai
∂2Ui(r, t)

∂r2
=
∂αiUi(r, t)

∂tαi
+ r

dαiT∞(t)

dtαi
i = 1, 2 (3.2)

U1(0, t) = 0 U1(r1, t) = U2(r1, t) (3.3)

λ1D
1−β1
RL

(∂U1(r1, t)
∂r

− 1
r1
U1(r1, t)

)
= λ2D

1−β2
RL

(∂U2(r1, t)
∂r

− 1
r1
U2(r1, t)

)

λ2D
1−β2
RL

(∂U2
∂r
(b, t)− 1

b
U2(b, t)

)
= −a∞U2(b, t)

(3.4)

Ui(r, 0) = r (Fi(r)− T∞(0)) i = 1, 2 (3.5)

The solution to initial-boundary problem (3.2)-(3.5) for β1 = β2 = 1 (mathematical formulation)
and for β1 = α1, β2 = α2 (physical formulation) will be presented below.

3.1. Mathematical conditions

An analytical solution to time-fractional heat conduction problem (3.2)-(3.5) under mathe-
matical conditions (3.4) for α1 = α2 = α will be determined by using the method of separation
of variables. As a result, we find a solution to the problem in the form of a series

Ui(r, t) =
∞∑

k=1

Λk(t)Φi,k(r) i = 1, 2 (3.6)

The functions Φ1,k(r) and Φ2,k(r) for k = 1, 2, . . . are obtained as a solution to the corre-
sponding eigenvalue problem

d2Φi,k(r)

dr2
+
γ2k
ai
Φi,k(r) = 0 i = 1, 2 (3.7)

Φ1,k(0) = 0 Φ1,k(r1) = Φ2,k(r1) (3.8)

λ1
dΦ1(r1)

dr
+
1

r1
(λ2 − λ1)Φ1(r1) = λ2

dΦ2(r1)

dr

dΦ2(b)

dr
=
(1
b
− a∞
λ2

)
Φ2(b) (3.9)

The eigenfunctions Φi,k(r) are given by

Φ1,k(r) = B1,k sinµ1,kr Φ2,k(r) = A2,k cosµ2,k(r − r1) +B2,k sinµ2,k(r − r1) (3.10)

where µi,k = γk/
√
ai and γk are the roots of the eigenvalue equation

M1λ2µ1 sinµ1r1 +M2M3 = 0 (3.11)

where

M1 =
(a∞
λ2
− 1
b

)
cosµ2(b− r1)− µ2 sinµ2(b− r1)

M2 =
(a∞
λ2
− 1
b

)
sinµ2(b− r1) + µ2 cosµ2(b− r1)

M3 = λ1µ1 cosµ1r1 +
λ2 − λ1
r1

sinµ1r1

The coefficients B1,k, A2,k and B2,k are determined by using continuity and boundary con-
ditions (3.8) and (3.9). Assuming B1,k = 1, we obtain A2,k = sinµ1,kr1 and B2,k =M3/λ2µ2,k.
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The function Λk(t), occurring in equation (3.6), is a solution to the fractional initial problem
which is obtained by using the orthogonality condition in the form

λ1
a1

r1∫

0

Φ1,k(r)Φ1,k′(r) dr +
λ2
a2

b∫

r1

Φ2,k(r)Φ2,k′(r) dr =

{
0 for k′ 6= k
Nk for k′ = k

(3.12)

Assuming Fi(r) = Tinit = const for i = 1, 2 and condition (3.12) in equation (3.2) and (3.5),
the initial problem is obtained

dαΛk(t)

dtα
+ γ2kΛk(t) = 0

Λk(0) =
Tinit − T∞

N rk

(λ1
a1

r1∫

0

rΦ1,k(r) dr +
λ2
a2

b∫

r1

rΦ2,k(r) dr
) (3.13)

A solution to problem (3.13) is given by (Diethelm, 2010)

Λk(t) =
Tinit − T∞

N rk
Eα(−γ2ktα)

(λ1
a1

r1∫

0

rΦ1,k(r) dr +
λ2
a2

b∫

r1

rΦ2,k(r) dr
)

(3.14)

where Eα(z) is the Mittag-Leffler function (Kilbas et al., 2006)

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
(3.15)

Finally, the functions Ti(r, t) are given by equations (3.1), (3.6), (3.10) and (3.14). Assuming
that the following conditions are fulfilled: a1 = a2 = a, λ1 = λ2 = λ, α1 = α2 = α and
β1 = β2 = 1, we obtain the temperature T (r, t) in the homogeneous sphere

T (r, t) = T∞ +
4(Tinit − T∞)

r

∞∑

k=1

bµk cos bµk − sin bµk
µk(sin 2bµk − 2bµk)

Eα(−γ2ktα) sinµkr (3.16)

In this case, µk = γk/
√
a and γk are the roots of the equation

(
1− ba∞

λ

)
sin bµ− bµ cos bµ = 0 (3.17)

3.2. Physical conditions

We obtain a solution to problem (3.2)-(3.5) under physical boundary and continuity condi-
tions (β1 = α1, β2 = α2 in equations (3.4) and (3.5)) by using the Laplace transform method.
The Laplace transform f(s) of a function f(t) is defined by

f(s) =

∞∫

0

f(t)e−st dt (3.18)

where s is a complex parameter. Using the properties of the Laplace transform, equations
(3.2)-(3.4) can be rewritten in the Laplace domain as

d2U i
dr2
− sαi

ai
U i(r, s) =

rsαi

ai

(
T∞(s)−

Fi(r)

s

)
(3.19)

U1(0, s) = 0 U1(r1, s) = U2(r1, s) (3.20)
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λ1s
1−α1

(dU1(r1, s)
dr

− 1
r1
U1(r1, s)

)
= λ2s

1−α2
(dU 2(r1, s)

dr
− 1
r1
U2(r1, s)

)

λ2s
1−α2

(dU2(b, s)
dr

− 1
b
U2(b, s)

)
= −a∞U2(b, s)

(3.21)

The general solution to equation (3.19) for i = 1, 2 has the form

U1(r, s) = B1 sinhS1r +
1

S1

r∫

0

P1(u) sinhS1(r − u) du

U2(r, s) = A2 coshS2(r − r1) +B2 sinhS2(r − r1) +
1

S2

r∫

r1

P2(u) sinhS2(r − u) du
(3.22)

where

Si =
sαi/2√
ai

Pi(r) =
rsαi

ai

(
T∞(s)−

Fi(r)

s

)

The constants B1, A2 and B2 are determined by using conditions (3.20)2 and (3.21). After
some transformations, the functions U1(r, s) and U2(r, s) can be written as

U1(r, s) = B̃1 sinhS1r U2(r, s) = Ã2 coshS2(r − r1) + B̃2 sinhS2(r − r1) (3.23)

where

B̃1 = −sα1−2
a∞
λ1d

S2b
2 Ã2 = −sα1−2

a∞b

λ1d
S2b sinhS1r1

B̃2 = s
α2−2 b

r1

a∞b

λ2d

[(
1− sα1−α2 λ2

λ1

)
sinhS1r1 − S1r1 coshS1r1

]

d = sα1−α2
λ2
λ1
S2r1 sinhS1r1[w coshS2(b− r1) + S2b sinhS2(b− r1)]

+
]
S1r1 coshS1r1 −

(
1− sα1−α2 λ2

λ1

)
sinhS1r1

]
[S2b coshS2(b− r1) + w sinhS2(b− r1)]

w =
a∞b

λ2s1−α2
− 1

Assuming Fi(r) = Tinit = const for i = 1, 2, the temperature distribution in the sphere is
given by

Ti(r, t) = T∞ + (Tinit − T∞)
r1
r
L−1[U i(r, s)] (3.24)

For the homogeneous sphere, the following conditions are fulfilled a1 = a2 = a, λ1 = λ2 = λ,
α1 = α2 = α, β1 = β2 = β and S1 = S2 = S. In this case, the function Ti(r, t) = T (r, t) has the
form

T (r, t) = T∞ + (Tinit − T∞)
b

r
L−1[U(r, s)] (3.25)

where

U(r, s) = − 1 + w

s(Sb coshSb+ w sinhSb)
sinhSr

The inverse of the Laplace transform of the functions U1(r, s) and U2(r, s) are numerically
determined. The calculation has been performed by the Gaver method using the sequence of
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functionals presented in Gaver (1966) and Valkó and Abate (2004). Applying this method, the
approximate values of the original function Ui(r, t) = L−1[U i(r, s)] are determined using the
formula

Ui(r, t) ≃ nτ
(
2n

n

)
n∑

i=0

(−1)i
(
n

i

)
U i(r, (n + i)τ) (3.26)

where τ = (ln 2)/t and n is a fixed positive integer number.

The functions Ti(r, t) and T (r, t) obtained for the mathematical and physical conditions
will serve for investigation of the influence of the orders of the Caputo and Riemann-Liouville
derivatives occurring in the heat conduction models on the temperature distribution in the
sphere.

4. Results of numerical calculations

The effect of the order of the fractional derivative in the heat conduction equation on the tempe-
rature distribution in the sphere has been numerically investigated. The results for the mathe-
matical boundary condition obtained by using numerical inversion of the Laplace transforms has
been compared with the exact solution. The computations were performed for the homogeneous
sphere (Sphere A) and for the sphere consisting of a solid sphere and a spherical layer (Sphere B).
The radius of both Spheres was b = 1.0m and the interface in Sphere B was at r̂1 = r1/b = 0.9.
The thermal diffusivity a = 3.352·10−6 m2/sα and the thermal conductivity λ = 16W/(m·K) we-
re assumed for Sphere A. The thermal diffusivities a1 = 2.3 ·10−5m2/sα, a2 = 3.352 ·10−6m2/sα
and the thermal conductivities λ1 = 80W/(m·K), λ2 = 16W/(m·K) were assumed for Sphere B.
Subscript 1 was used for the inner sphere and subscript 2 – for the spherical layer of Sphere B.
For both Spheres, the outer heat transfer coefficient was a∞ = 200W/(m

2·K), the ambient
temperature was T∞ = 100

◦C and the initial temperature was assumed as Tinit = 25
◦C.

In Table 1, the non-dimensional temperature T̂ = T/Tinit in Sphere A for different orders of
the Caputo derivative α at the reference time t̂ = tb2/a = 1.0 is presented. The calculation has
been performed for the mathematical Robin boundary condition, i.e. for β = 1.0. The results
were obtained by using the exact solution, Eq. (3.16), and by the Gaver method of numerical
inversion of the Laplace transforms, Eq. (3.26), and using relationship (3.1). A similar comparison
of numerically obtained non-dimensional temperatures have been performed for Sphere B. The
results are presented in Table 2. The relative error evaluated on the basis of the results given in
Tables 1 and 2 fulfils the condition: |Exact − NILT |/Exact < 3.6 · 10−5. The good accordance
of the results obtained for mathematical formulation of the boundary and continuity condition
allows one to use the NILT method to the heat conduction problem under physical formulation
of the boundary and continuity condition.

Table 1. Non-dimensional temperature T̂ (r̂, t̂) for t̂ = 1.0, computed by using the exact solution
and by using numerical inversion of the Laplace transform (NILT) for Sphere A

r̂
α = 0.8 α = 0.9 α = 1.0

Exact NILT Exact NILT Exact NILT

0 1.12416 1.12412 2.41882 2.41882 3.91149 3.91145

0.25 1.19635 1.19634 2.52818 2.52818 3.91902 3.91900

0.50 1.49058 1.49058 2.84104 2.84103 3.93932 3.93932

0.75 2.21186 2.21186 3.30678 3.30678 3.96637 3.96629

1.00 3.50777 3.50776 3.83398 3.83398 3.99254 3.99251
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Table 2. Non-dimensional temperature T̂ (r̂, t̂) for t̂ = 1.0, computed by using the exact solution
and by using numerical inversion of the Laplace transform (NILT) for Sphere B

r̂
α = 0.8 α = 0.9 α = 1.0

Exact NILT Exact NILT Exact NILT

0 2.35412 2.35407 3.66988 3.66988 3.99982 3.99969

0.25 2.39527 2.39526 3.67879 3.67880 3.99983 3.99969

0.50 2.51791 2.51791 3.70498 3.70498 3.99984 3.99971

0.75 2.71870 2.71870 3.74679 3.74679 3.99987 3.99974

1.00 3.48174 3.48172 3.89885 3.89885 3.99995 3.99988

Fig. 1. Non-dimensional temperature T̂ (r̂, t̂) as a function of time t̂ in Sphere A for various values of
fractional derivatives α and β: (a) r̂ = 0, (b) r̂ = 0.6, (c) r̂ = 0.8, (d) r̂ = 1.0
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The non-dimensional temperatures T̂ as functions of the time t̂ for various radial coordinates
are presented in Fig. 1. The pairs of curves obtained for mathematical and physical formulations
of the Robin condition show the effect of the order of the Riemann-Liouville derivative occurring
in the physical boundary condition on the temperature in the sphere. Significant differences can
be observed in the temperatures obtained for the classical heat conduction model (α = β = 1)
and fractional models (α = 0.8 and α = 0.9), particularly in the inner points of the sphere.

The curves presented in Fig. 2 represent the non-dimensional temperatures T̂ as functions
of the reference time t̂ for Sphere B. In numerical calculations with the mathematical conditions
(MC) the following values have been assumed α1 = α2 = α = 0.8, 0.9, 1.0 and β1 = β2 = 1.0.
The numerical calculations to the problem with the physical conditions (PC) have been carried
out for: α1 = β1 = 0.9, α2 = α = 0.8, 0.9, 1.0 and β2 = β = α2. A higher temperature is observed
for the heat conduction with the physical boundary and continuity conditions than in the model
with the mathematical formulation of these conditions. A significant effect on the temperature
distribution in the sphere has the order of the Caputo derivative in the heat conduction model.

Fig. 2. Non-dimensional temperature T̂ (r̂, t̂) as a function of the time t̂ in Sphere B for various values of
fractional derivatives α and β: (a) r̂ = 0, (b) r̂ = 0.6, (c) r̂ = 0.8, (d) r̂ = 1.0
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5. Conclusions

A solution to the problem of fractional heat conduction in a homogeneous sphere and a composite
sphere consisting with a solid sphere and a spherical layer has been presented. The mathematical
and physical formulations of the Robin boundary condition and the continuity conditions at the
interface have been considered. The temperature distribution in the sphere, under the physical
boundary and continuity conditions, has been obtained by using the Laplace transform techni-
que. Numerical results show a significant effect of the order of the Caputo derivative occurring
in the heat conduction equation on the time-history of temperature in the sphere. The order
of the Riemann-Liouville derivative occurring in the boundary and continuity conditions of the
fractional model of heat conduction has a smaller effect on the time-history of temperature in
the sphere than the order of the fractional Caputo derivative in the heat conduction equation.
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Birkhäuser, New York

29. Povstenko Y., Klekot J., 2017, The fundamental solutions to the central symmetric time-
fractional heat conduction equation with heat absorption, Journal of Applied Mathematics and
Computational Mechanics, 16, 2, 101-112

30. Rahimy M., 2010, Applications of fractional differential equations, Applied Mathematical Sciences,
4, 50, 2453-2461

31. Raslan W.E., 2016, Application of fractional order theory of thermoelasticity to a 1D problem
for a spherical shell, Journal of Theoretical and Applied Mechanics, 54, 1, 295-304

32. Sheng H., Li Y., Chen Y., 2011, Application of numerical inverse Laplace transform algorithms
in fractional calculus, Journal of the Franklin Institute, 384, 315-330

33. Sumelka W., Blaszczyk T., 2014, Fractional continua for linear elasticity, Archives of Mecha-
nics, 66, 3, 147-172

34. Sur A., Kanoria M., 2014, Fractional heat conduction with finite wave speed in a thermo-visco-
elastic spherical shell, Latin American Journal of Solids and Structures, 11, 1132-1162

35. Valkó P.P., Abate J., 2004, Comparison of sequence accelerators for the Gaver method
of numerical Laplace transform inversion, Computers and Mathematics with Applications, 48,
629-636
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There are several low frequency vibration phenomena which can be observed in automotive
disk brakes. Creep groan is one of them provoking noise and structural vibrations of the
car. In contrast to other vibration phenomena like brake squeal, creep groan is caused by
the stick-slip-effect. A fundamental investigation of creep groan is proposed in this paper
theoretically and experimentally with respect to parameter regions of the occurrence. Creep
groan limit cycles are observed while performing experiments in a test rig with an idealized
brake. A nonlinear model using the bristle friction law is set up in order to simulate the limit
cycle of creep groan. As a result, the system shows three regions of qualitatively different
behavior depending on the brake pressure and driving speed, i.e. a region with a stable
equilibrium solution and a stable limit cycle, a region with only a stable equilibrium solution,
and a region with only a stable limit cycle. The limit cycle can be interpreted as creep groan
while the equilibrium solution is the desired vibration-free case. These three regions and
the bifurcation behavior are demonstrated by the corresponding map. The experimental
results are analyzed and compared with the simulation results showing good agreement.
The bifurcation behavior and the corresponding map with three different regions are also
confirmed by the experimental results. At the end, a similar map with the three regions is
also measured at a test rig with a complete real brake.

Keywords: creep groan, stick-slip limit cycle, equilibrium solution, bifurcation

1. Introduction

Creep groan is a low frequency vibration phenomenon in automotive disk brakes occurring in
particular, when the brake is slowly released while the car starts moving (Abdelhamid, 1995;
Abdelhamid and Bray, 2009; Zhao et al., 2016, 2017; Brecht et al., 1997; Brecht, 2000; Crowther
and Singh, 2007, 2008). The frequency range is up to 500Hz and it is caused by the stick-slip-
effect. Like other brake noise problems, such as brake squeal (Cantoni et al., 2009; von Wagner
et al., 2007), creep groan is mainly a comfort problem resulting in possible warranty claims and
additional costs for the manufacturer.

The simplest usual way to describe the stick-slip-effect is to use Coulomb’s friction law.
A general study on friction induced vibrations has been performed by Ibrahim giving also an
overview about contact mechanics and friction forces (Ibrahim, 1994a,b). With respect to creep
groan, Brecht et al. (1997) and Brecht (2000) measured its vibration characteristics and studied
the corresponding stick-slip limit cycle. Crowther and Singh (2007, 2008) modeled the creep
groan phenomenon in terms of two dynamic sub-systems coupled with Coulomb’s friction law.
Vadari and Jackson (1999) considered the relationship of creep groan to vehicle dynamics by
looking at the suspension response. A more complex nonlinear model with 7 degree-of-freedom
(DOF) with Coulomb’s friction law was utilized for studying the mechanism of creep groan by
Wu and Jin (2014).
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However, the models using Coulomb’s friction law cannot explain all effects occurring during
creep groan. In order to overcome this deficiency, Hetzler et al. (2007) presented an analytical in-
vestigation on stability and bifurcation behavior of stick-slip motions, where a friction coefficient
depended on the relative velocity between the two contact partners.

Since friction induced vibrations are naturally highly related to the frictional contact, some
works are concentrating on studying the characteristics of the involved pad materials. A study
performed by Jang et al. (2001) on the creep groan propensity of different friction materials
resulted in the conclusion that creep groan can be reduced when the friction material contains
a small difference between the static and dynamic friction coefficients. Similar results can be
obtained when considering elementary friction oscillators. Fuadi et al. (2009, 2010) studied creep
groan by considering a caliper-slider experimental model, and derived a map showing necessary
conditions for avoiding creep groan. Results of creep groan vehicle tests were shown by Neis et
al. (2016) and their relation with stick-slip in laboratory tests was investigated. However, most
of those works were experimental investigations, and a model showing high agreement with
experimental results is still to be developed.

The present paper extends the prior work of the same authors (Zhao et al., 2016, 2017)
performing the fundamental work with minimal models for creep groan using the bristle friction
law. Creep groan is first measured in a test rig with an idealized brake, which is in most parts
similar to a real brake system but with less hard-to-model components. After that, creep groan
is studied fundamentally through (compared to Zhao et al., 2016, 2017) an extended minimal
model using also the bristle friction law. The bristle friction law proposed by De Wit et al.
(1995) and Johanastrom and De Wit (2008) includes the Stribeck effect, hysteresis and spring-
like characteristics for stick. By analyzing the bifurcation behavior of the resulting nonlinear
model, three regions of qualitatively different behavior depending on the parameters can be
identified. The main focus of this paper is to describe the detailed bifurcation behavior and the
corresponding map with three different regions according to the occurrence and absence of creep
groan, while experiments testified the existence of them in the test rig with the idealized brake.
Furthermore, a similar map is also measured from the test rig with a real brake.

2. Test rig with an idealized brake

For the experimental investigation of creep groan, a test rig with an idealized brake has been
designed and assembled at MMD TU Berlin. This set-up (Fig. 1) imitates the brake system of
an automotive vehicle. The intention of the design was to concentrate on the pad-disk friction
contact and to avoid other hard-to-model parts. In the real brake, there are additional hard-
to-model parts, such as complicated structure of the carrier and its coupling with the caliper
via bushings. These parts may also have an influence on the creep groan behavior but are
considered to have minor influence compared to the frictional contact between the pad and the
disk. Therefore, a carrier consisting of two L-shaped steel plates with high stiffness in the in-plane
direction (but comparable order of stiffness similar to the real brake carrier) and low stiffness
in the out-of-plane direction replaces the real brake carrier. The pads (from a serial brake) are
fixed on the long legs of the carrier while its short legs are fixed to the base plate. A caliper
from the same serial brake is attached to the long legs of the carrier providing the pressure force.
The disk is driven by an AC motor coupled with a reduction gearbox, which can provide a low
revolution speed (starting from 0.1 rad/s i.e. approximately 0.12 km/h) with a high torque. A
drive shaft connects the gear box and the brake disk. This set-up is almost similar with a real
brake system, since the pads, the disk, the drive shaft and the caliper of the test rig are taken
from a real vehicle. Moreover, the set-up has advantages for the experimental investigation of
creep groan, such as: 1. The set-up has a simple structure of the components and, therefore, its
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parameters are easy to identify; 2. The set-up is easy to assemble with different types of sensors
since the disk is directly driven by the shaft. In contrast to this, in industrial dynos, the disk is
usually driven via wheel bolts, which complicates accessibility to the brake for measurements.

Fig. 1. Test rig with an idealized brake at MMD TU Berlin

The following sensors have been assembled to the set-up. A strain sensor is placed on the dri-
ve shaft measuring its torsional angle. It is calibrated through a static measurement (Muschalle,
2015). A turning angle transmitter (power supply 5V DC, maximum sample rate 40 kHz, reso-
lution 14 bit) is connected to the disk which allows for the measurement of the absolute angle
and angular velocity of the disk. The pressure of the brake can be read from a pressure me-
ter. An accelerometer (PCB 4507 ICP accelerometers, frequency range 0.3 Hz-6 kHz, sensitivity
101.2mV/g) is attached to the long leg of the carrier, which measures the acceleration of the
pad in the vertical direction. The measured signals are conditioned and subsequently driven
into a data acquisition module (featuring eight 24-bit simultaneously sampled A/D channels,
maximum sample rate 80 kHz, and analogue anti-aliasing filter).
The measured torsional angle ∆θ of the shaft describing the difference between the rotation

angle of the drive and the rotation angle of the disk (defined in Section 3), and the pad accele-
ration ẍ are displayed in Fig. 2 without creep groan and Fig. 3 in the case of creep groan. One
can differ the creep groan case from the non-creep groan case, where ∆θ has large vibrations
and impulses can be found in the acceleration signal ẍ during creep groan. The kurtosis value,
which is based on a scaled version of the fourth moment of the signal, can be used to detect
creep groan from the non-creep groan case. A higher kurtosis is the result of extreme deviations,
which is characteristic for non-stationary signals (Antoni, 2006; Antoni and Randall, 2006). For
the non-creep groan case, the kurtosis value of the pad acceleration signal is shown in Fig. 2b
is 2.85, while this kurtosis value increases to 7.06 when creep groan occurs as shown in Fig. 3b.

Fig. 2. Torsional angle of the shaft ∆θ (a) and acceleration of the pad ẍ (b) without creep groan

The frequency spectra of the signals during creep groan are exhibited in Fig. 3c,d by pursued
Discrete Fourier transformations. The set-up consists of non-rotating parts in terms of the brake
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Fig. 3. Torsional angle of the shaft ∆θ (a) and acceleration of the pads ẍ (b), and their frequency
spectra (c), (d) during creep groan

pads, the caliper, and the carrier, as well as rotating parts in terms of the disk, the drive shaft
and the motor. In the rotating parts, the spectrum of ∆θ shows a single peak at 36.25Hz,
which is the frequency related to the period of the stick-slip motion. In the non-rotating parts,
the spectrum of ẍ shows a lot of frequency peaks, also at much higher frequencies than the
frequency of the stick-slip motion, and this vibration is what the human hear/feel during creep
groan. According to the measured signals from both parts, it is clear that stick-slip happens
during creep groan, and the creep groan is the resulted vibration of the brake system.

3. Fundamental theoretical investigations of creep groan

The chosen minimal model for the investigation of creep groan is shown in Fig. 4. It is considered
as a two DOF system. Minimal models for creep groan with comparable low number of degrees
of freedom are, as already mentioned in the introduction, discussed by Brecht (2000) with three
degrees of freedom, in (von Wagner et al., 2007) and (Ibrahim, 1994a) by Crowther and Singh
(2007, 2009) with four degrees of freedom or by Fuadi et al. (2010) with two degrees of freedom.
With our model, we focus on the stability and bifurcation analysis of the nonlinear model in
comparison with our experimental results.
As we are in the low frequency range, the disk is considered as a rigid body which is connected

to the motor by the drive shaft. During creep groan, the pads and the caliper move synchro-
nously. Thus, the brake pads together with the caliper are considered as a rigid body and are
connected to the base frame through the carrier. As the disk can only perform rotation but no
wobbling motion, the number of pads can be reduced from two to one without any influence on
the qualitative behavior of the model. The drive shaft is modeled as a rotational spring with
stiffness kθ and damping dθ. With θ being the disk rotation angle and Ω0t the rotation angle of
the drive with constant Ω0, the equation of motion of the disk is given by

Iθ̈ + dθ(θ̇ −Ω0) + kθ(θ −Ω0t) = −FRr (3.1)

where r is the radius of the point the pads act on the disk, I is the moment of inertia of the
disk and FR is the friction force in the contact between the disk and pads. Introducing ∆θ as
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the difference between the rotation angle of the drive Ω0t and the disk rotation angle θ, with
∆θ = Ω0t− θ, this equation of motion of the disk reads

I∆θ̈ + dθ∆θ̇ + kθ∆θ = FRr (3.2)

The carrier is considered as a spring with stiffness kx and damping dx, m is the mass of the pads
with the caliper, and x is the displacement of the pads. The equations of motion of the system
can then be described by

MŸ +CẎ +KY = F

Y =

[
∆θ
x

]
M =

[
I 0
0 m

]
C =

[
dθ 0
0 dx

]

K =

[
kθ 0
0 kx

]
F =

[
FRr
FR

]
(3.3)

Due to its definition, ∆θ has in general due to the influence of the friction force a positive
nonzero mean value.

Fig. 4. Model of the test rig with an idealized brake

For the determination of FR, the bristle friction law is used in the following. By imagining that
two rigid bodies are in contact through elastic bristle surfaces (De Wit et al., 1995; Johanastrom
and De Wit, 2008), the friction force FR is generated by deformation of the bristle. The dynamic
friction force FR can in general be expressed as

FR = σ0z + σ1ż (3.4)

where σ0 is the contact stiffness coefficient, σ1 is the contact damping coefficient. z is the average
deflection of the bristles described by

ż = φ(∆θ̇, ẋ, z) = Ω0r −∆θ̇r − ẋ−
z

g0
|Ω0r −∆θ̇r − ẋ| (3.5)

Herein, g0 is a scaling factor which includes the Stribeck effect. g0 is given as

g0 =
1

σ0

(
Nµd +N(µs − µd) exp

(
−
∣∣∣
(Ω0 −∆θ̇)r − ẋ

vs

∣∣∣
α)
)

(3.6)

where vs is Stribeck velocity, N is the brake normal force, µs and µd are the static and dynamic
friction coefficients, α is an empirical parameter which can be measured in experiments. In our
test rig, the value α = 1 is chosen as the more reasonable approach (Johanastrom and De Wit,
2008; Tustin, 1947), since α = 1 leads to better agreement between experimental and simulation
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results. The bristle friction law can be described in such a way that the bristles will deflect like
springs at a tangential force, which gives rise to the friction force. If the force is so large that
some of the bristles deflect, slip occurs. This bristle friction law includes the Stribeck effect,
hysteresis, pre-sliding characteristics of friction. The complete dynamic equations of the entire
model can be, therefore, written as a set of first order ordinary differential equations

Ẏ =




∆θ̇
ẋ

−dθ
I
∆θ̇ − kθ

I
∆θ +

r

I
σ0z +

r

I
σ1φ(∆θ̇, ẏ, z)

−dx
m
ẋ− kx

m
x+
1

m
σ0z +

1

m
σ1φ(∆θ̇, ẏ, z)

φ(∆θ̇, ẏ, z)




Y =
[
∆θ x ∆θ̇ ẋ z

]T

φ(∆θ̇, ẏ, z) = Ω0r −∆θ̇r − ẋ−
z

g0
|Ω0r −∆θ̇r − ẋ|

g0 =
1

σ0

(
Nµd +N(µs − µd) exp

(
−
∣∣∣
(Ω0 −∆θ̇)r − ẋ

vs

∣∣∣
α)
)

(3.7)

where Y is the vector of state variables of the system.

The equilibrium solution of equations (3.7), which is the equilibrium position of the system,
is expressed as

Ẏeq = 0

Yeq =

[
rA
kθ
0
A
kx
0
A
σ0

]T (3.8)

where A = Nµd +N(µs − µd)e−Ω0r/vs .
Linearizing equation (3.7)1 under its equilibrium position, we get

Ẏ = AY
(3.9)

A =




0 1 0 0 0

−kθ
I
−dθ
I
+
rσ1
I

∂φ̃

∂∆θ̇
0

rσ1
I

∂φ̃

∂ẋ

rσ0
I
+
rσ1
I

∂φ̃

∂z
0 0 0 1 0

0
σ1
m

∂φ̃

∂∆θ̇
−kx
m
−dx
m
+
σ1
m

∂φ̃

∂ẋ

σ0
m
+
σ1
m

∂φ̃

∂z

0
∂φ̃

∂∆θ̇
0

∂φ̃

∂ẋ

∂φ̃

∂z




where

∂φ̃

∂∆θ̇
=
∂φ(∆θ̇, ẋ, z)

∂∆θ̇
=

(µs − µd)r2Ω0
vs
(
µs − µd + µdeΩ0r/vs

)

∂φ̃

∂ẋ
=
∂φ(∆θ̇, ẋ, z)

∂ẋ
=

(µs − µd)rΩ0
vs
(
µs − µd + µdeΩ0r/vs

)

∂φ̃

∂∆z
=
∂φ(∆θ̇, ẋ, z)

∂∆z
=

−rσ0Ω0
Nµd +N(µs − µd)e−Ω0r/vs



Theoretical and experimental investigations of the bifurcation... 357

and A is the corresponding system matrix. The eigenvalue of the matrix can be calculated as

λ = eig(A) (3.10)

The Lyapunov stability of the equilibrium solution can be analyzed by eigenvalues λ. The equ-
ilibrium solution is asymptotically stable, when the real parts of all the eigenvalues are negative.
In contrast, the equilibrium solution is unstable when any of the real parts of eigenvalues is
positive. With respect to the nonlinear behavior, we call an isolated periodic solution in a self-
excited system a limit cycle (Hagedorn, 1978). The limit cycle of Eq. (3.7) is calculated in a
transient analysis by using numerical integration.
According to the conditions for the existence of the stick-slip limit cycle and the stability of

the equilibrium solution, the system has three different regions with different types of solutions.
Corresponding results are shown exemplarily in Fig. 5 if both the speed Ω0 and brake pressure p
are varied. Detailed comparison with the experimental results is performed in Section 4. When
the system has a stable equilibrium solution but no a stick-slip limit cycle, creep groan cannot
occur in this parameter region, and this region is labeled as region I (white region in Fig. 5). When
a stable stick-slip limit cycle and a stable equilibrium solution exist simultaneously, occurrence or
absence of creep groan depends on its initial condition. We labeled this region as region II (green
region in Fig. 5). When the system has a stable stick-slip limit cycle and an unstable equilibrium
solution, creep groan will always occur, and this region is labeled as region III (yellow region
in Fig. 5). Figure 5 exhibits also, for a constant Ω0 with varying p and for a constant p with
varying Ω0, respectively, the largest real part of the eigenvalues Re(λ) of the system matrix A
(red line), and the torsional angle limit cycle amplitude ALC (blue line). The boundary between
regions II and III is defined as a curve, where the largest real part of the eigenvalues Re(λ) of the
system matrix is equal to 0. The way to determine the boundary between regions I and II is given
as follows: for varying brake pressure and speed, the solution of the nonlinear system can be
calculated by a numerical time integration of Eq. (3.7) with initial conditions in the stick region.
If the solution is still the stick-slip limit cycle after a while, the stick-slip limit cycle is considered
to exist and be asymptotically stable. In addition, due to the system with the negative real parts
of the eigenvalues, its equilibrium solution is asymptotically stable and we have coexistence of
the stable equilibrium solution and the limit cycle, i.e. we are in region II. If the solution diverges
from the limit cycle and converges to the equilibrium solution, a stable stick-slip limit cycle is
considered not to exist, i.e. we are in region I. By varying the brake pressure and driving speed,
regions I and II as well as the boundary between them can be determined.

Fig. 5. Map of solution regions depending on the parameters Ω0 and p: I only stable equilibrium
solution, II coexistence of the stable equilibrium solution and the limit cycle solution, III only stable
limit cycle solution. The largest real part of the eigenvalues Re(λ) of the system matrix A (red line)
and the limit cycle amplitude ALC (blue line) for a constant Ω0 with varying p and for a constant p

with varying Ω0, respectively
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4. Comparison between experimental and simulation results

Experimental and theoretical results will be compared in this Section. Due to the simple structure
of the idealized brake in the test rig, its physical parameters can comparably easy be identified
by experiments. The stiffness and damping of the drive shaft and the carrier are determined
by modal analyses. The mass of the disk and the caliper with the pads can be measured by a
weighting device. The friction coefficients are estimated from comparison of the experimental
and simulation limit cycle results. The chosen parameters are given in Table 1.

Table 1. Parameters of the system

Parameters Values

I 0.2025 kgm2

kθ 1.036 · 104Nm
dθ 2Nms

kx 9.87 · 106 N/m
dx 1.5 · 103 Ns/m
r 0.15m

µd 0.325

µs − µd 0.009

σ0 3.97 · 108 N/m
σ1 3.84 · 105 Ns/m
vs 0.025m/s

Fig. 6. Simulated and measured torsional angle and torsional velocity of the shaft (a), (b), simulated
acceleration of the pad (c) and a simulated friction force (d) with a brake pressure 9 bar and

speed 0.2 rad/s

Figures 6a and 6b show the measured and simulated torsional angle and torsional velocity of
the drive shaft, with brake pressure 9 bar and driving speed 0.2 rad/s. The red line denotes the
simulation results and the blue line presents the experimental results, where both of them show
good agreement. The simulated acceleration of the brake pads and the corresponding friction
force are proposed in Figs. 6c and 6d. When the system converts from the stick region to the
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slip region, the friction force changes suddenly and a large impulse appears in the acceleration
signal. The same effect can also be observed in the measured acceleration on the carrier shown
in Fig. 2b. Figure 7 exhibits the simulated and measured stick-slip limit cycles in the phase
plot with ∆θ̇ as a function of ∆θ. At a constant driving speed, the amplitude of the limit cycle
increases with an increase in the brake pressure. The measured and simulated stick-slip limit
cycles at 5, 7, and 9 bar are plotted in Fig. 7.

Fig. 7. Limit cycle of experimental results (a) and simulation results (b)

The map of the parameter regions is drawn in Fig. 8 with the identified parameters. Its
horizontal axis is the speed of the motor and the vertical axis is the brake pressure, which is
proportional to the normal brake force. This map shows different critical conditions of creep
groan during accelerating and decelerating of a vehicle. If the operation starts with parameters
in region III, creep groan must occur, as the equilibrium solution is unstable. Creep groan will
proceed also in region II if we move slowly within this parameter map until the system enters
in parameter region I, since the limit cycle does not exist in region I. Following the dotted line
in Fig. 8, this is usually the case when the vehicle is accelerated. If the vehicle is decelerated,
different things will happen, as shown in Fig. 8 with the solid line. In region I, the silent solution
without creep groan is the only stable solution. The system will stay in the attractor of the silent
solution even though it enters region II, and no creep groan is occurring. Creep groan will then
occur once region III is entered, as the limit cycle is the only stable solution. This can explain
that creep groan is more serious in the accelerating process than in the decelerating process,
which agrees with the driving experience.

Fig. 8. Map of creep groan, the red point represents the measured boundary between regions II (green)
and III (yellow), while the blue point represents the measured boundary between regions I (white)

and II (green)

The determination of the critical velocities Ωc12 and Ωc23 is described in the following. The
brake pressure is constant (8 bar) and the speed of the motor is varied. The corresponding
experimental results are shown in Fig. 9. The red line describes the driving speed, while the
blue line represents the torsional vibrations ∆θ̃, where ∆θ̃ = ∆θ−∆θeq. The torsional vibration



360 X. Zhao et al.

of the drive shaft becomes large when creep groan appears. In the accelerating process, the
speed is slowly increased from 0.1 rad/s to 0.8 rad/s, creep groan occurs at a low speed but
disappears when the speed is higher than the critical speed Ωc12 (0.62 rad/s with 8 bar), which
is the boundary point between regions I and II. In the decelerating process, the speed is slowly
decreased from 0.8 rad/s to 0.1 rad/s. Creep groan does not occur at a high speed but appears
when the speed is lower than the other critical speed Ωc23 (0.42 rad/s with 8 bar), which is the
boundary point between regions II and III. It should be noted here that similar boundary points
can also be measured by varied pressure with a constant speed (Zhao et al., 2017). For a constant
speed with the increasing pressure, the onset of creep groan will occur at a higher brake pressure
than the stopping of creep groan will happen when decreasing the brake pressure. This case is
considered in Section 5 for the complete real brake.

Fig. 9. Experiment: occurrence of creep groan with variation in the speed. Creep groan is always present
in region III (yellow) and does not occur in region I (white), while creep groan occurs in

region II (green) in the accelerating process (a) but not in the decelerating process (b) cf. Fig. 8

Fig. 10. The equilibrium solution and the stick-slip limit cycle with different driving speeds,
(a) in region III with the stick-slip limit cycle, (b) in region II with coexistence of two stable solutions,

(c) in region I with just an equilibrium solution

Figure 10 shows the limit cycles and the equilibrium solutions of the system with different
speeds in the phase plot. When the speed is higher than Ωc12 (Fig. 10c), only the equilibrium
solution can be measured in both accelerating and decelerating processes. The system under
current conditions stays in region I and creep groan cannot occur. When the speed is lower
than Ωc23 (Fig. 10a), only the stick-slip limit cycle can be measured in both processes, meaning
that the system is in region III and creep groan always occurs. When the speed is higher thanΩc23
but lower than Ωc12 (Fig. 10b), creep groan can be measured in the accelerating process but not in
the decelerating process, meaning that the system is in region II with both the stable equilibrium
solution and the stable limit cycle, and the occurrence and absence of creep groan depends on its
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initial conditions. The difference between these two limit speed values (Ωc12 and Ωc23) actually
prooves the existence of region II with the coexistence of two stable solutions.

The main result therefore is that a linear stability analysis is not sufficient for the deter-
mination of the boundary of creep groan as thereby one can only calculate Ωc23. E.g., in the
acceleration case, which is in fact compared to the deceleration case, the one being more suspi-
cious for creep groan, the boundary Ωc12 for that undesired vibration phenomenon can only be
determined by performing a nonlinear analysis. The same holds in the case of brake pressure
variation.

5. Creep groan bifurcation experimental behavior of a complete real brake

In this Section, some results on the test rig with a complete real brake will be expressed and
compared to the results of the idealized brake. The set-up consists of a real brake system, a
suspension system, as well as the same drive system as before, shown in Fig. 11. The similar

Fig. 11. Test rig with a complete real brake including the suspension

Fig. 12. Occurrence of creep groan with variation of the brake pressure during the pressure decreasing
process (a) and pressure increasing process (b). Limits for the stopping and the onset of creep groan
(pc12 and pc23, respectively) are different prooving the existence of region II with two stable solutions,

while region III (yellow) and region I (white) contain only one stable solution

experimental method has been used to identify the bifurcation behavior and the corresponding
map of creep groan of the complete real brake. According to the above analysis, the boundary
between regions I and II is critical for stopping of creep groan in the acceleration process, which
is the more suspicious case for creep groan. The boundary between regions II and III is critical
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for the occurrence of creep groan starting from the equilibrium position which is the case while
decelerating. We can choose the speed of motor and vary the brake pressure arbitrarily in the
test rig and, therefore, the boundaries could be determined. The result for a single test run with
decreasing and respectively increasing brake pressure is shown in Fig. 12. Again the boundaries
for the stopping and the onset of creep groan are not the same, which prooves the existence
of region II with the coexistence of a stable limit cycle and a stable equilibrium solution. The
measured boundary points as well as the polynomial regression boundary curves are exhibited
in Fig. 13.

Fig. 13. Map of creep groan identified by experiments, the red points represent the measured boundary
points between regions II and III while the blue points represent the measured boundary points between
regions I and II, the red line and the blue line are polynomial regression curves of the measured

boundary points

Compared to the map measured from the idealized brake, both maps show the same three
regions I, II and III, and the boundaries among regions have the same qualitative behavior. It
is, therefore, confirmed that the bifurcation behavior observed for the simplified brake can be
conveyed in the complete real brake system.

6. Conclusions

In this paper, fundamentals of creep groan have been studied theoretically and experimentally.
In order to concentrate on the friction contact between the disk and pads, a test rig with an
idealized brake has been designed and assembled. Creep groan is measured for this set-up and
for the test rig with a complete real brake including suspension.

A nonlinear model with the bristle friction law is proposed to explain the experimental
results. Based on the model, creep groan is simulated through a minimal model. Furthermore,
the bifurcation behavior and the corresponding map of creep groan are studied. Three parameter
regions of the solutions exist in this map at varied brake pressure and driving speed. The
parameter regions are denoted as follows: region I with no stick-slip limit cycle but a stable
equilibrium solution, region II with both the stable stick-slip limit cycle and the equilibrium
solution, and region III with a stable stick-slip limit cycle and an unstable equilibrium solution.
The limit cycle can be interpreted as creep groan while the equilibrium solution is the desired
vibration free case. In region I, no creep groan can occur, while in region III creep groan is
always present. In region II, the occurrence or absence of creep groan depends on the initial
conditions. From that, it can be concluded that a linear stability analysis is not sufficient for
the determination of the boundary of creep groan. E.g., in the acceleration case, which is in fact
compared to the deceleration case, the one being more suspicious for creep groan, the boundary
for that undesired vibration phenomenon can only be determined by performing a nonlinear
analysis.
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Experimental results confirm the existence of the map with three regions, and the boundaries
of the regions can be identified theoretically and experimentally. The simulation results show
good agreement with the experimental results. At the end, a similar map is measured in the test
rig with a complete real brake, which confirmed that the bifurcation behavior observed for the
simplified brake can be conveyed to the complete real brake system.
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The paper presents the analysis of the turbulent boundary layer developed on a flat plate
subjected to an Adverse Pressure Gradient (APG) and approaching separation. The aim of
the study is to examine the effects of pressure gradient on a non-equilibrium boundary layer
while indicating local areas of the equilibrium flow. The emphasis is on the analysis of mean
flow velocity and the estimation of skin friction. It is known that accurate measurements of
skin friction were considered as a difficult and demanding task despite of various measuring
techniques available. A great challenge is especially the measurement of a strong decelerated
turbulent boundary layer because of low shear stress and possible large measuring errors.
To date, the oil film or oil drop interferometry technique, because of its high accuracy, has
become a basis of turbulent-boundary-layer research. In our research, this technique has
been used as a reference method for comparing with the traditional Clauser chart method,
which generally is considered as not suitably for non-canonical flows. In the paper, however,
a correction of the method is proposed, which allows one to increase its range of applicabi-
lity. This corrected Clauser chart method (CCCM) involves only one iteration while other
proposed in the literature methods employ a twofold iterative procedure. The comparison of
the methods for the non-canonical turbulent boundary layer, i.e. adverse pressure gradient
with a strong flow history effect has been presented. It has been shown that CCCM can be
successfully used for small and medium pressure gradients, where the Clauser-Rotta pressure
gradient parameter β does not exceed level close to 11.

Keywords: turbulent boundary layer, separation, oil-film interferometry, Clauser chart

1. Introduction

The measurement of skin friction is presently recognized as a critical element of aerodynamic
testing. It gives rise to crucially important flow phenomena such as viscous drag on air and gro-
und vehicles, on wind turbine blades, and losses in internal flows. It provides critical information
necessary for computational simulations and serves as a sensitive quantity for use in flow-control
applications.

Until now, accurate measurements of skin friction were considered as a difficult and deman-
ding task as it requires precise measurements of mean velocity in the viscous sublayer, where the
determination of the velocity gradient is necessary (Hutchins and Choi, 2002). Most commonly
used for this purpose is a measuring method relying on hot-wire technique. Despite theoretical
basis, the accuracy of this method is strongly dependent on resolution and quality of measu-
rements very close to the wall (Dixit and Ranesh, 2009). According to Castillo and Johansson
(2002), this method works satisfactorily only for low Reynolds number flows. Concerning adverse
pressure gradient (APG) flows, where the low velocity close the wall occurs, the results from hot-
wire measurement are biased by heat transfer to the wall (Ikeya et al., 2017). An indirect method
based on the measurement of velocity profile, the so called Clauser plot or Clauser chart method
(Clauser, 1956) (herein CCM), do not require precise measurements in the viscous sublayer as
it is based on the logarithmic overlapping layer universality assumption. In its original form it
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is however, restricted only to canonical flows. There are some modifications of the method for
equilibrium or near-equilibrium pressure gradient flows, which are based on the non-universal
or pressure-gradient-dependent log law in the inner scaling (Dixit and Ranesh, 2009), however
their applications are limited as they provide different parameters in to the log-law function for
pressure gradient changes without analyzing flow history effects (Bobke et al., 2017; Dróżdż and
Elsner, 2017).

On the other hand, the method considered to be the most accurate is the oil film or oil drop
interferometry technique which is based on the work of Tanner and Blows (1976). This technique
uses the dependency between the thinning of an oil film deposited on the surface exposed to the
flow and the local shear stress. According to (Segalini et al., 2015), if carefully implemented, this
method yields the true time averaged skin friction within the ±1% of measurement accuracy.
The paper presents results of skin friction measurements using the two above methods applied

for a strong decelerated turbulent boundary layer developed on the flat plate being at the verge
of separation.

The goal of the study is to verify applicability of this method for a very demanding case, where
a low shear stress is present and where its estimation may be associated with large measuring
errors. In the paper, the comparison of the measurements accuracy with the proposed correction
to the Clauser chart method for a strong pressure gradient flow with the flow history effect, is
presented.

2. Methodology and instrumentation

An open-circuit wind tunnel located at Czestochowa University of Technology has been used
for this experiment. The facility consists of a blower, settling chamber, and a long rectangular
channel with length of 5.035m located upstream the test section. As a result, the turbulent
boundary layer develops on a long plate what allows it to reach boundary layer thickness up to
90mm at the inlet to the test section. The inlet rectangular channel has two pairs of suction gaps
aimed, at maintaining overpressure, to control the two-dimensionality of the flow by minimizing
the boundary layers on the side walls. Triangular corner inserts are used in the whole inlet
channel to reduce the effect of secondary vortices developing along the rectangular channel.
A slight inclination of the upper wall helps maintaining zero pressure gradient (dP∞/dx ≈
0, where P∞ is external static pressure and x is the streamwise direction) conditions at the
inlet.

The specially design diffuser shape test section with length of 1.835m (see Fig. 1) is equipped
with a perforated movable upper wall. Wall perforation of 10.1% is adopted, characterized by
0.5mm circular holes. Modification of the shape and position of the upper wall and the suction
flux enables generation of a wide range of pressure gradient conditions, while the zero pressure
gradient conditions are maintained at the inlet channel. With specific pressure conditions, it
is possible to obtain, on the bottom wall, a turbulent boundary layer which is at the verge of
separation. Full separation on the lower flat plate does not occur even for the suction case. After
that point, due to the cessation of suction, the flow returns to the attached state.

The velocity measurements have been performed with a single hot-wire anemometry probe
of diameter d = 3µm and length l = 0.4mm (modified Dantec Dynamics 55P31). The probe
was a combined with hot-wire anemometry CCC developed by the Polish Academy of Science
in Krakow.

The hot-wire bridge was connected to a 16 bit A/D converter. The acquisition was maintained
at the frequency of 25 kHz, with minimum 30 s sampling records. The ambient conditions were
carefully controlled during the measurements. During single profile measurements, the scatter
of ambient temperature did not exceed ±0.2◦. If the measured temperature was different from
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Fig. 1. Test section geometry (a) and pressure distribution (b)

the calibration temperature, the temperature correction of CTA voltage was used by Jorgensen
(2002). Free-stream velocity was simultaneously monitored by means of the Prandtl tube.

The velocity measurements were performed for two inlet velocities Uin = 10 and 20m/s,
which corresponded to the Reynolds number based on momentum loss thickness 6300 and 10150.
Basic inlet parameters are summarized in Table 1, where Tu is turbulence intensity, Uin mean
velocity outside the turbulent boundary layer, uτ friction velocity (uτ =

√
τw/ρ), θ momentum

loss thickness and Reθ = Uinθ/ν is the Reynolds number, where ν is the kinematic viscosity. The
pressure distribution imposed by the upper wall and the active suction is presented in Fig. 1b.
Further details of the experiment can be found in (Dróżdż and Elsner, 2017).
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Table 1. Inlet conditions of ZPG turbulent boundary layer

Tu [%] Uin [m/s] uτ [m/s] θ [mm] Reθ [–]

1 0.7% 10 0.37 8.26 6300

2 0.7% 20 0.72 10.3 10150

3. Methodology of direct skin friction estimation

The direct method of skin friction estimation is based on the fringe skin friction (FSF) technique
introduced by Tanner and Blows (1976), who relate the evolution of oil droplet thickness to the
skin friction τw. The method is based on the assumption of constant shear stress for a given
measuring point already used in experimental investigations (Dróżdż et al., 2008; Pailhas et al.,
2009). Under the action of the flow shearing force the oil film is getting thinner leading, under
lighting of the monochromatic lamp, to a series of interferometric fringes. These fringes are
produced as a result of interference of the light reflected from the surface and from the air-oil
interface. Distance between consecutive fringes is strictly related to the oil layer thickness and
consequently to skin friction.

For the purpose of skin friction measurement, the optical equipment has been installed in
the wind tunnel under the plate (see Fig. 1a). It consisted of commercial camera equipped with
Macro lens and SOX Whitecroft Lighting sodium lamp emitting the monochromatic light of
wavelength λ = 0.5893µm used to illuminate the oil droplet. For the measurements, the OM50
silicone oil with viscosity of about 0.048 Pas was used. The accuracy of wall shear data was in
the range of 1%, which corresponded to 0.5% accuracy in friction velocity for the inlet uτ . The
oil viscosity is the most important parameter that has to be precisely controlled that is why
temperature of the flow, which is also the temperature of the flat plate, was carefully measured
using a temperature sensor. In the course of a single profile measurement the scatter of ambient
temperature at the end of the test section did not exceed ±0.2◦ and the temperature difference
between the flowing air and the wall was also below 0.1◦C.

In the central part of the flat plate, an optical glass delivered by Schott Company has been
mounted. This glass, used for radiological shields due to high lead contents, is characterized by
a very smooth surface, which is necessary to get smallest distortion of the fringe pattern. The
camera has been controlled by a computer program, which triggered the shutter from every
10 s up to 30 s dependending on the flow speed. Pictures have been recorded as monochromatic
and processing of the images obtained from experiments has been performed in Matlab Image
Processing Toolbox. Quality of images has been improved by image contrast adjustment and
histogram equalization procedures, which have been adopted from Matlab library (Dróżdż et
al., 2008).

The direct estimation of skin friction has been obtained from a series of pictures (mini-
mum 25) of fringe patterns forming on the oil droplet thinning under the influence of the flow
shear force. An exemplary image of the thinning droplet is presented in Fig. 2. Extracted pixels
of varying brightness from the single line from oil symmetry plane are used in order to estimate
the fringe spacing. Having the estimated fringe spacing from all taken pictures, the distribution
of the period versus time is obtained (Fig. 3). The approximation of the distribution with least
squares algorithm allows one to determine the slope of the curve a.

The shear stresses τw [Pa] is calculated from the following equation

τw =
2noµoa

cλ
cos θo (3.1)

where no = 1.4 is the index of refraction for the oil, µo – dynamic viscosity of the oil,
c – calibration coefficient [pixels/mm], a – slope of the fringe spacing versus time [pixels/s]
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Fig. 2. Oil droplet with the interferometry pattern

Fig. 3. Fringe spacing versus time

and θo is the angle between the incident light and the direction normal to the plate in the oil
environment. In comparison with Pailhas et al. (2009), the present shear stresses formula (3.1)
includes the influence of the view angle in the oil environment θo. It is important to know that
the viewing angle can lead to overestimation of the skin friction error equal to 0.7% for the angle
θ = 10◦ in the air environment.

4. Methodology of corrected Clauser chart method (CCCM)

The indirect estimation of skin friction can be realized using the Clauser plot method (Clauser,
1956). It is based on the assumption of universality of the logarithmic overlap region for zero
pressure gradient flows defined as

U+ =
1

κ
ln(y+) +B (4.1)

where the von Karman constant κ and constant B are independent of the Reynolds number.
It is common knowledge that this method is considered not very accurate because, among
others, there is no value of constant κ that would be widely accepted (Zanoun et al., 2003). As
often reported in the literature, e.g. (Kendall and Koochesfahani, 2007) the Clauser plot method
produces artificially high friction velocities, especially at the low range of Reynolds numbers. For
example, for Reynolds numbers in the range of Reθ = 1000-10 000 (Blackwelder and Haritonidis,
1983), the friction velocity was reported to have an error varying between 8% and 20% while at
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very high Reynolds numbers, the larger extent of a log-linear region improved the accuracy of
the Clauser method provided that the value of κ was correctly adopted. According to Nagib et
al. (2004) for a zero pressure gradient turbulent boundary layer the most of the data are very
well represented using the log-law with κ = 0.38, B = 4.1, and the same constants are adopted
in the current investigations.

Originally, Clauser chart method involved fitting of the velocity profile with log-line in the
overlap layer by changing the value of friction velocity uτ . In practice, there is also a need to
select beginning and end of the region where the logarithmic velocity profile occurs. It introduces
user subjectivity, which can result in substantial errors, especially for low Reynolds numbers and
for TBL with a strong adverse pressure gradient, where the log region in the overlap layer is
hardly observed. For the APG flow the region occupied by the log-law is progressively reduced
and the mean velocity profiles will deviate from the logarithmic line resulting in a change of
κ and B constants. In the absence of direct measurements of the shear stress, the attempt to
preserve constants valid for the ZPG flow, the logarithmic region shifts the profile to the wall.
This causes underestimation of shear stress values as shown at Fig. 4.

Fig. 4. Comparison of inner scaled mean velocity profiles for Uin = 10m/s estimated by the original and
corrected Clauser plot method for x = 700mm and x = 900mm

The aim of this study is to propose a very simple extension of the conventional Clauser
chart method based on the assumption that the preceding ZPG turbulent boundary layers are
correctly defined in viscous units and so that the lower and upper limits of the overlapping
logarithmic layer for the analysed Reynolds number are known. It is generally accepted that
the near-wall flow is vulnerable to changes in the pressure gradient, preserving however memory
of the upstream flow features. As it was mentioned above, the basic problem for this type of
flow is the reduction of the logarithmic zone with an increase in β while for the boundary layer
approaching separation the mean velocity profile does not even reveal a log region at all. Our
concept stems from Mathis et al. (2009) observation that for ZPG TBL the centre of large
scale structures coincides well with the geometrical centre of the logarithmic region. It could
be assumed, therefore, that large scales have an important effect on the shear stress at the
wall. However, for APG flow, the region occupied by large-scales is extended above the log
region that is why the range of occurrence of the large scale motions, which is the same as the
overlap log layer properly defined for ZPG (Dróżdż and Elsner, 2017), should be used rather
than the log region. As it is suggested in a number of papers e.g. (Vinuesa and Nagib, 2015), the
lower boundary of overlapping log layer for ZPG TBL is invariant with the Reynolds number
(y+ ≈ 150), while the upper boundary can be calculated at a value of y+ = 0.15δ+ (as the
inner range of the near wall region is y/δ = 0.15) (Mathis et al., 2009), where δ+ = δuτ/ϑ
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is the zero pressure gradient turbulent boundary layer thickness δ presented in viscous units.
The above boundaries can be estimated in few iterations using the Clauser chart for the zero
pressure gradient case and should be kept constant for the consecutive profiles in APG region,
even if there is no logarithmic profile. For flows with δ+ < 1000, the log region does not exist
because the upper and lower boundaries are equal. In this case, the boundaries may be modified
slightly by ±50 viscous units (to obtain range 100-200) to cover at least a few measuring points.
Assuming the invariable location of the logarithmic profile in the overlap region, already defined
for ZPG where the large scales centers reside, the location of the experimental APG profile
is modified using the least-square method such that the R-squared value of the fit, with the
logarithmic curve within the above defined overlap layer limits, reaches a maximum (keeping
constants equal κ = 0.38 and B = 4.1).
The concept is presented for a lower Reynolds number case in Fig. 4, where two selected

mean velocity profiles for two locations x = 700mm (Fig. 4a) and x = 900mm (Fig. 4b) are
drawn in inner scaling. Each figure contains the mean ZPG profile (grey dots), the profile plotted
according to the original Clauser method (open circles) and the profile plotted according to the
corrected Clauser method (dots) as well as the log law line for ZPG flow. In the figures, the
boundaries of the defined overlap region are drawn as vertical dashed lines. The first location
corresponds to the pressure gradient parameter β = 11 while the other location corresponds to
the incipient detachment (ID) point according to the definition of Simpson (1989), where the
pressure gradient parameter β equals to 28.
In both cases, the mean velocity profile drawn according to the conventional Clauser chart

method (CCM) is fitted to the log-law but in the region much closer to the wall. Such a fit of
the mean profile causes undervaluation of friction velocity uτ . The CCCM allows one to correct
the friction velocity by about 6.7% (from 0.235 to 0.252) for β = 11, which is consistent with the
results obtained by the oil-film interferometry method and by about 21.7% (from 0.13 to 0.166)
for β = 28. There is of course a question about the range of applicability of this methodology
and it will be presented in the next Section of the paper.

5. Flow conditions

The diverging measuring section enables generation of a predetermined adverse pressure gra-
dient. The flow conditions in the section can be best described by the pressure coefficient

Cp = 1−
( U∞
U∞0

)2
(5.1)

Here U∞ is the local and U∞0 is the inlet freestream velocity determined for x = 0mm. The
distributions of Cp are presented in Fig. 5a while Fig. 5b presents the Clauser-Rotta pressure
gradient parameter β. The rise of β to 90 for the streamwise distance x = 1100mm generates
conditions that increase the susceptibility of the boundary layer to detachment. It should be also
noted that, irrespective of two different Reynolds numbers, both Cp and β distributions match
well. This confirms that from the point of view of the pressure gradient it is possible to obtain
similar external conditions.
Prior to flow analysis in the APG area, verification of the inlet conditions is necessary.

The first travers i.e. for x = 0mm is located at the region of zero pressure gradient, so it
is easy to check the measured skin friction data against explicit relation of Coles-Fernholz
Cf = 2[(1/κ) ln(Reθ)+B]

−2, which was modified by Nagib et al. (2004) (modification of κ and B
is valid for the zero pressure gradient boundary layer). The measured, using oil film interfero-
metry, values of skin friction are used to calculate friction coefficients applying Cf = 2τw/(ρU

2
∞)

formula. The data presented in Fig. 6 confirm the agreement of oil film interferometry readings
with the theoretical line in function of the Reynolds number.
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Fig. 5. Distributions of the flow parameters: pressure gradient parameter Cp (a) and Clauser-Rotta
pressure gradient parameter β (b)

Fig. 6. Friction coefficient relation with the Reynolds number measured at the inlet plane

6. Discussion of the results

Having verified inlet conditions the indirect estimation of skin friction is performed using the
Clauser chart method (Clauser, 1956) for consecutive APG traverses up to the incipient of sepa-
ration. Figure 7 shows the distribution of skin friction along the plate using the CCM (squares)
as well as CCCM (circles). Close to the separation, the values obtained by both methods are
compared with the reference data obtained by oil-film interferometry (open triangles). For these
latter data, the level of measurement uncertainty is shown. Since the measurement uncertainty
in absolute terms is estimated to be at the level 0.006 Pa (which is 1% of the ZPG value), the
relative value, shown by the uncertainty bars, is almost four times higher for 10m/s (Fig. 7a)
than for 20m/s (Fig. 7b).

It is clear from Fig. 7a that for lower Reynolds numbers both indirect methods provide
consistent results for the distance x up to 500mm. However, further downstream, where the
Clauser-Rotta pressure gradient parameter β & 5.0, the consistency is lost. The first oil –
fringe measurement was performed for the x = 700mm and it was the same location where the
difference between CCM and CCCM estimations did not agree. Results of the CCCM agree well
with oil – fringe measurements and fall within the range of its measurement uncertainty. Further
downstream for both Clauser based methods, a decrease of skin friction of about the same order
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Fig. 7. Comparison of skin friction distributions of the Clauser chart and with the proposed correction
verified with oil skin friction (a) 10m/s and (b) 20m/s

but with lower values for the original Clauser chart is observed. A slightly different in character
is the trend measured for the reference technique. Surprisingly, at the ITD point (x = 1100)
all three estimations are pretty much the same. For higher Reynolds numbers (Fig. 7b), the
stress values are much higher, but the tendency in τw changes is maintained. In the latter case,
attention shall be paid to the comparability of the CCCM estimation with oil measurements
even for pressure parameter β close to 17 (x = 800mm). All measurement data are collected in
Table 2. The values which are comparable with OFI method are marked in bold.

Table 2. Comparison of skin friction values

x
[mm]

β
[–]

Uin = 10m/s Uin = 20m/s
CCM CCCM OFI CCM CCCM OFI
[Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

700 11 0.063 0.071 0.072 0.231 0.262 0.267

800 17 0.037 0.051 – 0.156 0.192 0.202

900 28 0.021 0.029 0.047 0.069 0.111 –

1000 43 0.011 0.019 0.032 0.039 0.066 0.100

1100 85 0.008 0.013 0.011 0.025 0.041 0.035

As can be seen at the beginning of detachment (x = 800-1000 mm), the Clauser chart method
significantly lowers the skin friction. Lack of near wall flow similarity with canonical flow and a
departure of the mean velocity profile from the log-line may be due to various reasons. According
to Knopp et al. (2013), this could be attributed to a sudden change of the mean velocity in the
streamwise direction. The explanation of this phenomenon can also be carried out based on the
analysis of physics of the processes occurring near the wall of the comsidered flow as it was
shown in (Dróżdż and Elsner, 2017). It is known that the adverse pressure gradient enhances
the large- and small-scale interaction which leads to the rise of small scale convection velocity
near the wall. This mechanism is responsible for increasing the momentum near the wall, which
leads to the rise of the wall skin friction. The Clauser plot method does not take account of this
process because it is based on the assumption that the mean velocity is universal in the whole
inner region including the log layer, which is not valid for APG. Since CCCM, to some extent,
takes into account the influence of large scale motion that is why its estimations are closer to
reality. Close to separation (ITD point), due to the drop of energy of the small scales (convection
velocity is no longer efficient in increasing the momentum), this effect is weaker, which may be
the reason for more consistent results obtained by all methods.
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Available literature data (Madad et al., 2010) suggest that the Clauser chart method is
applicable only for zero and weak adverse pressure gradient flows. They showed that beyond
β = 2.0 the difference in the reference to the oil interferometry method becomes significant
(approximately 10% difference of Cf ). However, the proposed modification extends the upper
limit of usable range of the Clauser chart method from β ≈ 2.0 (Monty et al., 2011) up to
β ≈ 11.0. On the other hand, for low friction velocity and close to separation, the application
of any method is problematical because of large uncertainty level.
It is well known that the impact of large-small scale interaction on the near wall region

increases with the Reynolds number. As it was shown in (Dróżdż and Elsner, 2017), the difference
between velocity profiles for two considered Reynolds numbers was not significant even close the
separation. However, the Reynolds stress profiles and spectral analysis shows the increase of
small scale energy close the wall with the Reynolds number due to the process of modulation
of near wall small scales by large scales from the outer zone. An increase of Reynolds stress
indicates an increase of the strain rate (dU/dy) close the wall, therefore it can be expected that
it will also be noticeable on skin friction. In order to show the effect of the Reynolds number
on the turbulent boundary layer for the same distribution of Cp in this area the results from
Fig. 7 (only CCCM and OFI) are reduced by the inlet zero pressure gradient (ZPG) friction
velocity uτZPG and are shown in Fig. 8. The oil fringe values are approximated by a linear
function (dashed dot line for 10m/s and dashed line for 20m/s). The uncertainty levels are
also provided in relevant scaling. The results demonstrate that for the same pressure conditions,
although differing in the number of Re, the distributions of reduced friction velocity do not
reveal influence (in the uncertainty range). The reason for the lack of the Reynolds number
effect may be due to a low Reynolds number difference. Further research should be carried out
for a wider range of Reynolds numbers to prove the effect.

Fig. 8. Reduced skin friction distributions obtained with oil-film interferometry and CCCM.
Reduced by its ZPG value

7. Summary and conclusions

The goal of the study is to verify applicability of the Clauser chart method and thin-oil film
interferometry technique for a very demanding case. Difficulty of the analyzed problem does not
rise only form a strong history effect of the flow, but also from a low shear stress, where their
estimation may be associated with large measuring errors. The skin friction measurements in
the turbulent boundary layer approaching separation are performed for two different Reynolds
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numbers with the same distribution of the pressure coefficient CP . The results are compared with
the corrected Clauser chart method (CCCM) which is introduced in the paper. This corrected
Clauser chart method involves only one iteration, while the other methods, as the modified
Clauser chart method (MCCM), employ a twofold iterative procedure (one iteration on Cf
and the other on pressure gradient coefficient). It is found that the skin friction distributions
obtained by the CCCM method agree very well with the reference oil-film interferometry data
(within the uncertainty range of oil-film interferometry) up to Incipient Detachment point.
Further downstream, an underestimation of the CCCM in reference to the oil-film interferometry
method is observed. An explanation of this effect is proposed, in which attention is paid to the
importance of large-small scales interaction leading to deformation of the mean velocity profile
near the wall which makes the Clauser plot method inapplicable for flows with strong pressure
gradient. This effect is present up to Intermittent Transitory Detachment point, where due to
increased fraction of reversed flow the drop of energy of the small scales is observed. Close
to the separation (τw < 0.3m/s), applicability of any method is problematic because of large
uncertainty of any applied techniques. The effect of the Reynolds number for the same pressure
gradient conditions is not observable for the analysed Reynolds number range.
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In this work, a two-dimensional finite element model for the grain boundary flow rule is de-
veloped based on the thermo-mechanical gradient-enhanced plasticity theory. The proposed
model is temperature-dependent. A special attention is given to physical and micromechani-
cal nature of dislocation interactions in combination with thermal activation on stored and
dissipated energy. Thermodynamic conjugate microforces are decomposed into energetic and
dissipative components. Correspondingly, two different grain boundary material length sca-
les are present in the proposed model. Finally, numerical examples are solved in order to
explore characteristics of the proposed grain boundary flow rule.

Keywords: strain gradient plasticity, grain boundary, energetic, dissipative, 2D FEM

1. Introduction

It is well known that the free surface may act as a source of defect development and its propa-
gation towards the grain inside, whereas the grain boundaries block this dislocation movement,
consequently, give rise to the strain gradients to accommodate geometrically necessary disloca-
tions (Hirth and Lothe, 1982). In addition, the grain boundaries can be a source of dislocations
through transmission of plastic slip to the neighboring grains (Clark et al., 1992). Besides these
physical manifestationa, from the mathematical viewpoint, nonstandard boundary conditions
are necessary at the external boundary of a region for the well-posed governing equations in the
implementation of higher order strain gradient plasticity models. Therefore, careful modeling of
the grain boundary is important in the continued development of higher order strain gradient
plasticity models.

The experimental observations on slip transmission motivate one to assume that the effect
of surface/interfacial energy and the global nonlocal energy residual should be non-vanishing.
Examples can be found from the in-situ TEM direct observations, see e.g., Lee et al. (1989), or
using the geometrically necessary dislocation (GND) concept in the description of observations
in bicrystallines, e.g., Sun et al. (2000) and nanoindentation tests close to the grain boundary,
e.g., Soer et al. (2005). This results in a new type of the boundary condition, in the context
of strain gradient plasticity incorporating the interfacial energy, accounting for the surface resi-
stance to slip transfer due to grain boundary misalignment, see e.g., Aifantis and Willis (2005),
Cermelli and Gurtin (2002), Fredriksson and Gudmundson (2007), Gudmundson (2004), Gurtin
(2008).

Voyiadjis and co-workers (Voyiadjis et al., 2014, 2017; Voyiadjis and Song, 2017) developed
thermodynamically consistent and coupled thermo-mechanical strain gradient plasticity models
incorporating the flow rules for both the grain interior and grain boundary to study characte-
ristics of nano/micro-scale metallic materials. In those three works, the finite element analysis
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was implemented via a one-dimensional model. As is well known, there is bound to be a funda-
mental difference between one-dimensional finite element implementation and two-dimensional
one. For example, in the one-dimensional case, some special complications, e.g. the resonance
between the physical scale and the mesh scale, cannot be considered during simulation. In terms
of dimensional extension, there were simple modifications from one-dimensional finite element
implementation for the strain gradient plasticity model to the two-dimensional one in Voyiadjis
and Song (2017) and Song and Voyiadjis (2018). However, in Voyiadjis and Song (2017), the
grain boundary modeling and the effects of temperature and its gradient were not considered,
but just addressed the effect of the mechanical component of thermodynamic microforces in
terms of the stress jump phenomenon. In addition, in Song and Voyiadjis (2018), only two null
boundary conditions, i.e. microscopically free and hard boundary conditions, were considered
at the grain boundary to describe the dislocation movement and the plastic flow at the grain
boundary areas. In the current work, two-dimensional numerical simulation, in the context of
the small deformation framework, is developed incorporating temperature and rate dependent
flow rules for the grain interior and grain boundary. The proposed model is applied to the simple
shear problem in order to examine the characteristics of the proposed model.

2. Thermodynamically consistent strain gradient plasticity model for
grain interior

In this work, tensors are denoted by the subscripts i, j, k, l, m, and n. The superscripts e, p,
int, ext, en, dis and etc. imply specific quantities such as elastic state, plastic state, internal,
external, energetic, dissipative and etc., respectively. Also, the superimposed dot represents
derivative with respect to time, and the indices after a comma represent partial derivatives.

2.1. Principle of virtual power (grain interior)

The internal power Pint is presented with a combination of three energy contributions, i.e.
the macro-, micro- and thermal-energy contributions, in an arbitrary region Ω0 as follows

Pint =
∫

Ω0

(
σij ε̇

e
ij︸ ︷︷ ︸

Macro

+xėp +Qiė
p
,i︸ ︷︷ ︸

Micro

+AṪ + BiṪ,i︸ ︷︷ ︸
Thermal

)
dV (2.1)

where εeij is the elastic part of the strain tensor, e
p is the accumulated plastic strain, x and

Qi are the thermodynamic microforces conjugate respectively to ė
p and ėp,i, A and Bi are the

micromorphic scalar and vector generalized stresses conjugate to the temperature rate Ṫ and
the gradient of the temperature rate Ṫ,i respectively, and σij is the Cauchy stress tensor.
The internal power Pint for Ω0 is equated with the external power Pext expended by the ma-

cro and microtractions (ti,m) on the external surface ∂Ω0 and the body forces acting within Ω0
as follows

Pext =
∫

Ω0

biu̇i︸︷︷︸
Macro

dV +

∫

∂Ω0

(
tiu̇i︸︷︷︸
Macro

+ mėp︸︷︷︸
Micro

+ aṪ︸︷︷︸
Thermal

)
dS (2.2)

where bi is the generalized external body force conjugate to the macroscopic velocity u̇i. Fur-
thermore, it is assumed for the external power to have the term of a conjugate to Ṫ for the
thermal effect.

By using the equation, Pint = Pext, in conjunction with the divergence theorem and factoring
out the common terms, the balance equations for the macroscopic linear momentum, nonlocal
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microforce and generalized stresses A and Bi for the volume Ω0 can be obtained respectively as
follows

σij,j + bi = 0 σij = (x−Qk,k)Nij Bi,i −A = 0 (2.3)

where σij is the deviatoric part of σij with the Kronecker delta δij (σij = σij − σkkδij/3).
On ∂Ω0, the balance equations for the local surface traction and the nonlocal microtraction

are expressed with the outward unit normal vector to ∂Ω0, ni, respectively, as

tj = σijni m = Qini a = Bini (2.4)

2.2. Second law of thermodynamics (grain interior)

The second law of thermodynamics introduces a physical base to account for the GNDs
distribution in the body. The following entropy production inequality can be obtained based on
the basic statement of this law with the specific entropy s and the micromorphic approach by
Forest (2009)

−ρĖ + ρṡT + σij ε̇eij + xėp +Qiėp,i +AṪ + BiṪ,i − qi
T,i
Ṫ
­ 0 (2.5)

The entropy production vector is assumed in this work to be equal to the thermal flux vector
divided by temperature, as given in Coleman and Noll (1963).

2.3. Energetic and dissipative thermodynamic microforces (grain interior)

The Helmholtz free energy Ψ (per unit volume) is obtained with the entropy s, internal
energy E and temperature T describing the current state of the material as Ψ = E − T s. By
using this equation along with Eq. (2.6), the Clausius-Duhem inequality is derived as follows

σij ε̇
e
ij + xė

p +Qiė
p
,i +AṪ + BiṪ,i − ρΨ̇ − ρsṪ − qi

T,i
T ­ 0 (2.6)

For deriving the constitutive equations, the functional form of the Helmholtz free energy,
Ψ = Ψ(εeij , e

p, ep,i,T ,T,i), is put forward in this work. By taking time derivative of the Helmholtz
free energy, Ψ̇ is expressed as follows

Ψ̇ =
∂Ψ

∂εeij
ε̇eij +

∂Ψ

∂ep
ėp +

∂Ψ

∂ep,i
ėp,i +

∂Ψ

∂T Ṫ +
∂Ψ

∂T,i
Ṫ,i (2.7)

Substituting Eq. (2.7) into Eq. (2.6) and factoring the common terms out gives

(
σij − ρ

∂Ψ

∂εeij

)
ε̇eij +

(
x− ρ ∂Ψ

∂ep

)
ėp +

(
Qi − ρ

∂Ψ

∂ep,i

)
ėp,i

+
(
A− ρs− ρ∂Ψ

∂T
)
Ṫ +

(
Bi − ρ

∂Ψ

∂T,i

)
Ṫ,i −

qi
T T,i ­ 0

(2.8)

Meanwhile, the thermodynamic conjugate microforces x, Qi and A are assumed to be de-
composed into the energetic and the dissipative elements as follows

x = xen + xdis Qi = Q
en
i +Q

dis
i A = Aen +Adis (2.9)

Substituting Eq. (2.9) into Eq. (2.8) and rearranging them in accordance with the energetic and
the dissipative parts results in the following expression

(
σij − ρ

∂Ψ

∂εeij

)
ε̇eij +

(
xen − ρ ∂Ψ

∂ep

)
ėp +

(
Qeni − ρ

∂Ψ

∂ep,i

)
ėp,i +

(
Aen − ρs− ρ∂Ψ

∂T
)
Ṫ

+
(
Bi − ρ

∂Ψ

∂T,i
)
Ṫ,i + xdisėp +Qdisi ėp,i +AdisṪ −

qi
T T,i ­ 0

(2.10)
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By assuming that the fifth term in Eq. (2.10) is strictly energetic, the energetic components of
the thermodynamic microforces are defined as follows

σij = ρ
∂Ψ

∂εeij
xen = ρ

∂Ψ

∂ep
Qeni = ρ

∂Ψ

∂ep,i

Aen = ρ
(
s+

∂Ψ

∂T
)

Bi = ρ
∂Ψ

∂T,i

(2.11)

The dissipation density per unit time D is then obtained as

D = xdisėp +Qdisi ėp,i +AdisṪ −
qi
T T,i ­ 0 (2.12)

The dissipative counterparts of the thermodynamic microforces are obtained from the dissipation
potential D(ėp, ėp,i, Ṫ ,T,i) as follows

xdis =
∂D
∂ėp

Qdisi =
∂D
∂ėp,i

Adis = ∂D
∂Ṫ

− qi
T =

∂D
∂T,i

(2.13)

2.4. Constitutive equations for the admissible potentials (grain interior)

2.4.1. Energetic constitutive relations

It is important to define the proper formulation of the Helmholtz free energy Ψ because
it establishes the basis for the derivation of constitutive relations. In the current work, the
Helmholtz free energy function is put forward as follows (Voyiadjis and Song, 2017; Voyiadjis et
al., 2017)

Ψ =
1

2ρ
εeijEijklε

e
kl −

αth

ρ
(T − Tr)εeijδij +

H0
ρ(r + 1)

[
1−

( T
Ty

)n]
(ep)r+1

+
σ0

ρ(ϑ + 1)
[ℓ2en(e

p
,ie
p
,i)]

ϑ+1
2 − 1

2

cε
Tr
(T − Tr)2 −

1

2ρ
aT,iT,i

(2.14)

where αth is the thermal expansion coefficient, Eijkl is the elastic modulus tensor, H0 is the
standard isotropic hardening parameter, r (0 < r < 1) is the isotropic hardening material
parameter, Ty and n are the thermal material parameters, σ0 > 0 is the stress-dimensioned
scaling parameter to explain the initial slip resistance, ℓen is the energetic material length scale
describing the feature of short-range interaction of the GNDs, a is the material constant for
the isotropic heat conduction, ϑ is the parameter of governing nonlinearity of the gradient
dependent defect energy, Tr > 0 is the reference temperature, and cε is the specific heat capacity
at a constant stress.

One can now obtain the energetic thermodynamic forces by using Eqs. (2.11) and (2.14) as
follows

σij = Eijklε
e
kl − αth(T − Tr)δij xen = H0

[
1−

( T
Ty

)n]
(ep)r

Qeni = σ0ℓ
2
en[ℓ
2
en(e

p
,ke
p
,k)]

ϑ−1
2 ep,i

Aen = ρs− αth(T − Tr)εeijδij −
cε
Tr
(T − Tr)−

H0(ep)r+1
r + 1

T
Ty
( T
Ty
)n−1

Bi = −aT,i

(2.15)
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2.4.2. Dissipative constitutive relations

In this work, the following functional form of the dissipation potential is put forward

D = σ0
√
H2(ep) + ℓN−Gεp

[
1−

( T
Ty

)n]( ėp

ṗ1

)m1
ėp

+ σ0
[
1−

( T
Ty
)n]( ṗ

ṗ2

)m2
ṗ− ς

2
Ṫ 2 − 1

2

k(T )
T T,iT,i

(2.16)

where ṗ1 and ṗ2 are the non-negative reference rates, m1 and m2 are the non-negative rate
sensitivity parameters, ς is the material constant characterizing the energy exchange between
phonon and electron, and k(T ) is the thermal conductivity coefficient. The N-G material length
scale ℓN−G was first introduced by Nix and Gao (1998). In the special case ℓN−G = 0 and
H(ep) = 1. The first term in RHS reduces to σ0

(
1 − (T /Ty)n

)
(ėp/ṗ1)

m1 ėp, a form used by
Voyiadjis and Song (2017). εp is a scalar measure of an effective plastic strain gradient defined

by εp
def
= ‖αij‖ = bρG with the magnitude of the Burgers vector b, Nye dislocation density

tensor αij and the total GNDs density ρG.
The parameter ṗ is a scalar measuring the plastic strain rate gradient, which is defined by

ṗ
def
= ℓdis‖ėp,i‖ = ℓdis

√
ėp,iė
p
,i (2.17)

where ℓdis is the dissipative material length scale.
The dimensionless function H(ep) is related to the strain hardening/softening behavior. In

the current work, the following form of the mixed-hardening function is adopted (Voce, 1955)

H(ep) = 1 + (χ− 1)[1− exp(−ωep)] + H0
σ0
ep (2.18)

where χ and ω are the material parameters. The strain hardening, strain softening and strain
hardening/softening can be modeled based on the particular choices for these parameters.
Using the dissipative potential given in Eq. (2.16) along with Eq. (2.13) and considering

k(T )/T = k0 = const , the constitutive relations for the dissipative microforces are obtained as
follows

xdis = σ0

√
H2(ep) + ℓN−Gεp

[
1−

( T
Ty

)n]( ėp

ṗ1

)m1

Qdisi = σ0ℓ
2
dis(m2 + 1)

[
1−

( T
Ty

)n]( ṗ
ṗ2

)m2 ėp,i
ṗ

Adis = −ςṪ qi
T = k0T,i

(2.19)

2.5. Flow rule (grain interior)

The flow rule is established based on the nonlocal microforce balance, Eq. (2.3), and streng-
thened by thermodynamically consistent constitutive relations for energetic and dissipative mi-
croforces. By considering the backstress in the microforce equilibrium such as σij−(−Qenk,k)Nij =
(x−Qdisk,k)Nij , one can obtain a second order partial differential flow rule as follows

σij −
{
−σ0ℓ2en[ℓ2en(ep,ie

p
,i)]

ϑ−1
2 ep,kk

}
Nij =

{
H0
[
1−

( T
Ty
)n]
(ep)r

+ σ0

√
H2(ep) + ℓN−Gεp

[
1−

( T
Ty
)n]( ėp

ṗ1

)m1

− σ0ℓ2dis(m2 + 1)
[
1−

( T
Ty
)n]( ṗ

ṗ2

)m2 ėp,kk
ṗ

}
Nij

(2.20)

where Nij is the direction of plastic flow given by Nij = ε̇
p
ij/ė
p.



382 Y. Song, G.Z. Voyiadjis

3. Thermodynamically consistent strain gradient plasticity model for the
grain boundary

The main goal of this study is to develop a thermodynamically consistent gradient-enhanced
plasticity model for the grain boundary, which should be also consistent with the one for the
grain interior addressed in Section 2. Hereafter, the superscript GB and the expression GB will
be used to denote specific variables at the grain boundary.

3.1. Principle of virtual power (grain boundary)

Two grains G1 and G2 separated by the grain boundary are taken into account in this work,
and the displacement field is assumed to be continuous, i.e. uG1i = u

G2
i , across the grain boundary.

The internal part of the principle of virtual power for the grain boundary is assumed to depend
on the GB accumulated plastic strain rates ėp

GBG1 at SGBG1 and ėp
GBG2 at SGBG2 in the arbitrary

surface SGB of the grain boundary as follows

PintGB =
∫

SGB

(
MGBG1 ėp

GBG1
+MGBG2 ėp

GBG2 )
dSGB (3.1)

where the GB microscopic moment tractions MGBG1 and MGBG2 are assumed to expend the
power over ėp

GBG1 and ėp
GBG2 , respectively. In addition, the GB external power PextGB is expen-

ded by the macrotractions σG1ij (−nGBj ) and σG2ij (nGBj ) conjugate to the macroscopic velocity u̇i,
and the microtractions QG1k (−nGBk ) and QG2i (n

GB
k ) that are conjugate to ε̇

pGBG1
ij and ε̇p

GBG2

ij ,
respectively, as follows

PextGB =
∫

SGB

[(
σG2ij n

GB
j − σG1ij nGBj

)
u̇i +QG2k n

GB
k ėp

GBG2 −QG1k n
GB
k ėp

GBG1
]
dSGB (3.2)

where nGB is the unit outward normal vector of the grain boundary surface. From
PintGB = PextGB , the macro- and microforce balances for the grain boundary are obtained
as follows

(σG1ij − σG2ij )nGBj MGBG1 +Q
G1
k n
GB
k = 0 MGBG2 −Q

G2
k n
GB
k = 0 (3.3)

3.2. Laws of thermodynamics (grain boundary)

The first and second laws of thermodynamics are considered to construct the thermodyna-
mically consistent gradient- and temperature-enhanced framework for the grain boundary as
follows

ĖGB =MGB ėp
GB

+ qGBi nGBi

ṡGBT GB − qGBi nGBi ­ 0
(3.4)

where EGB is the GB surface energy density, qGBi is the GB heat flux vector and sGB is the
surface density of entropy of the grain boundary.

3.3. Energetic and dissipative thermodynamic microforces (grain boundary)

By using the time derivative of the equation, ΨGB = EGB − T GBsGB , and substituting it
into Eqs. (3.4), the following Clausius-Duhem inequality for the grain boundary is obtained

MGB ėp
GB − Ψ̇GB − sGBṪ GB ­ 0 (3.5)
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Suppose the isothermal condition for the grain boundary (Ṫ GB = 0) and the Helmholtz free
energy for the grain boundary is given by ΨGB = ΨGB(ep

GB

). Substituting the time derivative
of ΨGB into Eq. (3.5) gives the following inequality

MGB ėp
GB − ρ∂Ψ

GB

∂epGB
ėp
GB ­ 0 (3.6)

The GB thermodynamic microforce quantitity MGB is further assumed to be decomposed into
the energy and dissipative components such as MGB = MGB,en + MGB,dis. The components
MGB,en and MGB,dis indicate the mechanisms for the pre- and post-slip transfer, and thus
involve the plastic strain at the grain boundary prior to the slip transfer ep

GB(pre)
and the one

after the slip transfer ep
GB(post)

, respectively, (ep
GB

= ep
GB(pre)

+ ep
GB(post)

). From Eq. (3.6)

(
MGB,en − ρ∂Ψ

GB

∂epGB

)
ėp
GB

+MGB,disėp
GB ­ 0 (3.7)

The GB energetic microforce can be obtained as

MGB,en = ρ
∂ΨGB

∂epGB
(3.8)

Hence the GB dissipative microforce can then be obtained as

MGB,dis =
∂DGB
∂ėpGB

(3.9)

where DGB is the non-negative dissipation density per unit time for the grain boundary, given
by DGB = MGB,disėp

GB ­ 0. This non-negative plastic dissipation condition can be satisfied
when the GB plastic dissipation potential is a convex function of the GB accumulated plastic
strain rate.

3.4. Energetic and dissipative thermodynamic microforces (grain boundary)

In this work, it is assumed, following Fredriksson and Gudmundson (2007), that the GB
Helmholtz free energy per unit surface has the form of a general power law as follows

ΨGB(ep
GB

) =
1

2
GℓGBen (e

pGB(pre))2 (3.10)

where G is the shear modulus in the case of isotropic linear elasticity, ℓGBen is the GB energetic
length scale. By substituting Eq. (3.10) into Eq. (3.8), the GB energetic microforce quantity can
be obtained as follows

MGB,en = GℓGBen e
pGB(pre) (3.11)

Note thatMGB,en is independent of the plastic strain rate and temperature since this variable
comes from the recoverable stored energy.
Meanwhile, two major factors might be identified affecting energy dissipation when the di-

slocations move in the grain boundary area (Aifantis and Willis, 2005). When the dislocations
encounter a grain boundary, they pile up there. Slip can transmit to the adjacent grain only
when the stress field ahead of the pileup is high enough. Direct observation of the process using
transmission electron microscopy (TEM) also shows that the main mechanisms for the afore-
mentioned slip transmission are dislocation absorption and re-emission for low angle boundaries
(Soer et al., 2005) and the dislocation nucleation in the adjacent grain for high angle boundaries
(Ohmura et al., 2004), respectively. As soon as deformation initiates in the adjacent grain, the
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grain boundary begins to deform and the plastic strain on the grain boundary increases. The
energy associated with the deformation of the grain boundary in this case is taken to be mainly
due to energy dissipation as the dislocations move in the grain boundary region. In addition,
considering the resistance force to dislocation motion being temperature and rate dependent,
this energy dissipation can be taken as a linear function of the GB plastic strain.

Moreover, a change in the grain boundary area can also affect the energy dissipation. The
macroscopic accumulated plastic strain at the grain boundary, ep

GB
, can be related to micro-

scopic deformation of the grain boundary through the root-mean-square of the gradient of this
deformation. In addition, the energy change after the grain boundary has yielded, i.e. the on-
set of slip transmission, can be approximated by a quadratic function of the aforementioned
displacement gradient at microscale and hence the GB plastic strain at macroscale.

Combining both the aforementioned mechanisms, i.e. a change in the grain boundary area
and deformation of the grain boundary due to the dislocation movement, involved in the ener-
gy dissipation due to plastic strain transfer across the grain boundary, one can postulate the
following generalized expression for the GB dissipation potential

DGB = ℓGBdis
mGB + 1

(
σGB0 +HGB0 ep

GB(post)
)(
1− T

GB

T GBy

)nGB( ėpGB(post)

ṗGB

)mGB
ėp
GB(post) ­ 0 (3.12)

where ℓGBdis is the GB dissipative length scale, m
GB and ṗGB are the viscous related material

parameters, σGB0 is a constant accounting for the GB yield stress, HGB0 is the GB hardening
parameter, T GBy is the scale-independent GB thermal parameter at the onset of yield, nGB is
the GB thermal parameter. The temperature- and rate-dependency of the GB energy are shown
respectively in terms (1− T GB/T GBy )n

GB
and (ėp

GB(post)
/ṗGB)m

GB
.

By using Eqs. (3.9) and (3.12), the GB dissipative microforce MGB,dis can be obtained as

MGB,dis = ℓGBdis (σ
GB
0 +HGB0 ep

GB(post)
)
(
1− T

GB

T GBy

)nGB( ėpGB(post)

ṗGB

)mGB
(3.13)

Therefore, the GB thermodynamic microforce MGB can be obtained as

MGB = GℓGBen e
pGB(pre)

+ ℓGBdis (σ
GB
0 +HGB0 ep

GB(post)
)
(
1− T

GB

T GBy

)nGB( ėpGB(post)

ṗGB

)mGB (3.14)

It can be seen from Eq. (3.14) that the grain boundary may act like a free surface, i.e. microsco-
pically free boundary condition, when ℓGBen = ℓ

GB
dis = 0. On the other hand, the microscopically

hard boundary condition can be compelled under the conditions ℓGBen →∞ and ℓGBdis →∞.

3.5. Flow rule (grain boundary)

The flow rule for the grain boundary can be derived by substituting Eq. (3.14) into the
microforce balances for the grain boundary, Eq. (3.3), such as:

— for SGBG1

{
σ0ℓ
2
en[ℓ
2
en(e

p
,ke
p
,k)]

ϑ−1
2 ep,i + σ0ℓ

2
dis(m2 + 1)

[
1−

( T
Ty
)n]( ṗ

ṗ2

)m2 ėp,i
ṗ

}
nGBk +Gℓ

GB
en e

pGB(pre)

= −ℓGBdis (σGB0 +HGB0 ep
GB(post)

)
(
1− T

GB

T GBy

)nGB( ėpGB(post)

ṗGB

)mGB
(3.15)



A two-dimensional finite element model of the grain boundary... 385

— for SGBG2

{
σ0ℓ
2
en[ℓ
2
en(e

p
,ke
p
,k)]

ϑ−1
2 ep,i + σ0ℓ

2
dis(m2 + 1)

[
1−

( T
Ty

)n]( ṗ
ṗ2

)m2 ėp,i
ṗ

}
nGBk −GℓGBen ep

GB(pre)

= ℓGBdis (σ
GB
0 +HGB0 ep

GB(post)
)
(
1− T

GB

T GBy

)nGB( ėpGB(post)

ṗGB

)mGB
(3.16)

where the second term in LHS of both equations represents the backstress. Note that, in a
general case, the grain boundary model parameters are not identical on each side, however in
this work, the same values are assumed to be considered for simplification.

Considering the GB flow rules as the boundary conditions of the grain interior flow rule, Eq.
(2.20), results in a yield condition accounting for the temperature and rate dependent barrier
effect of grain boundaries on the plastic slip and, consequently, the influence on the GNDs
evolution in the grain interior.

4. Finite element implementation of the proposed SGP model

A two-dimensional finite element model for the derived grain interior/boundary flow rules is
developed to account for the size dependent response for microscopic structures. In this finite
element solution, the plastic strain field ep as well as the displacement field ui are discretized
independently and both the fields are taken as fundamental unknown nodal degrees of freedom.
The increments in the nodal displacement and plastic strains can be obtained by computing the
system of linear equations shown in Eq. (4.1)

[
KΩeluiuk KΩeluiep

KΩelepuk KΩelepep

]

︸ ︷︷ ︸
K
Ωel

{
(∆Uuk)η
(∆Eep)η

}
=

{
(Rui)η
(Rep)η

}
(4.1)

where KΩel is the Jacobian (stiffness) matrix. The nodal displacement and the plastic strain in

the iteration ζ at the node η are expressed as (Uζui)η and (E
ζ
ep)η , respectively, and their incre-

ments are calculated by (∆Uuk)η = (Uζ+1ui )η − (Uζui)η, (∆Eep)η = (E
ζ+1
ep )η − (Eζep)η. (Rui)η and

(Rep)η are the nodal residuals for the displacement and plastic strain at the node η, respecti-
vely. The system of linear equations is solved via the user-defined element subroutine (UEL) in
ABAQUS/standard using the Newton-Raphson iterative method.

Each component of the Jacobian matrix can be obtained respectively as follows

KΩeluiuk = −
∂Rui
∂Uηuk

∣∣∣∣∣
Uζui

=

∫

Ωel

(
Eijkl

∂Nηu
∂xj

∂Nηu
∂xl

)
dV
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∣∣∣∣∣
Eζ
ep

=

∫
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(
Eijkl

ep

εkl
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N
η
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dV

KΩelepuk = −
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∂Uηuk

∣∣∣∣∣
Uζui

=

∫

Ωel

(
Eijkl

ep

εij
Nηu

∂Nηep

∂xl

)
dV

(4.2)

and
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KΩelepep = −
∂Rep

∂Eηep

∣∣∣∣∣
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(4.3)

where ∆t is the time step. The grain boundary terms in Eq. (4.3) are only applied for nodes on
the grain boundary area.

5. Numerical examples

The assumption of the microscopically hard boundary condition is used in the authors’ previous
work (Song and Voyiadjis, 2018). In this work, the governing differential equation is solved by
imposing the proposed grain boundary flow rule to account for the deformable grain boundary.
Furthermore, the characteristics of the proposed strain gradient plasticity theory incorporating
the flow rules of both the grain interior and the grain boundary is addressed in this Section
by solving the shear problem of a square plate with an edge of L. A schematic illustration of
the problem, initial conditions and macroscopic and microscopic boundary conditions as well
as the grain boundary area are shown in Fig. 1. The parameter u+(t) represents the prescribed
displacement. The whole square is meshed using 1 600 (40×40) elements and split into 16 (4×4)
grains by the grain boundary area, which is indicated by bold lines.

Fig. 1. The schematic illustration of the simple shear problem: (a) macroscopic, microscopic boundary
conditions, and initial conditions, (b) 4× 4 grains
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The following material parameters are used in this Section unless stated otherwise:
E = 110GPa, ν = 0.343, ρ = 8.960 g·cm−3, cε = 0.385 J/(g·K), αth = 16.0µm/(m·K),
ṗ1 = ṗ2 = 0.04 s

−1, r = 0.6, m1 = 0.05, m2 = 0.2, Ty = 1358K, n = 0.3, σ0 = 195MPa,
H0 = 0MPa, σGB0 = 300MPa, HGB0 = 300MPa, ṗGB = 0.04 s−1, mGB = 1, T GBy = 700K,

nGB = 0.4.

As mentioned in Section 3.4, the microscopically free and hard boundary conditions at the
grain boundary can be introduced respectively by setting ℓGBen = ℓGBdis = 0 and ℓ

GB
en → ∞,

ℓGBdis → ∞. Firstly, the validity of these conditions is examined in this work. Next, a direct
comparison between the classical plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0.0) and the
gradient-enhanced plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0.1) is given in order to check
the ability of the proposed flow rule on the size effect. The numerical results in terms of the
accumulated plastic strain profile and the stress-strain curves are shown in Figs. 2 and 3. The

Fig. 2. Classical plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0). Distributions of the accumulated
plastic strain with: (a) microscopically free (ℓGBen = ℓ

GB
dis = 0), and (b) microscopically hard boundary

conditions (ℓGBen →∞, ℓGBdis →∞), and (c) stress-strain responses

terminology “NT11” in Figs. 2 and 3 indicates the accumulated plastic strain. As can be seen
in these figures, the microscopically free and hard boundary conditions are well captured under
the classical plasticity theory as well as the gradient-enhanced plasticity theory. In addition, in
Fig. 2c, no size effect is observed in the classical plasticity theory with varying normalized mate-
rial length scales as expected. In Fig. 3c, on the other hand, strain hardening and strengthening
are more pronounced as the dimensions of the shear plate height are reduced (ℓGBen /L → ∞,
ℓGBdis /L→∞).
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Fig. 3. Strain gradient plasticity theory (ℓen/L = ℓdis/L = ℓN−G/L = 0.1). Distributions of the
accumulated plastic strain with: (a) microscopically free (ℓGBen = ℓ

GB
dis = 0), and (b) microscopically hard

boundary conditions (ℓGBen →∞, ℓGBdis →∞), and (c) stress-strain responses

In Fig. 4, the effects of each material length scale parameter, i.e. ℓen, ℓdis and ℓN−G, along
with the microscopically hard boundary condition are also examined through the profile of the
accumulated plastic strain. In addition, the contributions of each length scale parameter on the
stress-strain responses are shown in Fig. 4c.

Variations in the stress-strain responses and evolutions of the maximum temperature are in-
vestigated for various values of the normalized energetic and dissipative grain boundary material
length scales as shown in Figs. 5 and 6. It is assumed by setting ℓGBdis /ℓdis = 0 that all plastic
work at the grain boundary is stored as surface energy which depends on the plastic strain state
at the surface. In this case, ℓGBen /ℓen reflects the grain boundary resistance to plastic deformation.
Figures 5b and 6b show the size effects on the strain hardening and temperature evolution due
to the grain boundary energetic length scale, and it is more pronounced in the more strongly
constrained material, i.e. increasing ℓGBen /ℓen. On the other hand, by setting ℓ

GB
en /ℓen = 0, it is

assumed that the work performed at the grain boundary is dissipated in the absence of surface
energy. In this case, ℓGBdis /ℓdis reflects the grain boundary resistance to slip transfer. As can be
seen in Fig. 5c, the initial yield strength increases without strain hardening as ℓGBdis /ℓdis increases.

6. Conclusions

The two-dimensional finite element model for the thermodynamically consistent thermo-
mechanical coupled gradient enhanced plasticity theory is proposed on the basis of the concept
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Fig. 4. Distributions of the accumulated plastic strain with the microscopically hard boundary condition
(ℓGBen /L→∞, ℓGBdis /L→∞) under: (a) energetic length scale only (ℓen/L = 0.1, ℓdis/L = ℓN−G/L = 0),
(b) dissipative length scale only (ℓdis/L = 0.1, ℓen/L = ℓN−G/L = 0), (c) N-G length scale only

(ℓN−G/L = 0.1, ℓen/L = ℓdis/L = 0), and (d) stress-strain responses

Fig. 5. Distributions of the accumulated plastic strain according to various values of ℓGBen /ℓen
and ℓGBdis /ℓdis: (a) combined ℓ

GB
en and ℓ

GB
dis , (b) ℓ

GB
en only, and (c) ℓ

GB
dis only
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Fig. 6. Evolutions of the maximum temperature according to various values of ℓGBen /ℓen and ℓ
GB
dis /ℓdis:

(a) combined ℓGBen and ℓ
GB
dis , (b) ℓ

GB
en only, and (c) ℓ

GB
dis only

of dislocation interaction mechanisms and thermal activation energy. The thermodynamic mi-
crostresses for the grain interior and grain boundary are respectively assumed to be divided
into two components, i.e. energetic and dissipative components which, in turn, both energetic
and dissipative material length scale parameters are incorporated in the governing constitutive
equations and flow rules for both areas. These thermodynamic microstresses can be respectively
obtained in a direct way from the Helmholtz free energy and the rate of dissipation potential
by taking the maximum entropy production into account. In particular, the concept of GNDs
density is additionally employed in the grain interior to interpret the microstructural streng-
thening mechanisms induced by the nonhomogeneous deformation. Correspondingly, the model
in this work incorporates the terms related to GNDs-induced strengthening and the additional
material length scale parameter.

In order to investigate the characteristics of the proposed strain gradient plasticity theory
incorporating the flow rules for both the grain interior and grain boundary, the shear problem
of a square plate is solved in this work. The microscopically free and hard boundary conditions
are well captured under the classical plasticity theory as well as the gradient-enhanced plasticity
theory by using the proposed grain boundary flow rule. In addition, the size effects on the
stress-strain responses and the evolutions of the maximum temperature are well observed with
the cases of (a) combined ℓGBen and ℓ

GB
dis , (b) ℓ

GB
en only, and (c) ℓ

GB
dis only.
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The second-order dual phase lag equation (DPLE) as a mathematical model of the microscale
heat transfer is considered. It is known that the starting point determining the final form of
this equation is the generalized Fourier law in which two positive constants (the relaxation
and thermalization times) appear. Depending on the order of the generalized Fourier law
expansion into the Taylor series, different forms of the DPLE can be obtained. As an example
of the problem described by the second-order DPLE equation, thermal processes proceeding
in the domain of a thin metal film subjected to a laser pulse are considered. The numerical
algorithm is based on an implicit scheme of the finite difference method. At the stage of
numerical modeling, the first, second and mixed order of the dual phase lag equation are
considered. In the final part of the paper, examples of different solutions are presented and
conclusions are formulated.

Keywords: microscale heat transfer, dual phase lag model, implicit scheme of finite difference
method

1. Introduction

The Fourier heat conduction model is based on the assumption of instantaneous propagation
of the thermal wave in the domain considered. Intuitively, this approach seems to be incorrect,
but it has worked for solving a number of macroscopic heat conduction problems. However, it
turned out that for certain non-typical materials with a complex internal structure, the Fourier
model is insufficient (Roetzel et al., 2003). Even more, deviations from the real course of the
process can be seen in the case of microscale heat transfer.

It is obvious that accumulating enough energy to transfer to the nearest neighborhood would
take time in the process of heat transfer (Zhang, 2007). So, the lag time of the heat flux in relation
to the temperature gradient referred to as “a relaxation time” was introduced by Cattaneo
(1948) and Vernotte (1958), and the appropriate energy equation (a hyperbolic PDE) became
known as the Cattaneo-Vernotte equation. In the recent years, the heat conduction model in
which two delay times appear has become more and more popular. This model is called the
dual-phase lag one (Zhang, 2007; Tzou, 2015). The starting point for considerations is the
generalized form of the Fourier law, e.g. (Faghri et al., 2010; Smith and Norris, 2003). Depending
on the number of terms in the Taylor series expansion of this law, different forms of the dual
phase lag equation (DPLE) can be obtained (see Section 2). The lag times appearing in DPLE
are called the relaxation time and the thermalization time. Some simple tasks described by
this equation (supplemented by appropriate boundary and initial conditions) can be solved
analytically, e.g. (Ciesielski, 2017a; Tang and Araki, 1999; Askarizadeh et al., 2017; Mohammadi-
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-Fakhar and Momeni-Masuleh, 2010). However, most of the practical problems have been solved
using numerical methods. Examples of such solutions in the field of the microscale heat transfer
may be the papers (Majchrzak and Mochnacki, 2014; Ciesielski, 2017b; Dai and Nassar, 2000;
Mochnacki and Paruch, 2013; Chen and Beraun, 2001) concerning the first-order DPLE.
The similar problems have been considered for non-homogeneous (multilayered) domains. In

this place, the papers (Majchrzak et al., 2009; Qiu et al., 1994; Al-Nimr et al., 2004; Wang et al.,
2006, 2008) can be (as the examples) mentioned. The correct form of the boundary conditions
between subdomains (here, the macroscopic boundary conditions are often used, which is a
significant simplification) can be found in (Ho et al., 2003) while the detailed mathematical
considerations were shown in (Majchrzak and Kałuża, 2017). In turn, in the paper (Majchrzak
and Mochnacki, 2016), the problem of stability condition (explicit scheme of the FDM) was
analyzed.
The numerical solutions concerning the second-order DPLE (based on the finite difference

method) are the subject of works prepared by Castro et al. (2016) and Deng et al. (2017). The
similar problems are discussed in the paper presented, but the wider class of equations and the
other numerical algorithm are taken into account.
The applications of DPLE in the scope of bioheat transfer will not be discussed here.

2. Dual-phase lag model

The following well known thermal diffusion equation is considered

c
∂T (X, t)

∂t
= −∇ · q(X, t) +Q(X, t) (2.1)

where c is a volumetric specific heat, q is a heat flux vector, Q is a capacity of the internal
volumetric heat source, X, t denote the geometrical co-ordinates and time.
The relationship between the heat flux q and the temperature gradient ∇T is given in the

form of the generalized Fourier law (Zhang, 2007; Smith and Norris, 2003), namely

q(X, t+ τq) = −λ∇T (X, t+ τT ) (2.2)

where λ is thermal conductivity, τq and τT are the relaxation time and thermalization time,
respectively. The relaxation time τq is the mean time for electrons to change their energy states,
while the thermalization time τT is the mean time required for electrons and lattice to reach
equilibrium.
Using the Taylor series expansions, the following second-order approximation of formula (2.2)

can be taken into account

q(X, t)+τq
∂q(X, t)

∂t
+
τ2q
2

∂2q(X, t)

∂t2
= −λ

[
∇T (X, t)+τT

∂∇T (X, t)
∂t

+
τ2T
2

∂2∇T (X, t)
∂t2

]
(2.3)

which means

−q(X, t) = τq
∂q(X, t)

∂t
+
τ2q
2

∂2q(X, t)

∂t2
+λ∇T (X, t)+λτT

∂∇T (X, t)
∂t

+λ
τ2T
2

∂2∇T (X, t)
∂t2

(2.4)

From equation (2.4) it results that

−∇ · q(X, t) = τq
∂[∇ · q(X, t)]

∂t
+
τ2q
2

∂2[∇ · q(X, t)]
∂t2

+∇[λ∇T (X, t)]

+ τT
∂{∇[λ∇T (X, t)]}

∂t
+
τ2T
2

∂2{∇[λ∇T (X, t)]}
∂t2

(2.5)
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The last dependence is introduced in to equation (2.1), and then

c
∂T (X, t)

∂t
= τq

∂[∇ · q(X, t)]
∂t

+
τ2q
2

∂2[∇ · q(X, t)]
∂t2

+∇[λ∇T (X, t)]

+ τT
∂{∇[λ∇T (X, t)]}

∂t
+
τ2T
2

∂2{∇[λ∇T (X, t)]}
∂t2

+Q(X, t)

(2.6)

Equation (2.1) can also be written as

∇ · q(X, t) = −c∂T (X, t)
∂t

+Q(X, t) (2.7)

Putting equation (2.7) into (2.6), one obtains

c
∂T (X, t)

∂t
= τq

∂

∂t

[
−c∂T (X, t)

∂t
+Q(X, t)

]
+
τ2q
2

∂2

∂t2

[
−c∂T (X, t)

∂t
+Q(X, t)

]

+∇[λ∇T (X, t)] + τT
∂{∇[λ∇T (X, t)]}

∂t
+
τ2T
2

∂2{∇[λ∇T (X, t)]}
∂t2

+Q(X, t)

(2.8)

Assuming the constant value of the volumetric specific heat c, one has

c
[∂T (X, t)

∂t
+ τq

∂2T (X, t)

∂t2
+
τ2q
2

∂3T (X, t)

∂t3

]
= ∇[λ∇T (X, t)] + τT

∂{∇[λ∇T (X, t)]}
∂t

+
τ2T
2

∂2{∇[λ∇T (X, t)]}
∂t2

+Q(X, t) + τq
∂Q(X, t)

∂t
+
τ2q
2

∂2Q(X, t)

∂t2

(2.9)

Additionally, for λ = const the last equation takes form

c
[∂T (X, t)

∂t
+ τq

∂2T (X, t)

∂t2
+
τ2q
2

∂3T (X, t)

∂t3

]
= λ∇2T (X, t) + λτT

∂[∇2T (X, t)]
∂t

+ λ
τ2T
2

∂2[∇2T (X, t)]
∂t2

+Q(X, t) + τq
∂Q(X, t)

∂t
+
τ2q
2

∂2Q(X, t)

∂t2

(2.10)

As previously mentioned, dual phase lag equation (2.10) is often simplified by omitting appro-
priate components. For example, in several works (e.g. Tzou, 1995) the second order Taylor
expression of heat flux and the first order Taylor expression of the temperature gradient are
applied to take into account the phase lagging behavior. Ignoring the inner heat source (as in
Tzou, 1995), the governing equation of temperature based on the DPL model is the following

c
[∂T (X, t)

∂t
+ τq

∂2T (X, t)

∂t2
+
τ2q
2

∂3T (X, t)

∂t3

]
= λ∇2T (X, t) + λτT

∂[∇2T (X, t)]
∂t

(2.11)

It is also possible to consider the energy equation in the form (assuming that Q(X, t) = 0)

c
[∂T (X, t)

∂t
+ τq

∂2T (X, t)

∂t2

]
= λ∇2T (X, t) + λτT

∂[∇2T (X, t)]
∂t

+ λ
τ2T
2

∂2[∇2T (X, t)]
∂t2

(2.12)

The most popular DPLE results from the assumption that the first-order approximation of
formula (2.2) is used, and then (e.g. Tang and Araki, 1999; Al-Nimr et al., 2004; Majchrzak and
Mochnacki, 2014)

c
[∂T (X, t)

∂t
+ τq

∂2T (X, t)

∂t2

]
= λ∇2T (X, t)+λτT

∂[∇2T (X, t)]
∂t

+Q(X, t)+ τq
∂Q(X, t)

∂t
(2.13)

One can see that for τT = 0, DPLE (2.13) takes form of the Cattaneo-Vernotte equation, while
for τq = 0 and τT = 0 the well known macroscopic Fourier equation is obtained.
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Taking into account the numerical examples presented in the final part of the paper, a
modified form of the Neumann boundary condition must still be formulated, namely

qb(X, t) + τq
∂qb(X, t)

∂t
+
τ2q
2

∂2qb(X, t)

∂t2

= −λ
[
n · ∇T (X, t) + τT

∂[n · ∇T (X, t)]
∂t

+
τ2T
2

∂2[n · ∇T (X, t)]
∂t2

] (2.14)

where n · ∇T (X, t) denotes normal derivative and qb(X, t) is the known boundary heat flux. In
the case of simplified forms of the DPLE, the appropriate components in condition (2.14) should
be neglected.

3. Formulation of the problem

Thermal processes proceeding in a thin metal film subjected to laser pulse are considered. A
1D problem is analyzed (heat transfer in the direction perpendicular to the layer is taken into
account). The front surface x = 0 is irradiated by a laser pulse and according to (Tang and
Araki, 1999; Kaba and Dai, 2005), the conductional heat transfer in the domain considered can
be modeled using the DPLE in which the volumetric heat source Q(x, t) is introduced. At the
same time, for x = 0 and x = L, the non-flux conditions should be assumed. The laser irradiation
is described by the following source term

Q(x, t) =

√
β

π

1−R
tpδ

I0 exp
[
−x
δ
− β (t− 2tp)

2

t2p

]
(3.1)

where I0 is the laser intensity, tp is the characteristic time of the laser pulse, δ is the optical
penetration depth, R is the reflectivity of the irradiated surface, and β = 4 ln 2.
In the most general case, the following DPLE is considered::

— for 0 < x < L

∂T (x, t)

∂t
+ τq

∂2T (x, t)

∂t2
+ wq

τ2q
2

∂3T (x, t)

∂t3
= a

∂2T (x, t)

∂x2
+ aτT

∂3T (x, t)

∂t∂x2

+wT a
τ2T
2

∂4T (x, t)

∂t2∂x2
+
1

c
Q(x, t) +

τq
c

∂Q(x, t)

∂t
+ wq

τ2q
2c

∂2Q(x, t)

∂t2

(3.2)

where a = λ/c is the diffusion coefficient, wT and wq are bivalent parameters. Here wT = 1 and
wq = 1. For the “simplified” forms of DPLE, they are equal to (0, 1), (1, 0) and (0, 0).
As previously mentioned, qb(0, t) = qb(L, t) = 0 and the appropriate boundary conditions

are of the form (Eq. (2.14)):
— for x = 0

∂T (x, t)

∂x
+ τT

∂2T (x, t)

∂t∂x
+ wT

τ2T
2

∂3T (x, t)

∂t2∂x
= 0 (3.3)

— for x = L

∂T (x, t)

∂x
+ τT

∂2T (x, t)

∂t∂x
+ wT

τ2T
2

∂3T (x, t)

∂t2∂x
= 0 (3.4)

The initial condition is also given for t = 0

T (x, 0) = Tp
∂T (x, t)

∂t

∣∣∣∣∣
t=0

= u(x)
∂2T (x, t)

∂t2

∣∣∣∣∣
t=0

= v(x) (3.5)

where Tp is the initial temperature, while u(x) and v(x) are known functions.
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4. Numerical algorithm

The algorithm presented below is based on the implicit scheme of the finite difference method
(FDM).

Let T fi = T (xi, f∆t), where ∆t is the time step, xi = ih (h is the geometrical mesh step)
and f = 0, 1, . . . , F . Taking into account initial conditions (3.5), on the assumption that u(x) =
v(x) = 0, one has T 0i = T 1i = T 2i = Tp. For the transition t

f−1 → tf (f ­ 3), the approximate
form of equation (3.2) resulting from the introduction of adequate differential quotients is as
follows

T fi − T
f−1
i

∆t
+ τq

T fi − 2T
f−1
i + T f−2i
(∆t)2

+ wq
τ2q
2

T fi − 3T
f−1
i + 3T f−2i − T f−3i
(∆t)3

= a
T fi−1 − 2T

f
i + T

f
i+1

h2
+
aτT
∆t

(T fi−1 − 2T
f
i + T

f
i+1

h2
− T f−1i−1 − 2T

f−1
i + T f−1i+1
h2

)
(4.1)

+wT
aτ2T
2(∆t)2

(T fi−1 − 2T
f
i + T

f
i+1

h2
− 2T

f−1
i−1 − 2T

f−1
i + T f−1i+1
h2

+
T f−2i−1 − 2T

f−2
i + T f−2i+1
h2

)

+
1

c
Qfi +

τq
c

(∂Q
∂t

)f
i
+ wq

τ2q
2c

(∂2Q
∂t2

)f
i

After mathematical transformations, one has

− a[2(∆t)2 + 2τT∆t+ wT τ
2
T ]

2h2(∆t)2
T fi−1 +

[2(∆t)2 + 2τq∆t+ wqτ2q
2(∆t)3

+
2a[2(∆t)2 + 2τT∆t+ wT τ

2
T ]

2h2(∆t)2

]
T fi −

a[2(∆t)2 + 2τT∆t+ wT τ
2
T ]

2h2(∆t)2
T fi+1

=
2(∆t)2 + 4τq∆t+ 3wqτ

2
q

2(∆t)3
T f−1i −

2τq∆t+ 3wqτ
2
q

2(∆t)3
T f−2i

+
wqτ

2
q

2(∆t)3
T f−3i − aτT (∆t+ wT τT )

h2(∆t)2
(T f−1i−1 − 2T

f−1
i + T f−1i+1 )

+
awT τ

2
T

2h2(∆t)2
(T f−2i−1 − 2T

f−2
i + T f−2i+1 ) +

1

c
Qfi +

τq
c

(∂Q
∂t

)f
i
+wq

τ2q
2c

(∂2Q
∂t2

)f
i

(4.2)

Denoting

A = −a[2(∆t)
2 + 2τT∆t+ wT τ

2
T ]

2h2(∆t)2
B =
2(∆t)2 + 2τq∆t+ wqτ

2
q

2(∆t)3
− 2A

Cfi =
2(∆t)2 + 4τq∆t+ 3wqτ

2
q

2(∆t)3
T f−1i −

2τq∆t+ 3wqτ
2
q

2(∆t)3
T f−2i +

wqτ
2
q

2(∆t)3
T f−3i

− aτT (∆t+ wT τT )

h2(∆t)2
(T f−1i−1 − 2T

f−1
i + T f−1i+1 ) +

awT τ
2
T

2h2(∆t)2
(T f−2i−1 − 2T

f−2
i + T f−2i+1 )

+
1

c
Qfi +

τq
c

(∂Q
∂t

)f
i
+ wq

τ2q
2c

(∂2Q
∂t2

)f
i

(4.3)

one obtains

AT fi−1 +BT
f
i +AT

f
i+1 = C

f
i (4.4)

The FDM equation resulting from the boundary condition for x = 0 is of the form

T f1 − T
f
0

h
+
τT
∆t

(T f1 − T
f
0

h
− T f−11 − T f−10

h

)

+
wT τ

2
T

2(∆t)2

(T f1 − T
f
0

h
− 2T

f−1
1 − T f−10

h
+
T f−21 − T f−20

h

)
= 0

(4.5)
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or

− [2(∆t)2 + 2τT∆t+ wT τ2T ]T f0 + [2(∆t)2 + 2τT∆t+ wT τ2T ]T
f
1

= (2τT∆t+ 2wT τ
2
T )(T

f−1
1 − T f−10 )− wT τ2T (T f−21 − T f−20 )

(4.6)

Let us denote

D = 2(∆t)2 + 2τT∆t+ wT τ
2
T E = 2τT∆t+ 2wT τ

2
T (4.7)

then

−DT f0 +DT
f
1 = E(T

f−1
1 − T f−10 )− wT τ2T (T f−21 − T f−20 ) (4.8)

In a similar way, for x = L, one has

−DT fn−1 +DT fn = E(T f−1n − T f−1n−1 )− wT τ2T (T f−2n − T f−2n−1 ) (4.9)

So, the final form of the system of equations corresponding to the transition tf−1 → tf (f ­ 3)
is the following

−DT f0 +DT
f
1 = E(T

f−1
1 − T f−10 )− wT τ2T (T f−21 − T f−20 )

AT fi−1 +BT
f
i +AT

f
i+1 = C

f
i i = 1, 2, . . . , n− 1

−DT fn−1 +DT fn = E(T f−1n − T f−1n−1 )− wT τ2T (T f−2n − T f−2n−1 )
(4.10)

So, the transition from tf−1 to tf (f ­ 3) requires solving of the system of equations with a
three-band main matrix which is the fastest solved using the Thomas algorithm.

5. Examples of computations

Thin metal films (L = 100 nm) made of chromium, nickel and gold have been considered.
The surface x = 0 of the domain is subjected to the laser pulse. The parameters determi-
ning the capacity of the internal heat source (Eq. (3.1)) are equal to I0 = 13.7 J/m

2, tp = 0.1 ps,
δ = 15.3 nm, R = 0.93. The initial temperature of the domain equals Tp = 300K, while the
initial values of functions are u(x) = 0, v(x) = 0. Differential mesh parameters are n = 1000,
∆t = 0.0001 ps.
At the stage of numerical computations, constant values of thermophysical parameters have

been assumed (mainly due to lack of other data in the literature) – see Table 1.

Table 1. Thermophysical parameters (Tzou, 2015)

Chromium Gold Nickel

c [MJ/(m3K)] 3.21484 2.4897 4

λ [W/(mK)] 93 315 90.8

τq [ps] 0.136 8.5 0.82

τT [ps] 7.86 90 10

Computations have been performed in versions corresponding to wT = 0, wq = 0 (first-order
DPLE), wT = 1, wq = 1 (second-order DPLE), wT = 0, wq = 1 and wT = 1, wq = 0 (mixed
order DPLE). Additionally, for comparative purposes, numerical solutions of the classical Fourier
problems have been also found. The results are presented in the form of heating/cooling curves
at the irradiated surface. The set of solutions for the chromium layer is shown in Fig. 1. For
the other materials (Figs. 2 and 3), the solutions corresponding to the Fourier model, wT = 0,
wq = 0 and wT = 1, wq = 1 are distinguished. The discussion of the results obtained will be
carried out in the next Section.
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Fig. 1. Temperature history at the irradiated surface for different models (chromium)

Fig. 2. Temperature history at the irradiated surface for different models (gold)

6. Conclusions

Different (in the sense of the order) models using the dual phase lag equation give different
results. Here, one can see some regularities. In relation to the model based on the second-order
DPLE, the solution resulting from the first-order equation is clearly overstated. This is the case
for all the materials in question. The fact that the Fourier model gives a solution over DPLE
has been repeatedly confirmed in numerous papers. This is a natural consequence of the delay
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Fig. 3. Temperature history at the irradiated surface for different models (nickel)

times introduced. In the case of mixed models, the omission of the component containing τ2T
(Eq. (2.11)) leads to results close to the solution of the first-order DPLE – see Fig. 1. On the
other hand, the omission of the component containing τ2q (Eq. (2.12)) gives a solution similar to
the solution of the second-order DPLE. The same trend is observed for the remaining materials.
This results from the much larger (in the case of metals) value of the thermalization time versus
the relaxation one. Therefore, more components of the Taylor series should be included on the
right hand side of the generalized Fourier law. Summing up, the problems connected with the
modeling of thermal processes in metal microdomains should be solved using the second-order
dual phase lag equation. If the delay times vary less, then the solution based on the first-order
model is sufficiently accurate.
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The aim of this paper is to present possibilities of using a new type of granular media in
acoustics as innovative sound absorbers. Most materials of this type have a porous or fibrous
structure. It is constant, and once manufactured, does not easily change its configuration.
The examined material – Vacuum Packed Particles (VPP) is of a changeable structure.
It can be assumed that the acoustical absorption of such structures can be modified and
partially adjusted by an external factor. First steps in an experimental approach have been
made – the acquired results are optimistic. Additional tests are being planned to confirm
the observed phenomenon and to apply VPP as novel materials in acoustics. Basing on the
preliminary experimental tests, it can be concluded that the considered structures could
become a significant part of a multilayered structure which would have controllable sound
absorption properties.

Keywords: Vacuum Packed Particles, absorption coefficient, experiments, Voronina model

List of abbreviations

ABS – acrylonitrile butadiene styrene
MR – magnetorheological (fluid)
POL – poly(methyl methacrylate)
PP – polypropylene
PPt – polypropylene talc
PS – polystyrene
VPP – vacuum packed particles

1. Introduction

Nowadays, there is demand for more efficient sound absorbing materials. It is obvious that all
classical materials (porous, fibrous) are tested, and their acoustic characteristics could be found
in many scientific publications. Most of the above are artificial and expensive structures (Karliń-
ski et al., 2014), and currently there is a general tendency to search for “green” and innovative
solutions in the engineering. Many efforts have been made to increase the applicability of recyc-
lable materials, production leftovers etc., as some recent publications demonstrate (Ersoy and
Küçük, 2009; Hong et al., 2007; Fatima and Mohanty, 2011). Most frequently, the investigated
sound absorbing materials show good absorption/transmission loss properties and, since most
of acoustic tests are comprehensive (considering e.g. various thicknesses, densities, particle size,
etc.), it is quite easy to determine general application possibilities and limitations concerning
the researched materials (Gawdzińska et al., 2015, 2016).
The modeling of the behavior of various granular absorbing materials (mixes) in various

states (compressed, loose) (Voronina and Horoshenkov, 2003; Swift et al., 1999; Wilson, 1999)
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has shown that although most of tested particles are made of widely known and well-tested
materials, there are still possibilities of using them in a better and more effective way. Some
general modifications to the porous materials structure are adding air gaps, combining few layers
with different acoustic properties to create a novel sound absorber, adding an additional mass to
the system or even active elements (Besset and Ichchou, 2011; Yamamoto et al., 2009; Zieliński,
2011). Following this path, the next step is an active absorbing material which would be able to
adjust accordingly to a control measure, its own structure to better suit the requirements.

The presented research does not concern “green” materials directly, but the investigated ma-
terials could be treated as a typical leftover from production processes or products of recycling.
Granulates used in the experiment were made of 5 different plastics. Using them as the so-called
Vacuum Packed Particles consists in packing them in a thin hermetic envelope in which a partial
vacuum (the so called underpressure) is generated.

Vacuum Packed Particles (VPP), with some limitations, can be treated as a type of a smart
structure. When subjected to a partial vacuum, the structure greatly increases its apparent
viscosity to the point of becoming a viscoplastic solid. Importantly, the yield stress of the VPP
when in its active (“on”) state can be controlled very accurately by varying the underpressure
intensity (Bajkowski and Zalewski, 2014). The outcome of this is that the structure ability
to transmit a force can be controlled with a vacuum pump, which increases the number of its
possible control-based applications. Extensive discussions of the physics and applications of VPP
fluids can be found in (Zalewski, 2013) or previous papers of the authors (Pyrz and Zalewski,
2010; Zalewski, 2010).

Controlling the vacuum range is controlling the structure properties, which is additionally
a reversible process. As previously mentioned, VPP have some characteristics that are unique
to smart materials. Moreover, their considerable advantage is the simplicity and a low price
compared to other smart structures, e.g. MR fluids (Bajkowski et al., 2012) or (Zalewski et al.,
2014), and common availability.

2. Experimental set-up

Acoustic properties have been tested according to an appropriate standard (ISO 10534-2) with
the use of Brüel & Kjær equipment: the impedance tube (4206) with two microphones (2670),
(3160-A-04/2) generator and the (2716C) amplifier. The experimental setup is depicted in Fig. 1.
Additional equipment consisted of a PC with Pulse Lab Shop software and a vacuum pump with
two gauges for pressure control. The proposed experimental stand enabled obtaining reliable
results between 500 and 6400Hz.

Fig. 1. The main part of the experimental setup



The use of Vacuum Packed Particles with adaptable properties... 405

2.1. The range of experiments

Granular structures have been investigated to determine the influence of several factors on the
sound absorption coefficient. The following factors are particularly worthy of being mentioned:

• the level of underpressure generated inside the sample (ten various underpressure levels
ranging from 0 to 0.09MPa with a step of 0.01MPa were taken into consideration),

• length of a sample (two different cylindrical specimens, i.e. sample I and II, having 130
and 200mm in length, respectively, diameter of the specimen was constant and equal
D = 29mm),

• the grains material (five various materials were considered: polypropylene (PP), polysty-
rene (PS), acrylonitrile butadiene styrene (ABS), poly(methyl methacrylate) (POL) and
polypropylene talc (PPt)),

• the front surface of a specimen (three types of various thickness were tested: 0.05, 0.1 and,
0.2mm for type 1, 2 and 3, respectively).

To minimize measurement errors, the tests were performed in three independent experimental
series. It was assumed that the internal porosity of investigated granular samples was constant
and equal N = 0.28. Dimensions of the considered barrel-roller shaped grains were 2-3mm
diameter and 4-5mm length (Fig. 2). Densities of the tested materials are shown in Table 1
(values determined in separate laboratory tests).

Fig. 2. Particles used in the specimen construction

Table 1. Densities of tested materials

Grain material Density [g/cm3]

PP 0.92

PS 1.06

ABS 1.04

POL 1.18

PPt 1.21

2.2. Specimen construction

The necessity to generate a partial vacuum inside the investigated testing pieces forced the
authors to design a special construction of the experimental sample. The grains were packed in a
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thin plastic container as shown below in Fig. 3. The rear part of the sample was manufactured as a
steel disc which acted as a “rigid” wall behind the test material. The sample previously mounted
inside the impedance tube was in the next step connected to the vacuum pump. To verify such an
approach to experimental research, a second type of specimen was designed, where the original
parts of the mentioned impedance tube were used. Differences in the observed responses of the
investigated materials were negligible.
Because the design of the test sample had to ensure tightness, its front was sealed by a

thin plastic membrane (made of polypropylene, thicknesses 0.05-0.2 mm). To try and find out
the impact of the material in front of the sample, three various thickness values were analyzed
(Section 2.1).

Fig. 3. Specimen construction details

3. Results and discussion

3.1. Influence of the underpressure

It can be observed in Figs. 4 and 5 (absorption coefficient of ABS and PP particles, respec-
tively) that the underpressure generated inside the sample has a noticeable impact on acoustic
properties of tested granular structures for the whole range of investigated frequencies. Moreover,
the impact of a partial vacuum is nonlinear. The observed structural change, where the mate-
rial is transforming from a semi-liquid to a semi-solid state (so called “jamming mechanism”),
appears to be the strongest between the atmospheric pressure and 0.01MPa underpressure.
Additional experimental tests conducted on other granular materials revealed a similar pheno-
menon, where the full phase transition was observed near the 0.03MPa underpressure limit.
Beyond that threshold value, there is no evident difference in the recorded acoustic absorption
variations. The changes in the granular structure are noticeable, since they affect every grain in
the sample. Once submitted to underpressure, the grains are compacting. It results in a nonli-
near increase in the number of contact points and simultaneously “intergranular” forces values
(Pyrz and Zalewski, 2010). In this “jammed” state, the grains can no longer freely vibrate, also
the air cavities surrounding them are greatly reduced or even eliminated (Brown et al., 2010).

3.2. Influence of the front surface material

Figures 6 and 7, also Table 2 show the influence of the front membrane of investigated
samples filled with ABS and POL grains respectively on their acoustic absorption coefficient
measured in the atmospheric pressure. The analyzed thicknesses were ranging approximately
from 0.2mm (type 3) to 0.05mm (type 1). It is clearly depicted that acoustic properties of the
samples under test are very poor for type 3 membrane. For type 2 they are significantly better
and membrane type 1 is evidently the best in the whole range of experimental frequencies.
The differences between type 1 and 3 material are several hundred percent. Another obse-

rvation can be made that for frequencies below 2-2.5 kHz, an increase in the absorbing efficiency
(with decreasing thickness of the membrane) is considerably slower than for higher frequencies.
Also, the membrane thickness seems to have a lot more impact on the absorption above 2 kHz.
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Fig. 4. Sound absorption coefficient for ABS grains and various underpressure values; sample II, front
material type 2

Fig. 5. Sound absorption coefficient for PP grains and various underpressure values; sample I, front
material type 1

Table 2. Sound absorption coefficient of ABS and POL particles for various specimen front
materials

Grain Sample front Frequency [Hz]
material material type 500 1000 2000 4000 6400

3 0.057 0.052 0.058 0.059 0.088
ABS 2 0.080 0.166 0.296 0.385 0.429

1 0.267 0.448 0.429 0.547 0.464

3 0.057 0.076 0.098 0.128 0.124
POL 2 0.126 0.239 0.390 0.482 0.407

1 0.457 0.574 0.581 0.571 0.580

The cause for some differences mentioned above would probably be an increase of sound waves
penetration with a reduction in the membrane thickness. It is obvious that using a supplementary
material in front of the tested grains simply limits their dissipation capabilities but, nevertheless,
it is the only way to use Vacuum Packed Particles as controllable sound absorbers.
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Fig. 6. Sound absorption coefficient for ABS grains subject to atmospheric pressure; sample I, various
types of specimens front materials

Fig. 7. Sound absorption coefficient for POL grains subject to atmospheric pressure; sample II, various
types of specimens front materials

3.3. Influence of the grain material

In Fig. 8, various grains materials subjected to the atmospheric pressure are investigated and
their sound absorption coefficient is depicted. It is additionally assumed that the front membrane
is the same for all experiments analyzed in this Section (type 2). As for the shape of the curves, it
can be stated that the characteristics of ABS and POL grains reveal many similarities, especially
for the lower values of considered frequencies. Also in mid and high frequencies the value of
coefficient seems to be close and stabilizing for both. The characteristics of PP and PS also seem
to be close in shape with a clear highest value of the coefficient for both plastics. However, the
highest value for both these materials is almost 1.5 kHz apart in frequency. The highest sound
absorption properties have been obtained for PS structures, for frequencies below 2.5 kHz, other
materials showed best performance between 3 and 5 kHz. Such characteristics probably result
from slight size/shape variations in the grain mixes as well as the materials density scatter. A
common feature for all 4 curves is a similar peak that can be found at about 1.5 kHz as well as
the characteristic below the value of 1.5 kHz.
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Fig. 8. Sound absorption coefficient for various granular materials subjected to the atmospheric
pressure; sample II, front material type 2

3.4. Influence of the sample length

Figures 9-12 reveal the influence of length of the sample on the investigated acoustic proper-
ties. It is worth mentioning that many similarities between the compared characteristics can be
encountered, e.g. the characteristic frequencies of resonance in the absorption coefficient spectra
for corresponding specimens. The characteristics with front material type 1 (the thinnest) show
more clearly that the shape of curves for sample I is similar for all materials which, thus, proves
the impact of the sample front material is the least with type 1. With sample II, the results are
also close for all grain types (there is a little variation with ABS).

Fig. 9. Sound absorption coefficient for ABS grains; samples I and II, atmospheric pressure, front
material type 1

The absorption coefficient is generally higher for sample II in comparison to sample I, which
is particularly observable for frequencies above 3 kHz. Below that value, it depends on the
sound frequency, since there are some regions with analogous properties for both specimens
(500Hz-2 kHz). It would mean that the sample length is not a decisive factor for this range of
frequencies. On the other hand, sample II in most cases (besides ABS) provides a more steady
constant performance throughout the whole tested range. The results for sample I show a peak
of performance at about 1.5 kHz, then the absorption is decreasing, also the shape of curves is
wavy (sinusoidal), which is interesting, as it is almost a negligible feature for sample II.
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Fig. 10. Sound absorption coefficient for PS grains; samples I and II, atmospheric pressure, front
material type 1

Fig. 11. Sound absorption coefficient for PP grains; samples I and II, atmospheric pressure, front
material type 1

Fig. 12. Sound absorption coefficient for POL grains; samples I and II, atmospheric pressure, front
material type 1
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It should be pointed out that the recorded characteristics for ABS grains reveal a range
between 1.1 and 3 kHz, where the absorption level of sample I is greater than for sample II.
Another thing to emphasize is that all the tested materials are of the same kind (plastics). And
although there are physical differences between them (slight size, shape, properties etc.), the
overall test results remain, in some ways, similar.

4. Modeling

To model the acoustic behavior of VPP, several models have been considered. As it turned out,
the best suited is the one being developed by Voronina, and finally presented e.g. in (Voronina
and Horoshenkov, 2004). The model involves a number of material parameters such as the
characteristic dimension of particles D, tortuosity q and porosity H (being a ratio of the void
space volume to the whole volume of the material). The model equations are

α0 = 1−
∣∣∣
zs − 1
zs + 1

∣∣∣
2

zs =W coth(γl) (4.1)

where α0 is the absorption coefficient, W = Wa + iWi is the normalized surface impedance,
γ = α+iβ is the complex propagation constant, zs is the normalized surface impedance and l is
the thickness of the layer.
Also

α =
kQH

1 +A
β = k[1 +QH(1 +B)] (4.2)

and

Wi =
QH

1 + C
Wa =





1 +Q for f < fcr
q

H
for F ­ fcr

(4.3)

where k is the wavenumber in the air, Q is the structural characteristic (acoustic parameter),
A, B and C are certain coefficients, and fcr is the critical frequency.

Fig. 13. Verification of experimental and numerical data for PS grains; sample II, atmospheric pressure,
front material type 1

The first attempt of using the model for capturing the real acoustic behavior of VPP samples
may be found in Fig. 13. It is clear that for normal conditions, the Voronina model works very
well. The agreement between the model and experiment is satisfactory. Unlike other popular
acoustic models (Biot, Allard, Delany-Bazley, etc.) proposed for various types of acoustic ma-
terials such as fibers or foams, the Voronina empirical formulation was developed especially for
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granular media. Basing on the data depicted in Fig. 13, it can be noticed that the calculated
values of the absorption coefficient are close to the direct experimental results recorded in la-
boratory tests. Moreover, the character of both numerical and experimental characteristics is
similar. It is worth mentioning that the modeled and recorded frequencies of resonance (e.g.
0.8 kHz, 1,4 kHz) are coincident. Such observations confirm the correctness and reliability of the
adopted Voronina model for capturing nonlinear acoustic properties of vacuum packed particles.

The Voronina model in presented form (4.1)-(4.3) does not include the underpressure pa-
rameter. To introduce nonlinear underpressure functions to the investigated model, additional
laboratory tests have been carried out. The parameter of tortuosity was modified to compensate
for the structural changes while introducing underpressure. It was observed that the mentioned
changes did not include overall sample volume but, nevertheless, the grains were forced to closer
contact and they could no longer freely vibrate, hence the tortuosity change. Two additional
parameters alfa and beta (both as a function of p) were introduced to the tortuosity equation

q = q0 +
(f
α

)β
(4.4)

Two Figs. 14 and 15 show both parameters as a function of underpressure for two types of
grains.

Fig. 14. Parameter β as a function of underpressure for ABS grains

Subsequent Figs. 16-18 show the modeling with the use of new expressions against the
experimental results.

5. Conclusions and perspectives

The current work is a continuation of previous efforts aimed at commercialization of Vacuum
Packed Particles. The former papers of the authors were mainly devoted to studies and modeling
of mechanical properties of VPP. It was shown in (Zalewski and Szmidt, 2014) that the Young
modulus and proof stress (Szmidt, Zalewski, 2014) of such structures are complex functions of
underpressure. In (Zalewski, 2013) the authors revealed that the volume of the specimen had
an impact on the physical properties of granular conglomerates. Extraordinary features of VPP
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Fig. 15. Parameter α as a function of underpressure for PMMA grains

Fig. 16. Verification of experimental and numerical data for PMMA grains; sample I, underpressure
0.01MPa, front material type 2

Fig. 17. Verification of experimental and numerical data for ABS grains; sample II, underpressure
0.01MPa, front material type 2
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Fig. 18. Verification of experimental and numerical data for PMMA grains; sample I, underpressure
0.09MPa, front material type 1

observed in the former experiments encouraged the authors to focus on the acoustic properties
of VPP.

Studying sound absorbing characteristics of Vacuum Packed Particles has confirmed to be a
very interesting and far-reaching task. It revealed that the simple mechanism of vacuum packing
and changing the internal pressure can widely influence the acoustic characteristics of tested
materials. Although there are some obvious limitations in practical engineering applications of
VPP resulting from incomplete knowledge about their behavior, the control possibilities alone
make the authors believe that the future work will help them to overcome issues that have been
observed during the current research.

Moreover, using VPP as a part of an active sound absorber is possible but requires further
work aiming at maximizing the sample absorption in a loose state of the granular mix while
minimizing its thickness.

The presented results clearly depict that there is a simple way of influencing the structure
and properties of VPP. Having performed several hundred measurements, the authors can clearly
state that while materials selected for the test may seem similar in a physical way, the detailed
comparison of complete results reveals many incoherences in their absorption characteristics
(e.g. Figs. 8 or 9). It is clear that even small differences in the shape of the grains or in other
micro-features will have a great impact on the macroscopic physical (acoustic) properties of
VPP.

Nevertheless, there are still many aspects to be considered in further research. Open questions
include among others the influence of the mentioned physical factors (dimension, shape) or the
compression ratio of grains on the acoustic properties. These parameters seem to be particu-
larly significant because they undoubtedly determine such parameters as porosity or tortuosity
(Allard, 1993; Attenborough, 1983) of tested specimens.

Another interesting issue is the quantitative change of the absorption coefficient in the re-
stricted range of internal underpressures form 0 to 0.01MPa. In the perspective research, this
range of partial vacuum will be closely examined to record and describe the nature of the men-
tioned changes. In further research, it will be also important to consider materials of different
strength properties (Karliński et al., 2016). Grains would probably demonstrate alternative be-
havior when made of rubber or another deformable elastic material.
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Numerical limit analysis allows for fast estimates of the collapse load of structures exhibiting
ideal plastic material behaviour. In numerical upper bound formulations, the description of
the unknown velocity field can be extended by introducing velocity discontinuities between
finite elements. Through these additional degrees of freedom, localised failure modes may
be approximated more accurately and better upper bounds can be obtained. In the existing
formulations, such discontinuities are typically introduced between all elements and the de-
scription is restricted to isotropic failure behaviour. In this work, a general 3D upper bound
formulation is briefly proposed, allowing the consideration of both isotropic and orthotropic
yield functions within finite elements as well as at velocity discontinuities. The concept of
“projecting” a stress-based orthotropic yield function onto a certain discontinuity is presen-
ted, giving a traction-based yield function which allows for a consistent description of the
material strength behaviour across the interface. The formulation is verified by means of
two classical examples, the rigid strip footing and the block with asymmetric holes. Fur-
thermore, based on the computation of potential orientations of plastic flow localisation, a
simple concept for a sensible arrangement of velocity discontinuities is proposed. It is shown
that this concept performs very well for isotropic as well as anisotropic material strength
behaviour. A feature of the present work is that, velocity jumps are allowed only across the
prescribed finite element interfaces determined from the sensible discontinuity arrangement.
Good upper bounds similar to those in the existing works are obtained with far fewer degrees
of freedom.

Keywords: numerical upper bound formulations, localised failure modes, traction-based yield
function, sensible arrangement of velocity discontinuities, orthotropic material strength be-
haviour

1. Introduction

1.1. Numerical limit analysis

The main objective of limit analysis is the determination of load bearing capacities of struc-
tures exhibiting an elastoplastic material response. To achieve this, limit analysis concentrates
on the critical energy dissipation rate at the time instant of structural failure, and the basic
task can be expressed as follows: Find the kinematically admissible velocity field which minimi-
ses energy dissipation over the set of all statically admissible stress fields which maximise the
dissipated energy (Ciria et al., 2008). Statically admissible stress fields are required to be in
equilibrium, fulfil the static boundary conditions and obey a plastic yield criterion at each point
of the body. Kinematically admissible velocity fields are subject to compatibility, the kinematic
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boundary conditions, and fulfil an associated plastic flow rule at each point of the body. Unfortu-
nately, the so-defined saddle-point problem can be solved only for simple geometric and loading
situations as well as for simple material behaviours. In more complex situations, the plastic flow
compatibility in the so-called static principle or the static equilibrium in the so-called kinematic
principle may be relaxed, providing lower and upper bounds on the exact load bearing capacity
of a structure according to the bounding theorems by Drucker et al. (1951, 1952).

However, for complex problems, the application of these bounding theorems (in the context
of limit analysis) in an analytical way is very limited and often not possible. Thus, finite-
-element-based formulations were first introduced in the 1970s (Belytschko and Hodge, 1970;
Lysmer, 1970; Anderheggen and Knöpfel, 1972; Maier et al., 1972), and gained popularity from
then on. The computational efficiency and accuracy of such numerical formulations strongly
depend on the mathematical programming method used to solve the underlying optimisation
problems. At the early stage, the limit analysis theorems were formulated as linear optimisation
problems, by linearising the applied plastic yield functions. At the turn of the millennium,
Lyamin and Sloan (2002a,b) proposed more general lower and upper bound formulations allowing
for nonlinear yield functions, which were solved using nonlinear programming concepts. However,
local smoothing was required for yield functions with singularities, e.g. the Mohr-Coulomb yield
function. Subsequently, during the past two decades, second-order cone programming (SOCP)
has been proven to be an excellent alternative method by Makrodimopoulos and Martin (2006,
2007) and Ciria and Peraire (2004) for cohesive-frictional materials and Füssl et al. (2008)
for composite materials, with sufficient robustness and efficiency to solve large-scale nonlinear
optimisation problems of numerical limit analysis. Such implementations allow the applications
of many different yield functions in their native form, since most of the commonly-used yield
functions can be formulated as second-order cones. In this work, SOCP is employed to solve the
nonlinear optimisation problems arising from the presented limit analysis formulations.

The efficiency and accuracy of such formulations is also strongly influenced by the chosen
finite elements and related shape functions. In order to obtain rigorous upper bound solutions, for
example, the associated plastic flow rule must be satisfied throughout the whole body. Basically,
this can be achieved by using constant strain triangular elements, which are often combined with
velocity discontinuities between element boundaries (Bottero et al., 1980; Sloan and Kleeman,
1995; Lyamin and Sloan, 2002b). To improve the quality of upper bound solutions, the use of
higher order interpolation functions is desired. Makrodimopoulos and Martin (2007) showed
that the associated plastic flow rule could also be enforced throughout the whole body by using
linear strain triangular elements, leading to a better performance than constant strain elements
even without discontinuities. As a further development, the meshless method was implemented
for numerical upper bound approaches in (Le et al., 2010; Liu and Zhao, 2013; Yu et al., 2016).
However, in such implementations with high order shape functions, it is difficult to guarantee
both compatibility and satisfaction of the associated plastic flow rule throughout each element.

Additionally or as an alternative to the use of high order elements, velocity discontinuities
can be implemented in upper bound formulations to increase their effectiveness. In (Chen et al.,
2003; Milani and Lourenço, 2009), for example, rigid elements were used and plastic dissipation
was only allowed between finite elements. Such approaches are highly dependent on the mesh
and even adaptive mesh refinement cannot fully compensate for this issue. An approach without
using classical finite elements is the so-called discontinuity layout optimisation (DLO), where
velocity discontinuities are determined by using a truss layout optimisation algorithm based on
a prescribed grid (Smith and Gilbert, 2007; Hawksbee et al., 2013). This approach performs well
for 2D problems, but the determination of complex failure mechanisms in 3D bodies requires a
fine grid and large computational effort.

For this reason, in the authors’ opinion, the most promising approach so far to obtain rigorous
upper bound solutions still seems to be the use of solid finite elements with or without velocity
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discontinuities. In Krabbenhøft et al. (2005) zero-thickness interface elements between constant
strain elements are introduced, which perform well for a large number of applications. Another
development can be found in Makrodimopulous and Martin (2008), where velocity discontinuities
are implemented between linear strain elements. In order to increase the efficiency of the upper
bound formulations, adaptive mesh refinement was introduced by Ciria and Peraire (2004), Ciria
et al. (2008) and Martin (2011). However, a targeted arrangement of discontinuities, as will be
proposed in this work, has not been introduced until now.

1.2. Objective of the paper

In several previous works, e.g. in (Füssl et al., 2017; Li et al., 2018), anisotropic yield functions
have been implemented in numerical upper bound formulations. To the authors’ knowledge, the
combination of anisotropic yield functions and velocity discontinuities has not previously been
presented, although it could significantly improve the capability of upper bound approaches in
handling localised plastic failure for anisotropic materials, like wood or fibre reinforced compo-
sites. In particular, it is beneficial if the alignment of discontinuities is tuned to the direction of
localised plastic failure.
Thus, the main objectives of this work can be introduced as follows:

1. The formulation of 3D numerical upper bound approaches with anisotropic yield functions,
quadratic shape functions for the velocity fields, and velocity discontinuities.

2. To allow for a consistent description of plastic failure also across velocity discontinuities,
the derivation of a traction-based yield function which is in accordance with the stress-
-based yield function assigned to the solid finite elements/bulk material.

3. Implementation of an initial concept for a sensible introduction and arrangement of velocity
discontinuities only in failure regions.

According to these objectives, the paper is structured as follows. A quite general numerical upper
bound approach is briefly proposed in Section 2, able to consider plastic energy dissipation in
both finite elements and discontinuities obeying an anisotropic failure criterion. Furthermore,
the process for obtaining the required traction-based yield functions for the discontinuities is
described. A verification of the implemented upper bound formulations by means of well-known
examples can be found in Section 3, as well as a discussion about the performance of velocity
discontinuities. Finally, a brief summary and concluding comments are given in Section 4.

2. Upper bound approaches

The upper bound theorem focuses exclusively on the kinematically admissible velocity fields
u̇ = (u̇x, u̇y, u̇z)

T ∈ R
3, and by minimising the internal plastic energy dissipation rate Wint,

which has to be equal to the work rate of the external loads Wext, the resulting failure sta-
te provides an upper bound for the exact collapse load. A kinematically admissible velocity
field u̇ has to satisfy the compatibility, the associated plastic flow rule, and the kinematic bo-
undary conditions at each point of the considered body. Additionally, a velocity-jump field
∆u̇ = (∆u̇x,∆u̇y,∆u̇z)

T ∈ R
3 is introduced, describing localised interface plastic failure across

an prescribed interior surface.
The internal energy dissipation rate Wint is composed of a part referring to material failure

in the continuum body Ω and a part related to the energy dissipation at interior surfaces Γ dis,
and reads

Wint =

∫

Ω

dmatp (ε̇) dV +

∫

Γ dis

ddisp (∆u̇) dA (2.1)
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with the plastic dissipation functions

dmatp = sup
σ∈F
σTε̇ F = {σ| f(σ) ¬ 0} in Ω

ddisp = sup
t∈D
tT∆u̇ D = {t| f(t) ¬ 0} on Γ dis

(2.2)

where ε̇ = (ε̇xx, ε̇yy, ε̇zz, ε̇xy, ε̇yz , ε̇xz)
T ∈ R

6 represents the plastic strain-rate field,
σ = (σxx, σyy, σzz, τxy, τyz, τxz)

T ∈ R
6 the stress field and t = (tx, ty, tz)

T ∈ R
3 the surface

traction field. f(σ) ¬ 0 and f(t) ¬ 0 denote the stress-based yield function for Ω and the
traction-based yield function for Γ dis, respectively.
The upper bound theorem can then be formulated as a nonlinear optimisation problem,

reading

min Wint

s.t. ε̇ = div u̇ in Ω

u̇ = u̇b on Γ

ε̇ = λ̇σ∂f(σ)/∂σ in Ω

∆u̇ = λ̇t∂f(t)/∂t on Γ dis

(2.3)

in which the constraints enforce compatibility between the velocities and the plastic strain-rates,
the kinematic boundary conditions, and the associated plastic flow rule both in the continuum Ω
and at the interior surfaces Γ dis. In the second constraint, u̇b refers to the prescribed velocity
boundary conditions defined over the whole surface Γ = ∂Ω of the continuum body. In the last
two constraints, λ̇σ and λ̇t are plastic multipliers, determining the magnitude of plastic flow
within the continuum and at the discontinuities, respectively. Note that these two associated
plastic flow constraints in Eq. (2.3) are valid only when the yield function is differentiable
everywhere. If singular apex points exist, additional technology is required, and the use of SOCP
in this work ensures that such points are handled naturally.
As shown in Makrodimopoulos and Martin (2007), using the duality of nonlinear program-

ming, a mathematically equivalent optimisation problem to Eq. (2.3) can be formulated, reading

max Wext

s.t.
∫
Ω
( div u̇)Tσ dV +

∫

Γ dis
∆u̇Tt dA =

∫
Ω
u̇Tβg dV +

∫
Γ
u̇Tβt dA in Ω

f(σ) ¬ 0 in Ω

f(t) ¬ 0 on Γ dis

(2.4)

in which the first constraint represents weak equilibrium of the dissipated energy, and the ob-
jective function is related to the external work rate given as

Wext =

∫

Ω

u̇Tβg dV +

∫

Γ

u̇Tβt dA (2.5)

where β denotes a load multiplier applied to the surface traction field t and the prescribed body
force field g ∈ R

3.
For the discretisation of the upper bound optimisation problem, tetrahedral linear-strain

simplex elements are used, as introduced for the 2D upper bound problem under plane strain
conditions in Makrodimopoulos and Martin (2007, 2008) and for the 3D upper bound problem in
Martin and Makrodimopoulos (2008). Thus, the velocity field is approximated using quadratic
interpolation functions and the plastic strain-rate field is described by linear shape functions.
Worth mentioning is that each finite element has its own strain-rate evaluation nodes, which me-
ans that adjacent nodes from different elements share the same coordinates but can have different
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strain-rate states. The exact representation of this approximation is given in Makrodimopoulos
and Martin (2008). In this work, to assess the capability of the discontinuity arrangement, ve-
locity jumps are allowed only across particular prescribed finite element interfaces determined
by the arrangement, on which adjacent elements have their own velocity evaluation nodes.

Finally, as introduced in detail by the authors in Li et al. (2018), the discretised formulation
of the dual upper bound optimisation problem, Eq. (2.4), can be written as

max Wext

s.t. AmatUB
T
q̂σ +A

dis
UBq̂

dis
t = βA

bc
UBq̂

bc
t

ŝmat,iσ = âmat,iσ +Bmatσ R
mat
ε̇ q̂

mat,i
σ

ŝmat,iσ ∈ C

ŝdis,jt = âdis,jt +Bdist R
dis
t q̂

dis,j
t

ŝdis,jt ∈ C

(2.6)

with the matrices AUB obtained by applying the linear compatibility operator to the related
shape functions of the velocity (or the velocity jump), within the finite elements (mat), at the
discontinuities between elements (dis), and at the boundary (bc). The vectors q̂σ, q̂

dis
t , and q̂

bc
t

collect all nodal degrees of freedom related to stress-like quantities and surface tractions. Note
that, for an arbitrary vector x, the symbol x̂ =

∫
Ωe
x dV refers to the volume-integrated quanti-

ty over each element. The remaining constraints represent a second-order cone formulation of a
general quadratic yield function for both the solid material (mat) and the discontinuities (dis),
with i and j ranging from 1 to the number of stress and traction evaluation nodes, respective-
ly. Thereby, the matrices â and B contain strength parameters and the matrices R represent
transformation operators, rotating the stress tensors into the principal material direction and
the surface traction vector into the direction of the corresponding discontinuity. The external
work rate in discretised form can be written as

Wext =
UBC∑

bc=1

6∑

i=1

βqbc,iu̇,loc
T
q̂bc,it,loc (2.7)

where UBC denotes the number of 6-noded boundary surface triangular elements with a pre-
scribed local traction field q̂bct,loc and q

bc
u̇,loc represents the related velocity degrees of freedom.

In previous upper bound formulations (Sloan and Kleeman, 1995; Krabbenhoft et al., 2005;
Makrodimopoulos and Martin, 2008) only isotropic yield functions based on shear failure me-
chanisms, e.g. the von Mises or the Mohr-Coulomb yield function, were considered, leading to a
straightforward definition of failure at the discontinuities between elements. On the contrary, in
the upper bound formulation Eq. (2.6), the quite general orthotropic yield function according
to Tsai-Wu can be implemented, reading

qi
T
Pqi +

(1
2
F+Tqi

)2
−
(
1− 1
2
F−Tqi

)2
¬ 0 (2.8)

with i as the evaluation point of q either for the stress field (with subscript σ) in the element
or for the traction field (with subscript t) at a discontinuity. The vectors F+, F− and matrix P
are related to the terms in Eq. (2.6) as follows

a =

[
1
0

]
B =




−1
2
F−T

D
1

2
F+T


 (2.9)
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whereD is the decomposed product of P = DTD. Note that the matrix dimensions are F+σ ∈ R
6,

F−σ ∈ R
6, Pσ ∈ R

6×6, Dσ ∈ R
6×6 for the stress-based yield function and F+t ∈ R

3, F−t ∈ R
3,

Pt ∈ R
3×3, Dt ∈ R

3×3 for the traction-based yield function.

In the above, it is assumed that there exists a traction-based yield function for the discontinu-
ities which can also be formulated as a second-order cone. Additionally, it needs to be consistent
with the stress-based Tsai-Wu criterion to allow for the description of a homogeneous strength
distribution within a body. Since a surface traction state within a discontinuity cannot directly
be related to a unique 3D stress state at a material point, the derivation of such a traction-
based yield function is not straightforward. However, according to Wu and Cervera (2014), we
can assume a 3D plastic strain-rate state to be localised with respect to a certain discontinuity
if the following constraints are satisfied, for orthotropic yield functions which are differentiable
everywhere (e.g. Tsai-Wu yield function):

Λdismm(σ
dis
loc) =

ε̇mm

λ̇σ
=
∂f(σdisloc , strength par.)

∂σdismm
= 0

Λdispp (σ
dis
loc) =

ε̇pp

λ̇σ
=
∂f(σdisloc , strength par.)

∂σdispp
= 0

Λdismp(σ
dis
loc) =

ε̇mp

λ̇σ
=
∂f(σdisloc , strength par.)

∂τdismp
= 0

(2.10)

where σdisloc denotes a 3D stress state at a discontinuity with the local coordinate basis
(n-m-p) with the normal vector of the discontinuity pointing in the n-direction. Note that each
of the constraints in Eq. (2.10) can be formulated as a function of the local stress field σdisloc .
By reformulating Eq. (2.10) using the definition of the Cauchy stress tensor, giving tdisn = σ

dis
nn ,

tdism = τdisnm, t
dis
p = τdisnp , the three remaining stress tensor components σ

dis
mm, σ

dis
pp , and τ

dis
mp can

be expressed as functions, hereafter referred to as Ldis, of tdisn , t
dis
m , t

dis
p , and certain strength

parameters, reading

σdismm = L
dis
mm(t

dis
loc , strength par.) σdispp = L

dis
pp (t

dis
loc , strength par.)

σdismp = L
dis
mp(t

dis
loc , strength par.)

(2.11)

Therefrom, a relationship between the local stress field and the local traction field on Γdis,
σdisloc = L

dis
t t
dis
loc , under the condition of plastic strain localisation, can be derived. Finally, by

making use of this relationship, it is possible to “project” the stress-based formulation of the
Tsai-Wu yield function f(σdisloc) ¬ 0 onto a discontinuity, delivering a consistent traction-based
yield function f(tdisloc) ¬ 0.
The main focus of this work is the performance assessment of this approach and to point out

how such an approach could be utilised for future concepts of numerical limit analysis. For this
reason, in the next Section, several numerical examples are presented and discussed in detail.

3. Numerical results

In this Section, numerical results obtained using the proposed upper bound formulation with se-
lectively activated velocity discontinuities are discussed. Two benchmark problems with isotropic
yield functions are used for basic verification of the presented approaches. By means of further
examples, it is demonstrated that orthotropic plastic failure can also be handled appropriate-
ly. Moreover, it will be shown that through the introduction of velocity discontinuities across
properly-arranged prescribed interfaces, high-quality upper bound results can be obtained with
relatively coarse meshes and, thus, very efficiently. Note that, for convenience, the upper bound
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results obtained using formulations, with and without velocity discontinuities, are referred to as
continuous and discontinuous upper bound results, respectively.
All computations presented in the following have been performed on a Linux desktop machi-

ne with an AMD Phenom(tm) II X6 1090T CPU (6 cores) and 8GB of RAM. The commercial
software package Abaqus was used for mesh generation, but all other pre- and post-processing
tasks as well as the assembly of the SOCP optimisation problems were carried out by self-
-written codes in Fortran. The SOCP optimisation problems themselves were solved using the
commercial software MOSEK (2014), which is based on the conic interior-point algorithm de-
scribed in Andersen et al. (2003).

3.1. Rigid strip footing

The rigid strip footing problem, as illustrated in Fig. 1a, with a weightless purely cohesive
material is a common benchmark for limit analysis approaches. Upon the assumption of material
failure according to Tresca, τ ¬ c, the ultimate load can be obtained by the classical Prandtl
solution N refc = Plim/c = 2+π (Prandtl, 1920), where Nc is the bearing capacity factor, Plim the
collapse load limit, τ the principal shear stress, and c the coefficient of cohesion. Under plane
strain conditions, the Tresca yield function is identical to the von Mises yield function

√
J2 ¬ c,

with J2 as the second deviatoric stress invariant.

Fig. 1. Rigid strip footing benchmark example: (a) geometry and boundary conditions; (b) example 3D
model and illustrative discretisation with 419 elements; (c) the prescribed interfaces for velocity jumps

according to Prandtl’s failure mechanism (445 elements)

Using the yield function formulation according to Eq. (2.8), the von Mises criterion is defined
through

Pmatσ =
1

3c2




1 −0.5 −0.5 0 0 0
−0.5 1 −0.5 0 0 0
−0.5 −0.5 1 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3




Fmat,+σ = Fmat,−σ = 0 (3.1)

A consistent traction-based yield function is easily obtained (Makrodimopoulos and Martin,
2008) by applying the shear strength as the tangential strength at discontinuities, giving

Pdist =
1

c2



0 0 0
0 1 0
0 0 1


 Fdis,+t = Fdis,−t = 0 (3.2)

The geometric boundary conditions and loading are given in Fig. 1a, and an example 3D
representation of the model is plotted in Fig. 1b with respect to the global coordinate basis
(xyz) and an illustrative discretisation using 419 tetrahedron elements. By applying symmetric
boundary conditions at the z− and z+ boundary surfaces, plane strain conditions are enforced.
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Thus, in the following, all results will be plotted in the xy-plane only. The rough footing interface
condition is applied by setting the velocities in the x-direction to zero for all nodes in the footing
region.

The obtained numerical upper bound results for different fineness of discretisation or degrees
of freedom (DOF) are plotted in Fig. 2a. The black curve represents the results for continuous
velocity fields, and shows clear convergence behaviour. Measuring the difference between the
upper bound results and the analytical reference N refc , as diff (%) = (N

ub
c −N refc ) · 100/(Nubc +

N refc ), a diff of 12.92% (2 790 DOF) for point a and 0.95% for point c with 188 685 DOF are
obtained. The corresponding CPU times are 2.09 min versus 41.85 min.

Fig. 2. Numerical upper bound results for the rigid strip footing problem: (a) load limit factor Nc
obtained using continuous and discontinuous velocity fields as a function of DOF; (b) upper bound
failure mode using discontinuities and 445 elements (range of plotted yield function values

(robjv)[−3 · 10−8 : 0]); (c) upper bound failure mode using continuous velocity field with 31 081
elements (robjv [−5 · 10−9 : 0])

In the next step, partitions are introduced into the model according to Prandtl’s failure
mechanism (Prandtl, 1920), see Fig. 1c, to allow velocity jumps across prescribed discontinuities.
Since velocity jumps are only allowed through these prescribed interfaces, the number of DOF is
not increased significantly. The blue curve in Fig. 2a shows the related results, again for different
numbers of DOF. A diff of 1.60% is obtained for point b (3 147 DOF) and 0.13% for point d
(196 077 DOF), with corresponding CPU times of 0.56min and 41.62min.

With a minimum difference of below 1% for the obtained best upper bounds compared to
the analytical solution, the proposed formulations withstand this basic verification and can be
assessed as performing well. Especially when velocity discontinuities are introduced, very good
upper bounds can be obtained even with coarse meshes (see point b and the related failure
mechanism in Fig. 2b). Of course, this is only possible if the failure mechanism is known in
advance and, thus, does not yet represent an added value for general calculations. However,
the potential of velocity discontinuities to capture very localised failure is evidently huge and,
sensibly used, can greatly increase computational efficiency.

3.2. Block with asymmetric holes

The block with asymmetric holes under tensile loading is a commonly-used benchmark for
so-called direct methods (e.g. limit analysis and shakedown analysis) firstly studied by Zouain
et al. (2002), as illustrated in Fig. 3a. Later on, this problem was studied by Makrodimopoulos
and Martin (2007) using an upper bound formulation with a continuous quadratic velocity field,
and the plane strain Mohr-Coulomb yield function was applied to the material. Their results
are used for verification and as the reference solution in the following. Moreover, the benefit
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of using sensibly-arranged velocity discontinuities is further discussed, and a simple strategy
to find such arrangements based on preliminary upper bound results is proposed. Geometry,
material properties, and boundary conditions (see Fig. 3a) are assigned as in the reference
(Makrodimopoulos and Martin, 2007). The model is built by 3D finite elements with the global
coordinate basis (xyz), similarly to Fig. 1b, and again symmetric boundary conditions at the
z− and z+ boundary surfaces are applied.

Fig. 3. Block with asymmetric holes using the Drucker-Prager failure criterion: (a) geometry and
boundary conditions; (b) upper bound failure mode (519 elements, robjv [−5 · 10−6 : 0]);
(c) and (d) potential orientations of plastic strain localisation; (e) prescribed discontinuities

based on (c) and (d)

3.2.1. Mohr-Coulomb failure criterion

In Makrodimopoulos and Martin (2007), the Mohr-Coulomb yield function was used with
a friction angle φ = 30◦. In our example, the equivalent Drucker-Prager yield function,√
J2 ¬ A−BI1, is assigned to the material, defined by inserting

Pmatσ =
1

3A2




1 −0.5 −0.5 0 0 0
−0.5 1 −0.5 0 0 0
−0.5 −0.5 1 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3




Fmat,−σ =
1

A2




2AB
2AB
2AB
0
0
0




Fmat,+σ = 0

(3.3)

into Eq. (2.8), with the strength parameters A = 0.8321c and B = 0.1601. For the consistent
traction-based yield function these terms read

Pdist =
1

c2



− tan2 φ 0 0
0 1 0
0 0 1


 Fdis,+t = 0 Fdis,−t =

1

c2



2c tan φ
0
0


 (3.4)

In the previous example, it has been shown that velocity discontinuities can improve the
upper bound significantly if they are appropriately arranged with respect to potential failure
surfaces. For this reason, subsequently, the following strategy is pursued. Based on an upper
bound calculation with a continuous velocity field and a relatively coarse mesh, as shown in
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Fig. 3b, potential discontinuity directions, where plastic failure could localise, are computed
at each integration point where plastic flow takes place according to Eq. (2.10). The resulting
orientations are plotted in Fig. 3c and Fig. 3d. With respect to the x axis, the mean orienta-
tions obtained by taking the volume average over all orientations are approximately θ̄1 = −60◦
and θ̄2 = 60

◦, as would be expected from the underlying failure criterion. Next, according to
these average directions of possible localised plastic failure, and by referring to the points with
maximum plastic strain-rates, the partitions (blue lines) shown in Fig. 3e are implemented into
the model. Finally, the model is re-meshed and velocity discontinuities are introduced along the
partitions.

This procedure has been applied to several models with different level of mesh refinement
(DOF) and compared to calculations performed without such discontinuities. The obtained
upper bounds for the limit load factor Nc are plotted in Fig. 4a. Based on the upper bound
result with only 3 327 DOF (point a), velocity discontinuities were introduced into the model,
leading to a strong improvement of the upper bound (point b) by adding only 585 DOF. The
failure mechanism associated with point b is shown in Fig. 4b. To achieve a similarly good
upper bound result and the related localised failure mechanism without the introduction of
discontinuities, the mesh needed to be refined significantly, as shown in Fig. 4c as the associated
failure mechanism to point c. The CPU time required to obtain point c and the mechanism in
Fig. 4c was 37.87min, whereas point b with the mechanism shown in Fig. 4b only took 0.38min.
Although an adaptive mesh refinement would probably be more efficient than the uniform mesh
refinement performed, the performance of sensibly-arranged discontinuities, even in a coarsely
discretised model, is excellent. Comparing the upper bound result of point b (Nc = 1.062) to the
best result in the reference (Makrodimopoulos and Martin, 2007) (Nc = 1.063) there is almost
no difference. However, the upper bound indicated by point b was obtained with 3 912 DOF
compared to 79 955 DOF in the reference.

Fig. 4. Numerical upper bound results for the block with asymmetric holes example using the
Drucker-Prager yield function: (a) load limit factor Nc obtained using continuous and discontinuous
velocity fields as a function of DOF; upper bound results (robjv [−1 · 10−4 : 0]) (b) with discontinuities

using 504 elements and (c) with continuous velocity field using 34 875 elements

In the following, this approach is extended to orthotropic material behaviour, using the
Tsai-Wu criterion as the indicator for plastic failure.

3.2.2. Tsai-Wu failure criterion

The strength parameters used for the example correspond to the typical orthotropic material
spruce wood and are taken from (Dorn, 2012), leading to
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Pmatσ =




2.434E-4 0 0 0 0 0
0 6.588E-2 0 0 0 0
0 0 6.588E-2 0 0 0
0 0 0 1.181E-2 0 0
0 0 0 0 2.973E-2 0
0 0 0 0 0 1.181E-2



MPa−2

Fmat,+σ = Fmat,−σ =
[
−6.573E-3 8.564E-2 8.564E-2 0 0 0

]T
MPa−1

(3.5)

inserted into the general yield function in Eq. (2.8), defined with respect to the local coordinate
basis (LTR). Due to the orthotropic characteristics, the consistent traction-based yield func-
tion is highly dependent on the orientation of the discontinuity at which it describes plastic
failure. Thus, for each introduced discontinuity, a different set of strength parameters had to be
computed, determined by the “projection” procedure introduced at the end of Section 2. Then,
the equivalence between the material strength within elements and the strength behaviour at
discontinuities is guaranteed.

In the following, this orthotropic strength behaviour is assigned to the block with asymmetric
holes, for two different material orientations, to assess the capability of the presented approach
in handling anisotropic strength behaviour.

Material orientation 1

In the first case, the longitudinal orientation L of the material is identical to the y-direction,
as indicated in Fig. 5a. Moreover, the local material coordinate basis (LTR) is defined with L
and T as the in-plane axes and R as the out-of-plane axis.

Fig. 5. Block with asymmetric holes using the Tsai-Wu orthotropic failure criterion: (a) geometry,
boundary conditions, and the principal material orientation indicated by the blue arrow; (b) upper
bound result using 519 elements (robjv [−1.5 · 10−6 : 0]); (c) and (d) potential orientations of plastic

strain localisation; (e) prescribed discontinuities based on (c) and (d)

The preliminary upper bound calculation, based on which the arrangement of discontinuities
will be defined, is carried out using a coarse mesh with 519 elements. The corresponding failure
mechanism is displayed in Fig. 5b, and the computed orientations of potential discontinuities
are shown in Figs. 5c and 5d. Averaging over these orientations results in two mean angle values
of θ̄1 = −84◦ and θ̄2 = 84◦ with respect to the x-axis. According to these mean angles and
starting from the points of highest plastic strain-rates (present at the boundaries of the holes),
the velocity discontinuities shown in Fig. 5e are implemented into the model. Subsequently, the
model is re-meshed and a further upper bound calculation is performed.
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Fig. 6. Numerical upper bound results for the block with asymmetric holes with the principal material
direction as defined in Fig. 5a: (a) collapse load using continuous and discontinuous velocity fields as a
function of DOF; upper bound failure mode (robjv [−9 · 10−6 : 0]) using (b) discontinuities within a
coarse mesh (486 elements) and (c) a continuous velocity field with a fine mesh (38 537 elements)

The numerical upper bounds on the collapse load for different levels of mesh refinement
(DOF) with and without discontinuities are plotted in Fig. 6. Again, the introduction of velocity
discontinuities improves the upper bound significantly, while hardly increasing the DOF. In
contrast to the isotropic case before, plastic failure also occurs in the solid finite elements between
discontinuities (see Fig. 6b), indicating that the orientation or arrangement of discontinuities
could be improved. This can also be seen by looking at the plastic regions in Fig. 6c, which
do not exactly match the definition of discontinuities above. It seems that the arrangement of
discontinuities does not necessarily have to be ideal in order to achieve considerable improvement
in the numerical upper bound results.

Material orientation 2

In the second case, the local material orientation basis (LTR) is rotated by 30◦ in the xy-
plane, as indicated in Fig. 7a. Again, based on an efficient preliminary upper bound calculation
(see Fig. 7b), possible orientations of discontinuities are computed, resulting in mean angles of
θ̄1 = ±80◦ and θ̄2 = −58◦. The introduced velocity discontinuities are shown in Fig. 7e.

Fig. 7. Block with asymmetric holes using the Tsai-Wu orthotropic failure criterion: (a) geometry,
boundary conditions, and the principal material orientation indicated by the blue arrow; (b) upper
bound result using 519 elements (robjv [−3 · 10−6 : 0]); (c) and (d) potential orientations of plastic

strain localisation; (e) prescribed discontinuities based on (c) and (d)
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Fig. 8. Numerical upper bound results for the block with asymmetric holes with the principal
material direction as defined in Fig. 7a: (a) collapse load using continuous and discontinuous velocity
fields as a function of DOF; upper bound failure mode (robjv [−2 · 10−5 : 0]) using (b) discontinuities

within a coarse mesh (524 elements) and (c) a continuous velocity field with a fine mesh
(34 875 elements)

As before, all numerical upper bounds are plotted in Fig. 8, showing the strong performance
increase achieved by the selectively introduced discontinuities. Interestingly, the intensity of
localisation of plastic failure is slightly different comparing the approaches with (Fig. 8b) and
without (Fig. 8c) discontinuities. It seems that with discontinuities the real failure mechanism
can be better represented, since the main plastic failure direction is well aligned with the principal
material direction (wood fibre direction) as expected.

3.3. Shear test on block

The last example is used to assess the capability of this upper bound formulation regarding
localised shear failure in orthotropic materials. The setup of the model is shown in Fig. 9a
and is designed to represent a characteristic as well as often critical loading states in wood-
-based products, like glued-laminated timber and cross-laminated timber. As in the previous
examples, the boundary conditions are chosen so as to represent plane strain conditions, and the
Tsai-Wu failure criterion with strength parameters representing spruce wood is assigned to the
material.

Again, based on a preliminary upper bound calculation using a very coarse mesh (Fig. 9c1),
the orientations of possible discontinuities are determined (Fig. 9c2) and, based on that informa-
tion, velocity discontinuities are implemented into the model (Fig. 9c3). The result obtained with
this discontinuity arrangement is shown in Fig. 9d1, where the dominant plastic failure appears
within the solid elements between the introduced discontinuities but not at the discontinuities
themselves, and, thus, the potential of the velocity discontinuities has not been activated suf-
ficiently. For this reason, a second iteration was carried out, again computing the orientations
of possible discontinuities in all plastic regions (Fig. 9d2). Based on that information, a revised
discontinuity pattern was implemented as shown in Fig. 9d3. The corresponding failure mecha-
nism is displayed in Fig. 10b and it can be seen that, now, localised failure occurs exclusively at
the last-introduced discontinuity. The related upper bound (point b in Fig. 10a) is very good in
comparison to the preliminary model without discontinuities (point a) but uses a similar number
of DOF. Moreover, the failure mechanism agrees well with that obtained using a very fine mesh
and no discontinuities (Fig. 10c).
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Fig. 9. Block under shear loading: (a) geometry, boundary conditions and the principal material
orientation indicated by the blue arrow; (b) illustrative 3D model with 222 finite elements;

(c) and (d) two iteration steps for the definition of the discontinuities, with (c1) and (d1) as the upper
bound result (robjv [−2 · 10−9 : 0]), (c2) and (d2) as the potential orientations of plastic strain
localisation, and (c3) and (d3) as the prescribed discontinuities based on (c2) and (d2)

Fig. 10. Numerical upper bound results for the block under shear loading: (a) collapse load using
continuous and discontinuous velocity fields as a function of DOF; the upper bound failure mode (robjv
[−4 · 10−9 : 0]) using (b) discontinuities within a coarse mesh (242 elements) and (c) a continuous

velocity field with a fine mesh (32 062 elements)

4. Summary and conclusions

In this work, a 3D numerical upper bound formulation using a quadratic approximation of the
velocity field and allowing for the implementation of orthotropic yield functions has been briefly
proposed. Furthermore, the implementation of velocity discontinuities into this formulation has
been presented, along with the concept of how to derive the necessary traction-based yield
function which guarantees a consistent description of the material strength behaviour across
discontinuities. Based on that formulation, compatibility as well as the associated plastic flow
rule are fulfilled throughout the whole body and, thus, rigorous upper bounds are obtained.
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The formulation has been verified by means of two classical examples, the rigid strip footing
and the block with asymmetric holes. Subsequently, based on preliminary upper bound calcula-
tions with very coarse meshes, the orientation of potential slip lines where very localised plastic
flow may occur could be determined. Based on that information, sensibly-arranged velocity di-
scontinuities were incorporated into the finite element models. In that way, upper bounds could
be improved significantly with essentially no increase of degrees of freedom.
It has also been shown that this concept works very well when assigning orthotropic failure

behaviour to the material. If the first introduction of discontinuities does not improve the upper
bound significantly, which means that most of the plastic dissipation still takes place in solid
elements, a second iteration step can improve the situation, as shown by means of the shear
test on a block. This may represent an important finding for future developments, which could
lead to a general algorithm for an adaptive introduction and re-arrangement of velocity discon-
tinuities, as an efficient alternative to existing adaptive mesh refinement strategies. Especially
for laminated structures and orthotropic materials, where plastic failure often occurs in a very
localised mechanism, as shown for wood at the microscale in (Lukacevic et al., 2014; Lukacevic
and Füssl, 2016) and at the product scale in (Hochreiner et al., 2013, 2014), such an approach
could have great value. Moreover, the efficiency of numerical limit analysis in combination with
the accuracy of the extended finite element formulations presented in (Lukacevic et al., 2014;
Lukacevic and Füssl, 2016) could lead to more flexible engineering design tools, in which the
focus can be switched between accuracy and efficiency as needed.
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In Continuum Physics, general balance problems between internal fluxes and external sources
are considered, mostly on some domain Ω called a material body. Typically, the fluxes are
determined by a wanted field – the solution or configuration of the body, possibly augmented
by derivatives or other suitable quantities specifying the state of the system. In order to
obtain a closed problem formulation, initial and boundary conditions need to be provided as
well. In this paper, we discuss some issues appearing in the case that the sources, e.g. forces
in a mechanical problem, are not known in advance, but related to the wanted configuration
in terms of values and/or derivatives of the solution. An analogy between thermodynamic
and mechanical problems is shown.

Keywords: feedback, dynamics, stabilty, columns, follower forces

1. Introduction

Let us consider a problem of the general form

Ht = − divF +G (1.1)

Here, by F the flux of some balance quantity is denoted, G is a corresponding source term,
and H is the storage of the quantity, which may be scalar or vector-valued. All dependent fields
are functions of a space variable x and time t.
As an example, consider internal energy ǫ = cϑ with temperature ϑ, heat flux q and heat

sources r, cf. (Kosiński and Frischmuth, 2001), which are related to each other by

ǫt = − div q + r (1.2)

In order to find a solution, a constitutive relation for the flux q is introduced by Fourier’s
law

q = −κ∇ϑ (1.3)

This leads to the partial differential equation

cϑt = div (κ∇ϑ) + r (1.4)

with the heat capacity c > 0 and the heat conductivity κ > 0.
For this equation, one considers initial-boundary value problems with given sources

r = r(x, t), x ∈ Ω, t ­ 0, given boundary values ϑ(x, t) = ϑ(x, t), x ∈ ∂Ω, t ­ 0, and a
given initial temperature field ϑ(x, 0) = ϑ0(x), x ∈ Ω.
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The above problem is well posed, i.e., it has a unique solution, which depends continuously
on the data. Instead of prescribed values of the unknown function ϑ at the boundary, the heat
flux qn = −κ∇ϑ ·~n = −κdϑ/d~n may be given. The first case is called Dirichlet conditions, in the
second one we speak about a Neumann boundary. There may be a part of the boundary, where
Dirichlet conditions are prescribed, while on the remaining part Neumann conditions apply.
In this paper, our focus is on a third type of boundary conditions, the Robin condition, which

generalizes both previous cases

qn = −κ
d

d~n
ϑ = γ(ϑ − ϑenv) (1.5)

Here ϑenv is a given temperature of the environment, and γ ­ 0 is the conductivity of a
(virtual) layer between the considered body, occupying the domain Ω, and the surroundings.
This means that the boundary values of ϑ are no longer known in advance but depend on the
normal derivative of the solution ϑ.
Notice that also the assumption of known in advance heat sources r may be not adequate.

The intensity of local heating may be a function of temperature, for instance as a result of
thermo-chemical coupling, if the kinetics of an exothermal reaction depends on temperature,
i.e., r = r(x, t, ϑ(x, t)). In lower-dimensional problems, arising from models of a plate, shell or
beam, again the exchange with the environment might be the dominant issue. In such cases, a
higher value of the solution leads to a lower source, e.g. by a law of the form r = δ(ϑenv−ϑ). In the
reaction case, the opposite effect may lead to an unstable situation: the higher the temperature,
the faster it grows. It is a challenge not only to solve an initial-boundary value problem for heat
transfer problem (1.4) with the given specifications, but also to find stationary solutions and to
determine whether they are stable.
When it comes to mechanics of continua, in the general 3D case, the unknown real valued

function ϑ is replaced by a vector field u = u(x, t) ∈ R3, the role of the heat flux is taken by the
tensor T, which comprises the stresses, and the balanced quantity is the linear momentum ρutt.
The constitutive law, in the simplest elastic case, is given by a linear dependence between strain
and stress, with the strain calculated from the gradient of u, cf. (Bogacz and Janiszewski, 1985).
Equation (1.1) takes here the form

ρutt = − divT+ b (1.6)

with the body forces b playing the role of the former r. A typical, linear, homogeneous and
isotropic relation for T is

T = 2µε+ λ tr (ε)I (1.7)

where I is the identity (unit tensor), µ and λ are positive constants (Lamé moduli), and ε is the
tensor of (small) deformations

ε =
1

2
[∇u+ (∇u)T] (1.8)

More general situations, anisotropy, large deformations, inelastic materials, etc. are important
issues, but out of the focus of this article – we restrict ourselves to linear models, valid in the
neighborhood of equilibrium states.
There is one feature common for the thermodynamic and the mechanical master model. Aga-

in, the body forces as well as the boundary conditions, i.e. the interface between our model and
the environment, may depend on the solution, cf. (Beck, 1952; Timoshenko, 1921). Furthermore,
the dependence may be stabilizing, destabilizing, or switch from stable to unstable at certain
states. And once more, it will be a challenge to find dynamical solutions, distinguish stationary



On problems with solution-dependent load 437

ones, and resolve the stability issue, cf. (Bogacz and Frischmuth, 2012; Bogacz et al., 1980, 2008;
Bogacz and Janiszewski, 1985; Preumont and Seto, 2008; Ringertz, 1994).
On the other hand, the big difference is that now, in mechanics, second derivatives with

respect to time enter the evolution equation.
Since we concentrate on solutions close to a natural state of rest, the assumptions of small

deformations (geometric linearity) and material linearity are reasonable. Additionally, we also
postulate linearity of the feedback relation between body forces and boundary conditions and
the wanted vector field u = u(x, t). Due to linearity, the setup

u(x, t) = w(x)eiωt (1.9)

is known to work in the context of mechanics. The first order derivatives in the evolution equation
are just scalar multiples of the unknown function, and the second order derivatives satisfy

utt(x, t) = −ω2u(x, t) (1.10)

Using this, the task reduces to an operator eigenproblem of the form

Lw = −ω2ρu(x, t) (1.11)

where the eigenvalue is −ω2. The linear operator is composed of two contributions, one corre-
sponds to the stiffness of the classical problem, the other one represents the feedback connected
with the solution dependence of the loads. This will be discussed in more detail in the next
Section.
After a suitable discretization, e.g. by the FEM or by FDM, a matrix eigenvalue problem

emerges, modes of oscillation may be found and superposed. This way, initial conditions may be
met and hence initial-boundary value problems solved. A discussion of the real and imaginary
parts of the spectrum determines stability of the trivial solution w = 0.
It should be mentioned that other setups are successful as well, e.g. exp(ωt) or sin(ωt) lead

to the same results, bearing in mind Euler’s formulas. In the thermodynamic case, where there is
only a first order time derivative, obviously exp(ωt) is more convenient, while in the mechanical
case, when it comes to damping, the exponential representations are advantageous.

2. A classic case

A particular example of the considered class of problems is the 1D Bernoulli-Euler beam model
with special loading conditions. Due to the low dimensionality of the domain and due to the fact
that the complete solution is represented by a single scalar function, i.e. by the displacement
of the middle surface of the beam, this problem is well suited for a qualitative study. For a
discussion of the assumptions and applicability of the Bernoulli-Euler beam theory we refer to
(Timoshenko, 1921; Tomski et al., 1996).
The equation of balance of linear momentum, after substituting the assumed constraints,

takes the form

(S(x)uxx(x, t) + Pu(x, t))xx + k(x)u(x, t) = −ρ(x)utt(x, t) (2.1)

Here, S is the bending stiffness (related to the elastic moduli and the cross section of the
beam, see Bogacz and Janiszewski (1985)), P a constant compressing axial force, x ∈ [0, l] the
scalar space variable (position), ρ the mass density (per unit length, i.e. the 3D material density
multiplied by the area of the cross section). The role of k is the solution dependence of the load –
it is well-known as the Winkler constant. Similarly, as in the heat source case, we have a lateral
force −k(x)u(x, t), which pushes the displaced beam back to its trivial position.



438 R. Bogacz, K. Frischmuth

As a generalization of (2.1), an analogous contribution due to viscous damping may be added
(Frischmuth et al., 1993), so that the lateral force from the support becomes −k(x)u(x, t) −
υ(x)ut(x, t).
Problems of this class have a great practical relevance in several fields of engineering, see

e.g. (Kaliski and Solarz, 1962; Kerr, 1988; Przybyłowicz, 2008; Bogacz et al., 2014).
Introducing, as before, a product setup, this way splitting the time and space dependencies

in the form of a standing wave, the heart of the matter will be again an eigenproblem of the
form

L1w + PL2w + kw = ρω
2w (2.2)

The name of the eigenvalue, i.e. ω2, is no obstacle, as long as ω alone does not enter the equation.
This happens, however, if damping is introduced, so that (2.2) becomes

L1w + PL2w + kw + iωυw = ρω
2w (2.3)

This quadratic eigenproblem may be transformed into a common one for the pair (w,v), where
v stands for the velocity, i.e. v = iωw. With this definition, (2.3) becomes

v = iωw

−1
ρ
(L1w + PL2w + kw + υv) = iωv

(2.4)

Now, after discretization, L1 and L2 become matrices, and (w,v) will be represented by n nodal
values of the displacement and n more scalar values for the lateral velocities.
The solution of the problem depends in a very sensitive way on the boundary values imposed

on the displacement. For a fourth order boundary value problem on a finite interval [0, l], the
most straightforward choice is to prescribe zero displacements and zero (space-) derivatives at
both ends. This describes a clamped-clamped situation. In the spirit of solution dependence,
however, other choices are of greater interest. While at x = 0 we demand clamped conditions,
at the other end, x = l, various linear relations between the angle of inclination ux(l, t), bending
moment S(l)uxx(l, t), lateral force −(S(x)uxx(x, t) + Pu(x, t))x at x = l may be considered.
Two special cases gained in the past a great deal of attention. One of them is based on the

assumption that a lateral force proportional to the axial load P and to the angle of inclination
ux(l, t) is applied at x = l. Indeed, this fits into the class of problems with a load dependent on
the solution (and its derivatives). If the coefficient is negative, the force is, in fact, stabilizing.
If chosen equal to −1, the boundary condition simplifies to (S(x)uxx(x, t))x = 0 at x = l. In
the case of constant S, just the third order derivative is set equal to zero. This condition is
usually combined with that of a vanishing bending moment, which means a zero second order
derivative. Together, these boundary conditions and the equations of motion define Beck’s model
of a compressed column (Beck, 1952). The second of the mentioned special cases is Reut’s column,
which is characterized by a vanishing lateral force and a solution dependent bending moment
at x = l proportioanal to P and to the displacement of the tip, S(l)uxx(l, t) = −Pu(l, t), cf.
(Imiełowski and Mahrenholtz, 1997).

3. Mathematical techniques

In order to solve problems of the discussed class, some analytical background is needed (Euler,
1778a,b); however, eventually, only computational methods give quantitative answers, cf. for in-
stance (Bogacz and Frischmuth, 2012; Bogacz et al., 2008). Analytical properties of the involved
operators play a role for qualitative studies, e.g. whether they are coercive or self-adjoined. This
decides about the localization of the requested spectrum in (2.4).
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The two most essential numerical considerations concern the questions:

• Up to which value of the loading parameter, in the case of the compressed column this is
the value of the force P , all solutions are bounded, for instance periodic. In fact, we want
to establish stability of the undeformed system at rest.

• Furthermore, when a critical state is reached, what is the form of the displacement that
grows out of any limited neighborhood of the trivial state, and what is the way it de-
parts from the state of rest. The later question relates to the effect of flutter, respectively
divergent loss of stability.

While in the general case of two- or three-dimensional domains Ω, the method of choice
is the discretization of the spatial operator, which leads to a high-dimensional sparse matrix
eigenproblem (Frischmuth et al., 1993; Hanaoka and Washizu, 1980; Ringertz, 1994; Tada et
al., 1985, 1989), in the one-dimensional case shooting methods are a quite attractive alternative
(Bogacz and Frischmuth, 2012; Bogacz and Janiszewski, 1985; Kaliski and Solarz, 1962). Indeed,
using explicit formulas for the solution of (2.1) with setup (1.11), the analysis can be reduced to
a small matrix problem. This allows an effective and precise calculation of the first eigenmodes
and hence the answer to the above formulated questions. This method has been successfully
applied e.g. in (Bogacz and Janiszewski, 1985; Kaliski and Solarz, 1962). A weak point of the
shooting method is that analytical solutions to the ODE resulting from (1.8), (1.11) and (2.1)
are available only in the case of constant coefficients, i.e. prismatic homogeneous beams. To
overcome this, segmented columns are studied, which are composed of two or more prismatic
pieces. A smooth mass and stiffness distribution would require computational methods. This
was done e.g. in (Bogacz et al., 2008) – but the cost increased dramatically. Hence, in the case
of a continuously varying cross-section, even a conical one, the shooting method ceases to be
efficient.
In this paper, we compare the shooting method – where applicable – with the general ap-

proach, based on eigenvalue methods for medium size matrices. This technique is accurate also
for higher modes, and it is easily adapted to beams and columns with variable cross-sections.
Modifications of the model, e.g. the introduction of supports, elastic or viscous, concentrated or
distributed, are extremely easy to implement. Further, elements of the implementation may be
re-used for the solution of transient and even nonlinear problems.
The idea of the algorithm is straightforward. We introduce n equally spaced grid points xj

along the middle line of the beam/column. Their distance is h = l/n. Between the grid points,
exactly at (j − 1/2)h, j = 1, 2, . . . , n− 1, n, we slice the column into cells. To each cell, its mass
is assigned on the basis of the given mass density. Further, for given lateral displacements Wj
at the grid points, by central differences the curvature, and hence the bending moment at xj is
calculated as

Mj = Sj
Wj−1 − 2Wj +Wj+1

h2
(3.1)

Taking the first order difference of theMj-values, adding P times the first order difference of the
displacements themselves, one obtains minus the lateral force at the cell boundaries. According
to (2.1), allowing for additional lateral support forces if such are present, it is possible to calculate
the lateral acceleration with second order accuracy with respect to the step size h.
Special attention is to be paid to the first and last nodes. For the first one, j = 1, we are

missing the values W0 andW−1, which according to (3.1) are needed to obtainM0 andM1. Here
we may use W0 = 0 and W−1 =W1, which follow from the clamped boundary conditions.
The derivation of the equations of motion for the last two nodes was discussed in detail in

(Bogacz et al., 2008). Again, application of difference operators requires nodal values beyond
the last grid value. These have to be substituted in accordance with the prescribed boundary
conditions. For instance in the Beck case, the moment Mn is directly given, the same for Euler
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and Reut. In the latter, the moment depends onWn, which still is easy to implement. Conditions
involving the lateral force, i.e. the third and the first derivative, cause more trouble. In particular,
in the mentioned examples of Beck’s and Reut’s columns, the matrix representation of the
operator L = L1 + L2 will be nonsymmetric.

In Beck’s case, with constant mass density and stiffness, the shooting method leads to the
analysis of the root curves of

f(ω,P ) = det




[
0 0 1 0
0 P 0 1

]
exp(lA(ω,P ))




0 0
0 0
1 0
0 1





 (3.2)

with

A(ω,P ) =




0 1 0 0
0 0 1/S 0
0 0 −P −1
−ρω2 0 0 0




The zeros of f correspond to pairs of the frequency ω and the compressing force P for which
there are nontrivial solutions to a homogeneous system of equations in terms of the moment and
lateral force at the foot of the column, which are mapped to the moment and force at the top.

The matrix exponential function used in (3.2) abbreviates the solution formulas for the
system

y′(x) = A(ω,P )y(x) (3.3)

where y = [w,α,M,Q]T, meaning the lateral displacement, angle of inclination, bending moment
and lateral force. For a given rectangle of interest, the solutions to f(ω,P ) = 0 with f from (3.2)
have the well-known form shown in Fig. 1.

Fig. 1. Root curves in Beck’s case, shooting method (density, stiffness and length all equal to 1,
dimensionless)

We obtain a critical force of 20.05 together with a critical frequency of 10.87. At this point,
the first frequency arc of the first branch of the zero level-set meets with the second one, which
we consider the standard topology. Usually, the third meets the fourth and so on. However,
in particular for optimized geometries, this alternating sequence of growing and falling arcs
becomes disturbed. An example will be shown in Fig. 6, the right part. Moreover, especially in
the case of damping, the frequencies are complex-valued from the start on, so that there is no
longer a canonical order by their frequencies.
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Fig. 2. Eigenfrequencies in dependence on the compressing force. Negative imaginary parts, thick black
arc below the 0-plane, indicate instability

The discretization method, followed by an eigenvalue calculation, confirms these values. We
used n = 65 for Fig. 2.

The minimum of the imaginary parts of the spectrum of the matrix representation of (2.2),
here with k = 0, is required to be nonnegative. This is true below the critical value of Pcr ≈ 20.03,
and it is violated when P exceeds Pcr.

4. Improvements

Once we are able to find critical states, an obvious goal is the improvement of the situation in
the sense that a higher load can be carried by the structure. There are several options to achieve
this. A first way to push the limit of stability higher up is to add supports, i.e. to introduce
new loads depending on the values of the displacement, which push or pull the column under
consideration back to its original position. Technically, such external forces may be exerted
by trusses, which can be modelled as linear springs attached to the column. Further, viscous
damping elements may be used to stabilize. Both may be applied alone or together, in series or
in parallel, concentrated in a single point, in several points, or continuously distributed. For a
detailed analysis, we refer to (Bogacz and Janiszewski, 2008) and our forthcoming book.

An alternative way is to change the considered object – in this case the column – itself. In
particular, keeping its length constant, the cross section may be varied, and the material may
be changed, so that the mass density and the bending stiffness become design variables. Internal
damping may be added, e.g. in the form of a layer of a viscous material, so that a bending moment
proportional to the rate of change of the curvature enters the equation of motion. Also graded
materials have been studied in the context of damping oscillations in columns (Przybyłowicz,
2008).

Finally, in the age of mechatronics, active control of oscillations of a column may be con-
sidered. Assuming that the present deformation of the middle line is known, e.g. measured by
optical methods, an optimal position for the application of a lateral force may be determined
and applied by an actuator.

In the remaining part of this Section, several versions of modified Beck’s columns will be
analyzed. Our special interest will be in unexpected effects. Indeed, making a column twice as
thick will make it much more stable, which is not a surprise, and which is expensive in terms of
material cost, volume and weight. We are looking for intelligent and cost-effective alternatives.
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4.1. Mass reduction at the top end

We study the sensitivity of the critical load of Beck’s column with respect to changes of its
shape. In particular, we will show that it is possible to obtain a higher critical load without using
more material. It is enough to reduce the cross section in certain segments, or to redistribute
mass, taking material away in some parts, attaching it to others. Here two cases are distinguished:
scaled similar profiles and profiles of constant depth. In the first case, stiffness is proportional to
the fourth power of the scaling parameter, density changes with its square. In the second case,
the exponents are three and one. The effects are analogous, so we pick just one as example.
In Fig. 3, the black curves show the root curves for a segmented column, with the upper part

of 15% of the length, reduced in width by 25%. This saves almost 4% of the material, but gives
an increase of the critical load from 20.05 to 21.05. Notice the right-shift of the black lines, with
reference to the gray ones, corresponding to the column with constant parameters. This means
that not only the critical load, but also the critical (resonance) frequency is increased by the
modification.

Fig. 3. Improved critical load by reduction of the top segment

It turns out that not much more can be gained by the concept of a two-segment column. A
further increase can be obtained, however, by attaching the saved material to the lower segment.
Hence, at the same cost of the material, a column with around 8% higher critical load can be
found.
The previous case requires just a study of two parameters: fraction of the lower segment and

reduction of width of the upper part. This can be done with reasonable accuracy and effort by
calculating a full table. Introducing more segments and widths makes a systematic approach too
expensive. Further, the results for columns with three or four segments of variable length are
not so promising.
Much better results are obtained by a higher number N of segments of equal length, and

optimization of the vector of thicknesses of the corresponding cross sections. This fails at
N = 2, but already at N = 16 a considerable improvement of the critical load is possible.
This level is kept if the segmented column is replaced by a column with continuous width func-
tion, interpolating widths of the segment of the optimally segmented column. A detailed analysis
can be found in (Bogacz and Frischmuth, 2012) and the forthcoming book by the authors.
Some remarks on the mechanism of loss of stability may be useful for the understanding of

the next Subsections. First, reduction of the cross-section of some segment gives a smaller mass
density (per unit of length), and also a smaller stiffness against bending. Looking at the form of
oscillations – better even watching an animation – one observes a certain lash-back effect. Both
changes, that of mass as well as that of stiffness, contribute positively to the increase of the
critical load. In fact, using a lighter material of identical stiffness for the upper segment would
yield a small improvement of Pcr, same is true for a material (or profile) of the same density
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and smaller stiffness. The partial improvements would be around 4% for the change of mass,
when keeping the stiffness, and 0.7% for changing the stiffness while keeping the mass in the
upper segment. Notice that the combined effect is considerably larger than their sum. Changing
simultaneously the mass density with the width, the stiffness with its third power, we gain more
than 5%. Hence, there is something like a cross-activity or interaction between both effects.
If we increase the width of the bottom segment by around four per cent, the total mass

will be the same as that of the uniform column. Then, instead of 5%, we already obtain a 20%
improvement of the critical load.
In the case of the upper segment of a geometrically similar shape as that of the lower segment,

e.g. in the case of a circular tower, the improvements are about twice as large. For instance, in
the case of the unchanged bottom segment, we can obtain more than 8% saving of the material
and more than 9% higher critical load.

Fig. 4. Increase of the critical load by re-distribution of mass (two segments)

Applying optimization techniques, e.g. an evolution type algorithm, followed by the Nelder-
-Mead simplex method, columns with 4, 6, 16, . . . segments can be tuned to support loads of more
than five times higher than those of the uniform width column. For the results, e.g. characteristic
curves, shapes and forms of oscillation, we refer to our forthcoming book. However, it should be
mentioned that the extremely optimized columns are very sensitive to the slightest changes of
their geometry (mass and stiffness distributions), to external forces (e.g. even minimal damping),
and boundary conditions, see (Ringertz, 1994).

4.2. Lateral supports

In this Subsection, we consider the influence of lateral supports in the form of elastic and
viscous elements. These may act either concentrated at chosen positions or distributed over
the length of the column or, finally, combined in the form of a continuous distribution with
Dirac-type atoms.
Of particular interest are viscous dampers. Surprisingly, as opposed to elastic ones, their

application turns out to be not as promising as might be expected. As previously, effects of
cross-influences may be observed. First, we study the influence of forces proportional to the
lateral velocity, with a uniform distribution along the length of the column. We found that the
influence of such linear viscous damping forces lifts the eigenvalues in Fig. 2 in the direction of
the imaginary axis. The effect on the onset of growing modes of oscillation is very small, because
the imaginary parts bifurcate out of the horizontal plane containing the lifted characteristic in
a parabolic way, so that the increment of Pcr is only second order in the damping coefficient ν.
Now, if we try a viscous damper giving a concentrated force in a single position, the result is
surprisingly bad: depending on the point, where the damper is attached, its effect will be nil or
negative. A damper mounted at an inappropriate distance from the fixed end may destabilize



444 R. Bogacz, K. Frischmuth

Beck’s column. However, if we combine uniform and concentrated damping, a combined advan-
tageous effect can be obtained. So for instance, ν = 1 results in a critical load higher by 0.29%
than the undamped column, while ν = 10 already gives 21%. This is more than for the seg-
mented column of the same mass – but quite difficult to implement in practice. A concentrated
damper just below the midpoint of the column at x = 0.48 gives nothing, but when combined
with the small uniform damping ν = 1, an increase of Pcr by 50% is possible, see Fig. 5.

Fig. 5. Combined uniform and concentrated damping

It should be noticed that there is a change in the root curve of the imaginary part of the
characteristic determinant on the left part of Fig. 5. On the right part, the complex eigenfrequ-
encies are shown, both real and imaginary parts, for the same parameters of the damping. It is
evident that the two arcs of the first branch, the growing and falling one, previously laying in the
same plane, do not even touch. The growing part drops below the zero-plane of the imaginary
part, ωim = ℑ(ω) = 0, before the maximum is reached. In fact, the maximum of that path does
not exist – it appears just in the projection to the real part. Summing up, we can state that the
approach using complex eigenvalue problems gives a deeper understanding of the dynamics of
the considered construction, while the determinant-based solution gives quicker evaluations of
the critical loads, e.g. during optimization.

4.3. Hinged columns

Reshaping the width of a column, using many segments or smooth variation, may be undesi-
rable for several reasons. Nota bene, also the applicability of the Bernoulli-Euler theory is limited
in the case of jumps in the column diameter. Instead of reducing the diameter, a reduction of
the bending stiffness may be obtained as well by connecting two segments by a flexible joint,
cf. for example (Bogacz et al., 2008). Using its position and compliance as design parameters, it
can be attempted to increase critical loads.

In Fig. 6, the root curves for a column composed of two segments, the lower part of length 0.9l,
the upper of length 0.1l, is shown. Both segments have identical and uniform mass density and
stiffness. They are connected by a hinge with a bending stiffness of 1.0 on the left part of Fig. 6.
A 20% increase in the compliance causes considerable changes in the resonance curves, as is
shown on the right part. The solution is very sensitive to small changes of the position of the
hinge and the stiffness. The obtained increase in Pcr of around 20% may be lost if, e.g. due to
fatigue, the optimal parameters are not kept with sufficient accuracy. On the right part of Fig. 6,
the improvement on Pcr is already reduced by 20%, and it quickly drops below the original level
of Pcr = 20.05, if the stiffness of the hinge decreases further.

Thus, hinges should be studied in connection with lateral supports, as discussed in the
previous Subsection. Of particular interest are intelligent supports that are neither elastic nor
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Fig. 6. Characteristics of a hinged column

viscous, but controlled on the basis of observed displacements and speeds. For a detailed analysis,
we refer to (Bogacz et al., 2008), in the case of control see also (Preumont and Seto, 2008;
Przybyłowicz, 2008).

5. Conclusions

Considerations on the stability of constructions should take into account dynamical effects. Static
analysis alone can be very misleading. Secondly, one should be aware that loads may vary if a
body gets out of its position of rest; such changes may have a stabilizing or destabilizing effect.
Once the limits of stability are calculated, usually efforts will be made to improve the structure.
However, effects of changes of the structure or the loading may be very surprising. For instance,
weakening by removal of the material and decreasing the bending stiffness may increase the
critical load, since it also reduces the inertial forces. Indeed, there may be unexpected cross-
effects. If applied in the right region of the body, material may be saved and/or higher critical
loads may be achieved. Similarly, adding damping may increase or decrease the critical force,
depending on the geometrical details. If combined with mechatronic control, even a hinge may
have a positive influence on the stability limit for the compressive load.
Finally, it should be warned that whatever optimized structures are designed and imple-

mented, they should be robust against disturbed parameters and conditions. Such disturbances
may be small changes of mass density (e.g. by dirt, corrosion), of stiffness (e.g. by ageing, fa-
tigue, heat) or the loading (e.g. by wind, earthquakes) or a breakdown of the control system
(e.g. power outing, shortcut, wear). In a recent paper, the robustness with respect to limited
geometrical accuracy was discussed. From the analysis there, it follows that the limit of stability
drops by 50% due to the change from the true theoretically optimal shape to a realistic one –
that can really be built. Anyway, given the theoretical potential to lift the critical load by a
factor of seven, eight or more, there remains quite a good possibility to improve a construction
at a low cost and in a save way.
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Advanced subjects in mechanical properties of shape memory alloys and polymers are di-
scussed. In the subloop loading under a stress-controlled condition of the shape memory
alloy, the transformation-induced stress relaxation appears due to variation in temperature.
The enhancement of corrosion and corrosion fatigue life of the shape memory alloy is discus-
sed. The development of a functionally-graded shape memory alloy and polymer is expected
to obtain better performance. Three-way motion appears in the shape memory composite
with the shape memory alloy and polymer.
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1. Introduction

The development of shape memory alloys (SMA) has attracted high attention because of the
unique properties of the shape memory effect (SME) and superelasticity (SE) appearance (Duerig
et al., 1990; Funakubo, 1987; Lagoudas, 2008; Lexcellent, 2013; Otsuka and Wayman, 1998; Sun
et al., 2017; Tobushi et al., 2013; Ziolkowski, 2015). If we use the SME and SE in practical
applications, not only large recovery strain but also high recovery stress, energy storage and
energy dissipation can be obtained. The main features of the SME and SE are induced due to
martensitic transformation (MT). Since the deformation properties due to the MT depend on
temperature, stress and thermomechanical hysteresis, they are, therefore, complex. They also
depend on the loading rate. In the case of subloop loading, the deformation behaviors are quite
different between strain- and stress-controlled loading conditions. The transformation-induced
creep and stress relaxation appear in the subloop loading under the stress-controlled condition.
The corrosion and corrosion fatigue properties are important in practical application of SMA
elements.
The shape memory polymer (SMP) has also been developed (Hayashi, 1993; Huang et al.,

2012; Tandon et al., 2016; Yahia, 2015). The main features of SMP appear due to the glass trans-
ition. Elastic modulus differs at temperatures above and below the glass transition temperature,
and the rigidity of SMP elements, therefore, varies depending on the temperature change. Based
on this property, the shape fixity and shape recovery can be used.
Although elastic modulus and yield stress are high at high temperatures and low at low

temperatures in SMAs, they are high at low temperatures and low at high temperatures in
SMPs. The dependence of rigidity on temperature is, therefore, quite different between the
SMA and SMP. If composite materials with SMA and SMP are developed, new characteristics
of the shape memory materials can be obtained.
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In order to obtain a better performance, the development of functionally-graded SMAs and
SMPs is expected. The 3D-printing of SMPs is requested as a simple method to manufacture
complex SMP elements.

In the present paper, advanced subjects in mechanical properties of SMA such as the de-
formation behavior subjected to the stress-controlled subloop loading and the corrosion fatigue
properties of SMA are discussed. Next, the functionally-graded SMA and SMP are discussed.
Following these subjects, the mechanical properties of the shape memory composite with SMA
and SMP such as the characteristics of the three-way bending properties and the 3D printing of
SMP will be discussed.

2. Deformation and fatigue properties of SMAs

2.1. Stress relaxation in subloop loading

SMA elements are subjected to variation in stress, strain and temperature with various
ranges accompanying the MT in practical applications. The analysis in the subloop loading is
therefore important. Although the return-point memory appears under a low strain rate in the
subloop loading, it does not appear under the stress-controlled condition. In the case of the sub-
loop loading under the stress-controlled condition, the transformation-induced creep and creep
recovery appear under a constant stress, and the transformation-induced relaxation and stress
recovery under a constant strain. It should be noticed that the stress-strain curve depends on the
loading rate (Ikeda, 2015; Pieczyska et al., 2006; Yin et al., 2014). The transformation-induced
stress relaxation in the subloop loading of the TiNi SMA under various loading conditions will
be discussed in this Section.

Fig. 1. Stress-strain curves of the TiNi SMA in the stress relaxation test with various holding strains
and in the low strain rate dε/dt = 2.5 · 10−5 s−1

The stress-strain curves obtained in a stress relaxation test with various holding strains are
shown in Fig. 1. The loading conditions of the stress relaxation tests in Fig. 1 were as follows.
The load was applied at a stress rate dσ/dt = 5MPa/s until a point H2 (or H3, H4, H5 and H6)
at a strain εh = 2% (or 3%, 4%, 5% and 6%) followed by holding the strain εh constant till the
decrease in stress finished and thereafter unloaded at a stress rate dσ/dt = −5MPa/s. The stress-
-strain curve shown by a black line in Fig. 1 was obtained at a strain rate dε/dt = 2.5 · 10−5 s−1
during loading and unloading with the maximum strain 8%. As can be seen in Fig. 1, in the strain
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holding process at εh following the loading till the strain εh at the stress rate dσ/dt = 5MPa/s,
the stress decreases to σRF2 (or σRF3, σRF4, σRF5 and σRF6), resulting in stress relaxation. The
stress σRF2 (or σRF3, σRF4, σRF5 and σRF6) at a point εh after relaxation is almost the same as
the stress of the MT start σMS in the stress-strain curve at a strain rate dε/dt = 2.5 · 10−5 s−1,
in which an increase in the stress is smaller than that at a stress rate dσ/dt = −5MPa/s.
In the loading process at a constant stress rate dσ/dt = 5MPa/s, strain rate becomes high in

the upper stress plateau region, and the heat is generated due to the exothermic MT, resulting
in an increase in temperature of the specimen. In the strain holding stage from the point H2 (or
H3, H4, H5 and H6) to σRF2 (or σRF3, σRF4, σRF5 and σRF6), the temperature decreases due
to the heat transfer into the ambient air and the condition for the transformation to progress is
satisfied, resulting in progress of the MT. As a result, stress relaxation occurs while holding the
strain constant.
The relationship between the stress decrease ∆σ and temperature decrease ∆T during hol-

ding a constant strain in the stress relaxation tests with various conditions is shown in Fig. 2.
Temperature was measured by the infrared thermography. The forced convection was performed
by air flow in order to observe the influence of cooling rate on stress relaxation. As can be seen,
the stress decrease ∆σ is proportional to the temperature decrease ∆T . The broken line in Fig. 2
is calculated by ∆σ = a∆T and shows a good overall match with the experimental results. The
value of the coefficient a is 13.2MPa/K.

Fig. 2. Relationship between stress decrease and temperature decrease in the stress relaxation test with
various conditions

2.2. Corrosion and fatigue properties of SMA

2.2.1. Corrosion fatigue life

The corrosion fatigue life is important in practical applications of SMAs. However, the report
on the corrosion fatigue properties is little. The corrosion fatigue life of a TiNi SMA wire was
investigated through a bending fatigue test.
The relationships between the strain amplitude εa and the number of cycles to failure Nf

obtained by the rotating-bending fatigue test in the air and the 10%-NaCl water solution are
shown in Fig. 3 (Yamada and Matsui, 2016). The materials used in the experiment were TiNi
SMA wires (Ti-49.7 at% Ni) with a diameter of 0.7mm. The materials were heat-treated in an
electrical furnace for 1 h at 673K. The materials were then allowed to cool inside the furnace.
The fatigue life in 10%-NaCl water solution (i.e. the corrosion fatigue life) is shorter than that
in the air as shown in Fig. 3. Accordingly, engineers have to be careful with fatigue life of SMA
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devices, particularly, when used in corrosive environment (i.e. in human body, seawater, etc.). In
order to enhance the corrosion fatigue life, we have developed a thermal treatment to generate
a strong and homogeneous passive layer on the surface of TiNi SMAs. This subject will be
discussed in the next Section.

Fig. 3. Fatigue life curves for TiNi shape memory alloys in the air and 10%-NaCl water solution

The enhancement of fatigue life can also be achieved by the surface treatment of materials
through the ultrasonic shot peening (USP) and the nitrogen ion implantation (NII). The influ-
ence of NII, USP and thermal treatment conditions on the corrosion fatigue life of an SME tape
and an SE tape is the future subject.

2.2.2. Corrosion resistance

In order to promote the application of SMAs into devices used in corrosive environment, we
have developed a procedure to generate a passive layer on TiNi SMAs. The proposal process
called the thermal nitridation (TN) treatment to generate thin and homogeneous passive layers
contains heat treatment of a mechanically-polished SMA wire at temperature of 673K for 3.6 ks
in a furnace filled with pure nitrogen gas.

Fig. 4. Anodic polarization curves for TiNi SMA (TN), conventional TiNi SMA and pure Ti

Figure 4 shows anodic polarization curves for TiNi SMA with the passive layer generated by
TN process, a conventional TiNi SMA with a thick oxide layer and a pure Ti in a 3%-NaCl water
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solution. The results reveal that corrosion resistance of the TN-treated TiNi SMA is much higher
than that of the conventional TiNi SMAs and is almost the same as that of pure Ti, which is the
most common material as a biomaterial, with current density of up to above 1 · 10−2mA/cm2.
From the energy dispersive X-ray spectrometry analysis and other microscopic investigations,
we found that a thin titanium-nitride layer with a thickness of tens of nanometers is generated
on the TN-treated TiNi SMA.

Since the corrosion fatigue life for the TN-treated TiNi SMA is one of the important proper-
ties to design devices, we are now investing in clarifying the characteristics of corrosion fatigue
life from a fatigue test in the 10%-NaCl water solution.

3. Functionally-graded shape memory alloy and shape memory polymer

3.1. Functionally-graded shape memory alloy

In order to develop a more advanced actuator, such as a self-stroke controlling device de-
pending on the ambient temperature, a TiNi SMA having a functionally-graded property of
the transformation temperatures will be a major candidate material for the element. If the
functionally-graded shape memory alloy (FGSMA) coil is employed to an actuator, the shape-
-recoverable region exceeding the austenitic transformation finish temperature Af will change
continuously, resulting in length of the coil extending or shortening without a bias element,
depending only on its temperature.

Figure 5 shows a demonstration of movement of an FGSMA coil having different transforma-
tion temperatures Af ; Af1 = 293K, Af2 = 318K and Af3 = 338K. The coil subjected to tensile
load along its axial direction and then it was unloaded at temperature T = 298K as shown in
Figs. 5b and 5c. In this state, a part of the coil, which had the transformation temperature Af1,
recovered its original shape without heating due to superelasticity. The coil was subsequently
heated up to T = 328 and 348K, the shape recoverable region extended and length of the coil
became shorter as shown in Figs. 5d and 5e.

Fig. 5. Movement of the SMA coil having different transformation temperatures; Af1 = 293K,
Af2 = 318K and Af3 = 338K: (a) initial state, (b) loading at T = 298K (Af1 < T < Af2 < Af3),

(c) unloading at T = 298K (Af1 < T < Af2 < Af3), (d) heating up to T = 328K
(Af1 < Af2 < T < Af3), (e) heating up to T = 348K (Af1 < Af2 < Af3 < T )
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As an example of manufacturing the functionally-graded shape memory alloy (FGSMA), we
have developed a new fabrication process that combines powder metallurgy and hot extrusion to
obtain an FGSMA wire in which the transformation temperature varies from high to low along
the wire axis depending on gradually changing composition of Ti and Ni. First, a multilayered
TiNi green compact in which the Ti-Ni compositions varied layer by layer was sintered using a
spark plasma sintering process and then the compact was hot extruded into a wire. We used a
characteristic that the phase transformation temperature of TiNi SMA changed depending on
the composition of Ti and Ni (Duerig et al., 1990; Funakubo, 1987; Otsuka and Wayman, 1998).

Figure 6 shows the stress-local strain curves at three points of the hot extruded wire with
gradually changing composition of Ti and Ni. The wire shows the SE at the position that
corresponds to a Ni content of 51.0 at% and the SME at the position of 50.4 at% Ni. These
differences appear to be based on the different MT temperatures at each position.

Fig. 6. Stress-local strain curves of FGSMA wire with gradually changing composition

If the FGSMA wire or tape is developed, the temperature-dependent continuous actuation
or the multi-way actuation can be obtained by using only one SMA coil or tape, respectively.

3.2. Functionally-graded shape memory polymer

The relationship between force and depth of the functionally-graded shape memory polymer
(FGSMP) board in the indentation test is similar to that of the finger (Takeda et al., 2016).
The deformation properties of the body differ depending on the region. The FGSMP board
corresponding to each region can be developed by a combination of the sheet and foam with
appropriate thickness, glass transition temperature and their arrangement. The FGSMP board
can therefore be applied to the elements coming into contact with the body as a nursing-care
robot in the medical actuators. The basic deformation property of the FGSMP foam will be
discussed in this Section.

A polyurethane-SMP foam has been used to fabricate FGSMP foams. The SMP foams having
different glass transition temperatures Tg (Tg = 298K and 321K) and density ρ (ρ = 43 kg/m

3

and 70 kg/m3) were laminated and the FGSMP was fabricated. Thickness of each SMP foam was
10mm. The structure of an FGSMP foam is shown in Fig. 7. Two SMP foams with Tg = 298K
and ρ = 43 kg/m3 were arranged in the upper part, and those with Tg = 321K and ρ = 70 kg/m

3

in the lower part. The adhesive used to laminate the foam was DW246W produced by SMP
Technologies Inc.
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Fig. 7. Stress-strain curves of FGSMP foam in the thermomechanical compression test

The thermomechanical cyclic compression test was performed on the FGSMP foam. At first,
it was compressed at a strain rate of 3 · 10−3 s−1 in the loading and unloading processes at the
room temperature T = 298K. Thereafter, the FGSMP foam was heated up to 373K for 5 minutes
in the furnace to recover the residual strain followed by cooling down to the room temperature.
These processes were repeated in 7 cycles. The relationship between stress and strain obtained
in the cyclic compression test is shown in Fig. 7. As can be seen, the stress increases slightly
at the initial stage due to deformation of the SMP foam with Tg = 298K and ρ = 43 kg/m

3.
Then, the stress increases rapidly around a strain of 45% due to completion of local deformation
of the upper SMP foam. Thereafter, the SMP foam with Tg = 321K and ρ = 70 kg/m

3 was
deformed accompanying the stress plateau starting from about 70 kPa, resulting in two steps of
deformation in the loading process. After unloading, the residual strain of 19% appears under
no-load due to the irrecoverable strain of the SMP foam with Tg = 321K. This residual strain
can be recovered almost to 0% if the FGSMP is heated above Tg = 321K under no-load. The
deformation behavior is almost the same in each cycle.

4. Shape memory composite with SMA and SMP

The structure and a photograph of the fabricated shape memory composite (SMC) belt is shown
in Fig. 8. As can be seen in Fig. 8a, the 3D-printed SMP sheet, SME wire and SE wire were
laminated. Then the laminated material was set in the mold for heat-treating of the SMC belt.
The glass transition temperature (Tg = 328K) of the SMP sheet was above the both phase
transformation temperatures Af of the SME wire (Af2 = 316K) and SE wire (Af1 = 306K)
of TiNi alloy. The SME and SE wires were arranged facing in the opposite directions for the
memorized U-shape. The SME and SE wires were sandwiched between two 3D-printed SMP
sheets from the upper and lower sides. The SMC belt shown in Fig. 8b can be fabricated without
bubbles and gaps by using the 3D-printed SMP sheet.

The relationship between the recovery force and temperature of the SMC belt operated by
joule heating of both wires is shown in Fig. 9. As can be seen, during heating by joule heat,
the recovery force decreases from point (I) to (II) due to the recovery force of SE wire. Then,
the recovery force of the SMC belt increases from point (II) to (III) since the recovery force of
the SME wire appears. During cooling by the ambient air, the recovery force of the SMC belt
decreases from point (III) to (IV) due to decreasing in the recovery force of the SME wire. Then
the force of the SMC belt becomes constant since the SMP sheet becomes harder below Tg.
The deformation behavior of the SMC belt is almost the same in the cyclic heating and cooling
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Fig. 8. Structure (a) and photograph (b) of the SMC belt

Fig. 9. Variation in the recovery force of the SMC belt during cyclic heating and cooling

processes. The reciprocating three-way behavior of the recovery force can be obtained by a
simple SMC structure.

5. 3D-Printed shape memory polymer

Recently, the 3D printer which can make products in a short time without cutting or casting has
been attracted worldwide attention. If we use the 3D printer, it is possible that a customized
product which is well suited to the individual is fabricated with a low cost and in a short time.
If we make a product with SMP using a 3D printer, the new device which is well suited to the
individual complex shape can be developed without using expensive metal molds.

The material used to fabricate a 3D-printed SMC belt was a SMP filament which was newly
developed by SMP Technologies Inc. and KYORAKU Co., Ltd. The 3D-printed SMP belt was
fabricated by a fused deposition modeling (FDM) 3D printer. The nozzle movement during
printing the belt is shown in Fig. 10. The pattern of movement of the nozzle during printing was
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0◦ angle with respect to the longitudinal direction of the belt. The thickness of each layer in the
printing process was 0.2mm. The total layers were two and thickness of the belt was 0.4mm.

Fig. 10. Nozzle movement during fabricating an SMP belt in 3D-printing

Photographs of motion of the 3D-printed SMP belt for shape fixity and shape recovery are
shown in Fig. 11. As can be seen, (1) the 3D-printed SMP belt was deformed at a temperature
above Tg. Then, (2) the deformed shape was maintained without a force at temperatures be-
low Tg. Next, (3) the original shape of the belt was recovered by heating above Tg. The shape
fixity and shape recovery properties are obtained in the 3D-printed SMP as same as the SMP
made by the general method. The thermomechanical properties of the 3D-printed SMP depend
on the nozzle temperature, table temperature, printing rate and pattern of each layer (Takeda
et al., 2017). These points are the future subjects.

Fig. 11. Photographs of shape fixity and shape recovery of the 3D-printed SMP belt

6. Conclusions

Mechanical properties and advanced subjects in shape memory alloys and polymers have been
discussed. The results obtained are summarized as follows.

• The shape memory effect and superelasticity of shape memory alloys depend on thermome-
chanical loading conditions. The transformation-induced stress relaxation appears in the
subloop loading under the stress-controlled condition. The stress decrease is proportional
to the temperature decrease during holding the strain constant.

• The thin titanium-nitride layer with thickness of tens of nanometers is generated on TN-
treated TiNi SMA. The enhancement of corrosion fatigue life of the shape memory alloy
is expected by thermal nitridation treatment.

• The functionally-graded shape memory alloy and polymer with various compositions and
phase transformation temperatures are fabricated to obtain better performance of shape
memory elements.
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• Three-way motion can be obtained by the composite with shape-memory alloys and poly-
mers having various phase transformation temperatures.

• The shape fixity and recovery properties can be obtained by a 3D-printed shape memory
polymer element.
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This paper presents an experimental investigation of the hot deformation behaviour of 15%
B4C particle reinforced AA6061 matrix composites and the establishment of a novel cor-
responding unified and physically-based visco-plastic material model. The feasibility of hot
forming of a metal matrix composite (MMC) with a low volume fraction reinforcement has
been assessed by performing hot compression tests at different temperatures and strain ra-
tes. Examination of the obtained stress-strain relationships revealed the correlation between
temperature and strain hardening extent. Forming at elevated temperatures enables obvious
strain rate hardening and reasonably high ductility of the MMC. The developed unified ma-
terial model includes evolution of dislocations resulting from plastic deformation, recovery
and punching effect due to differential thermal expansion between matrix and reinforcement
particles during non-steady state heating and plastic straining. Good agreement has been
obtained between experimental and computed results. The proposed material model contri-
butes greatly to a more thorough understanding of flow stress behaviour and microstructural
evolution during the hot forming of MMCs.

Keywords: Metal Matrix Composite (MMC), hot compression, AA6061, B4C, dislocation

1. Introduction

Metal matrix composites (MMC) comprise a relatively wide range of materials defined by com-
position of matrix and of reinforcement together with its geometry (Kaczmar et al., 2000).
Particle-reinforced aluminium alloy/B4C MMC is a popular candidate in automotive, aerospace
and nuclear industries, since boron carbide (B4C) exhibits very high hardness, relatively low
density and good thermal and chemical stability (Guo and Zhang, 2017). Raw MMCs are ma-
nufactured today using mostly either particle introduction techniques through liquid-stirring or
casting, pressure infiltration or powder metallurgy (Ye and Liu, 2004). The final geometry of
MMC parts with a high volume fraction reinforcement is usually obtained by machining. Where-
as, a low volume fraction MMCs may be processed by extrusion, drawing or rolling in which the
plasticity of the matrix material is exploited. The resultant bar or sheet often requires seconda-
ry manufacturing operations to produce the final product geometry. It is advisable to perform
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such manufacturing processes on MMCs at elevated temperatures where ductility is higher and
forming load is lower (Aour and Mitsak, 2016). This combination increases manufacturing capa-
bility and results in an increased material yield compared with machining to achieve final part
geometry. Therefore, it is important to characterize the deformation behaviour of MMCs with
the low volume fraction of reinforcement under hot working conditions, including mechanisms
of deformation and corresponding microstructural evolution.

Significant research has been performed on hot forming of MMCs and related deformation
mechanisms. The mechanism of matrix strengthening and microstructure evolution during hot
deformation becomes more complicated with the addition of reinforcement particles of different
materials, shapes and sizes. Wang et al. (2017) found that a dynamic recrystallization (DRX)
phenomenon, which depends on temperature and strain rate, was the main softening mecha-
nism when hot compressing AA6061/B4C composite. Ganesan et al. (2004) observed dynamic
recrystallization and wedge cracking characterising the hot working of AA6061/15% SiCp. Ho-
wever, although relative microstructural evolutions were identified, steady flow stress was still
modelled phenomenologically using the Zener-Hollomon parameter and the Arrhenius constitu-
ent model. The evolution of dislocations associated with hardening was not taken into account.
Physically-based models of hot formed MMCs are lacking this phenomenon.

High strength ceramic particles, such as SiCp, B4C and ZrB2, are commonly used to increase
MMC strength and thermal stability (Ibrahim et al., 1991). When these MMCs are heated to
elevated temperatures, the differential thermal expansion between the particles and matrix alloy
can induce dislocation punching (Chawla and Chawla, 2004) during thermal quenching, which
is also believed to affect the hardening during deformation. Furthermore, plastic deformation
produces temperature increase which can further aggravate dislocation punching. The dominant
mechanisms influencing material flow stress behaviour of low volume fraction reinforcement
MMCs are punching dislocation and dislocation evolution during deformation of the matrix
material, exemplified by plastic strain induced dislocation accumulation and recovery (Lin et
al., 2005). Both mechanisms should be included in constitutive models for this type of material.

The objectives of this study are to investigate hot deformation behaviour of MMCs and to
further develop a unified physically-based visco-plastic constitutive model for hot forming of
discontinuously reinforced MMCs with a low volume fraction of high strength particles. Streng-
thening mechanisms of discontinuous particle reinforced MMCs are briefly reviewed in this paper,
then the development of a visco-plastic material model based on a dislocation evolution mecha-
nism is presented. The feasibility of hot forming of MMCs was proved through hot compression
tests. In addition, the constitutive equations of the material model were calibrated using experi-
mentally generated stress-strain relationships. The established model is believed to be the first
one ever presented, which is based on the physical mechanisms of particle strengthening and
dislocation evolution during hot deformation.

2. Strengthening mechanisms in hot working particle reinforced MMCs

2.1. Modulus

Various methods have been proposed to predict the elastic modulus of composites. Each of
the existing models has limits and is unable to cover factors of reinforcement volume fraction,
shape, contiguity and distribution. Hashin and Shtrikman (1963) proposed upper and lower
bounds for an isotropic aggregate, based on variational principles of linear elasticity. For high
volume fraction cases, normally greater than 0.5, Kröner (1958) and Budiansky (1965) propo-
sed a self-consistent methodology to model effective Young’s modulus of MMCs with spherical
reinforcements. The relationships between Young’s modulus E, shear modulus G and bulk mo-
dulus K is given in Eq. (2.1)1. On the assumption of an unchanged Poisson’s ratio, Young’s
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modulus can be obtained from shear and bulk modulus. Mura (1987) provided an estimation of
the effective moduli for relatively small volume fractions of reinforcing particles, as shown in Eqs.
(2.1)2 and (2.1)3. The moduli of a composite are determined by the reinforcement and matrix
material for a certain volume percentage of reinforcements. In this theory, the reinforcement
geometry is assumed to be spherical. Then, the effective Young’s modulus of composite can be
obtained from Eq. (2.1)1. It should be noted that the theory was focused on finite concentra-
tions of reinforcements, and the approach is only valid for a relatively small volume fraction of
reinforcements, normally less than 0.25

E = 2G(1 + ν) = 3K(1− 2ν)

Gc = Gm
[
1 + Vp(Gm −Gp)

/{
Gm + 2(Gp −Gm)

4− 5νm
15(1 − νm)

}]−1

Kc = Km
[
1 + Vp(Km −Kp)

/{
Km +

1

3
(Kp −Km)

1 + νm
1− νm

}]−1
(2.1)

where ν is the Poisson’s ratio, G is the shear modulus and K is the bulk modulus of the material.
Gc, Gm and Gp are the shear modulus of the composite, matrix and reinforcement, respectively.
Kc, Km and Kp are the bulk modulus of the composite, matrix and reinforcement, respectively.
νc, νm and νp are the Poisson’s ratio of the composite, matrix and reinforcement, respectively.
Vp represents the volume fraction of reinforcements.

2.2. Strengthening

2.2.1. Direct strengthening

Direct strengthening is common in continuous fiber-reinforced (Khosoussi et al., 2014) and
discontinuously fiber or particle reinforced composites. The main mechanism of direct strengthe-
ning is load transfer from the point of application through the low strength matrix to the high
strength reinforcement across the matrix/reinforcement interface. Therefore, apparent streng-
thening results from the additional load carried by the reinforcements. To model such a streng-
thening phenomenon, Nardone and Prewo (1986) proposed a modified shear-lag model for load
transfer in particulate materials. The model incorporates load transfer from the particle ends
(which is not applicable to continuous-fiber reinforced composites due to the large aspect ra-
tio). The yield strength of the particulate composite σcy is increased over the matrix yield
strength σmy

σcy = σmy
[
Vp
(S + 4
4

)
+ Vm

]
(2.2)

where S is the aspect ratio of the particle, Vp is the volume fraction of particles, and Vm is
the volume fraction of the matrix. The relation shown in Eq. (2.2) does not include effects of
particle size and matrix microstructure on the load transfer. Wu et al. (2016) investigated the
effects of particle size and spatial distribution on the mechanical properties of B4C reinforced
composites. It is demonstrated that for a given volume fraction, reducing the particle size of the
B4C leads to a greater increase in the strength. The contribution of reducing the particle size
can be estimated using as

∆σd ∝
√
1

d
(2.3)

where∆σd represents the increment of the yield strength due to particle size, and d is the average
size of particles in the spherical assumption.



460 K. Zheng et al.

2.2.2. Indirect strengthening

Indirect strengthening is believed to be caused by changes of matrix microstructure and
properties with the addition of the reinforcement. Thermal expansion mismatch between the
reinforcement and matrix alloy can result in a build-up of internal stresses where there is a change
in temperature, such as occurs during thermal quenching (Suh et al., 2009). Such a mismatch is a
general and important feature of MMCs, especially with the combination of a high coefficient of
thermal expansion (CTE) metallic matrix and a low CTE high strength ceramic reinforcement.
If the internal stress generated by differential thermal expansion is greater than the yield stress of
the matrix, then dislocations form at reinforcement/matrix interfaces and accumulate within a
domain surrounding the reinforcement, as shown in Fig. 1. Hence, “thermally induced dislocation

Fig. 1. Schematic of dislocation punching micromechanics (Suh et al., 2009)

punching” results in an indirect strengthening of the matrix. Besides the thermal effects of CTE
mismatch during thermal quenching, the internal stress related to differential thermal expansion
may also occur if the composite experiences a positive temperature variation under hot forming
conditions, such as externally applied heating or temperature rise due to plastic deformation.
The matrix domain expands but is constrained by the reinforcements. The matrix material
strength is much lower at elevated temperatures, so it is easier for the induced internal stress
to exceed the matrix yield strength resulting in dislocations being punched into the matrix. It
should be noted that the phenomenon of punched dislocations should be considered only if the
heating rate is high and if the soaking time is short. Otherwise, static recovery will eliminate the
punched dislocations during the non-steady positive temperature variation. Arsenault and Shi
(1986) developed a model to quantify the degree of dislocation punching due to CTE mismatch
between a particle and the matrix, schematically shown in Fig. 1. The dislocation density of the
punched zone due to differential thermal expansion is given by

ρCTE =
DεTMVp
b(1− Vp)d

(2.4)

where D is a geometric constant, b is the Burgers vector, d is the diameter of the reinforcement
particle, and εTM is the thermal misfit strain, εTM = ∆α∆T . ∆α is the difference in the coef-
ficient of thermal expansion between the matrix and reinforcement, and ∆T is the temperature
variation. The incremental increase in strength due to dislocation punching can be given as

∆σind = ψGmb
√
ρCTE (2.5)

where ψ is a constant. Substituting Eq. (2.4) into Eq. (2.5), the strength increment due to this
indirect strengthening mechanism is given by Eq. (2.6) with further consideration of the aspect
ratio of the reinforcement particles S
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∆σind = ψGmb

√
DεTMVpS

b(1− Vp)d
(2.6)

3. Development of the visco-plastic constitutive model

3.1. Modelling of modulus

The addition of reinforcement particles significantly increases the stiffness of composites
compared with that of the matrix alone. For simplicity, Eq. (2.1)3 may be used to represent
approximately the relationship between Young’s modulus and shear modulus by assuming the
Poisson’s ratio to be constant. Young’s modulus of composites can be also approximated by a
formulation shown as

Ec = Em
1 + Vp(Em − Ep)

Em + δ1(Ep − Em)δ2
(3.1)

where δ1 and δ2 are constants. Ec, Em and Ep are Young’s moduli of composite, matrix and
reinforcement, respectively.
In order to simplify Eq. (3.1), giving E1 = δ1δ2, substitute E1 into Eq. (3.1). Equation (3.1)

can be rewritten as follows

Ec = Em
[(1− E1 + Vp)Em + (E1 − Vp)Ep

(1− E1)Em + E1Ep

]−1
(3.2)

In terms of hot forming low volume fraction composite materials, in this study, Young’s
modulus of the matrix metal is considered dependent on bulk temperature, while that of rein-
forcement particles is considered as constant.

3.2. Modelling punched dislocation density

The dislocation punching feature is determined by temperature variation during hot forming,
which can be divided into two parts. Contribution of the first part comes from heating the
composite from the room temperature to its forming temperature. The initial dislocation density
due to differential thermal expansion is considered to be zero. During heating and according to
Eq. (2.4), the rate of punched dislocation density can be expressed as a function of temperature
history. Considering the instantaneous heating rate, this becomes as defined in

ρ̇CTE =
D∆α∆ṪVp
b(1− Vp)d

(3.3)

where ∆Ṫ represents the rate of temperature change.

Contribution of the second part results from adiabatic heating during hot working (Bai et
al. 2013). Adiabatic heating is believed to result from plastic work during hot working (Khan et
al., 2004). The temperature increment can be calculated from experimental stress-strain curves
using

∆T =
η

cmρm

εp∫

0

σ(εp) dεp (3.4)

where η represents the fraction of heat dissipation caused by plastic deformation (Khan et al.,
2004), cm and ρm are specific heat and mass density of the matrix material, respectively, σ is the
instant flow stress and εp is the plastic strain. In this study, the variable related to temperature
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increase arising from plastic deformation is expressed in terms of a derivative in order to unify
the constitutive equations

Ṫε = η
σ

cmρm
|ε̇p| (3.5)

where Tε is temperature rise due to plastic straining. In ideal isothermal deformation conditions,
the instantaneous temperature T is equal to the initial temperature T0. However, when heat ge-
nerated due to large plastic deformation cannot be neglected, the instantaneous temperature
T equals (T0 +∆T ), where ∆T is the temperature rise regarded as a function of the deforma-
tion and deformation rate. According to Eq. (3.5), deformation induced temperature increase
can be determined through numerical integration based on the stress-strain relationships for a
fixed strain rate and stress state. Therefore, substituting Eq. (3.5) into Eq. (3.3), the rate of
accumulated dislocation due to thermal expansion mismatch can be rewritten as

ρ̇CTE = D
Vp
1− Vp

η
σ

cmρm
|ε̇p| (3.6)

3.3. Formulation of constitutive equations

Physically-based visco-plastic constitutive equations have been proposed for the modelling
of plastic deformation of many metals, especially in hot forming conditions. The significant
contribution of these models is to enable a variety of phenomena to be modelled, including
dislocation accumulation and annealing, dynamic recovery and recrystallization, based on the
specific deformation mechanisms. Each aspect of microstructural evolution can be treated as
a variable in the constitutive equations. These constitutive equations are also suitable for hot
working discontinuous particle reinforced MMCs. However, high strength reinforcement adds
new mechanisms and effects on the modulus and microstructural evolutions which also need to
be considered and modelled. As interactions between different microstructural phenomena exist,
it is impossible to express all the physical phenomena active during hot forming by using a single
equation. To thoroughly understand their evolution, this study uses a constitutive model based
on an advanced dislocation dominated mechanism (Lin and Dean 2005).

A set of unified visco-plastic constitutive equations is established to model the contribution
of particles on the modulus and strength, evolution of dislocation, temperature increase due to
adiabatic deformation, and rationalise their effects on the steady plastic flow. This developed
material model derives from the dislocation evolution during isothermal hot deformation. The
relationships between dislocation density and strain hardening and recovery are characterised in
this model. Compared to conventional metals, the dislocation density in this model is divided
into plastic deformation induced and thermal expansion induced types. For simplification, several
assumptions are used in this model, they are (1) dynamic recrystallization of the material during
the initial deformation process is not considered for low-volume fraction reinforcement and
relatively high strain rates; (2) thermal strain is not taken into account compared with the
great total strain; (3) effects of precipitation on dislocation density are not considered. The
set of unified viscoplastic constitutive equations for modelling hot deformation of MMCs with
low-volume fraction reinforcements is summarised as follows

ε̇p =
(σ −R− ke

K

)n1
Ṙ =
1

2
B

ρ̇√
ρ

(3.7)

and

ρ̇str = A(1− ρstr)|ε̇p| − Cρn2str
ρ̇ = ρ̇str + ρ̇CTE σ = Ec(ε− εp)

(3.8)
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The fundamental equations used are Eq. (3.7)1 to Eq. (3.8)3, given above. To make it clear,
general description of each equation representing a particular microstructure mechanism is in-
troduced. Details of the form of each equation are given in the literature (Lin and Dean 2005).
Equation (3.7)1 represents the traditional power-law of visco-plastic flow formulation (Mohamed
et al. 2012), ke represents the initial yield stress of composites and R represents hardening stress
due to dislocation evolution. Equation (3.7)2 represents the evolution of material hardening,
which is a function of the normalised dislocation density ρ defined by ρ = (ρ− ρi)/ρmax, where
ρi is the initial dislocation density and ρmax is the maximum (saturated) dislocation density.
Therefore, the range of ρ is between 0 and 1 during the whole process. Unlike hot forming of
metals, the dislocation density in this study is divided into two parts; dislocation density evolu-
tion of hot straining of the matrix material ρstr and punched dislocation density evolution due
to differential thermal expansion ρCTE as given in Eq. (3.6). Equation (3.8)1 represents the rate
of accumulation of dislocations induced by the plastic deformation, which takes into account de-
formation and recovery. Equation (3.8)2 represents the sum of dislocation density arising from
plastic deformation and punched dislocations, Eq. (3.6), due to the difference of thermal expan-
sion of the matrix and reinforcement. It should be noted that the difference in thermal expansion
arises from the temperature increase resulting from plastic deformation, which is different from
the applied heating at the initial stage. Equation (3.8)3 is Hook’s law for a simple uniaxial state.
In this equation set, ke, K, n1, B, A, C and Ec are temperature dependent variables defined in
Eqs. (3.9) and (3.10), while n2 is temperature independent material constant

ke = k1 exp
( Qk
RgT

)
(VpS + Vm)

√
1

d
+ k2

√
Vp∆T

(1− Vp)d
(3.9)

and

K = K0 exp
(−QK
RgT

)
n1 =

n11

ε̇n12p
exp

(Qn1
RgT

)

B = B0 exp
( QB
RgT

)
A = A0 exp

( QA
RgT

)

C = C0 exp
(−QC
RgT

)
Em = E0 exp

( QE
RgT

)
(3.10)

Equation (3.9) represents the initial yield strength of the MMC considering direct and indi-
rect strengthening of the reinforcement particles, Vp and Vm represent volume fractions of the
reinforcement and matrix respectively. ∆T is the temperature increment during rapid heating.
Equations (3.9) to (3.10) represent the Arrhenius equations of temperature dependent variables,
where Q describes the activation energy for each variable, and Rg is the universal gas constant.
All the material constants in Eqs. (3.9) to (3.10) are temperature independent. It should be
noted that Young’s modulus of MMC is a function of the matrix modulus and particle modulus,
which is modelled in the previous Section. Considering the thermal stability of high strength
reinforcements, only Young’s modulus of the matrix is temperature dependent, defined in Eq.
(3.10), while Young’s modulus of reinforcements is considered to be a constant.

4. Hot compression tests

4.1. Materials

Experiments have been undertaken using AA6061/B4C provided by Harbin Institute of Tech-
nology. The composite samples were produced with a 15% volume fraction reinforcement using
a pressure infiltration method. Single crystal B4C particles were used having an average particle
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size of 17.5 µm (Zhou et al. 2014). The bulk composite material was then extruded into circular
bars and then machined into standard cylindrical samples with length of 12mm and diameter
of 8mm. The selection of sample dimensions was chosen so as to avoid inelastic buckling prior
to plastic deformation. The matrix material was AA6061. The main chemical compositions of
B4C and AA6061 are given in Tables 1 and 2, respectively.

Table 1. Main chemical composition of B4C [%]

Element B C Fe Si Ca F

wt [%] 80.0 18.1 1.0 0.5 0.3 0.025

Table 2. Main chemical composition of AA6061 [%]

Element Fe Si Mn Cr Mg Zn Al

wt [%] 0.70 0.80 0.15 0.35 1.2 0.25 Remain

4.2. Experimental set-up and test programme

High temperature uniaxial compression tests were performed using the thermo-mechanical
simulator Gleeble 3800. Specimens were heated at a pre-determined heating rate by resistance
heating, and temperature was precisely controlled by feedback from a thermocouple welded to
the middle of the specimen. Graphite foil and high-temperature graphite paste were used at the
interfaces between the specimen and Gleeble anvils to reduce interfacial friction and obtain a
more uniform deformation. Strain was measured using a C-gauge which detected a change in
the specimen diameter. The experimental set-up is shown in Fig. 2.

Fig. 2. Experimental set-up for hot compression test (all dimensions are in mm)

Figure 3 shows the temperature profile of a specimen in the hot compression test. A two-stage
heating strategy was utilised to obtain a uniform temperature and to avoid overshoot. Initially,
the specimen was heated up at a rate of 5◦C/s to 50◦C below the specified target deformation
temperature. Then, it was further heated to the target temperature at a rate of 2.5◦C/s. After
soaking for 1 min, the specimen was uniaxially hot compressed at different strain rates. In this
study, the temperatures selected were 350◦C, 400◦C, 450◦C. The strain rates used were 0.01 s−1,
0.1 s−1 and 1 s−1.
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Fig. 3. Temperature profile of the hot compression test

5. Results and discussion

5.1. Determination of constitutive equations

The experimental results from hot compression tests were used to determine material con-
stants in the developed constitutive relationships. Firstly, according to Eqs. (3.2), (3.9) and
(3.10), Young’s modulus and the initial yield strength of the composite vary with the tempera-
ture from the applied heat, and are also significantly greater than those of the matrix. Figure 4
shows the similarity between the equation fitted and experimentally determined values. Good
agreement exists between the fitted curves and experimental results. Differences that exist are
believed to be due to the difficulty in determining accurate values from hot compression results,
considering the slopes of the modulus are very sharp. Table 3 gives the material properties of the
matrix alloy and reinforcement particles at room temperature. Tables 4 lists values of material
constants used for calculating the strength variables.

Fig. 4. Comparisons of numerical fitting (solid lines) and experimental results (solid symbols) of
strength variables, where (a) Young’s modulus and (b) initial yield strength

Table 3. Material properties of the matrix alloy and reinforcement

Vp Vm
d Ep η

cm ρm
[µm] [MPa] [J/(kgK)] [kg/m3]

0.15 0.85 17.5 362000 0.9 890 2700

Other material constants in the dominant equation set were determined using a combination
of Evolutionary Programming (EP) optimisation techniques (Li et al., 2002) as well as trial and
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Table 4. Determined constants for Young’s modulus and initial yield strength

E0 QE E1 k1 Qk k2

590 20140 0.67 0.0017 40950 0.075

error methodology. The explanation of the optimisation method and description of numerical
procedures for determining the material constants of constitutive equations are described by
Cao and Lin (2008). Table 5 shows the determined material constants of Eqs. (3.10)1-5.

Table 5. Determined constants for material constants

K0 B0 C0 A0 n11 n12

326.5 0.2774 114.9 0.144 0.04691 −0.4111
QK QB QC QA Qn1 n2

9634 21780 51760 18420 29760 1

5.2. Comparison of experimental results and the constitutive model

Figures 5 and 6 show comparisons between the Gleeble experimental results (symbols) and
the modelling results (solid lines). Three typical hot forming temperatures 350◦C, 400◦C and
450◦C and three different strain rates from 0.01 s−1 to 1 s−1 were chosen. As can be seen in
both figures, good fitting accuracy was obtained. Dynamic recrystallization at the beginning of
deformation which results in the strain softening is neglected in the current model for simplicity
of numerical fitting. Figure 5 shows that MMC stress level reduces with the increasing forming
temperature, and is lower than that at the room temperature (Chen et al., 2015). When the

Fig. 5. Comparison of stress-strain relationships from hot compression tests at different temperatures
and a strain rate of 0.1 s−1. Symbols represent experimental results and solid lines are computed

predictions from the model

composite was compressed at higher temperatures, such as 450◦C and lower strain rates, such as
0.01 s−1, the stress level exhibited a plateau. The absence of strain hardening is believed to be
beneficial for bulk forming, such as extrusion and forging, as the strain hardening would increase
the forming load significantly and may cause cracks of the forming dies. In addition, the extent
of strain hardening increased with the decreasing temperature at a fixed strain rate, considering
dislocation recovery was not significant and visco-plastic feature was not obvious. The diffusion
process was not sufficient at lower temperatures. Moreover, compared with forming at the room
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temperature, an increased strain limit without crack was observed representing a reasonable
ductility improvement, which enhanced the feasibility of hot forming MMCs. For temperature
400◦C, a clear strain rate effect was also observed in the hardening curves. With increasing strain
rate, the stress level increased, as shown in Fig. 6. In summary, higher temperatures and lower
strain rates are recommended for hot bulk forming the low volume MMC materials.

Fig. 6. Comparison of stress-strain relationships from hot compression tests at different strain rates and
temperature of 400◦C. Symbols represent experimental results and solid lines are computed predictions

from the model

6. Conclusions

It is concluded that hot forming processes can be used to shape MMCs with a low volume
fraction of reinforcements. Stress-strain relationships obtained from hot compression tests of
AA6061/15% B4C MMC show that strain hardening is only obvious at relatively low tempera-
tures, and the flow stress and the flow stress remains relatively constant at higher temperatures,
which is believed to be beneficial for bulk forming. The strain rate hardening is also significant at
high temperatures dominated by the visco-plastic mechanism. In addition, the first ever unified
physically-based visco-plastic material model has been developed for hot forming of low volume
fraction reinforcement MMCs. The evolution of dislocations has been modelled taking into ac-
count the effects of temperature history and plastic deformation. This material model, suitable
for finite element simulations, can be further extended to predict stress-strain relationships of
MMCs under different process conditions.
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Compression test is frequently used to define material behaviour. However, this test may be
depending on different effects, for example friction, specimen inertia or local stress triaxiality.
For this reason, a new design is proposed to analyse the previous effects and to try to
minimize it on quantities measured as macroscopic stress and strain. To have a comp-
lete understanding, numerical simulations have been performed using finite element method
(Abaqus/Standard and Abaqus/Explicit). It allows one to define the macroscopic behaviour
and to have an access to the local values not accessible during experiments for a better
understanding of the experimental measurements.
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1. Introduction

The shape and dimensions of the specimen used during experiments have an important effect
on experimental measurements in both static and dynamic loadings. In general, to define the
behaviour of a material σ(ε, ε̇, T ), different tests are frequently used: compression, tension, shear,
biaxial compression. In this paper, static and dynamic compression tests are considered. This
kind of experiments is used to define the behaviour of materials at low and high strain rates and
to verify the symmetry of the yield surface comparing to tension, but it induces some problems
as it will be discussed in details in this paper. One of the main problems is related to the friction
effect between the specimen and the plateau or the split Hopkinson pressure bars (SHPB). This
phenomenon is related to the quality of contact and state (lubricated or dry) and it is defined
using the friction coefficient value µ. This effect is crucial since it may induce an overstress state
as discussed in details in (Jankowiak et al., 2011). Some other quantities are also disturbing the
measurements under dynamic loading and using SHPB. These are local inertia of the specimen,
puncture of the bars (Safa and Gary, 2010; Małachowski et al., 2014), elastic wave dispersion
and shape of the contact zone projectile end – input bar. As observed in (Jankowiak et al., 2011),
the stress state is changing when the friction coefficient increases on the contact side. Therefore,
an uniaxial compression state cannot be assumed. In the dynamical state, as it was discussed in
some papers (Jankowiak et al., 2011; Iwamoto and Yokoyama, 2012; Kii et al., 2014), the ratio
length L – diameter D must be in a certain range of values to avoid some problems described
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previously. This ratio is defined using the parameter s = L/D. In this work, several values of s
have been used, see Fig. 1.

Fig. 1. Force versus displacement for quasi-static compression using standard specimen SPi

Deformation of the specimen in compression depends on the friction process, Fig. 1. The
results reported in this paper are for a constant diameter D = 4mm and different initial length L
to vary the ratio s. Therefore, the following configurations have been used: SP1 (s = 0.25) with
a length of 1mm and SP4 (s = 2.0) with a length of 8mm. The intermediate specimens SP2
and SP3 have, respectively, a length of 2mm and 4mm. It corresponds to a value of s equal
to 0.5 and 1.0. The results (force versus displacement curve) for a friction coefficient varying
from 0.0 to 0.2 are presented in Fig. 1. In general and following some recommendations, the
ratio s equal to 0.5 is frequently used during dynamic tests to avoid some of the problems
discussed previously. However, for this ratio, the friction effect is visible (comparing the curves
SP2-fric 0.0 and SP2-fric 0.2), see Fig. 1. In the previous picture, Fig. 1, it is observed that the
friction coefficient is acting strongly on the specimen having the shortest active length (SP1).
In this paper, modified specimens SPiM, Fig. 2, are used to measure during experiments the
intrinsic material behaviour. The SPiM results will be compared to the original ones to observe
if the friction effect may be reduced using a new design. To confirm it, some comparisons will be
reported in terms of the force-displacement curve changing the friction coefficient µ. The same
ratio s has been considered between SPi and SPiM.

Fig. 2. Modified specimen design SPiM for the compression test under quasi-static and
dynamic compression
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2. Geometric effect on the compression force measurement using SPiM specimen

The variation of the stress state defined by η has an effect on the measured force and, in the
same way, on the final macroscopic stress level σ estimated during experiments and simulations.
Another important parameter is related to the specimen shape ratio s which is inducing a
change of the stress triaxiality η, as it will be discussed in this paper. This variable is related
to the ratio of the hydrostatic stress p and to the Huber-Mises equivalent stress q. To reduce
this phenomenon, a new geometry design is proposed, Fig. 2. The specimens are named SPiM
with i = 1 to 4 corresponding, respectively, to an active part of 1mm, 2mm, 4mm and 8mm.
Based on it, the shape ratio s is calculated. It corresponds to the ratio of the initial length L
divided by the diameter of the active part of the specimen D. For the new geometry, the ratio
is respectively equal to 0.25, 0.5, 1.0 and 2.0. To analyze the geometric effect, the following
constitutive relation, Eq. (2.1), has been used in FE code. Therefore, just hardening has been
considered. The strain rate sensitivity as the temperature sensitivity is not taking into account

σ = A+BεnP (2.1)

Two material behaviours are assumed, see Table 1, allowing one to demonstrate that the
results are just related to geometry and not to material behaviour. Thus, this analysis and
geometry can be used with all materials assumed or studied.

Table 1. Constants used to define mild steel ES and aluminum AA6060 assuming Eq. (2.1)

Mild steel ES Aluminium AA6060
(Jankowiak et al., 2011) (Beusink, 2011)

Young modulus E 200GPa 70GPa

Yield stress A 154MPa 70MPa

Strain hardening B 464MPa 302MPa

Strain hardening n 0.37 0.46

The behaviour is depicted in Fig. 3 for a larger yield stress and hardening of mild steel.

Fig. 3. Comparison of true stress – true strain curve for two different materials

To analyse how the geometry may act on the material behaviour definition using different
geometries, mild steel has been considered in the first part of numerical simulations, see Table 1
and Fig. 3. The results for all geometries and two values of the friction coefficient µ are reported
in Fig. 4.
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Fig. 4. Force versus displacement for quasi-static compression using the modified specimen SPiM
for mild steel

Using the same material behaviour and the same diameter D, it is observed that the material
behaviour is depending on the active length of the specimen. On the contrary, the friction
coefficient is not acting as it was observed in (Jankowiak et al., 2011). Based on the previous
results, it is observed that the ratio s is responsible for different behaviours in terms of force-
-displacement relationship. To analyse the local distribution of the stress triaxiality with plastic
deformation, numerical simulations have been used. Thus, it is observed that the stress triaxiality
is equal to −0.34 for s = 2.0 (SP4M) which corresponds to the compression value equal to −1/3,
Fig. 5. The results are reported for each geometry in the following picture, Fig. 5.

Fig. 5. Average stress triaxiality versus plastic strain for all modified specimens SPiM (static and
dynamic loadings using numerical simulations)

It can be seen that η is varying from −0.58 to −0.65 for SP1M and from −0.42 to −0.47 for
SP2M. For SP3M, the value is not depending on the plastic strain level and is equal to −0.36.
To estimate the local inertia due to the mass added to both sides of the standard specimen,
Fig. 2, numerical simulations have been done at a high velocity V0 = 10m/s. As the strain
rate sensitivity of the material is not considered, Eq. (2.1), the difference in terms of the force
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may be due to the mass inertia only. Based on numerical simulations, it is observed that the
masses added do not affect the results and, in the same way, do not affect the macroscopic stress
(triaxiality) and strain level, Fig. 5. In the following part of the text, the case corresponding
to high velocity coupled with the inertial effect is defined as dynamic, and the second case
corresponding to low velocity is named static.
In the following curves, Fig. 6, two cases are reported considering the geometry SP1 and SP4

(standard specimens) for different friction coefficients. It is observed for the shortest specimen
SP1 that the friction coefficient induces a strong increase of the stress triaxiality η. In the
range of plastic deformation considered, the value is varying from 0.6 to 1.5. For SP4, the stress
triaxiliaty is more stable and the value is close to the compression state with η = −1/3.

Fig. 6. Average stress triaxiality for standard specimens (SP1 and SP4) for friction
coefficients 0.0 and 0.2

3. Material behaviour definition and analysis

For the standard shape specimen SPi, the behaviour of the material in static and in dynamic
conditions can be obtained using the friction correction as discussed in details in (Jankowiak et
al., 2011; Zhong et al., 2015). The friction coefficients µ changes the process of plastic deforma-
tion and the stress state. Finally, the compressive test with friction coefficient µ > 0 does not
predict uniaxial behaviour, and the stress triaxiality η decreases to −1/3. Using the modified
geometry design SPiM, friction correction is not required. However, the state of the stress does
not correspond to uniaxial compression.
For SPi geometry and in order to correct the friction coefficient effect, the model proposed

by Klepaczko-Malinowski may be used as described in (Jankowiak et al., 2011; Klepaczko and
Malinowski, 1977). In a simplified approach and considering that the inertia and the second
derivative of the strain rate effect may be neglected, the correction is the following, Eq. (3.1).
Therefore, just the geometry effect is taken into account

σmat = σmeas
(
1− µ

3s

)
= σmeasC (3.1)

where σmat is the stress in the material and σmeas is the stress measured in the compression
test. Using numerical results, the geometrical variable C may be defined for all cases considered
SPi. The value vary from 0.733 to 0.967 considering, respectively, SP1 to SP4, Table 2. In this
analysis the friction coefficient is assumed to be equal to 0.2.
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Table 2. Definition of the variable C for all cases considered SPi, Eq. (3.1)

s C

SP1 0.25 0.733

SP2 0.5 0.867

SP3 1 0.933

SP4 2 0.967

The method of correction is working correctly for a material without or with reduced plastic
strain hardening like pure copper in (Jankowiak et al., 2011). The numerical results (stress-strain
curve) are presented for SP4 (the longest) and SP1 (the shortest) in Fig. 7. For a material with
strain hardening, the gap between the input model and the method proposed by Klepaczko-
-Malinowski does not allow one to correctly define the intrinsic behaviour of the material for
strain levels ε > 15. For larger plastic deformation levels, the stress state is more complex due
to the friction effect and the previous method based on the friction correction is not enough.
However, it is observed that the friction effect may be neglected for specimen SP4, see Figs. 7
and 8b.

Fig. 7. True stress – true strain curve for the standard specimen

If the specimen length decreases the stress state is changing as reported, Fig. 6. For the
specimen SP1, and assuming that the friction coefficient is equal to zero, the numerical results
in terms of behaviour are in agreement with the constitutive relation used as an input, Fig. 7. If
the friction coefficient increases, µ > 0, a correction is necessary (Jankowiak et al., 2011). Using
numerical calculations, two quantities are defined, the Huber-Mises σMises equivalent stress and
the longitudinal stress σyy corresponding to the axial loading direction. It has to be noticed
that during experiments, the longitudinal stress is the one corresponding to the stress imposed
to the specimen. The value of σyy is obtained dividing the force by the cross section of the
specimen. Using these two quantities, the parameter α may be defined. It consists in dividing
the longitudinal stress by the equivalent stress as α = σyy/σMises . The value is equal to 1 for
uniaxial compression. In other cases, α is varying with the level of plastic deformation as observed
for the stress triaxiality, Fig. 8a. To demonstrate this effect, the results for SP4 (the longest)
and SP1 (the shortest) are presented in Fig. 8b. If the stress measured during experiments is
divided by the α parameter, the material behaviour obtained from numerical simulations is in
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agreement with the constitutive relation used. This method is working correctly also for material
with plastic strain hardening.

Fig. 8. (a) Influence of the friction coefficient on the measured force and α for model SP1; (b) true
stress – true strain curve for the standard specimen SPi with stress correction for mild steel ES

Fig. 9. True stress versus true strain curve for modified specimens under quasi-static loading
using mild steel

The specimen modified SPiM has been used to eliminate the friction effect on the stress-strain
curve. As demonstrated before, the friction effect was not observed using SPiM, Fig. 4. The true
stress-true strain curve for SP4M with and without friction give the same results in agreement
with the constitutive relation used, Eq. (2.1), see Fig. 9. However, the triaxiality influence the
measured stress as observed for the standard specimen. Analysing the current results, it is
visible that these new modified specimens SPiM are much better in describing the failure strain
and failure criterion of the materials. However, using these modified short specimens to predict
material behaviour, the difficulty is to define the equivalent effective length Leff , different to
that reported in Fig. 2 and Fig. 10. To estimate it, numerical simulations have been carried out.
The proposed method is presented in this part for the shortest modified specimen SP1M. The
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final results are reported in Fig. 9 for specimen SP1M. In this specific case, the final average
strain in the active part of the specimen is equal to 0.19. However, if the final strain is calculated
from displacements based on the active length of the neck part (1mm), the final strain level will
be equal to 0.551. However, using Leff = 2.86mm, corresponding to the ratio of the strain level
described previously, the final strain is equal to 0.19 as the average value in the active part of
the specimen. This procedure allows one to correct the strain during the compression test using
the modified specimen.

Fig. 10. Definition of the length and effective length used to calulate the strain level

The second step is to correct the stress level using the correction factor α = σyy/σMises . The
triaxiality is not strongly changing for this kind of specimen and it is the same for α. In this
case, the average value of α during compression is 1.22. To correct the stress measured during
experiments or computed by FE code (Małachowski et al., 2014; Dunand and Mohr, 2010), it is
necessary to divide the macroscopic stress measured or calculated by 1.22 to estimate the intrinsic
material behaviour. The same procedure should be done for other cases. The correction factors
for stress should be every time calculated using an inverse method coupling experiments with
numerical simulations. To demonstrate that the correction is directly related to the geometry
and not to the material tested, numerical simulations have been performed for two materials.
It is observed that the correction is related to the applied geometry and not to the material,
Fig. 11. The conclusion is the same for SP1M and SP4M. Moreover, it is observed, Fig. 11, that
the friction effect does not change the stress triaxiality using SP4M and is not dependent on the

Fig. 11. Comparison of compression results (stress triaxiality versus plastic strain); (a) SP1M
and (b) SP4M
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material used. Therefore, SP4M may be used to define the material behaviour with the stress
triaxiality state corresponding to compression.
Finally, the strain and stress are corrected using Eqs. (3.2)4 and (3.2)2, respectively.

εmat = κSPiM εmeas σmat = λSPiMσmeas (3.2)

where λSPiM and κSPiM are the geometric coefficients allowing one to define the intrinsic beha-
viour of the material σ(ε). The first coefficient is related to 1/α and the second one to L/Leff .
Depending on the geometry SPiM, to obtain the material behaviour, the following corrections
are necessary, Table 3.

Table 3. Geometric coefficients for material behaviour definition using SPiM coupled to
Eqs. (3.2)

Geometry design, length λSPiM κSPiM Leff

SP1M L = 1mm 0.82 0.35 2.86

SP2M L = 2mm 0.92 0.58 3.45

SP3M L = 4mm 0.98 0.78 5.13

SP4M L = 8mm 1 1 8

In addition to material behaviour characterization and for some materials with a reduced
ductility, the failure strain εf level may be estimated depending on the stress triaxiality, Eq. (3.3).
The presented results demonstrate that the use of the specimens with modified shape SPiM in
compression tests gives promising results and allows one to eliminate the friction effect, which
increases the measured stress as observed during experiments

εf = f(η) (3.3)

Fig. 12. Failure criterion definition – failure plastic strain as a function of the stress triaxiality η

This kind of approach was previously proposed in shear by Rittel et al. (2002). The specimen
was used to estimate, after some corrections, the material behaviour and the failure strain level
as well. The values of the failure strain level for the new specimens SPiM are reported Fig. 12.
The value of triaxiality η is varying from −0.7 to −0.36. A general example is shown in Fig. 12
and demonstrates how the stress triaxiality changes with plastic deformation mainly for SP1M
and SP2M. Using SP3M or SP4M, the value is relatively constant and close to the compression
state. An other advantage of having different values of η is the ability precisely define constants
of some failure criteria (Bao and Wierzbicki, 2004; Wierzbicki et al., 2005; Rusinek et al., 2007;
Dunand and Mohr, 2011), see for example the Johnson-Cook model, Fig. 12.
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Now, coupling the new design SPiM with the specimen proposed by Rittel et al. (2002),
the failure strain level εf may be defined for the stress triaxiality η varying between
−0.66 ¬ η ¬ −0.33 depending on the shear angle inclination. It is also possible to perform,
in an easy way, a tensile test to reach a value of η = 0.33.

4. Conclusions

From the numerical results, it can be seen that using the new design of the compression specimen
does not allow one to define the material behaviour without the friction effect only, but also
enables estimation of the failure strain level depending on the stress triaxiality. The tests may
be complementary to other tests such as tension, shear or biaxial compression (Frąś et al., 2014;
Field et al., 2001; Davies and Hunter, 1963; Baranowski et al., 2014).

Thus, comparing all results and basing on the systematic analysis, it is clear that the best
solution in terms of the material behaviour is to use the geometry modified SP4M, Fig. 2.

Moreover, it is demonstrated that the parameters calculated to estimate the material beha-
viour are not dependent on the material used but only on the geometry of SPiM.
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We consider a mathematical model which describes the dynamic evolution of a viscoelastic
body in frictional contact with an obstacle. The contact is modelled with normal damped
response and unilateral constraint for the velocity field, associated to a version of Coulomb’s
law of dry friction. Our aim is to present a detailed description of the numerical modelling
of the problem. To this end, we use a penalty method to approximate the constraint. Then,
we provide numerical simulations in the study of a two-dimensional example and compare
the penalty model with the original one.
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1. Introduction

Contact problems involving deformable bodies arise in many industrial processes as well as in
everyday life. For this reason, they have been widely studied in the recent years, with various con-
stitutive laws and boundary conditions, including the normal compliance condition. The studies
concern both the mechanical, the mathematical and numerical modelling of the corresponding
boundary value problems. References in the field include Oden and Martins (1985), Han et al.
(2001, 2016), Han and Sofonea (2002), Laursen (2002), Hlaváček et al. (1988), Barboteu et al.
(2015, 2016a,b), Barboteu and Danan (2016), among others. The so-called normal damped re-
sponse condition represents a version of the normal compliance condition, expressed in terms
of velocity. Such a condition seems to be appropriate when contact surfaces are lubricated, as
mentioned in (Barboteu and Danan, 2016; Barboteu et al., 2016b; Han et al., 2016; Shillor et
al., 2004).
In this current paper, we consider a mathematical model which describes dynamic frictional

contact between a body and a deformable foundation. We describe the material behavior with
the Kelvin-Voigt viscoelastic constitutive law. The frictional contact is modelled with a normal
damped response condition with unilateral constraint for the velocity field associated to a version
of Coulomb’s law of dry friction. These non standard contact conditions could model the contact
with the deformable foundation covered by a lubricant, say oil, as already mentionned.
The current work represents a continuation of (Barboteu et al., 2015, 2016a,b). Its aim is

to provide the numerical modelling of the dynamic frictional contact problem supported by
numerical simulations. We present a ful discretization of the problem and we describe details
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of the numerical algorithm we use. The main novelty of our work arises from the fact that
we study two problems: an original problem constructed by considering a combination of the
normal damped response law with unilateral constraint condition in velocity, and a penalty one
constructed with the normal damped response law without a constraint. In this paper, we provide
a reliable comparison between numerical solutions of the approximate frictional contact problem
and the original one. Finally, we present numerical simulations which validate our approximation
method and give information on the mechanical behaviour of the solution.

The paper is organized as follows. In Section 2, we present the original model and provide its
variational formulation. Then we introduce the penalty problem and its variational formulation.
In Section 3, we introduce a hybrid variational formulation of the two above mentioned pro-
blems. A fully discrete scheme is presented in Section 4, based on the finite element method to
approximate the spatial variable and the Euler scheme to discretize the time derivatives. Finally,
in Section 5, we present numerical simulations in the study of a two-dimensional test problem.

2. The model and its penalty version

We start by presenting the notation and the preliminary material we need in the rest of the
paper. Denote by Sd the space of second order symmetric tensors on Rd and by “·” and ‖ · ‖
the inner product and the Euclidean norms on the spaces Rd and Sd, respectively. Let Ω ⊂ Rd,
d = 1, 2, 3 be the domain occupied by a viscoelastic body in the reference configuration, with
a smooth boundary Γ = ∂Ω. We denote by ν the unit outer normal vector to Γ and assume
that Γ is decomposed into three measurable parts Γ1, Γ2, Γ3, such that meas(Γ1) > 0. Let [0, T ]
be the time interval of interest, with T > 0. We denote by x ∈ Ω and t ∈ [0, T ] the spatial
and the time variable, respectively, and, for simplicity, we do not indicate the dependence of
the functions on x and t. Moreover, a dot above a variable will represent the derivative with
respect to time. Finally, we denote by u the displacement field, by σ the stress tensor, and
ε(u) = (εij(u))

d
i,j=1 – the linearized strain field, i.e.

εij(u) =
1

2

(∂ui
∂xj
+
∂uj
∂xi

)

The body is assumed to be viscoelastic and, therefore, we use the constitutive law

σ = Aε(u̇) + Bε(u) in Ω × (0, T ) (2.1)

already used in (Duvaut and Lions, 1976), for instance. Here A and B are the fourth-order
viscosity and elastic tensors, respectively. Since the process is dynamic, the balance equation of
the stress field is given by

Divσ + f0 = ρü in Ω × (0, T ) (2.2)

Here, f0 is density of the body forces and ρ stands for density of the material, assu-
med to be constant for simplicity. Moreover, Div represent the divergence operator, i.e.
Div (σ) = (σij,j).

On Γ1, the body is clamped and, therefore,

u = 0 on Γ1 × (0, T ) (2.3)

Moreover, we assume that a surface force of density f2 acts on Γ2, i.e.

σν = f2 on Γ2 × (0, T ) (2.4)
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The part Γ3 of the boundary represents the potential contact surface and is assumed to be
given. There, the body can arrive in contact with a piston or a device, the so-called foundation.
Considering the case of an evolutive (say growing) contact surface leads to various mathematical
difficulties and, therefore, is left open. The boundary conditions on Γ3 are derived from the
following assumptions.

— The obstacle prevents motion of the body in such a way that the normal velocity is restricted
by an unilateral constraint, i.e.

u̇ν ¬ g (2.5)

where u̇ν = u̇ · ν denotes the normal component of u̇ on Γ and g > 0 represents a given bound.
Here, we assume the non homogeneous case and, therefore, g is a function which could depend
on the spatial variable x ∈ Γ3.
— When the body moves in the opposite direction of the obstacle then the reaction of the
obstacle vanishes. Therefore,

u̇ν < 0 =⇒ σν = 0 στ = 0 (2.6)

where σν and στ denote the normal and the tangential components of the stress on Γ , i.e.
σν = (σν) · ν and στ = σν − σνν.
— When the body moves towards the obstacle, the contact is described with the normal damped
response condition associated to Coulomb’s law of dry friction as far as the normal velocity does
not reach the bound g. Therefore,

0 ¬ u̇ν < g =⇒ − σν = p(u̇ν) ‖στ‖ ¬ µ|σν |

− στ = µ|σν |
u̇τ
‖u̇τ‖

if u̇τ 6= 0
(2.7)

Here, p represents a positive function such that p(r) = 0 for r ¬ 0 and µ denotes the coefficient
of friction. Details on the normal damped response contact condition associated to Coulomb’s
law of dry friction can be found in (Han and Sofonea, 2002; Shillor et al., 2004; Sofonea and
Matei, 2012), for instance.

— When the normal velocity reaches the bound g, then the normal stress is larger than p(g)
and, moreover, friction follows the Tresca law with the friction bound Fb. Therefore,

u̇ν = g =⇒ − σν ­ p(g) ‖στ‖ ¬ Fb

− στ = Fb
u̇τ
‖u̇τ‖

if u̇τ 6= 0
(2.8)

— To accommodate conditions (2.7) and (2.8), we assume the compatibility condition

Fb = µp(g) (2.9)

which guarantees continuity of the friction bound. Note that conditions (2.7) and (2.8) show a
natural transition from the Coulomb law (which is valid as far as 0 ¬ u̇ν < g) to the Tresca
friction law (which is valid when u̇ν = g).

A careful examination of conditions (2.5)-(2.9) reveals that they can be written, equivalently,
as follows

u̇ν ¬ g σν + p(u̇ν) ¬ 0 (u̇ν − g)(σν + p(u̇ν)) = 0

‖στ‖ ¬ µ|σν | − στ = µ|σν |
u̇τ
‖u̇τ‖

if u̇τ 6= 0
(2.10)



486 M. Barboteu et al.

Moreover, conditions (2.10) are equivalent to

− σν(t) ∈ p(u̇ν(t)) + ∂I(−∞,g](u̇ν(t)) on Γ3 × (0, T )
− στ (t) ∈ µp(u̇ν(t))∂‖u̇τ (t)‖ on Γ3 × (0, T )

(2.11)

respectively. Here ∂ represents the subdifferential operator in the sense of convex analysis and
IA denotes the indicator function of the set A ⊂ R. Subdifferential inclusions (2.11) will be
considered for the numerical modelling we introduce in Section 3.

Finally, we prescribe the initial displacement and the initial velocity, i.e.

u(0) = u0 u̇(0) = u1 in Ω (2.12)

where u0 and u1 are given functions defined on Ω.

We now gather relations (2.1)-(2.4), (2.10) and (2.12) to obtain the following formulation of
the dynamic frictional contact problem we consider in this paper.

Problem P . Find a displacement field u : Ω×(0, T )→ Rd and a stress field σ : Ω×(0, T )→ Sd

such that

σ = Aε(u̇) + Bε(u) in Ω × (0, T ) (2.13)

Divσ + f0 = ρü in Ω × (0, T ) (2.14)

u = 0 on Γ1 × (0, T ) (2.15)

σν = f2 on Γ2 × (0, T ) (2.16)

u̇ν ¬ g σν + p(u̇ν) ¬ 0 (u̇ν − g)(σν + p(u̇ν)) = 0 on Γ3 × (0, T ) (2.17)

‖στ‖ ¬ µp(u̇ν) − στ = µp(u̇ν)
u̇τ
‖u̇τ‖

if u̇τ 6= 0 on Γ3 × (0, T ) (2.18)

u(0) = u0 u̇(0) = u1 in Ω (2.19)

We now turn to the variational formulation of Problem P which is the starting point for the
numerical modelling based on the finite element discretization. To this end, we use the notaion
H = [L2(Ω)]d and we introduce the spaces

V = {v ∈ [H1(Ω)]d; v = 0 on Γ1}
Q = {τ = (τij)di,j=1 ∈ [L2(Ω)]d×d; τij = τji, i, j = 1, . . . , d}

The spaces H, V and Q are real Hilbert spaces endowed with the canonical inner products given
by

(θ,η)H =

∫

Ω

θ · η dx (u,v)V =

∫

Ω

ε(u) · ε(v) dx (σ, τ )Q =

∫

Ω

σ · τ dx

On the density of volume forces and surface tractions, we assume that

f0 ∈ C([0, T ];H) f2 ∈ C([0, T ]; [L2(Γ2)]d) (2.20)

and, using the Riesz representation theorem, we define the linear function f : [0, T ]→ V by the
equality

(f(t),w)V =

∫

Ω

f0(t) ·w dx+

∫

Γ2

f2(t) ·w dΓ ∀w ∈ V (2.21)
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Note that assumption (2.20) implies that f ∈ C([0, T ];V ). Here and below notation C([0, T ];X)
represents the space of continuous functions defined on [0, T ] with values to X.

Next, we denote by j : U × U → R the function given by

j(u,w) =

∫

Γ3

µp(uν)‖wτ‖ dΓ ∀u,w ∈ U (2.22)

where, U := {w ∈ V : wν ¬ g a.e. on Γ3} and wν = w · ν and wτ = w − wνν, for all w ∈ V .
Now, using standard arguments based on the Green formula, we obtain the following varia-

tional formulation of Problem P .

Problem PV . Find a displacement field u : [0, T ] → V such that u̇(t) ∈ U for all t ∈ [0, T ],
u(0) = u0, u̇(0) = u1 and the inequality below holds, for all t ∈ (0, T ):

(
ρü(t),w − u̇(t)

)

H
+
(
Aε(u̇(t)), ε(w)− ε(u̇(t))

)

Q

+
(
Bε(u(t)), ε(w)− ε(u̇(t))

)

Q
+
(
p(u̇ν(t)), wν − u̇ν(t)

)

L2(Γ3)
+ j

(
u̇(t),w

)

− j
(
u̇(t), u̇(t)

)
­
(
f(t),w − u̇(t)

)

V
∀w ∈ U

(2.23)

Our goal in what follows is to provide a penalty method in order to remove the unilateral
constraint u̇ν ¬ g in (2.17). The penalty form of the Problem P leads to a simpler numerical
model which provides a reliable approximation of the solution of the initial problem. Following
arguments similar to those in (Chouly and Hid, 2013; Kikuchi and Song, 1981), the penalty
contact problem we consider is the following.

Problem Pε. Find a displacement field uε : Ω× (0, T )→ Rd and a stress field σε : Ω× (0, T )→
Sd such that

σε = Aε(u̇ε) + Bε(uε) in Ω × (0, T ) (2.24)

Divσε + f0 = ρüε in Ω × (0, T ) (2.25)

uε = 0 on Γ1 × (0, T ) (2.26)

σεν = f2 on Γ2 × (0, T ) (2.27)

−σεν =
1

ε
(u̇εν − g)+ + p(u̇εν ) on Γ3 × (0, T ) (2.28)

‖σετ ‖ ¬ µp(u̇εν ) − σετ = µp(u̇εν )
u̇ετ
‖u̇ετ ‖

if u̇ετ 6= 0 on Γ3 × (0, T ) (2.29)

uε(0) = u0 u̇ε(0) = u1 in Ω (2.30)

Here and below, ε represents the penalty parameter assumed to be very small, while u̇εν and σεν
represent the normal components of the functions u̇ε and σε, respectively. Moreover, σετ repre-
sents the tangential part of the function σε. Note that Problem Pε is constructed by using similar
ingredients to those used in Problem P . The differences arise in the fact that here we replace
contact condition (2.17) with its penalty version (2.28) and, therefore, Problem Pε represents a
contact problem with the normal damped response, without a unilateral constraint.

Next, using the notation in equations (2.21) and (2.22) and a similar argument to that used
in the case of Problem P , we obtain the following variational formulation of Problem Pε.
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Problem P εV . Find a displacement field uε : [0, T ]→ V such that uε(0) = u0, u̇ε(0) = u1 and
the inequality below holds, for all t ∈ (0, T ):

(
ρüε(t),w − u̇ε(t)

)

H
+
(
Aε(u̇ε(t)), ε(w)− ε(u̇ε(t))

)

Q

+
(
Bε(uε(t)), ε(w)− ε(u̇ε(t))

)

Q
+
1

ε

(
(u̇εν (t)− g), wν − u̇εν (t)

)

L2(Γ3)

+
(
p(u̇εν (t)), wν − u̇εν (t)

)

L2(Γ3)
+ j

(
u̇ε(t),w

)

− j
(
u̇ε(t), u̇ε(t)

)
­
(
f(t),w − u̇ε(t)

)

V
∀w ∈ V

(2.31)

Note that Problem PV represents a second order evolutionary quasivariational inequality
with unilateral constraints. In contrast, Problem P εV represents a second order evolutionary
quasivariational inequality without unilateral constraints.

3. Hybrid variational formulation

We now turn to a hybrid variational formulation of the model which is more appropriate for
the numerical modelling. To this end, consider the trace spaces Xν = {vν |Γ3 : v ∈ V } and
Xτ = {vτ |Γ3 : v ∈ V } equipped with their usual norms. Denote by X

∗
ν and X

∗
τ the duals of the

spaces Xν and Xτ , respectively. Moreover, let 〈·, ·〉X∗ν×Xν and 〈·, ·〉X∗τ×Xτ be the corresponding
duality pairing mappings.

For the contact conditions, we introduce a function ϕν : Xν → (−∞,+∞] and an operator
L : Xν → X∗ν defined by

ϕν(uν) =

∫

Γ3

IR−(uν − g) da ∀uν ∈ Xν

〈Luν , wν〉X∗ν×Xν =
∫

Γ3

p(uν)wν da ∀uν , wν ∈ Xν

We note that for all t ∈ [0, T ], condition (2.11)1 leads to the subdifferential inclusion

−σν(t) ∈ ∂ϕν(u̇ν(t)) + Lu̇ν(t) in X∗ν (3.1)

where ∂ϕ denotes the subdifferential of ϕ.

For the friction law, we introduce a function ϕτ : Xτ → (−∞,+∞] defined by

ϕτ (uτ ) =

∫

Γ3

‖uτ‖ da ∀uτ ∈ Xτ

We also note that for all t ∈ [0, T ], condition (2.11)2 leads to the subdifferential inclusion

−στ (t) ∈ µp(u̇ν(t))∂ϕτ (u̇τ (t)) in X∗τ (3.2)

Inclusions (3.1) and (3.2) suggest introduction of the new unknowns λν and λτ , the so-
-called Lagrange multipliers, related to the contact and friction stresses on the contact surface,
respectively. In our formulation, λν corresponds to −σν and λτ coresponds to −στ . Thus,
proceeding in a standard way and using inclusions (3.1) and (3.2), we obtain the following
hybrid variational formulation of Problem P in terms of three unknown fields.
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Problem P̃V . Find a displacement field u : [0, T ] → V with u(0) = u0, u̇(0) = u1, a normal
stress λν : [0, T ] → X∗ν and a tangential stress λτ : [0, T ] → X∗τ such that the inequality below
holds, for all t ∈ (0, T ):

(
ρü(t),w

)

H
+
(
Aε(u̇(t)), ε(w)

)

Q
+
(
Bε(u(t)), ε(w)

)

Q
(3.3)

+
〈
λν(t), wν

〉

X∗ν×Xν
+
〈
λτ (t),wτ

〉

X∗τ×Xτ
=
(
f(t),w

)

V
∀w ∈ V

−λν(t) ∈ ∂ϕν(u̇ν(t)) + Lu̇ν(t) in X∗ν (3.4)

−λτ (t) ∈ µp(u̇ν(t))∂ϕτ (u̇τ (t)) in X∗τ (3.5)

The hybrid variational formulation of Problem P εV can be obtained in a similar way and is
as follows.

Problem P̃ εV . Find a displacement field uε : [0, T ] → V with uε(0) = u0, u̇ε(0) = u1 and a
tangential stress field λε : [0, T ]→ X∗τ such that the inequality below holds, for all t ∈ (0, T ):

(
ρüε(t),w

)

H
+
(
Aε(u̇ε(t)), ε(w)

)

Q
+
(
Bε(uε(t)), ε(w)

)

Q
(3.6)

+
〈1
ε
(u̇εν (t)− g)+ + p(u̇εν ), wν

〉

X∗ν×Xν
+
〈
λε(t),wτ

〉

X∗τ×Xτ
=
(
f(t),w

)

V
∀w ∈ V

λε(t) ∈ µp(u̇εν (t))∂ϕτ (u̇ετ (t)) in X∗τ (3.7)

Note that Problem P̃V is formulated in terms of three unknown fields. In contrast, due to
the penalty term, Problem P̃ εV is formulated in terms of two unknown fields.

4. Numerical approximation and solution algorithm

4.1. Numerical approximation

We now present a fully discrete approximation of Problems P̃V and P̃
ε
V . First, in order to

approximate the spatial variable, we assume that Ω is a polygonal domain and we consider a
regular triangulation of Ω, denoted by T h, compatible with the boundary decomposition Γ1,
Γ2 and Γ3. Here and below, h > 0 denotes the spatial discretization parameter. Consider the
discrete variational space

V h =
{
vh ∈ [C(Ω)]d; vh|Ttr ∈ [P1(Ttr)]

d ∀Ttr ∈ T h, vh = 0 at the nodes on Γ1
}

where P1(T ) represents the space of polynomials of the global degree less or equal to one in Ttr,
and let Uh = U ∩ V h. We note that Uh can be obtained as

Uh = {vh ∈ V h; vhν ¬ g a.e. on Γ3}

The constraint condition vhν ¬ g on the boundary Γ3 is satisfied at the nodes, i.e. v
h
ν ¬ gI ,

where gI is the linear interpolation of the function g. To discretize the time derivatives, we
use a uniform partition of [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , and let k be the
time step size, k = T/N . In what follows, we denote fn = f(tn), un = u(tn). For a sequence
uhk = {uhkn }Nn=0, we use the notation δnuhkn = (uhkn − uhkn−1)/k, n = 1, . . . , N , for the backward
divided differences, as well as the additional notation δuhk = {δnuhkn }Nn=0.
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We now consider the spaces Xhν = {vhν |Γ3 : v
h ∈ V h} and Xhτ = {vhτ |Γ3 : v

h ∈ V h} equipped
with their usual norm. We also consider the discrete space of piecewise constants Y hν ⊂ L2(Γ3)
and Y hτ ⊂ L2(Γ3)d related to the discretization of the normal and tangential stress, respectively.
Then, conditions (3.1) and (3.2) lead to the following discrete subdifferential inclusions at the
time tn

λhkνn ∈ ∂ϕνδuhkνn ) + Lδuhkνn in Y hν

λhkτn ∈ µp(δuhkνn )∂ϕτ (δuhkτn ) in Y hτ
(4.1)

More details about this discretization step can be found in (Khenous et al., 2006).

Let uh0 ∈ V h and uh1 ∈ V h be finite element approximations of u0 and u1, respectively. Using
the previous notation and the backward Euler finite difference δvn = (vn − vn−1)/k, the fully
discrete approximation of the Problem P̃V at the time tn is the following.

Problem P̃ hkV . Find a velocity field v
hk = {vhkn }Nn=0 ⊂ V h, a normal stress λhkνn = {λhkνn}Nn=0

⊂ Y hν and a tangential stress λhkτn = {λhkτn }Nn=0 ⊂ Y hτ such that, for all n = 1, . . . , N
(ρ
k
(vhkn − vhkn−1),wh

)

H
+
(
Aε(vhkn ), ε(wh)

)

Q
+
(
Bε(uhkn ), ε(wh)

)

Q
(4.2)

+

∫

Γ3

λhkνnw
hk
ν da+

∫

Γ3

λhkτn ·whkτ da =
(
fhkn ,wh

)

V
∀wh ∈ V h

λhkνn ∈ ∂ϕν(vhkνn ) + Lvhkνn in Y hν (4.3)

λhkτn ∈ µp(vhkνn )∂ϕτ (vhkτn ) in Y hτ (4.4)

Here, uhk0 = u
h
0 , v

hk
0 = u

h
1 and u

hk
n = u

hk
0 +

∑n
j=1 kv

hk
j .

In a similar way, the discrete version of the penalty Problem P̃ εV can be formulated as follows.

Problem P̃ hkV ε. Find a velocity field v
hk
ε = {vhkεn }Nn=0 ⊂ V h and a friction stress field

λhkε = {λhkεn}Nn=0 ⊂ Y hτ such that, for all n = 1, . . . , N
(ρ
k
(vhkεn − vhkε(n−1)),w

h
)

H
+
(
Aε(vhkεn ), ε(wh)

)

Q
+
(
Bε(uhkεn ), ε(vh)

)

Q

+
1

ε

∫

Γ3

(vhkενn − g)+w
h
ν da+

∫

Γ3

p(vhkενn)w
h
ν da (4.5)

+

∫

Γ3

λhkεn ·whkτ da =
(
fhkn ,wh

)

V
∀wh ∈ V h

λhkεn ∈ µp(vhkενn)∂ϕτ (v
hk
ετn
) in Y hτ (4.6)

Here, uhkε0 = u
h
0 , v

hk
ε0 = u

h
1 and u

hk
εn = u

hk
ε0 +

∑n
j=1 kv

hk
εj .

4.2. The solution algorithm

The algorithm we use to solve the discrete frictional contact Problems P̃ hkV and P̃
hk
V ε is based

on a combination of the augmented Lagrangian method for the unilateral conditions in velocity
and the penalty method for the normal damped response condition. For friction law (4.1)2,
we also use an augmented Lagrangian approach, see (Alart et al., 1991; Khenous et al., 2006;
Wriggers, 2002). To this end, we introduce the notation λ = λνν + λτ , where λν = λ · ν and
λτ = λ−λνν. We now introduce the expressions of the functions wh, uh and δuh by considering
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their values at the i-th node of T h and the basis functions αi of the space V h for i = 1, . . . , Nhtot,
i.e.

wh =

Nhtot∑

i=1

wiαi uh =

Nhtot∑

i=1

uiαi δuh =

Nhtot∑

i=1

δuiαi

Here and below, Nhtot represents the total number of nodes of T h, and NhΓ3 denotes the total
number of nodes of T h lying on Γ3.
The augmented Lagrangian approach shows us that the Problem P̃ hkV can be governed by

the system of nonlinear equations

R(δvn,vn,un,λn) = M̃(δvn) + Ã(vn) + G̃(un) + F(vn,λn) = 0 (4.7)

where the functions M̃, Ã, G̃ and F are defined below. Here, the vectors δvn ∈ Rd×N
h
tot,

vn ∈ Rd×N
h
tot, un ∈ Rd×N

h
tot and λn ∈ R

d×Nh
Γ3 represent the generalized velocity, the displace-

ment and the Lagrange multiplier vectors defined by

δvn = {δvin}
Nhtot
i=1 vn = {vin}

Nhtot
i=1 un = {uin}

Nhtot
i=1

λn = {λin}
Nh
Γ3
i=1 for all n = 1, . . . , N

where δvin, v
i
n and u

i
n denote values of the functions δv

hk
n , v

hk
n and u

hk
n at the i-th nodes of T h.

Moreover, λin represents the value of λ
hk
n at the i-th node of the discretized contact interface.

Next, the generalized acceleration term M̃(a) ∈ Rd×N
h
tot ×R

d×Nh
Γ3 , the generalized viscous term

Ã(v) ∈ Rd×N
h
tot×R

d×Nh
Γ3 and the generalized elastic term G̃(u) ∈ Rd×N

h
tot×R

d×Nh
Γ3 are defined

by M̃(a) = (M(a),0d×Nh
Γ3

), Ã(v) = (A(v),0d×Nh
Γ3

) and G̃(u) = (G(u),0d×Nh
Γ3

). Here 0d×Nh
Γ3

is the zero element of R
d×Nh

Γ3 ; also, M(a) ∈ Rd×N
h
tot, A(v) ∈ Rd×N

h
tot and G(u) ∈ Rd×N

h
tot

denote the acceleration term, the viscous term and the elastic term, respectively, given by

(M(a) ·w)
R
d×Nh

tot
= (ρah,wh)H ∀a,w ∈ Rd×N

h
tot, ∀ah,wh ∈ V h

(A(v) ·w)
R
d×Nh

tot
= (Aε(vh), ε(wh))Q ∀v,w ∈ Rd×N

h
tot , ∀vh,wh ∈ V h

(G(u) ·w)
R
d×Nh

tot
= (Bε(uh), ε(wh))Q − (fn,wh)V ∀u,w ∈ Rd×N

h
tot, ∀uh,wh ∈ V h

Above, a, v, u and w represent the generalized vectors of the components ai, vi, ui and wi,
for i = 1, . . . , Nhtot, respectively, and note that the volume and surface efforts are contained in
the term G(un). Finally, the frictional contact operator F(vn,λn) associated to the boundary
condition on the contact surface is given by

(
F(v,λ), (w,γ)

)

R
d×Nh

tot×R
d×Nh

Γ3

=

∫

Γ3

∇vPc([vhν ]g) ·wh da

+

∫

Γ3

∇v(lrν(vh,λh) + lrτ (vh,λh)) ·wh da+
∫

Γ3

∇λ(lrν(vh,λh) + lrτ (vh,λh)) · γh da

∀v,w ∈ Rd×N
h
tot , ∀λ,γ ∈ R

d×Nh
Γ3 , ∀vh,wh ∈ V h, ∀λh,γh ∈ Y hν × Y hτ

Here Pc : R → R is a derivable function such that ∇vPc = p on (−∞, g], [·]g : R → R is the
function defined by

[s]g =

{
s if s ¬ g
g if s > g
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and ∇x represents the gradient operator with respect the variable x. Also lrν and lrτ denote the
augmented Lagrangian functionals

lrν(v
h, λhν) = v

h
νλ
h
ν +

rν
2
(vhν − g)2 −

1

2rν
dist2{λν + rν(vhν − g),Rd−},

lrτ (v
h,λhτ ) = v

h
τ · λhτ +

rτ
2
|vhτ |2 −

1

2rτ
dist2{λhτ + rτvhτ , C[µp(vhν )]}

(4.8)

Here, rν and rτ are positive penalty coefficients, C[µp(v
h
ν )] represents the convex disk of

constant radius µp(vhν ) and dist{x,C} denotes the distance from x to the set C, i.e.,
dist{x,C} = infy∈C ||x− y||.
Note that, in the case of penalty contact condition (2.28), there is no need to use the Lagrange

method. Indeed, the penalty method can be used by considering λν = 0 in equation (4.8)1. Then,
augmented Lagrangian functional (4.8)1 takes a simpler expression

lrν(v
h, 0) =

rν
2
(vhν − g)2 −

1

2rν
dist2{rν(vhν − g),Rd−}

in which rν can be replaced by the penalty parameter ε. Thus, the frictional contact operator
F(v,λ) associated with frictional contact conditions (2.28) and (2.29) is given by

(
F(v,λ), (w,γ)

)

R
d×Nh

tot×R
d×Nh

Γ3

=

∫

Γ3

∇vPc([vhν ]g) ·wh da

+
1

ε

∫

Γ3

(vhν − g)+whν da+
∫

Γ3

∇vlrτ (vh,λh) ·wh da+
∫

Γ3

∇λlrτ (vh,λh) · γh da

∀v,w ∈ Rd×N
h
tot, ∀λ,γ ∈ R

d×Nh
Γ3 , ∀vh,wh ∈ V h, ∀λh,γh ∈ Y hν × Y hτ

The solution algorithm consists in a prediction-correction scheme based on a finite differences
method (the backward Euler difference method) and a linear iterations method (the Newton
method). The finite difference scheme we use is characterized by a first order time integration
scheme, both for the acceleration δvn and the velocity vn = δun. To solve nonlinear system (4.7),
at each time increment the variables (vn,λn) are treated simultaneously through the Newton
method. For this reason, we use in what follows the notation xn = (vn,λn). Inside the loop of
the increment of time indexed by n, the algorithm can be developed in three steps which are
the following.

For n = 0 until N , let u0, v0 and λ0 be given.

• The prediction step: This step provides the initial values u0n+1, v0n+1 and λ0n+1 by the
formulas

u0n+1 = un λ0n+1 = λn v0n+1 = 0 (4.9)

• The Newton linearization step: At the iteration i of the Newton method, we have

xi+1n+1 = x
i
n+1 −

(Cin+1
k
+Qin+1 + kK

i
n+1 +T

i
n+1

)−1
R
(vin+1 − vin

k
,vin+1,u

i
n+1,λ

i
n+1

)

where xi+1n+1 denotes the pair (v
i+1
n+1,λ

i+1
n+1); i and n represent respectively the Newton itera-

tion index and the time index, respectively; Cin+1 = DvM(δv
i
n+1) denotes the mass matrix,

Qin+1 = DvA(v
i
n+1) is the damping matrix, K

i
n+1 = DvG(u

i
n+1) represents the elastic matrix

and Tin+1 = Dv,λF(vin+1,λin+1) is the contact tangent matrix. Also, DvM, DvA, DvG and
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Dv,λF denote the differentials of the functions M, A, G and F according to the variables v
and λ. This leads us to solve the resulting linear system

(Cin+1
k
+Qin+1 + kK

i
n+1 +T

i
n+1

)
∆xi = −R

(vin+1 − vin
k

,vin+1,u
i
n+1,λ

i
n+1

)
(4.10)

where ∆x = (∆vi,∆λi) with ∆vi = vi+1n+1 − vin+1 and ∆λi = λi+1n+1 − λin+1.

• The correction step: Once system (4.10) is solved, we update xi+1n+1 and ui+1n+1 by

xi+1n+1 = x
i
n+1 +∆x

i ui+1n+1 = u
i
n+1 + k∆v

i

Note that formulation (4.7) has been implemented in the open-source finite element library
GetFEM++ (see http://getfem.org/).

5. Numerical simulations

To verify the performance and the accuracy of the numerical method described in the previous
Section, a number of numerical experiments have been performed on a well known test problem.
We describe in this Section the numerical results we obtained for Problems PV and PV ε in
dimension two. The physical setting is depicted in Fig. 1. There, the domain Ω = (0, 2)× (0, 1)

Fig. 1. Physical setting and finite element discretization for h = 1/33

is the cross section of a three-dimensional linearly viscoelastic body subjected to the action of
tractions in such a way that a plane stress hypothesis is assumed. On the part {0} × [0, 1], the
body is clamped and, therefore, the displacement field vanishes there; the horizontal component
of the displacement field vanishes on the part {2}× [0, 1]. Thus, Γ1 = ({0}× [0, 1])∪({2}× [0, 1]).
Vertical tractions act on the part Γ2 of the boundary. No body forces are assumed to act on
the viscoelastic body during the dynamic process. The body is in frictional contact with a rigid
obstacle on the part Γ3 = [0, 2] × {0} of the boundary. We recall that the contact follows the
normal damped response condition associated to Coulomb’s law of dry friction as far as the
normal velocity is less than the bound g and, when this bound is reached, it follows a unilateral
condition in velocity associated to the Tresca friction law.
The material response is governed by a viscoelastic linear constitutive law defined by the

elasticity tensor B and the viscosity tensor A given by

(Bτ )αβ =
Eν

1− κ2 (τ11 + τ22)δαβ +
E

1 + κ
ταβ

(Aτ )αβ = µ(τ11 + τ22)δαβ + ηταβ 1 ¬ α β ¬ 2

where E is Young’s modulus, κ is Poisson’s ratio of the material, µ, η are viscosity constants,
and δαβ denotes the Kronecker symbol.
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In computations, we have used the following data: T = 1 s, u0 = 0m, u̇0 = 0m/s,
ρ = 2000Kg/m3, E = 100GPa, ν = 0.2, µ1 = 0.25GPa, µ2 = 0.5GPa, f0 = (0, 0)GPa,
f2 = (0,−10t) GPa·m on Γ2, µ = 0.4, g = 0.05m/s, p(r) = cν(r)+, cν = 50GPa·s,
ε = 1/50000 GPa·s.

Fig. 2. Deformed configuration at the final time: the original contact problem (left) and the penalty
problem (right)

The deformed configuration of the body at the final time T = 1 s is represented in Fig. 2 (left),
which corresponds to the numerical solution of problem PV . Note that the vertical displacement
of the bottom side is quite large, and this is a consequence of the fact that we model the contact
with the normal damped response condition which, in contrast to the unilateral condition in
displacement, describes the contact with a deformable foundation and allows penetration. In
order to compare the deformed mesh related to Problem PV with that obtained for the numerical
solution of Problem P εV , we plotted in Fig. 2 (right) the deformed configuration for the numerical
solution of the penalty problem P εV . Then, in Figs. 3 and 4, we show the reactions and velocities
of the nodes of the contact surface for µ = 0.4. The zone AB is a sliding zone formed by 15 nodes
which are in a status of the normal damped response; there, the normal velocity is such that
0 < u̇ν < g and the tangential velocity does not vanishes, i.e., u̇τ 6= 0. In this zone, the friction
follows the Coulomb law. The zone BC is a sliding zone formed of 29 nodes which are in a status
of the unilateral condition in velocity; there, the normal velocity reaches the bound g. In this
zone, the friction follows the Tresca law with the friction bound Fb. Next, we have the stick
zone CD where the slip vanishes and ‖στ‖ < Fb.

Fig. 3. Frictional contact reactions on Γ3 at the final time: the original contact problem (left) and the
penalty problem (right)



Numerical modelling of a dynamic contact problem... 495

Fig. 4. Velocity on Γ3 at final time: the original contact problem (left) and the penalty problem (right)

According to the deformed configurations (Figs. 2-4), we observe that the numerical results
obtained for the solution of Problem PV are very well approximated by the solution of Pro-
blem PV ǫ. Next, we lead a parametric study according to the penalty coefficient ε. To this end,
in Fig. 5 we consider various values of ε, and we compare in the left graph the normal velocities
profiles on the contact boundary obtained for the solution of the original contact Problem PV
and the penalty Problem P εV . In the right graph of Fig. 5, we study the convergence on the
whole discrete domain Ωh of the velocity solution obtained for Problem P εV towards that obta-
ined for Problem PV . Here, we consider the numerical estimation of the difference ‖u̇hkε − u̇hk‖
at the time T = 1 s between the numerical solutions obtained for Problems PV and P

ε
V . The

results depicted in Fig. 5 illustrate that the solution of the penalty problem gives a reliable and
accurate approximation of the original problem, provided that the penalty parameter takes very
large values.

Fig. 5. Normal velocity for different values of the contact penalty parameter (left) and convergence of
the penalty method (right)
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Cyclic hardening and stress relaxation experiments of SUS316HTP were performed under
creep-fatigue loading with tensile strain holding at 700◦C. Experiments revealed that un-
der strain holding, the slow stress-relaxation stage satisfying Norton’s law with slight cyclic
hardening followed a rapid stress-relaxation stage that was noticeably affected by cyclic
hardening. This suggests that in the slow stress-relaxation stage, inelastic deformation me-
chanisms different from that of viscoplasticity occurred. Experiments were simulated using
a cyclic viscoplastic-creep model in which the inelastic strain-rate was decomposed into
viscoplastic and creep components that were affected differently by cyclic hardening. The
simulation accurately reproduced the experiments.

Keywords: creep-fatigue loading, cyclic hardening, stress relaxation, SUS316, constitutive
model

1. Introduction

Creep-fatigue tests with tensile and/or compressive strain holding at high temperatures have
been performed to investigate the effect of creep damage on the fatigue lives of materials. For
polycrystalline metals, creep damage under creep-fatigue loading is caused by grain boundary
cavitation that develops with the accumulation of creep strain under strain holding (e.g., Hales,
1980; Priest and Ellison, 1981; Nam, 2002), and has been macroscopically evaluated in terms of
the changes in stress and creep strain under strain holding (e.g., Inoue et al., 1989; Takahashi et
al., 2008; Yan et al., 2015). To numerically evaluate creep damage in structural components, it
is necessary to use a constitutive model that can accurately simulate the stress-strain behavior
under cyclic loading with strain holding.
The ductility exhaustion method proposed by Priest and Ellison (1981) and Hales (1983) is a

well-known method to evaluate creep damage under creep-fatigue loading (Ainsworth, 2006; Yan
et al., 2015). This method assumes that creep damage develops with the accumulation of creep
or inelastic strain under strain holding. Priest and Ellison (1981) proposed that creep damage
develops when the inelastic strain-rate under strain holding is smaller than the transition rate
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below which the diffusion creep and grain boundary sliding become important, whereas Hales
(1983) considered that the development of creep damage depends on the variations in inela-
stic strain in three periods under strain holding. Takahashi (1998) and Takahashi et al. (2008)
adopted the Priest and Ellison (1981) model and decomposed the inelastic strain-rate under
strain holding into viscoplastic and creep components occurring at high and low inelastic-strain
rates, respectively, and assumed that only the creep component contributes to the development
of creep damage. They thus accurately predicted the creep-fatigue lives of 316 stainless steel at
550◦C and 600◦C.

The decomposition of inelastic strain-rate is physically valid in the presence of dislocation
viscoplasticity at high inelastic strain-rates and diffusion creep at low inelastic strain-rates. In
the constitutive modeling of cyclic plasticity, however, the decomposition of inelastic strain into
viscoplastic and creep strains has been regarded as a conventional assumption. The work has
been focused on the development of unified constitutive models, in which both viscoplasticity and
creep are considered to be caused by dislocation movements (Miller, 1976; Krausz and Krausz,
1996; Chaboche, 2008). It is, therefore, worthwhile to investigate the stress relaxation behavior
in creep-fatigue tests to examine the appropriateness of the inelastic strain-rate decomposition.
This point of view was not taken by Nouailhas (1989) for using a unified model to simulate the
creep-fatigue tests of 316 stainless steel at 600◦C performed by Goodall et al. (1981).

In this study, the stress relaxation behavior under tensile strain holding was measured in
creep-fatigue tests of SUS316HTP at 700◦C to examine the decomposition of inelastic strain-
-rate. It was assumed that the increase in dislocation density, which occurs in grains and is
observed as cyclic hardening, affected viscoplasticity significantly more than diffusion creep and
grain boundary sliding. It was thus suggested that inelastic deformation mechanisms other than
viscoplasticity started to operate shortly after the onset of strain holding, and consequently that
the inelastic strain-rate consisted of viscoplastic and creep components under strain holding in
the creep-fatigue tests. The experiments were then simulated using a cyclic viscoplastic-creep
model in which cyclic hardening was assumed to have different effects on the viscoplastic and
creep strain-rates.

Throughout this paper, a superposed dot indicates differentiation with respect to time t, a
colon represents the inner product between tensors (e.g., σ : ε = σijεij and D : ε = Dijklεkl),
‖·‖ denotes the Euclidean norm of second rank tensors (e.g., ‖σ‖ = (σ : σ)1/2), and 〈·〉 indicates
the Macaulay brackets (i.e., 〈x〉 = x if x > 0 and 〈x〉 = 0 if x ¬ 0).

2. Experiments

2.1. Material tested and cyclic loading conditions

Uniaxial creep-fatigue tests with tensile strain holding were performed at 700◦C using
an electric-hydraulic servo-type material testing machine MTS810. The material tested was
SUS316HTP (a 316 stainless steel), which had the chemical composition and mechanical proper-
ties at room temperature given in Tables 1 and 2. Solid bar specimens with the shape illustrated
in Fig. 1 were used. The tests performed are listed in Table 3. Hereafter, ∆ε, ε̇, and th indicate
the strain range, strain-rate, and strain hold time, respectively, in the creep-fatigue tests.

Table 1. Chemical composition of SUS316HTP by mass percent

C Si Mn P S Ni Cr Mo

0.07 0.28 1.75 0.27 0.0 11.2 16.6 2.12
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Table 2. Mechanical properties at room temperature

0.2% proof stress Tensile strength Tensile rupture strain
[MPa] [MPa] [%]

267 553 68

Fig. 1. Shape of the experimental specimens; dimensions in mm

Table 3. Tests performed

Strain rate Strain range Tensile strain hold time
[1/s] [–] [min]

10−3 0.010 0, 10, 60

10−3 0.007 0, 10, 60

10−3 0.004 0

10−4 0.010 0

2.2. Effect of cyclic hardening on stress relaxation

The effect of cyclic hardening on the stress relaxation behavior under strain holding was
investigated using the experimental data obtained in the creep-fatigue tests with th = 60min.
Under stain holding, we have

ε̇ = ε̇e + ε̇in = 0 (2.1)

where ε̇e and ε̇in are the elastic and inelastic parts of ε̇, respectively. Assuming isothermal
Hooke’s law for ε̇e in Eq. (2.1) gives

ε̇in = − σ̇
E

(2.2)

Here, σ and E indicate the uniaxial tensile stress and Young’s modulus, respectively. Using a
difference approximation for σ̇ in the above equation, ε̇in at time t is represented as

ε̇in(t) = −σ(ti+1)− σ(ti)
(ti+1 − ti)E

(2.3)

where ti and ti+1 are times slightly before and after t, respectively.
Applying Eq. (2.3) to the experimental data at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.007

and 0.01 provided the relationships between log σ(t) and log ε̇in(t) under strain holding (Figs. 2a
and 2b). Stress increased with the increasing number of cycles N , especially in the stage just after
the onset of strain holding. This is the phenomenon known as cyclic hardening. The relationship
became linear to satisfy Norton’s law shortly after the onset of tensile strain holding. Hereafter,
the stage of stress relaxation satisfying Norton’s law is referred to as the Norton stage, and
is distinguished from the transient stage in which stress rapidly relaxes just after the onset of
strain holding. Figure 2 shows that the Norton stage had much less cyclic hardening than the
transient stage.
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Fig. 2. Relationship between ε̇in and σ under tensile strain holding in the creep-fatigue tests at
ε̇ = 10−3 s−1 with th = 60min at: (a) ∆ε = 0.01 and (b) ∆ε = 0.007

To discuss the effect of cyclic hardening on the stress relaxation in more detail, the tensile
peak stress σ+peak and a representative stress in the Norton stage, σ10E−7, are plotted against N
in Fig. 3. Here, σ10E−7 denotes the stress at which ε̇

in became equal to 10−7 s−1 under strain
holding. As seen in the figure, σ10E−7 increased slightly with N compared to σ+peak , which
increased noticeably from N = 1 to N ≈ 20. This confirms that the Norton stage had much less
cyclic hardening than the transient stage. It is physically valid to assume that cyclic hardening is
primarily caused by an increase in dislocation density, which occurs in grains and is responsible
for viscoplasticity. It is thus suggested that the Norton stage is rate-controlled by inelastic
deformation mechanisms such as diffusion creep and grain boundary sliding, which are different
from viscoplasticity. Therefore, to simulate the creep-fatigue tests performed in this study, the
inelastic strain-rate under strain holding should be decomposed into a viscoplastic component
responsible for the transient stage and a creep component responsible for the Norton stage.

Fig. 3. Variations in σ+peak and σ10E−7 with N and ∆ε in the creep-fatigue tests at ε̇ = 10
−3 s−1

with th = 60min

3. Constitutive model

Because the inelastic-strain rate under strain holding is decomposed into viscoplastic and cre-
ep components (Section 2.2), it is assumed that the strain-rate ε̇ is decomposed into an ela-
stic component ε̇e obeying Hooke’s law, a viscoplastic component ε̇p associated with combined



Effect of cyclic hardening on stress relaxation in SUS316HTP... 501

isotropic-kinematic hardening, and a creep component ε̇c satisfying Norton’s law1

ε̇ = ε̇e + ε̇p + ε̇c σ = De : εe (3.1)

and

ε̇p =
3

2
ε̇p0

[ yeq
(1 + θp)σp0

]m s− a
yeq

ε̇c =
3

2
ε̇c0

[ σeq
(1 + θc)σc0

]n s
σeq

(3.2)

where σ is the stress, De is the isotropic elastic stiffness, ε̇p0, σ
p
0 , and m are viscoplastic parame-

ters, s is the deviatoric stress, a is the deviatoric back stress, ε̇c0, σ
c
0, and n are creep parameters,

θp and θc are variables representing the effects of cyclic hardening on ε̇p and ε̇c, respectively,
and yeq and σeq are defined as

yeq =

√
3

2
‖s− a‖ σeq =

√
3

2
‖s‖ (3.3)

It is further assumed that the back stress can be decomposed into M parts (Chaboche et al.,
1979; Chaboche, 2008)2, and that cyclic hardening equally affects the drag and back stresses
(Ohno et al., 1998, 2017a)3. In addition, it is assumed that the evolution of each part of the
back stress is represented by the Ohno-Wang model (Ohno and Wang, 1993). We thus use the
following equations for a

a = (1 + θp)ã ã =
M∑

i=1

h(i)b(i)

ḃ(i) =
2

3
ε̇p − ζ(i)(ζ(i)b(i)eq )k

(i)
〈
ε̇p :
b(i)

b
(i)
eq

〉
b(i)

(3.4)

where ã is the deviatoric back stress free of the effect of cyclic hardening, b(i) is the i-th non-
-dimensional back stress related to ã, h(i) is the i-th incipient kinematic hardening modulus,

ζ(i) and k(i) are parameters of the back stress evolution, and b
(i)
eq is defined as

b(i)eq =

√
3

2
‖b(i)‖ (3.5)

Austenitic stainless steels exhibit a marked dependence of cyclic hardening on the strain range
(e.g., Chaboche et al., 1979; Ohno, 1982; Kang et al., 2003). Hence, we assume the following
equation for θp in Eqs. (3.2)1 and (3.4)1

θp = φ(∆εp)κ (3.6)

where φ(∆εp) is the material function representing the dependence of cyclic hardening on the
viscoplastic strain range ∆εp, and κ is the cyclic hardening parameter, which evolves as

κ̇ = L(κ0 − κ)ṗ −Rκω (3.7)

Here, L and κ0 are strain hardening parameters, R and ω are thermal recovery parameters, and
ṗ denotes the accumulating rate of viscoplastic strain

ṗ =

√
2

3
‖ε̇p‖ (3.8)

1Eqs. (3.1)-(3.3) based on the decomposition of the inelastic strain-rate into viscoplastic and creep
components were assumed for solders in the absence of cyclic hardening (Kobayashi et al., 2003).
2The multiple back stresses can be transformed to the multiple surfaces proposed by Mróz (1967), as

shown by Ohno and Wang (1991).
3Trampczynski (1988) experimentally showed the effect of cyclic hardening on the back stress using

the technique of successive unloading.
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Equation (3.7) does not represent the cyclic softening following cyclic hardening that was ob-
served in the creep-fatigue tests (Fig. 3). However, this limitation is allowed for the purpose of
simulating the cyclic hardening and stress relaxation behavior discussed in Section 2.2.

The creep strain-rate ε̇c may be affected by cyclic hardening because grain boundary sliding
can be accommodated with dislocation viscoplasticity as demonstrated by Crossman and Ashby
(1975). This effect is represented by θc in Eq. (3.2)2. We assume

θc = cθp (3.9)

where c is a parameter representing the effect of cyclic hardening on ε̇c.

The constitutive model described in this Section needs ∆εp to be evaluated during computa-
tion. We can use the resetting scheme of a viscoplastic strain surface to correctly evaluate ∆εp

(Ohno et al., 2017b). This plastic-strain-range (PSR) surface has the same expression as the
memory surface of Chaboche et al. (1979), and follows the same evolution rule as that of Ohno
(1982). In the resetting scheme, however, the PSR surface is reset to a point and re-evolves
every cycle under cyclic loading. The resetting thus provides a definite value for the evolution
parameter η of the PSR surface irrespective of the amount of cyclic hardening, pre-straining,
and ratcheting. In this study, η is set to 0.4, as verified by Ohno et al. (2017b).

4. Determination of material parameters

Table 4 gives the material parameters used in this study, which were determined using the follo-
wing procedure. In the table, E and ν denote Young’s modulus and Poisson’s ratio, respectively.

Table 4. Material parameters with stress in MPa, strain in mm/mm, and time in s

Elastic E = 1.44 · 105, ν = 0.30
Viscoplastic ε̇p0 = 10

−3, σp0 = 7.53 · 101, m = 20.0
Creep ε̇c0 = 10

−3, σc0 = 2.72 · 102, n = 10.9

Kinematic
hardening

h(1) = 1.63 · 105, h(2) = 3.81 · 104, h(3) = 9.27 · 103,
h(4) = 1.59 · 103, h(5) = 7.24 · 102
ζ(1) = 6.67 · 103, ζ(2) = 2.00 · 103, ζ(3) = 6.67 · 102,
ζ(4) = 2.50 · 102, ζ(5) = 1.25 · 102
k(i) = 3.0, (i = 1, 2, . . . , 5)

Cyclic κ0 = 0.726, L = 13.4, R = 0.411, ω = 13.6, c = 0.32
hardening λ = 4.00 · 102, ∆εp0 = 6.61 · 10−3
PSR surface evolution η = 0.40

1. The initial tensile curve at ε̇ = 10−3 s−1 was fitted, as shown in Fig. 4. This fitting was
made using in-house developed Excel software assuming that cyclic hardening and creep
strain-rate were negligible under initial tensile loading. The initial tensile curve was on-line
fitted by numerically integrating the constitutive equations in the Excel software. Among
the parameters, ε̇p0 was selected to be ε̇

p
0 = 10

−3 s−1, and k(i), responsible for ratcheting,
was set to 3.0 (Ohno et al., 2016a). The viscoplasticity exponentm had almost no influence
on ε̇p at ε̇ = 10−3 s−1 because we selected ε̇p0 = 10

−3 s−1 in Eq. (3.2)1. Thus, σ
p
0, M , h

(i),
and ζ(i) were determined.

2. Variations in σ+peak with N in the fatigue tests at ε̇ = 10
−3 s−1 with ∆ε = 0.01, 0.007

and 0.004 were used to determine L, κ0, and φ(∆ε
p). It is shown that the constitutive
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Fig. 4. Tensile stress-strain relationship at ε̇ = 10−3 s−1

model gives the following relationships to σ+peak in the absence of thermal recovery of
cyclic hardening (Appendix A)4

σ+peak − σini+peak
σsat+peak − σini+peak

= 1− exp(−Lp)
σsat+peak − σini+peak

σini+peak
= φ(∆εp)κ0 (4.1)

where σini+peak and σ
sat
+peak indicate the initial and saturated values of σ+peak . Equations (4.1)

were used to determine L, κ0, and φ(∆ε
p) (Figs. 5a and 5b). The following form of φ(∆εp)

was found appropriate in the present study

φ(∆εp) =
1− exp(−λ∆εp)
1− exp(−λ∆εp0)

(4.2)

where λ is a fitting parameter, and ∆εp0 is selected to be equal to the saturated viscoplastic
strain range in the fatigue test at ε̇ = 10−3 s−1 and ∆ε = 0.01.

Fig. 5. (a) Change in σ+peak with the accumulated viscoplastic strain p and (b) dependence of saturated
σ+peak on the viscoplastic strain range ∆ε

p in the fatigue tests at ε̇ = 10−3 s−1

3. The thermal recovery parameters R and ω in Eq. (3.7) were determined to represent the
effect of strain hold time th on σ+peak at N ≈ 20 in the creep-fatigue tests at ε̇ = 10−3 s−1
with th = 10min and 60min at ∆ε = 0.01 (Appendix B).

4Goodall et al. (1981) first showed Eq. (4.1)1 for fitting the tensile peak stress data of 316 stainless
steel at 600◦C.
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4. The Norton-stage data under strain holding at N = 1 and 20 in the creep-fatigue test at
ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01 were fitted, as shown by the solid and dashed
lines in Fig. 2a. The fitting at N = 1 was used to determine σc0 and n in Eq. (3.2)2 by
selecting ε̇c0 = 10

−3 s−1 with negligible cyclic hardening, θc ≃ 0, at N = 1. The fitting at
N = 20 was then used to estimate c in Eq. (3.9) to reproduce the small increase in σ10E−7
depicted in Fig. 3 (Appendix C)

c ≃ σN=2010E−7/σ
ini
10E−7 − 1

σN=20+peak/σ
ini
+peak − 1

(4.3)

where σN=2010E−7 and σ
N=20
+peak denote the values of σ10E−7 and σ+peak at N = 20, respectively.

5. The saturated hysteresis loops in the fatigue tests at ε̇ = 10−3 s−1 and 10−4 s−1 at
∆ε = 0.01 were fitted to determine the viscoplasticity exponent m (Fig. 6).

Fig. 6. Saturated stress-strain hysteresis loops in the fatigue tests at ε̇ = 10−3 s−1 and 10−4 s−1

at ∆ε = 0.01

5. Comparison of simulated and experimental results

The creep-fatigue tests were simulated using the constitutive model described in Section 3 with
the material parameters given in Table 4. The constitutive model was implemented in Abaqus
using a user subroutine UMAT by extending the UMAT program developed by Ohno et al.
(2016b, 2017b). From here on, t∗ denotes the time elapsed after the onset of strain holding,
and σrelax indicates the stress attained at the end of stress relaxation under strain holding. It
is restated that the cyclic softening following cyclic hardening is disregarded in the constitutive
model. This limitation is allowed in simulating the transient and Norton stages affected diffe-
rently by cyclic hardening. Accordingly, this Section compares the simulated and experimental
results with emphasis on the stress relaxation behavior under strain holding at cycles where
cyclic softening was not significant.

The tensile peak stress variations and stress relaxation curves observed in the creep-fatigue
tests at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.007 and 0.01 were simulated with good
accuracy, as shown in Figs. 7 and 8. The variations in σrelax with N in the two tests were also
simulated well, though σrelax was slightly inaccurate in the case of ∆ε = 0.007 (Fig. 7). The stress
relaxation became more significant as cyclic hardening developed in both the experimental and
simulated results. Ignoring ε̇c in the constitutive model did not affect the transient stage under
strain holding, but resulted in considerably under-predicting the stress relaxation, as shown in
Figs. 9a and 9b in the case of ∆ε = 0.01 with th = 60min. Hence, accurate simulation of the
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stress relaxation shown in Figs. 7 and 8 was owing to the dominance of ε̇p and ε̇c in the transient
and Norton stages, respectively. Therefore, the addition of ε̇c to ε̇p and the Norton type of creep
equation expressed as Eq. (3.2)2 for ε̇

c enabled accurate simulation of the stress relaxation under
strain holding.

Fig. 7. Variations in σ+peak and σrelax with N and ∆ε under creep-fatigue loading at ε̇ = 10
−3 s−1 with

th = 60min

Fig. 8. Stress relaxation under creep-fatigue loading at ε̇ = 10−3 s−1 with th = 60min at: (a) ∆ε = 0.01
and (b) ∆ε = 0.007

Fig. 9. Effect of the creep strain-rate on (a) variations in σ+peak and σrelax with N and (b) stress
relaxation at N = 20 under creep-fatigue loading at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01
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The effect of cyclic hardening on ε̇c was taken into account through θc in Eq. (3.2)2 in
the constitutive model, and θc was assumed to be proportional to θp, θc = cθp, in Eq. (3.9).
Figure 10 demonstrates the effect of c on the stress relaxation in the simulation of the creep-
-fatigue test at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01. As shown in Fig. 10b, the stress
relaxation at N = 20 was slightly over-predicted if c = 0, whereas it was noticeably under-
-predicted if c = 1. If c = 0 cyclic hardening had no effect on ε̇c through θc, and if c = 1
cyclic hardening had the same effect on ε̇c and ε̇p. Selecting c = 0.32 (i.e., θc ≈ θp/3) was
found to be appropriate for simulating the stress relaxation. It was thus shown that ε̇c was
much less affected by cyclic hardening than ε̇p, leading to suggestion that inelastic deformation
mechanisms different from viscoplasticity started to operate shortly after the onset of strain
holding, as discussed in Section 2.

Fig. 10. Effect of the cyclic hardening parameter c on (a) variations in σ+peak and σrelax with N and
(b) stress relaxation at N = 20 under creep-fatigue loading at ε̇ = 10−3 s−1 with th = 60min at

∆ε = 0.01

Figure 11 illustrates the effects of th on σ+peak and σrelax measured in the creep-fatigue tests
at ε̇ = 10−3 s−1 with th = 10min and 60min at ∆ε = 0.01. In Fig. 11a, σ+peak for th = 0 is shown
for reference. In the two tests with th = 10 and 60min, the effect of th on σ+peak appeared slightly
after the near-saturation of cyclic hardening, whereas the effect on σrelax became rather large
with increasing N before the near-saturation of cyclic hardening. These experimental features
were well reproduced by the constitutive model. The creep-fatigue tests at ∆ε = 0.007 with
th = 10 and 60min were also simulated accurately, though not shown here to save the space.

Fig. 11. Effect of the strain hold time th on (a) variations in σ+peak and σrelax with N and (b) stress
relaxation at N = 1 and 20 under creep-fatigue loading at ε̇ = 10−3 s−1 at ∆ε = 0.01
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The slight effect of th on σ+peak described above was successfully simulated because of the
thermal recovery of cyclic hardening represented by the second term on the right-hand side of
Eq. (3.7). Here, it is noted that the thermal recovery exponent ω in Eq. (3.7) is large (Table 4);
as a result, the thermal recovery of cyclic hardening occurred non-linearly to yield the slight
effect of th on σ+peak despite the factor of six difference in th in the two tests with th = 10 and
60min. However, the comparatively large effect of th on σrelax was well simulated owing to ε̇

c

expressed as Eq. (3.2)2, as depicted in Fig. 11b. Because σrelax denotes the stress attained at the
end of stress relaxation, it is seen from Fig. 11b that the difference in σrelax in the two tests was
caused by the stress relaxation during 10 ¬ t∗ ¬ 60min in the test with th = 60min; the stress
relaxation from t∗ = 10min to t∗ = 60min was about 10MPa and 25MPa at N = 1 and 20,
respectively. The stress relaxation during 10 ¬ t∗ ¬ 60min was in the Norton stage. Therefore,
the difference in σrelax in the two tests was well simulated because of the Norton type of creep
equation expressed as Eq. (3.2)2 for ε̇

c.

The stress relaxation under strain holding became larger with the development of cyclic
hardening or with the increase in the strain hold time, as shown in this Section. Goodall et al.
(1981) observed this feature in creep-fatigue tests of 316 stainless steel at 600◦C, and Nouailhas
(1989) simulated the tests using a unified model of cyclic viscoplasticity. However, Goodall et al.
(1981) and Nouailhas (1989) did not notice the transient and Norton stages in stress relaxation,
which were studied in this work; moreover, Nouailhas (1989) did not show stress relaxation
curves under strain holding.

6. Concluding remarks

In this work, the cyclic hardening and stress relaxation behavior of SUS316HTP was experi-
mentally and numerically studied under cyclic loading with tensile strain holding at 700◦C.
Creep-fatigue tests were performed to show that the slow stress-relaxation stage satisfying Nor-
ton’s law followed the transient stress-relaxation stage under strain holding. The Norton stage
was much less affected by cyclic hardening than the transient stage. Since the transient stage
was rate-controlled by viscoplasticity in the presence of the increase in dislocation density in
grains to cause cyclic hardening, it was suggested that inelastic deformation mechanisms, such
as diffusion creep and grain boundary sliding, operated in the Norton stage.

A cyclic viscoplastic-creep model was developed based on the experimental results described
above. In this model, the inelastic strain-rate ε̇in was decomposed into viscoplastic and creep
strain-rates, which were dominant in the transient and Norton stages in stress relaxation, re-
spectively. The viscoplastic strain-rate ε̇p was expressed by incorporating the noticeable effect
of cyclic hardening on the drag and back stresses, while the creep strain-rate ε̇c was ruled by
Norton’s law and was assumed to be weakly affected by cyclic hardening. The material parame-
ters in the constitutive model were determined to verify the decomposition of ε̇in into ε̇p and ε̇c,
which were affected differently by cyclic hardening.

Finally, the cyclic viscoplastic-creep model was used to simulate the creep-fatigue tests per-
formed in the present study. The constitutive model successfully simulated the stress relaxation
behavior in the presence of cyclic hardening, and the stress relaxation in the simulation became
more significant as cyclic hardening developed, as observed in the creep-fatigue tests. This was
owing to the dominance of ε̇p and ε̇c in the transient and Norton stages, respectively, resulting
in the transient stage being much more affected by cyclic hardening than the Norton stage.
The stress-relaxation curves were also accurately simulated, and the effect of th on the stress
relaxation was attributed to ε̇c in the Norton stage.
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Appendix A. Change in tensile peak stress

Let us consider rapid, uniaxial cyclic loading with th = 0 to ignore ε̇
c. On the tension side, Eqs.

(3.2)1, (3.4)1 and (3.6) give the following equation in the viscoplastic region, where ε̇
p ≃ ε̇

σ ≃ (1 + φκ)
[
σp0

( ε̇
ε̇p0

)1/m
+ α̃

]
(A.1)

where α̃ indicates the uniaxial component of the cyclic-hardening-free back stress. Because cyclic
hardening is negligibly small under the initial loading to the first tensile peak, Eq. (A.1) allows
the initial tensile peak stress σini+peak to be expressed as

σini+peak ≃ σp0
( ε̇
ε̇p0

)1/m
+ α̃ini+peak (A.2)

where α̃ini+peak denotes the initial peak value of α̃. Here, let us assume that the tensile peak value

α̃+peak does not change from α̃ini+peak with the increasing N because α̃ is regarded as the back
stress in the absence of cyclic hardening. Eqs. (A.1) and (A.2) thus provide

σ+peak ≃ (1 + φκ)σini+peak (A.3)

When the thermal recovery of cyclic hardening is negligible under rapid cyclic loading, Eq. (3.7)
is integrated to give

κ = κ0[1− exp(−Lp)] (A.4)

Hence, Eq. (A.3) leads to Eqs. (4.1).

Appendix B. Determination of thermal recovery parameters

Let us consider rapid, uniaxial cyclic loading with th 6= 0 to determine the thermal recovery
parameters R and ω in Eq. (3.7). Let us suppose that κ decreases from κ+peak to κrelax under
tensile strain holding, and that κ increases from κrelax to κ+peak under rapid cyclic loading in
one cycle. Here, we assume that the second and first terms on the right-hand side in Eq. (3.7)
are active under tensile strain holding and rapid cyclic loading, respectively, to provide

κrelax = [κ
1−ω
+peak +R(ω − 1)th]1/(1−ω)

κ+peak = κrelax + (κ0 − κrelax )[1− exp(−Lp∗)]
(B.1)

where p∗ denotes the change in p due to rapid cyclic loading in one cycle

p∗ = 2
(
∆ε− σrelax + |σ−peak |

E

)
(B.2)

To determine R and ω using Eqs. (B.1), the tensile peak stresses at N = 30 in the creep-
-fatigue tests at ε̇ = 10−3 s−1 with th = 10min and 60min at ∆ε = 0.01 are used to evaluate
κ+peak10 and κ+peak60 using Eq. (A.3) as

κ+peak10 =
1

φ

(σ+peak10
σini+peak

− 1
)

κ+peak60 =
1

φ

(σ+peak60
σini+peak

− 1
)

(B.3)

where the subscripts 10 and 60 indicate th = 10min and 60min. Then, κrelax10 and κrelax60 are
calculated using Eq. (B.1)2. Here, it is noted that φ, κ0, and L are determined in Step 2 in
Section 4. Finally, R and ω are evaluated by numerically solving the following equations derived
from Eq. (B.1)1

κ1−ωrelax10 − κ1−ω+peak10 = R(ω − 1)th10 th10 = 600 s

κ1−ωrelax60 − κ1−ω+peak60 = R(ω − 1)th60 th60 = 3600 s
(B.4)
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Appendix C. Cyclic hardening parameter for creep strain-rate

To evaluate c in Eq. (3.9), we consider the changes in σ+peak and σ10E−7 with N in the creep-
-fatigue test at ε̇ = 10−3 s−1 with th = 60min at ∆ε = 0.01. For σ+peak in this creep-fatigue
test, Eq. (A.3) is valid, though κ is affected by th 6= 0. For σ10E−7, Eqs. (3.2)2, (3.6) and (3.9)
provide

σ10E−7 = (1 + cφκ)σ
ini
10E−7 σini10E−7 = σ

c
0

( ε̇c

ε̇c0

)1/n
(C.1)

where ε̇c = 10−7 s−1. The change in κ is considered small under strain holding when ω is large
in Eq. (3.7). Thus, using Eqs. (A.3) and (C.1)1, c is estimated as

c ≃ σ10E−7/σ
ini
10E−7 − 1

σ+peak/σ
ini
+peak − 1

(C.2)
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In engineering disciplines, both in scientific and practical applications, systems with a tre-
mendous number of degrees of freedom occur. Hence, there is a need for reducing the com-
putational effort in investigating these systems. If the system behaviour has to be calculated
for many time instances and/or load scenarios, the need for efficient calculations further
increases. Model order reduction is a common procedure in order to cope with such large
systems. The aim of model order reduction is to reduce the (computational) effort in solving
the given task while still keeping main features of the respective system. One approach of
model order reduction uses the proper orthogonal decomposition. This approach is applied
to Mikota’s vibration chain, a linear vibration chain with remarkable properties, where two
cases of an undamped and a damped structure are investigated.

Keywords: Mikota’s vibration chain, POD, damping, multibody system, mode shape

1. Introduction

Model order reduction (MOR) is a common method in engineering disciplines allowing for ef-
ficient calculations of e.g. dynamic behaviour of structures. The basic concept is to reduce the
order of the system, for example by reducing the number of degrees of freedom. However, the
resulting loss of information should not exceed a certain level. Several techniques for MOR exist.
Some of them are physical subspace methods such as Guyan reduction, modal subspace methods
or Krylov subspace method (Freund, 2003; Guyan, 1965). While these methods are physically
motivated, there are other approaches which do not take physical meaning into consideration.
However, these methods still require extraction of main features of the underlying system. One
method for this feature extraction is the proper orthogonal decomposition (POD). Once the
arbitrary system has been characterised by POD, it is the task of MOR to only take those cha-
racteristics into consideration which are needed to adequately describe the (dynamic) behaviour
of the system. In this contribution, the model order reduction is applied to a special vibration
chain, namely Mikota’s vibration chain. Herein, POD is used. Using Mikota’s vibration chain
has the advantage that its dynamic characteristics have been investigated quite well, such that
there exist analytical solutions which serve as reference solutions for the reduced system. Addi-
tionally, damping effects are taken into account as some damage phenomena can be modelled
by means of damping.

To cope with these tasks, Mikota’s vibration chain is introduced in Section 2. A brief descrip-
tion of the approach of model order reduction involving POD is given in Section 3. In Section 4,
POD is applied to Mikota’s vibration chain. As a next step, a discrete damping element is added
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to Mikota’s vibration chain. In doing so, the linearity of the system is kept. POD is then used
within MOR to approximate the dynamic behaviour of the damped vibration chain in Section 5.
Finally, conclusions and an outlook are given with Section 6.

2. Mikota’s vibration chain

Fig. 1. Undamped vibration chain (Weber et al., 2015)

A linear undamped vibration system with n degrees of freedom (DOF) can be described by

Mẍ(t) +Kx(t) = 0 (2.1)

with x = (x1, . . . , xi, . . . , xn)
T and ẍ = (ẍ1, . . . , ẍi, . . . , ẍn)

T representing the column matrix of
displacements and accelerations, respectively. Herein,M and K denote the (diagonal) mass and
(tri-diagonal) stiffness matrix, respectively. For a linear vibration chain according to Fig. 1 these
matrices are

M = diag (mi)

K = diag {(k1 + k2,−k2), . . . , (−ki, ki + ki+1,−ki+1), . . . , (−kn, kn)}
(2.2)

Mikota set the masses and stiffness coefficients to

mi =
1

i
m and ki = (n − i+ 1)k where i = 1, 2, . . . , n, i ∈ N (2.3)

cf. (Mikota, 2001). Herein, m is the first mass and k denotes the stiffness of the last spring.
Mikota conjectured that this specific vibration chain has eigenfrequencies

Ωl = lΩ = l

√
k

m
with again l = 1, 2, . . . , n, l ∈ N (2.4)

where Ω =
√
k/m is the first eigenfrequency. As can readily be seen, enlarging the system

from n DOF to n + 1 DOF changes the mass matrix in such a way that the element mn+1 is
appended at the lower right corner leading to Mn,n →Mn+1,n+1, while all other entries of the
mass matrix remain the same. In contrast, the corresponding matrix Kn+1,n+1 is obtained by
adding one row and one column at the upper left corner to the formerKn,n. For discussion of this
opposite behaviour in the set-up of the matrices and the resulting difficulties for proving Mikota’s
conjecture to be right, one is referred to e.g., (Müller and Hou, 2007; Müller and Gürgöze, 2006).
However, two proofs were proposed by Weber et al. (2015), Müller and Hou (2007). In order to
fully describe Mikota’s vibration chain also the mode shapes have to be looked at, which was not
the focus of Mikota’s work. An approach based on polynomial coefficients is given with (Müller
and Hou, 2007), a modification of the well-known Laguerre polynomials allowing for evaluating
the mode shapes of Mikota’s vibration chain is presented in (Weber et al., 2013). But these
approaches are quite laborious and do not reveal a structure in order to obtain general formulae
for the mode shapes ul. This gap is closed with (Weber et al., 2017), some results of the latter
contribution will be used in what follows.
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According to Kochendörffer (1963), the coordinates of the eigenvectors of a matrix – and
thus the mode shapes dealt with here – can be expressed by polynomials pl(i) in the coordinate i
leading to

ul = (ul,i=1, ul,i=2, . . . , ul,i=n)
T = (pl(i = 1), pl(i = 2), . . . , pl(i = n))

T (2.5)

For an arbitrary n DOF and l ¬ n, the first three mode shapes of Mikota’s vibration chain are
represented by the following polynomials

pl=1(i) = i

pl=2(i) = i
2 − 2n + 1

3
i

pl=3(i) = i
3 − 3
5
(2n+ 1)i2 +

1

5

[3
2
n(n+ 1) + 1

]
i

(2.6)

see (Weber et al., 2017). There, an approach for determining all n polynomials, i.e. all n mode
shapes, in a successive manner is suggested, too. For this special vibration chain it could be
proved that the polynomial degree of pl is l. Another neat property of the mode shapes of
Mikota’s vibration chain is the tri-diagonality of the matrix product UTU, where U denotes the
modal matrix. It should be noted that, in general, the mode shapes to different eigenfrequencies
are not perpendicular to each other with respect to the (standard) scalar product, as only

ulMu
T
k

{
= 0 for l 6= k
6= 0 for l = k

ulKu
T
k

{
= 0 for l 6= k
6= 0 for l = k

(2.7)

holds.
Exemplary, a graphical representation of the eigenvalues λl = Ω2l and the first five mode

shapes of Mikota’s vibration chain with n = 10 DOF is given in Fig. 2.

Fig. 2. Eigensolutions of Mikota’s vibration chain for n = 10 DOF, where only the mode shapes
ul=1, . . . ,ul=5 are shown. The displacements between the coordinates i are interpolated linearly, i = 0 is

at the fixed support according to Fig. 1

3. A brief introduction to MOR by means of POD

The solution of typical large systems of equations, which occur in engineering disciplines, requ-
ires a huge computational effort. Thus, strategies are sought which allow for reduction of this
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computational cost. One strategy is the model order reduction (MOR). In this strategy, the
dimensionality of the underlying mechanical system is reduced while keeping the loss of infor-
mation within acceptable bounds. For mechanical systems following the system of equations

Mẍ+Dẋ+Kx = f (3.1)

withD denoting the damping matrix, ẋ the vector of velocities and the vector of applied forces f ,
this order reduction can be performed by projecting the involved vectors from the full space Rn

to a lower dimensional space Rnred using a projection matrix Φ of dimension (n, nred)

x ≈ Φxred ẋ ≈ Φẋred ẍ ≈ Φẍred (3.2)

Inserting these quantities into Eq. (3.1) leads to

MΦẍred +DΦẋred +KΦxred = f (3.3)

Multiplying the transpose of the projection matrix from the left finally yields a reduced problem

ΦTMΦẍred +Φ
TDΦẋred +Φ

TKΦxred = Φ
Tf

Mredẍred +Dredẋred +Kredxred = fred
(3.4)

The question arises how this projection matrix Φ can be obtained. For reducing the dimen-
sionality, the main features of the system have to be extracted. Within this contribution, the
proper orthogonal decomposition (POD) is used to extract the main features and thus shall be
introduced in what follows.
In the first step, a suitable amount m of observations is necessary. These observations may

result from measurements or from analytical or numerical calculations. In the present case, ana-
lytical expressions of the displacements will be evaluated numerically and used as observations.
The displacement history obtained by the so-called pre-computations is saved in an observation
matrix

Q = [x1,x2, . . . ,xm] (3.5)

In general, the number m of observations differs from the number n of DOF and, consequently,
Q is a rectangular matrix. This observation matrix is decomposed by means of the singular value
decomposition

Q = PΣVT (3.6)

according to Golub and Kahan (1965). Herein, P denotes the matrix of the left-singular vec-
tors φk, which will be called proper orthogonal modes (POMs) in what follows. For special
cases, these POMs are equivalent to the mode shapes of the respective system. This issue will be
addressed in Section 4. The matrix Σ is a pseudo-diagonal matrix containing singular values σk,
with k ¬ min(n,m), in a descending order at its main diagonal, whereas all other entries of the
rectangular matrix are zero. The matrix V of the right-singular vectors will not be used within
this contribution.
An energy measure for the matrix Q consisting of a vector sequence is the Frobenius norm,

which itself equals the sum of the squared singular values

Epseudo(Q) = ‖Q‖2F =
1

m

n∑

i=1

m∑

j=1

Q2i,j =

min(n,m)∑

k=1

σ2k (3.7)

see e.g., (Kerschen and Golinval, 2002). Thus, the value of σk is related to the so-called pseudo-
-energy associated to the k-th POM. As a consequence, one may choose the first nred POMs,
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with nred ≪ m, which capture a certain amount of the system total pseudo-energy. From these
POMs, the sought projection matrix

Φ =
[
φ1,φ2, . . . ,φnred

]
nred ≪ m (3.8)

is constructed.
With this projection matrix, the reduced system according to Eq. (3.4)2) is solved and the

results are transferred back to the full system by using Eqs. (3.2). For a detailed review of the
POD and some applications the reader is referred to e.g. (Bamer et al., 2017; Fangye et al., 2016;
Radermacher and Reese, 2013; Kerschen et al., 2005; Chatterjee, 2000).

4. Applying POD to Mikota’s vibration chain

As the first step, Mikota’s vibration chain is exposed to such an initial displacement which only
excites its first mode shape. Afterwards, Mikota’s vibration chain performs free vibration. By
doing so, the POD should identify the first mode shape only. This is due to the fact that the
whole (vibrational) energy of the system is kept in this mode shape. Solving the differential
equation with the following parameters

m = k = 1 and thus Ω =

√
k

m
= 1 (4.1)

n = 10 t0 = 0 ∆t = 0.01 tN = 20 N = 2001 (4.2)

where the units have been omitted, yields the displacements xi for each time step tj of N . These
displacements are written into the observation matrix Q, which is then analysed by means of
the POD according to Section 3. All calculations have been performed with Matlab R○.
As can be seen in Fig. 3, there is indeed only one (dominant) singular value. The remaining

singular values are not of practical relevance, as the quotient σk>1/σ1 < 10
−15 is in the order of

numerical accuracy. Consequently, only the first POM is plotted whereas the remaining POMs
are not taken into account. As expected, the POM 1 equals the first mode shape as given by
Eq. (2.6)1 and Fig. 2.

Fig. 3. Singular values and POM of Mikota’s vibration chain, n = 10 DOF and initial excitation of the
1st mode shape, according to the magnitude of σk>1/σ1 < 10

−15 only the first POM is plotted
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In what follows, Mikota’s vibration chain is exposed to a load with a very short time duration,
which simulates an impulse or an impact load. In detail, the force

f1(t) =

{
1 for 0 ¬ t ¬ 0.05 = δf
0 for δf = 0.05 < t

(4.3)

is applied to the 1st DOF. Compared to the lowest oscillation period (and thus the highest
eigenfrequency), the time duration δf of the load is small

Tmin =
2π

Ω10
=̂
2π

10
≈ 0.628≫ 0.05 = δf (4.4)

with Ω10 = 10Ω = 10 according to Eq. (2.4). The resulting displacements and velocities are
given with Figs. 4a and 4b, respectively. Some observations from these figures shall be discussed.

Fig. 4. Displacements and velocities for Mikota’s vibration chain with n = 10 DOF and impulse load
according to Eq. (4.3) applied to the 1st DOF

From Fig. 4a, it can be seen that beginning from t > 0 and starting with the 1st DOF, energy is
successively transferred to the remaining DOF. Higher DOFs are characterised by weaker springs
and lower masses, see also Eqs. (2.3). The respective displacements increase with the increasing
DOF, too. At time instances equal to integer multiples of π, all DOFs have zero displacements.
At time instances equal to integer multiples of 2π, all DOFs but the 1st have zero velocities, too.
With Eq. (4.4), the impulse load may be regarded as a Dirac-type loading. According to Müller
and Schiehlen (1985), such an applied force in fact leads to non-vanishing initial velocities while
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maintaining effectively zero initial displacements. In the present case, the 1st DOF gets an initial
velocity (more precisely, the initial velocity is at the time instance δf ). At this time instance,
the whole system effectively still is at rest, see Fig. 4a. For this reason, the system starts a
free oscillation from a state of zero displacement and, consequently, has to return into this state
periodically. This happens at the aforementioned time instances at integer multiples of 2π, where
the time duration δf has been omitted for clarity. At these time instances, all DOFs but the 1st
must have both zero displacements and velocities. The velocity of the 1st DOF equals its initial
velocity which is due to the Dirac-type loading, see also Fig. 4b. Due to the special structure of
the eigenfrequencies, which is given by Eq. (2.4), the temporal factor at integer multiples of 2π
of all n mode shapes is identical and equal to 1. Although Fig. 4a may lead to the assumption
that there exist pronounced time intervals within which one or more masses mi are at rest, it
should be emphasised that this is not the case. On the contrary, there are only distinct time
instances – at integer multiples of π as discussed above – at which all masses mj have vanishing
displacements. All masses but the first are at rest only at integer multiples of 2π.

The displacements for all time instances according to Eq. (4.2), which are plotted in Fig. 4a,
are written in the observation matrixQ, and the latter is investigated by means of POD according
to Section 3. The resulting singular values and some POMs are given in Fig. 5.

Fig. 5. Singular values and some POMs of Mikota’s vibration chain, n = 10 DOF and impulse load
according to Eq. (4.3) applied to the 1st DOF, only POMs 1, . . . , 5 are shown

Compared to Fig. 3, it can readily be seen that in the present load case the so-called pseudo-
-energy is distributed over all POMs. However, the respective values, i.e. the singular values, are
not equal. Hence, the single POMs each have a different contribution to the oscillation pattern
of the mechanical system. The descent of the singular values gives an indication of which POMs
may be omitted within the model order reduction while not exceeding the given error tolerance.
This aspect will be investigated in the next Section, where additionally damping is taken into
account.

5. Applying MOR to modified Mikota’s vibration chain including damping

In this Section, a single absolute damping element is added to Mikota’s vibration chain. By
doing so, both the eigenfrequencies and mode shapes of the system are changed. For a general
introduction to the topic of (optimal) damping, the reader is referred to e.g. (Gürgöze and
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Müller, 1992). For a brief and exemplary discussion concerning the optimal position of absolute
and relative damping elements in Mikota’s vibration chain, see Weber et al. (2008).

In order to apply a useful model order reduction, the number of DOFs of the system is
increased to n = 300. The absolute damping element is fixed at the 7th DOF. Only one non-
-vanishing initial excitation x3 = 1 is prescribed at the 3rd DOF. The other parameters are

m = k = d = 1 t0 = 0 ∆t = 0.01 tN = 20 N = 2001 (5.1)

where again the units have been omitted. It should be noted that d = 1 does not lead to
weak damping anymore. However, within this contribution, a parameter study is presented. The
resulting displacement history for some DOFs is shown in Fig. 6.

Fig. 6. Displacements for damped Mikota’s vibration chain with n = 300 DOF, initial excitation of the
3rd DOF, absolute damping element at the 7th DOF, only DOF 1, 3, 7, 100, 250 are shown

In what follows, the model order reduction using POD is performed. As the initial step, the
observation matrix Q is set by considering the displacements of all n = 300 DOFs within the
time span t = 0 to t = 10. The POD is then applied to this observation matrix leading to the
singular values and POMs as given in Fig. 7.

Fig. 7. Singular values and POMs of damped Mikota’s vibration chain, n = 300 DOF, initial excitation
at the 3rd DOF, absolute damping element at the 7th DOF, only POMs 1, 10, 50, 70, 100 are shown
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The so-called pseudo energy Epseudo of the system can be calculated using Eq. (3.7)

Epseudo =

min(n,m)∑

k=1

σ2k = 977.5528
2 (5.2)

A common approach to the model order reduction is to consider such an amount nred of POMs
that for the corresponding pseudo energy

Epseudo,red ≈ 0.99Epseudo (5.3)

holds (Bamer et al., 2017, Feeny and Kappagantu, 1998). Kerschen et al. (2005) even recommend
Epseudo,red ≈ 0.9999Epseudo . For the present case, the former criterion is fulfilled for nred = 76
while the latter criterion gives nred = 98.
Thus, in the first step, only 76 POMs are considered. As in the present case σ77/σmax =

0.0184, this means that all POMs, for which σk / 0.018σmax holds, are omitted. Although the
observation matrix Q only contains data up to t = 10, the calculations in the reduced system
have been performed until t = 20. The resulting reduced system is solved and then transferred
back to the full system. Both the displacement and velocity history within the time interval
3.25π ¬ t ¬ 3.75π for the arbitrarily chosen 150th DOF is given in Fig. 8. Additionally, the
diagram contains the displacement and velocity history resulting from calculating the full system.
As can be seen, there is a good agreement between these two results for both the displacement
and velocity history.

Fig. 8. Displacement and velocity history of the 150th DOF for the full (“full”, n = 300) and the
reduced (“MOR”, nred = 76) system

For comparison, an additional calculation is performed with nred = 98, thus neglecting all
POMs for which σk / 2.4 · 10−4σmax. The respective results can be taken from Fig. 9 and do
not show any (observable) differences between the results obtained with the full and the reduced
system. Besides Eq. (5.3), an additional relation is introduced to measure the deviation between
the results obtained with the full system and the results obtained with the reduced system

∆Ephase =

√√√√√√√

n∑
i=1
[(xi − xred,i)2 + (ẋi − ẋred,i)2]

n∑
i=1
(x2i + ẋ

2
i )

(5.4)

This relation gives more reliable results as compared to the relation which only takes the pseudo
energy into account. This is due to the fact that the latter relation does not reveal pronounced
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Fig. 9. Displacement and velocity history of the 150th DOF for the full (“full”, n = 300) and the
reduced (“MOR”, nred = 98) system

phase differences within the displacements and velocities, see also (Kappagantu and Feeny, 1999).
In the present case, ∆Ephase = 0.144 (compared to 0.5149 for nred = 76) thus indicating a very
good correlation between the results of the full and the reduced (nred = 98) system. Hence, the
model order reduction has been applied successfully.

6. Conclusions

An approach to the model order reduction has been successively applied to Mikota’s vibration
chain, a special vibration chain having remarkable properties. The chosen approach to the model
order reduction involves the proper orthogonal decomposition which, therefore, has been shortly
introduced. Some basic insights into the proper orthogonal decomposition were given using
the standard (that is, undamped) Mikota’s vibration chain with n = 10 DOFs. Finally, more
advanced calculations including the model order reduction were performed after introducing a
single absolute damping element into the vibration chain with n = 300 DOFs. It was observed
that the dynamic characteristics of Mikota’s vibration chain could be kept if the underlying
mechanical system was reduced in such a way, that > 99% of the so-called pseudo energy was
considered. In the present case, an excellent correlation between the results obtained with the
full and the reduced system is obtained for nred = 98 DOF or – equivalently – for reduction in
the dimensionality by ≈ 70%.
In this contribution, a linear vibration system has been investigated. However, non-linear

systems play an important role in engineering applications, too. Thus, more scientific work has
to be done in the field of model order reduction of non-linear systems. This non-linearity may
additionally be caused by damage of the respective structure. Such effects must be taken into
account if the model order reduction is used in, e.g., structural health monitoring.
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An experimental protocol, including the combined application of both innovative and tradi-
tional sensing techniques, is described aiming to explore the mechanical response of marble
and also to check the possibilities of detecting precursor phenomena designating upcoming
catastrophic fracture. The protocol consisted of three-point bending tests with notched pri-
smatic beams made of Dionysos marble, the material extensively used for restoration of
the Acropolis of Athens monuments. The sensing system improvised included techniques
relying on completely different physical foundations, which permit simultaneous detection
and recording of the Pressure Stimulated Currents, Acoustic Emissions, three dimensional
displacement fields and Notch Mouth Opening Displacements. Analysis of the results re-
vealed interesting features of the mechanical response of Dionysos marble and indicated,
also, that classical Continuum Fracture Mechanics fails to describe accurately the response
of marble, at least in the presence of notches. In addition, strong correlations between the
Pressure Stimulated Currents, the rate of acoustic hits and the rate of change of the opening
of the pre-existing notch have been enlightened. Moreover, the onset of catastrophic crack
propagation appears following distinguishable changes of the Pressure Stimulated Currents
recorded. Therefore (and taking into account the very small size of the respective sensors
as well as the simple complementary equipment needed), it is concluded that the specific
technique could be considered as a simple and reliable tool for an alternative approach to
the in-situ Structural Health Monitoring of classical stone monuments.

Keywords: marble, monuments, notch mouth opening displacement, three-point bending,
pressure stimulated currents, acoustic emissions, 3D-digital image correlation

1. Introduction

The remaining life and the remaining load-carrying capacity of structural elements seriously con-
cern the engineering community, especially in the case of already damaged or cracked elements.
The need for a clear answer to this problem is imperative, among others, for scientists working
for conservation projects of ancient stone monuments, given that quite often their structural
members are cracked and any extension of pre-existing cracks could be fatal to the structural
integrity of the whole monument.

Answering the above question is usually attempted within the frame of Fracture Mechanics
by applying various criteria which predict both the load leading a pre-existing crack to initia-
tion and, also, the direction towards which the crack is going to propagate. Such criteria, widely
used in engineering praxis, are based on the maximum tangential stress (Yoffe, 1951; Erdogan
and Sih, 1963), the strain energy density (Sih, 1973), the maximum energy release rate (Wu,
1978), the maximum dilatational strain energy (Theocaris et al., 1982) etc. In the restoration
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praxis of stone monuments, however, the problem is far more complicated due to the aniso-
tropic nature of building materials and the fact that the loading schemes acting on a given
element are not easily represented according to standard load-simulation schemes used in the
laboratory. Therefore, the classical crack initiation criteria of Fracture Mechanics are not direc-
tly applicable, and it is not realistic to expect that closed analytic answers could be obtained.
In addition, the direct “transfer” of results from laboratory experimental studies to the struc-
tural engineering field is questionable due to the “size effect” (Bažant, 1984; Carpinteri, 1989),
i.e., the dependence of material properties on the specimen size. The “size effect” is extremely
pronounced in rock and rock-like materials like, for example, those used for the construction of
classical monuments of Cultural Heritage in Greece (Sulem and Vardoulakis, 1990; Kourkoulis
and Ganniari-Papageorgiou, 2010).

Taking into account the above difficulties, it appears that in-situ continuous Structural
Health Monitoring (SHM) of stone monuments is the only preventive tool that could provide
on-time warning about upcoming changes, which could be harmful for the structural integrity
of such monuments. However, it should be clarified from the very beginning that SHM of monu-
ments of Cultural Heritage is not a trivial task. In order to understand the challenging character
of the venture, one could consider the Parthenon Temple in Athens. The structural elements
of the most emblematic monument of the “Golden Age of Pericles” (epistyles, column drums,
capitals) were made of marble blocks quarried from the Pentelic Mountain. As it can be seen in
Fig. 1a, quite a few of these elements are seriously cracked and their load-carrying capacity is
questionable (Korres and Bouras, 1983; Zambas, 1994), rendering continuous SHM an imperati-
ve demand. The coexistence of authentic and substitute marble (Fig. 1a) together with metallic
connectors and cement paste (used to fill the grooves (Fig. 1b) in which the metallic connectors
are placed) causes additional difficulties. This coexistence creates internal (hidden) interfaces,
along which failure/damage mechanisms are firstly activated, well before any crack extension
(or any other damage mode) is observable at the outer surface of the member.

Fig. 1. (a) Typical epistyles of the Parthenon Temple showing the degree of damage and, also, the
coexistence of authentic elements (made of Pentelic marble) with patches made of the substitute
material (Dionysos marble) joined together by means of invisible metallic elements. (b) The grooves
sculptured by ancient Greeks to host the metallic elements used to keep series of epistyles in place

In the frame of the above argumentation, it is easily concluded that questions related to
the remaining load-carrying capacity of restored structural members of stone monuments could
not be answered unless data from the interior of the element are pumped. Moreover, it is clear
that such data can only be pumped using sensors of very small size (to avoid harming the
aesthetic harmony of the monument) and also of low cost (considering the number of sensors
required to monitor all the cracked structural elements of a given monument, which for the
case of the Parthenon Temple are too many). Such sensing systems, widely used today, both in
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laboratory and structural scale, include detection of acoustic events, application of optical fibers,
quantification of electric resistance changes etc. Their in-situ application is relatively difficult,
and for some of them their application necessitates interventions on the monument members,
which are usually not permissible.

In this direction, the present study aims to comparatively assess the efficiency of a relatively
novel sensing technique, which is based on the detection of extremely weak electric currents,
known as the Pressure Stimulated Currents (PSC) (Triantis et al., 2006, 2012). Among the
critical advantages of the PSC technique is the very small size of the respective sensors and their
low cost as well as the simple complementary equipment of the set-up, rendering the technique
quite attractive, especially for long term monitoring of many structural members.

For the study to be accomplished, notched prismatic marble beams are subjected to Three-
-Point Bending (3PB). The PSC produced is recorded as a function of time, in parallel with the
data provided by the Acoustic Emission (AE) technique, which is considered a well-founded and
mature sensing technique, widely used worldwide. In addition, the displacement field developed
is recorded using the 3D-Digital Image Correlation (3D-DIC) technique while the Notch Mouth
Opening Displacement (NMOD) is also recorded using a clip-gauge extensometer.

The data obtained from this combined “attack” (i.e., with both innovative and traditional
experimental techniques) are comparatively studied in the direction of correlating critical aspects
of their time evolution. Interesting conclusions are drawn about the mechanical behaviour and
failure of Dionysos marble, while the possibility of using the critical Notch Opening Displacement
(NOD) as a simple easy-to-apply fracture criterion is discussed. Moreover, strong correlations
between the PSC, the AE as well as the data obtained using the 3D-DIC technique (properly
assessed against the ones of the traditional clip-gauge extensometer) are highlighted. The time
evolution of the above quantities was proven to follow internal damage processes in a satisfactory
manner. In addition, indications were provided, according to which the time evolution curves of
all the quantities mentioned above exhibited changes (either clear or imperceptible) that could
be considered as pre-failure indicators well before macroscopic crack initiation.

2. The experimental protocol

2.1. The material and the specimens

The specimens of the experimental protocol were cut out from an almost cubic block of
marble quarried from Dionysos Mountain in Attica region. Given that the specific variety of
marble is usually considered as a transversely isotropic material, every effort was made for all
the specimens to be cut along the strong anisotropy direction and the load to be applied normally
to the material layers, in the direction of minimizing the scattering of the results. In general,
every effort was made to control (if not to eliminate) the factors responsible for the scattering
of the experimental results. All specimens were cut out from the same marble block and they
were carefully inspected for visible defects. Moreover, they were cut along the same direction
with respect to the material layers, and the notches were machined carefully and by a single
technician. After completion of the experimental protocol, Chauvenet’s criterion was used to
exclude from the elaboration of the results all tests for which the deviations were unacceptably
increased. As a result, the final scattering of the tests included in the analysis was quite affordable
(at least for tests with specimens made of a brittle rock-like material).

The specimens were beam-shaped with a rectangular cross section and overall length equal
to Lo = 100mm. Two classes of specimens were tested concerning the dimensions of the cross
section: a class with width-to-height ratio equal to b×h = 20×20mm2 and the second one with
b× h = 25× 25mm2. The specimens were mechanically notched at their mid-span with the aid
of a cutting disc of thickness δo = 2.5mm and rounded cutting edge. The length of the notch
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was constant and equal to αo = 4mm resulting to two notch length-over-specimen height ratios,
i.e., αo/h = 0.20 and αo/h = 0.16, respectively, in an effort to check also the role of the relative
notch length. The geometry and dimensions of the specimens are shown in Fig. 2b.

Fig. 2. (a) A typical specimen before testing. (b) The geometry and dimensions of the specimens

Dionysos marble was chosen because it is the material used by the scientific and technical
personnel of the restoration project of the Athens Parthenon Temple for constructing copies
of missing structural elements and also for preparing patches for partially destroyed members.
The project is still in progress and is implemented by the “Acropolis Restoration Service” under
the auspices of the “Committee for the Conservation of the Acropolis Monuments”, an interdi-
sciplinary committee of the Greek Ministry of Culture, established in 1975. The methodology
adopted and the restoration techniques developed in the frame of the project are worldwide
recognized for their pioneering nature and the strict commitment to the restoration principles
of “The Venice Charter” (1964).

The properties (mechanical and physicochemical) of Dionysos marble are very similar to
those of the authentic building stone of the Parthenon Temple, i.e., Pentelic marble. It is an
extremely fine-graded white marble consisting of calcite (about 98%) and very small amounts
of muscovite, sericite, quartz and chlorite. It is of almost white colour with a few thin ash-green
veins along the marble’s schistosity. Silver areas are detected due to the presence of chlorite
and muscovite. Its porosity is very low (varying between 0.3% and 0.7%). Its density is equal to
about 2730 kg/m3 and its absorption coefficient by weight varies around 0.11%. The coefficient
of thermal expansion is 9 · 10−6◦C (between 15◦C and 100◦C). The grain size varies around
0.43 · 10−3mm and the crystals are polygonic of almost uniform size (between 900µm× 650µm
and 950µm × 874µm) (Tassogiannopoulos, 1986).
The mechanical properties of Dionysos marble reported in literature vary within broad limits.

This is because they depend, among others, on the exact quarrying point and depth as well as
on the orientation of the specimens with respect to the anisotropy directions. The numerical
values adopted in this study are based on an exhaustive experimental study by Vardoulakis and
Kourkoulis (1997) and are recapitulated in Table 1, for the strong anisotropy direction, which
is of importance for the present study.
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Table 1. Mechanical properties of Dionysos marble along the strong anisotropy direction (Var-
doulakis and Kourkoulis, 1997)

Property Young’s modulus
Tensile Compressive Nominal tensile Poisson’s
strength strength strength ratio

Test Tension
Comp-

3PB
Tension- Uniaxial

3PB
Tension-

ression -Brazilian compression -compression

Unit GPa GPa GPa MPa MPa MPa –

Value 75 84 109 9.1 78.4 18.4 0.23

2.2. The sensing techniques used

2.2.1. Pressure Stimulated Currents

It has been long ago observed that mechanical stress is responsible for generation of electric
signals in brittle materials like rocks. It was Whitworth (1975), in a pioneering work, who
demonstrated such an effect in alkali halides. It is worth mentioning, also, that electric signals
are generated when brittle non-piezoelectric materials (the porosity of which does not favour
electro-kinetic phenomena) are subjected to an abrupt increase of the level of mechanical stress.
Nowadays, the most widely accepted model describing qualitatively the generation of these
weak electrical signals is the one introduced by Slifkin (1993). The specific model was further
developed by Vallianatos and Tzanis (1999) and is commonly designated as the Moving Charged
Dislocations (MCD) model.

According to the MCD model, motion of charged dislocations produces a transverse electric
polarization P directly related to the electric current density J and, in turn, to the mechanical
strain rate, dε/dt

J =
∂P

∂t
∝ dε

dt
(2.1)

The above transient electrical signals are detected in the form of electric currents, known
as Pressure Stimulated Currents (PSC), and the respective experimental technique is known as
the PSC technique (Triantis et al., 2006). It was used for the first time by Varotsos (2005) in
the direction of describing the polarization or depolarization of electric signals, as a result of
pressure variations on solids that contain dipoles due to the existence of defects. According to
Eq. (2.1), it is expected for the PSC to be related to the accumulation of deformation and more
specifically to be proportional to the mechanical strain rate (dε/dt).

The technique has been applied successfully to rock samples (made either of marble (Stavra-
kas et al., 2003) or amphibolite (Triantis et al., 2007)), submitted to monotonically increasing
compressive load until fracture. Later on, it was applied, also successfully, to cement based
specimens under compression (Kyriazopoulos et al., 2011; Triantis et al., 2012).

Experimental studies indicate that the PSC emitted during mechanical loading has a de-
terministic form and can be used as a tool for detecting the upcoming fracture. Moreover, the
form of the PSC can be used to distinguish whether plasticity (non-reversible deformation of
the specimen) has appeared or whether fracture is impending (Anastasiadis et al., 2007). It is
generally observed that the PSC emissions increase intensively when the applied mechanical
stress approaches the strength limit of the tested specimen (Triantis et al., 2012). Experiments
with specimens made of cementitious materials indicated that mechanical straining due to axial
compression induces electric signals, providing qualitatively similar results with those in rocks
and rock-like materials (Kyriazopoulos et al., 2011). However, the PSC recorded is significantly
stronger than that in rocks, reaching amplitudes at the nA scale. Moreover, recent experiments
with prismatic specimens made either of marble or mortar and subjected to 3PB revealed that
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proper evaluation of the electric current emission recordings may provide useful information re-
garding the proximity of the applied mechanical load to the ultimate stress level of the specimens
(Stergiopoulos et al., 2015).

In the laboratory, the PSCs are detected by using extremely sensitive electrometers. The sen-
sors consist of pairs of gold-plated electrodes attached on the specimen’s surface by means of a
conductive paint. In the present study, the measuring system consisted of an ultra-sensitive pro-
grammable electrometer (Keithley, 6517A) resolving currents from 0.1 fA to 20mA in 11 ranges.
The data of the electrometer were stored in a computer using GPIB interface. The electrodes
were installed in the notch and on the upper side of the specimens (Fig. 3a). The overall arran-
gement of the equipment of the PSC system used is shown in Fig. 4.

Fig. 3. (a) A specimen placed on the metallic rollers just before testing. (b) A detailed sketch of the
knife-edges used to keep the clip-gauge in place. (c) A schematic representation of the position of the

Acoustic Emission sensors

2.2.2. Acoustic Emissions

The Acoustic Emission (AE) technique detects acoustic events taking place within a material
during mechanical loading, since deformation and failure of materials are accompanied by a
sudden release of strain energy. The energy released generates elastic stress waves which travel
within the material towards the boundaries of the specimen, where they are detected by proper
transducers (usually piezoelectric sensors converting elastic waves to electrical signals). The main
advantage of the AE technique is that it can monitor failure processes during the whole loading
scheme of either a specimen or a whole structure by just attaching a number of sensors on it.
Recalling that acoustic emissions depend mainly on irreversible deformations, it is concluded
that this technique is suitable for structural health monitoring. Another advantage of the AE
technique is related to its ability to determine the spatial coordinates of the acoustic source
employing usually the travel-time-difference method (Sachse et al., 1991).

The underlying principle of the technique is dated back to 1933, when the process of shock
occurrence in a wood specimen under flexural loading was studied by Kishinoue with the aid
of a phonograph pick-up and a steel needle. His original article (in Japanese) was translated
into English by Ono in 1990 (Kishinoue, 1990). The first studies concerning the acoustic emis-
sions in geomaterials were carried out by Obert (1941). Till today, the AE technique has been
applied to various materials, i.e., rocks, concrete, mortars, metals etc. under various loading
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Fig. 4. An overview of the experimental set-up. (a) The equipment for recording the PSC. (b) The
arrangement for the application of the DIC technique

modes. Maji and Shah (1988), for example, determined the fracture process zone in pre-cracked
concrete specimens under tension by means of the source location of acoustic emissions. Labuz
et al. (2001) quantified the intrinsic process zone in cementitious specimens of various size sub-
jected to diametral compression (Brazilian-disc test) and 3PB. The dimensions of the fracture
process zone based on the location of the acoustic events were determined also for rock speci-
mens (Muralidhara et al., 2010). Another very interesting application of the AE technique is the
estimation of the critical values of the SIF and the J-integral, dated back to 1984 (Blanchette et
al., 1984). Later on, Hashida (1993) applied the same approach for rock-like materials. Recently,
the AE technique has been used for the classification of the failure modes, also, in rock-like
materials. For example, bending tests were carried out by Aggelis et al. (2013) in marble speci-
mens, in an effort to correlate the frequency and the waveform shape of the AE with the fracture
mode.

Quite often the data recorded by the AE sensors are analyzed using the b-value (Rao and
Prasanna Lakshmi, 2005), correlating events of high amplitude and lower frequency with events
of low amplitude and higher frequency. Nowadays, an “Improved b-value” concept (Ib-value),
proposed by Shiotani et al. (2001), is employed. It is based on statistical parameters (such
as the mean and standard deviation of the AE amplitude), which vary during the test. The
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time variation of the Ib-values is considered as providing valuable indications concerning the
proximity of the system to its “critical stage” (impending failure). The Ib-value is defined as

Ib =
log10N(µ− α1σ)− log10N(µ+ α2σ)

(α1 + α2)σ
(2.2)

where σ is the standard deviation and µ is the mean value of the AE amplitude distribution.
Moreover, α1 is related to the smaller amplitude while α2 is related to the fracture level. The
numerical values of α1, α2 vary within broad limits (0.5 < α1, α2 < 5.0). Attributing to them
values within this range does not significantly affect the Ib-value (Shiotani et al., 1994). In this
context, it is here assumed that α1 = α2 = 1.0.
Besides providing valuable information concerning the intensity of the internal damage pro-

cess and its spatiotemporal evolution, it is generally accepted, nowadays, that the data recorded
by the AE technique offer interesting information concerning the nature of the source of acoustic
signals (Ohno and Ohtsu, 2010; Ohtsu, 2010; Aggelis, 2011; Aggelis et al., 2013). More speci-
fically, the relationship between the RA parameter (Rise Time/Amplitude) and the Average
Frequencies (AF) (counts/duration) permits classification of the cracks formed during loading
to Mode I and/or Mode II. According to this approach, acoustic emission signals of high AF and
low RA values are due to “tensile” (mode I) cracks. On the other hand, acoustic emission si-
gnals of low AF and high RA values are due to other crack modes (mode II crack or mixed-mode
cracks) or even due to shear phenomena (friction).
In the present study, four acoustic emission sensors were properly attached on the free trans-

verse sections of the specimens with the aid of silicone. Three of the sensors were of the R15α
type while the fourth one was a pico-sensor. The positions of the sensors are shown schematically
in the sketch in Fig. 3c.

2.2.3. Digital Image Correlation

The third innovative technique used is the Digital Image Correlation (DIC). It is based on
the combined use of two high definition cameras. Its theoretical background is dated 30 years ago
(Sutton et al., 1986), and it has been since then continuously developed further (Sutton et al.,
2000). For its application, the surfaces monitored are covered by a dense grid of paint dots the
displacements of which during loading are used to calculate the full-field 3D displacement-field.
DIC has been already used for the determination of Crack Tip Opening Displacement and Stress
Intensity Factors (SIFs) of brittle materials (Brynk et al., 2012).
In this study, a novel 3D-DIC system (LIMESS Messtechnik & Software GmbH, Germany)

with two cameras (of resolution 1624×1234 pixel) was used. The 3D-DIC active field was a
rectangle of dimensions 44× 27mm2. The size of the pattern dots was equal to about 0.08mm.
The frequency was set to 1 photo every 3 seconds. The 3D-DIC system used in the present study
is shown in Fig. 4.

2.3. The experimental set-up and the experimental protocol

The experiments were implemented using an MTS-INSIGHT loading frame of capacity 10
kN. In parallel to the above mentioned techniques, a traditional clip-gauge extensometer (IN-
STRON 2670-120) with a 5mm gauge length and 2mm range was properly mounted to the
notch mouth (Figs. 3a,b) to measure the Notch Mouth Opening Displacement (NMOD). It was
calibrated using a micrometer calibrator (High Mag). The TDS-530 data-logger was used for
data acquisition and storage. An overview of the whole experimental set-up is shown in Fig. 4.
The specimens were placed on two metallic cylinders of an INSTRON 3PB fixture (Fig. 3a).

The diameter of the supporting cylinders was 25mm and their distance was adjusted (and kept
constant for all tests) to L = 90mm, resulting to a span-over-height ratio approaching 4. The
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specific value is considered as the lower limit for which the Bernoulli-Euler technical bending
theory gives acceptable results, permitting one, in the first approximation, to ignore the influence
of shear forces.

The tests were quasi-static realized under displacement-control mode at a rate equal to
0.01mm/min. The load was applied monotonically until fracture of the specimens. It was linearly
distributed along the width of the specimens with the aid of the third steel cylinder of diameter
10mm (Fig. 3a).

3. Fracture characteristics of Dionysos marble under 3PB

All specimens tested were fractured in the same way: A crack was initiated at the tip of the
notch and propagated towards the load application point, almost parallel to the direction of the
applied load (Fig. 5a). In some specimens, the crack path deviated slightly (Fig. 5b) indicating
some kind of asymmetries of the whole configuration. Considering that every attention was paid
to the experimental set-up to be symmetric, it can be concluded that those deviations were due
to inevitable local inclinations of the material layers of marble with respect to the specimen’s
longitudinal axis. The fracture surfaces were almost planar (although slightly wavy) and normal
to the longitudinal axis of the specimens, as it can be seen in Figs. 5c and 5d. In general,
the fracture plane is very sensitive to local material imperfections (typical for most marble
varieties), called “κoµµóς” at the era of Parthenon builders. These imperfections define locally
weak material planes. Obviously, such specimens were not taken into account while elaborating
the results of the experiments.

Fig. 5. Typical fractured specimens with fracture planes either parallel to the loading axis (a) or slightly
inclined with respect to this axis (b). The wavy shape of typical fracture surfaces (c), (d)

Typical raw data for the variation of the load imposed versus the respective deflection of
the central cross section (as provided by the translation of the frame traverse) are plotted in
Fig. 6, for some characteristic specimens belonging to both specimen classes. Ignoring inevitable
bedding errors, all curves are more or less similar to each other, approaching linearity in a quite
satisfactory manner for the whole loading procedure. The fracture load for both specimen classes
(around 600N for the class with b×h = 20×20mm2 and around 1100N for the class with b×h =
25×25mm2) exhibited relatively low scattering in spite of the increased number of unpredictable
parameters that could increase scattering for materials like marble (inhomogeneity, anisotropy,
internal defects etc.). The maximum deflection of the central cross section was determined equal
to about 0.10mm for the specimens of the first class and equal to about 0.16mm for those of
the second class, again with a relatively low standard deviation.
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Fig. 6. Raw data of some characteristic experiments of both classes of specimens: variation of the load
induced against the displacement of the loading frame traverse

The variation of the Notch Mouth Opening Displacement (NMOD), as it was obtained by
the clip-gauge, normalized over the initial distance between the knife edges of the clip-gauge
(Fig. 3b), is plotted in Fig. 7 with respect to the maximum “nominal” axial stress developed,
also, for some characteristic specimens. The “nominal” stress was calculated by the familiar
formula of the classic Bernoulli-Euler technical bending theory (taking into account the effective
cross sectional area)

σnom =
3PLo

2b(h − αo)2
(3.1)

where P is the force applied. It is seen that after a more or less linear portion these graphs
become non-linear, contrary to what is perhaps expected for a material of an increased brittleness
like Dionysos marble. It is here clarified that the data of Fig. 7 for the NMOD are plotted
up to the maximum stress value. Clearly, the clip-gauge continues recording even after the
peak stress is reached, since the fracture of the specimen and its fragmentation into two pieces
is macroscopically observed with some delay after the stress attains its maximum level. This
phenomenon is the origin of quite a few problems, related to the accurate determination of
the critical value of NMOD, in case the latter is considered as a critical quantity (criterion)
describing the fracture. Due to its importance, the specific point will be discussed further in
Section 5. The average value of the dimensionless critical NMOD for Dionysos marble was found
equal to about 7.5 · 10−4.
The average value of the “nominal” axial fracture stress, in the presence of a notch, was

14.04MPa with a relatively low (considering the brittleness of the material) standard deviation.
The differences between the specimens of the two classes are negligible, indicating that it is the
presence of the notch itself rather than its length that dictates the final outcome. The respective
value for the “nominal” axial fracture stress of intact Dionysos marble beams under 3PB, as it
was determined by Vardoulakis et al. (1997), is equal to 18.4 MPa. Both values (i.e., for notched
and intact specimens) are considerably higher than the respective one determined from direct
tension tests, reported again by Vardoulakis et al. (1998), which for the strong anisotropy direc-
tion was equal to 9.1MPa (Table 1). This conclusion supports further the indications concerning
the inappropriateness of the 3PB test as a substitute of the direct tension test.
What is to be noted, also, from Fig. 7, is that the stress-NMOD curves deviate from linearity

from relatively early load levels, contrary to the respective load-deflection curves. This could
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Fig. 7. The variation of the longitudinal “nominal” axial stress against the Notch Mouth Opening
Displacement as obtained by the clip-gauge. The values of NMOD are normalized over the initial

distance d between the knife edges of the clip-gauge

be explained by the fact that the NMOD strongly depends on the stress field at the immediate
vicinity of the notch crown, where the so called “process” zone is formed and the material locally
ceases obeying the linearity assumption. On the other hand, the overall deflection depends on
the global stress field all over the specimen. Taking into account that the maximum size of the
process zone for Dionysos marble is of the order of only a few millimetres (Kourkoulis et al.,
1999), it is reasonable to assume that it cannot drastically influence the overall response of the
specimen.

In addition, it should be emphasized that the slope of the experimentally obtained stress-
NMOD curves is much more abrupt compared to that obtained analytically using the familiar
formula for the stress-NMOD relation for a beam with a crack, as it is provided by classical
Fracture Mechanics for a beam with length-to-height ratio equal to four (Tada et al., 1973)

δ =
4σnomα

E′
V1
(αo
h

)

V1
(αo
h

)
= 0.76 − 2.28

(αo
h

)
+ 3.87

(αo
h

)2
− 2.04

(αo
h

)3
+

0.66
(
1− αoh

)2
(3.2)

In Eqs. (3.2) E′ is the equivalent Young’s modulus of the beam material (depending on whether
plane stress or plane strain conditions prevail). The difference exceeds 100%, and it is quite
impossible to be addressed to any type of experimental error or to the fact that the length-
-to-height ratio of the specimens tested was not exactly equal to four for the second class of
specimens (it was equal to 3.6). In fact, Eq. (3.2) is only valid for “mathematical” cracks (zero
distance between the crack lips) and only approximately describes the stress-NMOD relation in
the case of notched specimens. Therefore, it should be used with caution, since it ignores the
role of the radius of curvature ρ (see Fig. 2b) of the crown of the notch, which under specific
circumstances could be critical (Markides and Kourkoulis, 2016). Moreover, as it was pointed
out by Vardoulakis et al. (1998) and Kourkoulis et al. (1999), 3PB of beams made of Dionysos
marble should be described in the frame of gradient elasticity, taking into account the internal
microstructure of the specific material. The latter is the only approach permitting description
of the size-effect, which is quite pronounced for the specific material.



534 S.K. Kourkoulis

Before concluding this Section, two additional aspects of the mechanical behaviour of Dio-
nysos marble should be mentioned, which render the theoretical analysis of 3PB in the frame
of Linear Elastic Fracture Mechanics even more prone to large discrepancies from experimental
reality. The first one is the slight non-linearity characterizing the axial stress-axial strain curve
of the specific marble type. The second one is its bimodularity, i.e., the fact that its elastic
modulus under tension is not identical to that under compression (Exadaktylos et al., 2001).
Interesting conclusions about the deformed shape of the specimens just before fracture can be

drawn from Fig. 8 in which the deflections of both the upper and lower edges of a typical specimen
are plotted for its central part from either side of the notch. The deflections are obtained from
the data of the DIC system. Any rigid body translation and rotation was removed. It is observed
from Fig. 8 that the deformed contours of the upper and lower edges are not self similar. This
behaviour could be attributed to:

(i) The presence of the notch and

(ii) The decrease of the specimen height due to the relatively short length of the specimen
(and the way the load is applied, i.e., to the punch effect).

Fig. 8. The vertical (parallel to the load direction) displacement of the upper (filled cycles) and lower
(empty triangles) edges of a typical specimen for its central part, as they were obtained with the aid of

the 3D-DIC technique (rigid body translations and rotations are removed)

Both these factors are responsible for generation of compressive vertical normal stresses along
the height of the central part of the specimens. In Fig. 8, the best fit curves of the experimental
data are also shown (continuous lines). For both the upper and lower edges, it is concluded that
their deformed shapes are simulated by second order functions of the form

y = c1x
2 + c2x+ c3 (3.3)

with a very satisfactory correlation factor R2 ranging from 0.97 to 0.99. In Eq. (3.3) c1, c2 and c3
are constants obtained numerically with the aid of commercial software.
As the next step, the experimental data for the NMOD, as obtained from both the DIC

technique and the clip-gauge, are discussed. A typical view of the field of axial displacements ux
(used for the indirect determination of NMOD) is shown in Fig. 9a, as it was captured by the
DIC technique just before the final macroscopic fracture of a typical specimen. The impending
cracking path is clearly detectable as the locus of zero ux-values. In order to take advantage
of the specific DIC data, two small polygons were isolated on both sides of the notch at its
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lowest level and the distance between them was determined as a function of time. Removing
the initial distance between the centroids of the two polygons and also removing any rigid body
displacements, one obtains the NMOD. The raw data for the time variation of the NMOD as it
is obtained from both the DIC technique and the clip-gauge are plotted in Fig. 9b for a typical
specimen. Careful inspection of this figure indicates that, although the DIC data are qualitati-
vely similar to the respective ones of the clip-gauge, some quantitative differences exist, mainly
for relatively low load levels, where the DIC data appear underestimating the respective NMOD
values recorded by the clip-gauge. However, at the ultimate load steps (which are of utmost
importance for the determination of the critical NMOD value) the data of the two techniques
are very close to each other. In general, according to both techniques, it is only during the very
last load steps that the NMOD starts increasing rapidly according to an almost exponential law,
and the respective graphs become almost vertical. As a result, the determination of the critical
NMOD becomes extremely difficult. Similar conclusions were obtained experimentally by An-
drianopoulos et al. (1997) for some Metal Matrix Composites under direct tension, although they
adopted a completely different recording technique. Saragas et al. (1996) published additional
data supporting the present conclusions and, moreover, they provided some exponential laws
describing accurately enough the dependence of NMOD on the stress level.

Fig. 9. (a) Axial displacements as recorded by the 3D-DIC technique. The crack path to be followed is
visible as the locus with the zero axial displacement. (b) The time variation of the NMOD as it was
measured by the clip-gauge (continuous line) versus that recorded by the 3D-DIC system (empty

rhomboid symbols)

The deformed notch contour can be deduced from Fig. 10a, in which the horizontal displace-
ments of the points of a locus s, closely surrounding the notch are plotted against the variable s
(the contour of the specific locus approaches the actual boundary of the notch as close as it is
permitted by the resolution of the DIC system). It is interesting to observe that the flanks of
the notch remain linear, thus justifying a geometric extrapolation of the NMOD values in order
to obtain the Notch Opening Displacement (NOD). The maximum value of this quantity is in
fact the geometry-independent parameter that could be potentially used as fracture criterion.
Taking advantage of Fig. 10a, it can be concluded that the critical NMOD for Dionysos marble
(at least for the block tested in the present protocol) is equal to about 7.5µm (after removing
the initial distance between the knife-edges of the clip-gauge). Then, adopting the procedure
shown in Fig. 10b (Knauf and Riedel, 1981) with ϕ = 60◦, the respective value for the critical
NOD (which according to some fracture criteria could be considered as a material constant) is
found equal to about 4.4µm.
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Fig. 10. (a) Axial (horizontal) displacements of a linear locus s closely surrounding the notch (as close
as the resolution of the DIC system permits). (b) The procedure adopted to determine the Notch

Opening Displacement based on data for the respective NMOD

4. Acoustic and electric activity during three-point bending

4.1. An overview of the whole loading procedure

The time variation of the PSC, recorded during the whole loading process, is plotted in
Fig. 11a, in juxtaposition to the respective variation of the load induced, for a representative
specimen with a cross section equal to b × h = 20 × 20mm2. It is seen that during the initial
loading steps (i.e., for load levels lower that 50% of the fracture load) the PSC increases very
smoothly, in fact it is almost constant. At a load level equal to about 50% of the fracture load
(point A in Fig. 11a), the magnitude of the PSC starts increasing at a different (much higher)
rate while the respective load-time plot exhibits an imperceptible slope change (see the shadowed
rectangle in Fig. 11a). According to the literature (Triantis et al., 2006, 2007), the onset of an
intense PSC increase designates the onset of micro-cracking within the volume of the specimen
and, therefore, it can be concluded that point A corresponds to the onset of intense damage
processes. Moreover, at a time instant t1, a little before the load attains its ultimate value,
it is observed that the value of PSC holds back instantaneously (point B in Fig. 11a). The
specific point indicates the generation of a local macro-crack which interrupts instantaneously
the local electric paths. From this point on, it is considered that the system (specimen) entered
its “critical stage”, and final fracture is impending (Stergiopoulos et al., 2015; Triantis et al.,
2012).

In Fig. 11b, the aforementioned quantities are plotted for a characteristic experiment of the
second class, i.e., with a specimen of the cross section equal to b× h = 25 × 25mm2. Although
the PSC-time curve exhibits qualitatively similar behaviour to that of Fig. 11a, there are some
interesting differences: While at the very early loading levels the PSC-value is again almost
constant, it starts increasing relatively earlier (see point A in Fig. 11b), following an “anomaly”
of the respective load-time curve. This “anomaly” is characterized by a slight drop of the load-
-time curve, which then keeps increasing but with a clearly different slope (see the shadowed
rectangle in Fig. 11b). Again, at a time instant t1, a little before the load attains its ultimate
value, the PSC holds back instantaneously (point B in Fig. 11b), indicating again that the
system entered its “critical stage” and fracture is impending.
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Fig. 11. The time evolution of the load induced in juxtaposition to the respective one of the PSC
recorded for a specimen with b× h = 20× 20mm2 (a) and b× h = 25× 25mm2 (b)

Considering the overall behaviour of the two specimens just discussed (and besides any
differences which are expected due to the inhomogeneous and anisotropic nature of the material
studied), it can be concluded that the time-variation of the PSC offers characteristic indications
concerning both the onset of intense micro-cracking within the specimen volume and also the
entrance of the system (specimen) to its “critical stage”. Moreover, it is worth noticing that the
above indications are not accompanied by similar indications of the load-time curve, which is
more or less a continuous and monotonous line (see also Fig. 6) with imperceptible slope changes
which do not offer clear hints of the upcoming catastrophic failure.

Fig. 12. The time evolution of the load induced in juxtaposition to the respective one of the NMOD, as
recorded by the clip-gauge for a specimen with b× h = 20× 20mm2 (a) and b× h = 25× 25mm2 (b)

In an effort to detect a purely mechanical quantity that could, perhaps, offer such hints (i.e.,
warnings of upcoming catastrophic fracture), the time-variation of the NMOD, as obtained from
the clip-gauge, is plotted in Fig. 12 in juxtaposition to the respective load-time variation (for
the same as previously two specimens). In good qualitative accordance with the variation of the
PSC-values, the NMOD-time curve consists, for both specimens, of three well distinguishable
intervals: one of smooth and almost linear increase, a second one, which is again more or less
linear but of definitely higher slope and, finally, a third one with very steep slope (as the load
induced approaches its ultimate value).
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4.2. Focusing attention on the very last loading stages

The analysis of the PSC and NMOD data recorded during all tests of the present experimental
protocol indicated clearly that the most dramatic changes of both quantities take place during
the very last loading stage (and the same is true for the time variation of the acoustic activity, as
it will become evident in next Sections). The duration of this stage does not exceed 10% of the
tests duration. Given that the changes within this interval are very abrupt, it is quite possible
that critical details of damage evolution could be shadowed by the extremely “condensed” nature
of the events. It was thus decided to focus attention on this ultimate time-interval by taking
advantage of an alternative mode for representing the respective experimental data. In this
direction, the time evolution of PSC, NMOD and also of the acoustic activity are considered
versus the (tf − t) parameter in semi-logarithmic scale, where tf is the time instant at which
the specimen failed by catastrophic crack propagation.

Following the above concept, the time variation of the load and the PSC (both normalized
over their respective maximum values) are plotted in Fig. 13 versus the (tf − t) parameter in
juxtaposition to the acoustic activity as it is represented by the time rate of the number of
acoustic hits detected by the acoustic sensor located just above the notch. The plots are drawn
in a semi-logarithmic scale for the two specimens discussed in the previous Sections.

Fig. 13. The time evolution of the load induced (normalized over its maximum value) in juxtaposition
to the respective ones of the PSC recorded (also normalized over its maximum value) and of the number
of hits recorded per second for a specimen with b × h = 20× 20mm2 (a) and b× h = 25× 25mm2 (b).
The quantities are plotted in semi-logarithmic scale against the (tf − t) parameter to better enlighten

the phenomena at the very last loading levels

Figure 13a corresponds to the specimen with b× h = 20× 20mm2. Concerning the acoustic
activity, it can be seen that the specimen is almost “silent” for tf − t > 10 s. The number of
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hits recorded per second is almost equal to zero. Then, at the time instant tf − t = 10 s, the
rate of acoustic hits recorded by the acoustic sensor starts increasing dramatically. It is very
interesting to observe that the specific time instant corresponds to a clear decrease in the slope
of the respective time-PSC curve (see the shadowed ellipse in Fig. 13a).

The overall time evolution of the above quantities (load, PSC and rate of acoustic hits)
is qualitatively similar also for the specimens of the second class (i.e., the ones with b × h =
25× 25mm2), as it is shown in Fig. 13b. However, the precursor phenomena designated by the
changes of the PSC and the rate of acoustic hits appear now somehow earlier, i.e., at about
tf − t = 100 s. Indeed, the specimen is now “silent” for the time interval tf − t > 100 s. Then, the
acoustic activity starts increasing relatively smoothly, and only at tf−t = 10 s it starts increasing
dramatically. Again, the time instant at which the acoustic activity is amplified for the first time
(i.e., the instant tf−t = 100 s) is very close to the time instant at which the respective time-PSC
curve changes its slope (see the shadowed ellipse in Fig. 13b). Indeed, while for tf − t > 100 s the
PSC increases monotonically (following the respective behaviour of the load), at tf − t = 100 s
the rate of the increase of the PSC changes and its value tends to be stabilized. For this specific
specimen, at the onset of “explosive” amplification of the acoustic activity (at tf − t = 10 s)
the value of the PSC has been already stabilized and it starts decreasing, indicating, obviously,
generation of cracks of a higher order (due to the coalescence of already existing cracks of smaller
length) which interrupt the electric paths.

Along the same lines, the time variation of the acoustic activity is plotted in Fig. 14 in
juxtaposition to the respective variation of the time rate of the NMOD recorded with the aid of
clip-gauge. The plots are again considered versus the (tf−t) parameter in semi-logarithmic scale
for the same specimens as previously. The identity of the curves corresponding to the acoustic
activity and to the rate of change of the NMOD-values is quite striking.

Fig. 14. The time evolution of the NMOD rate in juxtaposition to the respective one of the number of
hits recorded per second for a specimen with b× h = 20× 20mm2 (a) and b× h = 25× 25mm2 (b). The
quantities are plotted in semi-logarithmic scale against the (tf − t) parameter to better enlighten the

phenomena at the very last loading levels

Concerning now the Ib-value, its time variation is plotted against the (tf − t) parameter
(again in semi-logarithmic scale), in Fig. 15a, for a characteristic specimen, belonging to the
first class. It is seen that the Ib-value starts decreasing towards a level equal to one (considered
as an indication that the system enters its “critical stage”) at about the same time instant of
the slope change of the respective (tf − t)-PSC plot. The respective graph for a specimen of
the second class, shown in Fig. 15b, is qualitatively similar. The main difference is that now
the decrease of the Ib-value towards levels equal to one starts somehow earlier, i.e., at (tf − t)
values around 100 s (again in accordance with the slope change of the respective (tf − t)-PSC
plot).
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Fig. 15. The time variation of the Ib-value in juxtaposition to the respective one of the PSC for a
specimen with b× h = 20× 20mm2 (a) and b× h = 25× 25mm2 (b)

4.3. Classification of the cracking modes

Taking advantage of the characteristics of the acoustic activity, an attempt is now made
to classify the cracks generated during the whole loading procedure, focusing again attention
on the very last loading stages. Following Ohno and Ohtsu (2010) and Aggelis (2011), the
Average Frequency of the acoustic hits is plotted in Fig. 16 either against the RA (Rise Time per
Amplitude) parameter (left column of figures) or against the Rise Time (right column of figures)
for the above two specimens. It is clear from Fig. 16a (corresponding to the specimen of the first
class) that during tf − t > 10 s time interval the acoustic activity is definitely due to exclusively
tensile micro-cracking (recall that tf − t = 10 s corresponds to the time instant at which the
dramatic changes of the electric and acoustic activity appear for the specific specimen). Indeed,
in this time interval the values of both the RA-parameter and the respective Rise Time are very
small (tending to zero). It is only during the last ten seconds that events with increasing RA and
Rise Time values appear while, at the same time, their average frequency decreases significantly,
indicating that Mode II cracking or shear phenomena appear. This phenomenon is even clearer
during the very last second of the loading procedure (tf − t < 1 s).
The existence of a significant number of non-tensile cracks is, perhaps, somehow astonishing,

especially for 3PB tests with pre-notched specimens for which fracture is attributed to tensile
stresses around the crown of the notch. A possible explanation could attribute the existence
of Mode II and mixed mode cracking (as well as of other type of shear phenomena) to the
layered structure of the specific marble type. Indeed, the material layers are somehow wavy and,
therefore, they are not uniformly oriented with respect to the loading axis resulting to irregular
crack paths (mainly at the microscopic but also at the macroscopic level). These paths, at a
given time instant, may be parallel to the material layers (within them), and a few moments
later they may become normal to them. As a result, a variety of cracking modes appears (either
tensile or shear or mixed mode), in spite of the fact that the macroscopic overall stress field
consists of normal stresses (either tensile ones prevailing at the lower portion of the specimens, or
compressive ones prevailing at the upper portion). The above described sequence of activation of
damage mechanisms is in general agreement with what is widely accepted concerning the fracture
of structural materials and the sequence of cracking modes (Aggelis et al., 2013), i.e., that “tensile
stresses induce initial micro-cracking and later shear phenomena dominate as damage is being
accumulated”.
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Fig. 16. The Average Frequency of the AE signals recorded versus their RA (Rise Time per Amplitude)
parameter (left column) and versus their Rise Time (right column) for a specimen with

b× h = 20× 20mm2 (a) and b× h = 25× 25mm2 (b)

The conclusions drawn for the specimen of the second class are almost identical, as it can
be seen in Fig. 16b. The only difference is that now the generation of Mode II cracking or shear
starts earlier, i.e., at about tf − t = 100 s (again in full accordance with what was observed for
the changes of the electric and acoustic activity and the time evolution of the NMOD rate).
Exclusively for clarity reasons the duration of the specific test was split into four intervals.
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5. Concluding remarks

The response of notched marble beams to mechanical loading under 3PB conditions was stu-
died experimentally, using both traditional and innovative sensing techniques, in an effort to
enlighten some critical aspects of their mechanical response and also to check whether it is po-
ssible to detect precursor phenomena that could act as signalling effects designating upcoming
catastrophic failure.

Concerning the mechanical response, it was concluded that the NMOD-stress relation de-
viates from linearity from relatively early load levels, contrary to the respective load-deflection
relation which is almost linear for the whole loading procedure. The above difference indicates
the crucial role of the process zone developed around the crown of the notch. In spite of its very
small relative size, this zone affects significantly the evolution of NMOD since the latter depends
on the local stress field around the crown of the notch. On the other hand, due to its small size,
this zone cannot influence the overall stress field which remains almost linear, explaining the
linearity between load and deflection.

Along the same lines, it was pointed out that the slope of the stress-NMOD curve at its
linear portion is significantly different from the respective slope predicted using the classical
Fracture Mechanics tools. Although some differences were expected due to the fact that in the
present protocol notched rather than cracked beams were tested, the magnitude of this difference
(exceeding 100%) was astonishing. Following Vardoulakis et al. (1998), this huge difference is
attributed to the existence of an internal structure, which does not permit characterization of
Dionysos marble as an amorphous material. As a result, such materials should be described using
tools of gradient elasticity rather than traditional tools of Continuum Mechanics and Fracture
Mechanics.

Another interesting finding of the present protocol is that the fracture stress determined
by the 3PB tests (with either intact or pre-notched specimens) significantly overestimates the
tensile fracture stress obtained by direct tension tests. This observation should be carefully
taken into account by engineers since it is a common practice to determine tensile properties
of very brittle geomaterials (like rocks and rock-like materials) using bending tests, since their
laboratory implementation is quite simple.

Interesting conclusions were also drawn regarding the deformed shape of the specimens just
before fracture. Indeed, it was quantitatively pointed out that the deformed shapes of the upper
and lower edges of the beams were different. Although such a result should be expected due
to the influence of the point load, it was the first time that this difference was experimentally
quantified for a material like Dionysos marble, which is extensively used for construction of
structural elements subjected to bending schemes.

Regarding the notch itself, it was concluded that its flanks remain linear with excellent
accuracy. This observation permits a linear extrapolation of the data recorded at the mouth
of the notch (i.e., the NMOD-values recorded by clip-gauges attached at the mouth of the
notch) to its tip. As a result, techniques like that proposed by Knauf and Riedel (1981) for
the determination of COD and its critical value for completely different materials can be used,
also, for the determination of NOD and its critical value for brittle geo-materials like Dionysos
marble.

Recapitulating, it became clear that although Dionysos marble is a very brittle material and
its overall mechanical response in terms of classical strength of materials is more or less linear,
its mechanical behaviour in the presence of notches cannot be adequately described in terms of
linear elastic Continuum Fracture Mechanics.

Concerning now the second target of the present experimental protocol, i.e., the detection
of precursor phenomena designating impending fracture, interesting conclusions were drawn for
all three quantities considered, namely mechanical, electric and acoustic ones. To recapitulate
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these conclusions, all three quantities considered, i.e., the PSC, the rate of cumulative acoustic
hits per second (dN/dt) and the rate of NMOD, are plotted in Fig. 17 versus the “nominal”
stress for a typical specimen of the class with b× h = 20× 20mm2. The similarity of all curves
is striking: In spite of their completely different nature (electrical, acoustic and mechanical), all
three quantities behave almost according to the same manner with respect to the stress level
(or equivalently to the load induced). Initially (i.e., for low stress compared to the fracture one),
they are either almost constant (PSC) or they increase very smoothly and, in any case, linearly
(dN/dt and NMOD). Then, at a stress level equal to about two thirds of its ultimate value, a
dramatic change is observed and the respective curves start increasing according to a completely
different slope, tending to become almost vertical.

Fig. 17. The evolution of the electric and acoustic activity versus the axial “nominal” stress in
juxtaposition to the respective one of the NMOD for a typical specimen with b× h = 20× 20mm2,

highlighting the existence of mutually compatible precursor indicators

Considering the above experimental evidence, it is obvious that a relation exists between
the mechanical response of Dionysos marble and the respective electric and acoustic processes
taking place within the specimen volume. This is schematically shown in Fig. 17 where the
narrow shaded elliptic area encompasses all three phenomena:

(i) Deviation of the stress-PSC plot from its almost constant portion, represented by line aa′

(point A).

(ii) Deviation of the stress-dN/dt plot from its linear portion, represented by line bb′ (point B).

(iii) Deviation of the stress-NMOD rate plot from its linear portion, represented by line cc′

(point C).

Taking now into account that the increase of the PSC definitely designates the onset of intense
micro-cracking (Triantis et al., 2006; Anastasiadis et al., 2007) and also that the quantity dN/dt
is directly related to the number of micro-cracks generated within the specimen’s volume, it can
be safely concluded that: At least for the tests of the specific experimental protocol, irreversible
processes start taking place at load levels equal to about two thirds of the fracture stress, at
rates definitely different from those of the earlier loading stages.

The second very interesting conclusion (which was drawn by considering the very last loading
stages through the alternative (inversed) representation of the “time arrow”, see Figs. 13-15) is
that a little before the final fracture, the time-PSC plot exhibits well distinguishable changes
(in good accordance with the remaining quantities considered), that could be related to the
generation of fatal cracks all along the active cross section of the specimen, indicating the
exhaust of its load-carrying capacity. From this point on, and in spite of the fact that the load
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level will increase slightly (perhaps due to inertia effects), the specimen should be considered
fractured. Therefore, these changes of the PSC readings could be used for the determination of
the critical NMOD, curing the problems mentioned previously in Section 3, regarding the actual
point of the NMOD-stress curve that corresponds to the critical NMOD value.

Along the same lines, it is very interesting to note that the above mentioned changes of the
time-PSC plot, designating the exhaust of the specimen’s load-carrying capacity, are in good
agreement with the respective hints provided by the time evolution of the Ib-value.

Concluding, it can be said that taking advantage of innovative experimental techniques,
interesting data can be pumped from the interior of loaded elements, uniquely related to failure
mechanisms activated well before any macroscopic fracture is observed.

Research in progress, with double edge notched (DENT) dog-bone marble specimens under
direct tension, definitely supports the conclusions of the present study (Kourkoulis et al., 2018).
What is more important is that the potentialities of the PSC technique are also supported
by a protocol in progress with much more complex structures, as it is for example marble
epistyles mutually interconnected with the aid of titanium elements and suitable cementitious
materials subjected to pure shear. Although this project is still in progress (given that quite a
few difficulties generated by the existence of interfaces are to be overcome), the results are quite
encouraging (Pasiou et al., 2018).

Taking into account the conclusions just mentioned, it is indicated that it is worth exploring
further the potentialities of the PSC technique to be used as an alternative Structural Health
Monitoring tool. This statement is further supported by taking into account the very low cost of
the sensors required to record the electric current and also their relatively small size. Especially
for restoration projects of ancient monuments, these characteristics of the PSC technique are
very attractive because usually there are too many elements restored (thus many sensors are
required) and also the aesthetic aspect (and, therefore, the small size of the sensors) is of utmost
importance. The excellent agreement of the output of the PSC technique with the respective ones
of the AE technique provides a very reliable calibration tool for the PSC technique, considering
that nowadays Acoustic Emission is a mature, widely used sensing technique based on well
founded natural basis.

Clearly, before definite conclusions are drawn, the qualitative correlations enlightened in the
present protocol must be further studied for a much wider class of materials and tests (tension,
compression and shear) in the direction of providing quantitative rather than qualitative corre-
lations that could permit calibration of the outcomes of the PSC technique against those of the
Acoustic Emissions technique.
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This study considers forced vibrations of a rotating structure consisting of a rigid hub and
three flexible beams. The blades are nominally made of a multilayered laminate with a speci-
fic stacking sequence resulting in full isotropic macroscopic material behaviour. However, in
the performed analysis it is assumed that the rotor has been mistuned because of manufactu-
ring tolerances of the composite material. These inaccuracies are represented by deviations
of reinforcing fibres orientations from their nominal values. The considered tolerances break
the intended macroscopic material isotropy and make the laminate to exhibit the fully ortho-
tropic behaviour. Based on previous authors research, the system of four mutually coupled
dimensionless ordinary differential governing equations is adopted. Forced responses of the
system under regular and chaotic excitations are investigated.

Keywords: rotating beam, multi-bladed rotor, rotor mistuning, chaotic oscillations

1. Introduction

Rotors are important machine components widely used in numerous industrial applications. The
most common ones are helicopters, wind power turbines, fans, pumps, airplane propellers etc.
Other advanced rotor design examples are rigid disks with a series of beam elements combined in
multi-stage assemblies. These are typically found in axial compressors, turbojet aircraft engines,
steam and gas turbines etc.

The considered systems are intensionally designed to be perfectly symmetric ones. However,
multiple reasons may lead to symmetry break down in actual structures. The most common
is rotor unbalance. This happens when mass centerline of the rotor does not coincide with the
rotational axis. As a consequence, periodic inertia forces arise and large amplitude lateral vibra-
tions of the structure can occur. The loss of rotor symmetry might happen also due to operating
wear of blades airfoil, possible crack development, random variations in material properties and
tolerances in manufacturing processes. Any of these factors leads to deviation in mechanical
properties of the affected blade. This difference in blade to blade properties is referred to as
rotor mistuning.

The impact of system mistuning on the free and forced response of multi-bladed rotors is of
great scientific and practical interest. This stems from a few reasons. Primarily, the mistuning
phenomenon has a fundamental influence on rotor dynamic characteristics. It turns out that
mistuned multiple-bladed rotors can exhibit drastically larger forced response levels than the
perfectly tuned designs (Xiao et al., 2004). For example, a 5% variation in the blade cantilever
frequencies on a 92-bladed high pressure turbine disk can lead to one blade suffering a response
magnitude of over 500% of the one observed on the perfectly tuned equivalent disk (Petrov and
Ewins, 2003). This effect leads to large increases in stress and vibration amplitudes resulting
in high cyclic fatigue and short lifetime of the rotor. An important observation regarding the
increased vibration amplitudes is that they are not evenly distributed around all the rotor
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blades. The vibration energy is usually spatially concentrated making the modal motion to be
limited to few blades only. This effect is known as mode localisation phenomenon and can be
observed in any coupled periodic systems if a group of tuned structure modes forms a complete
set along the periodicity direction (Chen and Shen, 2015). The presence of irregularities in such
structures restricts propagation of vibrations and confines the energy to a region close to the
vibration source. However, as reported by Vakakis et al. (1993), the mistuning and the resulting
localisation phenomena may originate also from structural nonlinearities and, thus, it may be
observed even in perfectly periodic systems.

Several concepts have been developed and discussed in the professional literature to reliably
quantify mistuned rotor characteristics. These can be generally divided into either statistical or
deterministic approach to the problem.

Studying the dynamics of mistuned rotors within the frame of statistical analysis requires
information about forced response probability density functions. These distributions are usual-
ly determined within a series of Monte Carlo simulations. To this aim, a random population
of test designs has to be given. This can be generated by assuming a priori the deviations in
system mass and stiffness matrices (Sinha, 1986). More representative designs may be found by
Taylor series expansions in terms of variables describing geometric variations of mistuned bla-
des (Bhartiya and Sinha, 2013), from the experimental data tests (Li et al., 2006) or by means
of a perturbation technique as proposed by Mignolet and Lin (1993). An alternative approach
to approximate the mistuned rotor forced response probability density functions was proposed
by Sinha (2006). The author tested the use of polynomial chaos for modal stiffness estima-
tion and to compute the statistics of the forced response of a mistuned bladed disk assembly
analytically.

Although the mistuning effect is a stochastic process (due to randomness of geometric and/or
material perturbations) several deterministic approaches to the problem have been also deve-
loped. The earliest studies considered multi-bladed rotors as a series of springs and lumped
masses used to represent the blades and additional springs and dampers to model blade-to-hub
and blade-to-blade interactions (Griffin and Hoosac, 1984). Values of these system variables had
to be determined through a parameter identification procedure. Despite its simplicity and ava-
ilability of more advanced models these types of simplified formulations are still in use (Nikolic,
2006).

Around the same time as analytical lumped masses models were being elaborated, the first
finite element code software started showing up. This allowed more strict investigation of actual
rotor structures, taking into account complicated blades geometry, shrouds, aerodynamics and
fluid-structure interactions etc. Over time, a reduced order treatment and sub-structuring tech-
niques were developed to simplify a complete bladed disk finite element model to a smaller and
more tractable problem. The most common ones used for mistuned rotors analysis are compo-
nent mode synthesis (CMS), component mode based (CMB) method, subset of nominal modes
(SNM) method and modified modal domain (MMD) analysis (Castanier and Pierre, 2006). For
instance, the CMS method proposed by Castanier et al. (1997) is capable of reducing the ove-
rall number of FE degrees of freedom up to three orders of magnitude if compared to the full
structure model. Another deterministic approach to the analysis of mistuned rotors is based on
a combination of the perturbation method and sensitivity analysis for natural frequencies and
mode shapes (Shapiro, 1999). Alternatively, the analysis of rotors dynamics may be performed
in the framework of an exact analytical formulation. The governing equations are usually de-
rived by means of Hamilton’s principle. Next, these are solved analytically or numerically to
test the system stability, individual blades motion synchronisation etc. (Crespo da Silva, 1998;
Chandiramani et al., 2002; Sinha, 2013).

Dynamics of rotating structures was also investigated by the authors of this publication.
In particular, in paper (Warminski et al., 2014) a nonlinear system composed of two pendula
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attached to a hub and rotating in a horizontal plane was examined. The synchronisation phe-
nomenon and transitions through resonances were analysed considering the influence of the hub
inertia and order of nonliearity in the problem formulation. The existence of chaotic oscilla-
tions of the system and paths leading to chaos were demonstrated as well. Next, Latalski et al.
(2017) studied the dynamics of a hub-composite beam structure. Parametric studies regarding
the laminate orientation angle and different regular driving torque scenarios were performed.
The possibilities to control this kind of systems by means of the saturation control method were
examined in a later research (Warminski and Latalski, 2017).

In the present contribution, the former authors studies are extended to accommodate the
three-bladed rotor case. In the performed analysis, it is assumed that the beams are made of
a multilayered composite material with manufacturing tolerances of reinforcing fibres orienta-
tions. The different magnitude of manufacturing inaccuracies in the individual blades results
in their different stiffnesses followed by the rotor mistuning. The forced response of the system
under regular and chaotic excitations is investigated as well as synchronisation of individual
blades motions.

2. Statement of the problem

Let us consider a rotor consisting of three slender and elastic composite beams clamped at
the rigid hub of inertia Jh. The blades are fitted so that their flapwise bending plane coin-
cides with the rotor plane. The system is driven by an external torque Text inducing rota-
tion about a fixed frame vertical axis CZ0. The temporary angular position of the hub is
denoted by an angle ψ(t) – see Fig. 1. The beams are made of an eighteen-layered laminate
of an unidirectional graphite-epoxy pre-preg material. The adopted specific stacking sequence
(0/−60/60/0/−60/603/−602/02/−60/02/602/−60) results in nominally full isotropic compo-
site material behaviour (Vannucci and Verchery, 2002). However, in the performed analysis it is
assumed that the rotor can be mistuned because of manufacturing inaccuracies in the laminate.
These are represented by deviations of reinforcing fibres orientations from their nominal values.
The discussed misalignments break the intended macroscopic material isotropy and make the
laminate exhibit fully orthotropic behaviour. More detailed information regarding the way the
rotor is mistuned and the considered mistuning magnitudes is given in the next Section and
Table 3.

Fig. 1. Model of the rotating hub with three elastic beams
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2.1. Equations of motion

The partial differential equations of motion of the considered structure have been derived
according to the extended Hamilton’s principle

δJ =

t2∫

t1

(δT − δU + δWext) dt = 0 (2.1)

where J is the action, T is the kinetic energy, U is the potential energy and the work done by
the external forces is given by the Wext term.
The kinetic energy of the structure is defined as

T =
1

2
Jhψ̇

2(t) +
1

2

3∑

i=1

∫

Vi

ρṘTi Ṙi dVi (2.2)

where the designation ρ refers to the average composite material density, Ṙi is the velocity
vector of an representative infinitesimal element of volume Vi of the beam i. The total potential
energy of the system U =

∑3
i=1 Ui comes from elastic deformations of each beam. Posing the as-

sumptions regarding a general shape of an open cross-section and its in-plane non-deformability,
the energy Ui for an individual specimen is given by (Latalski et al., 2017)

Ui =
1

2

∫

Vi

(σxxεxx + σxzγxz + σxsγxs) dVi (2.3)

where σxx, σxn, σxs and εxx, γxz, γxs are stresses and strains in the axial direction and transver-
se and lateral shear planes, respectively (referring to the individual blade). Although the posed
mathematical model of the beam is limited to the linear case, the nonlinear axial strain εxx
definition is adopted to represent properly the blade stiffening effect arising from system rota-
tion ψ̇(t) (Latalski et al., 2017; Mayo et al., 2004). Therefore, the appropriate expressions are as
follows

εxx =
∂Dx
∂x
+
1

2

[(∂Dx
∂x

)2
+
(∂Dy
∂x

)2
+
(∂Dz
∂x

)2]

γxz =
∂Dx
∂z
+
∂Dz
∂x

γxs = γxy + 2zϕ
′ =

∂Dx
∂y
+
∂Dy
∂x
+ 2zϕ′

(2.4)

where Dx, Dy and Dz are axial, lateral and transverse displacements of the cross-section re-
presentative point written down in the local coordinates frame (x, y, z). The γxs strain includes
an additional component coming from specimen torsion where ϕ is the profile twist angle. This
is mandatory for the points located out of the beam mid-surface (Librescu and Song, 2006).
Moreover, it is worth noting that the first nonlinear term present in εxx is skipped in further
calculations due to the order of magnitude with respect to the other ones (Librescu and Song,
2006).
Bearing in mind least action principle (2.1) and considering energy variations, after integra-

tion with respect to time, a set of general partial differential equations of motion of the structure
is derived. By neglecting the deformations occurring out of the rotor plane, the problem is sim-
plified. Therefore, in the final formulation, only the lead-lag plane displacement, transverse shear
and profile twist for each individual beam are considered. These equations are supplemented by
the additional one representing the rigid hub rotation dynamics. For the sake of brevity, the
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complex form of the partial differential equations and associated boundary conditions are omit-
ted here. However, their full formulation as well as the detailed step-by-step derivation can be
found in the previous authors paper (Latalski et al., 2017).

The derived system of partial differential governing equations is transformed into ordinary
differential ones taking into account the normal modes projection and the associated orthogona-
lity condition. To this aim, the Galerkin procedure for the first natural mode is applied. Next,
the system is converted into the dimensionless notation. The coupled flexural-torsional mode
projection results in the final set of nonlinear ODEs as follows

(
Jh +

3∑

i=1

Jbi +
3∑

i=1

αhi2q
2
i

)
ψ̈ + ζhψ̇ +

3∑

i=1

(αhi1q̈i + αhi3qiq̇iψ̇) = µ(τ)

q̈1 + ζ1q̇1 + α12ψ̈ + (α11 + α13ψ̇
2)q1 + α14q1q̇1ψ̇ = 0

q̈2 + ζ2q̇2 + α22ψ̈ + (α21 + α23ψ̇
2)q2 + α24q2q̇2ψ̇ = 0

q̈3 + ζ3q̇3 + α32ψ̈ + (α31 + α33ψ̇
2)q3 + α34q3q̇3ψ̇ = 0

(2.5)

where Jh, Jbi denote the mass moment of inertia of the hub and each subsequent beam, re-
spectively. These are relative values calculated with respect to beam 1. The factors ζh and ζi
are hub and beams viscous damping coefficients. They have been estimated during laboratory
experiments. The approximate value for every ζi is 0.04 ratio of its corresponding beam natural
frequency ω0i, thus ζi = 0.04

√
ai1. The hub damping ζh has been set at 0.1. The external di-

mensionless torque imposed to the hub is denoted by µ(τ) where τ is dimensionless time. The
parameters αhij (j = 1, 2, 3) present in (2.5)1 and αik (k = 1, . . . , 4) in (2.5)2-4 are coefficients
obtained from the modal reduction procedure.

Studying the system of governing equations (2.5) one may observe that the individual beams
equations are coupled by inertia terms present in the hub equation. If angular velocity of the
structure is constant (ψ̈ = 0) then all equations become uncoupled. This happens despite the
quadratic terms present in the first equation since these terms are of a higher order and can
be neglected for a small oscillations case. By contrast, if the angular velocity is not constant
(ψ̈ 6= 0) then all equations are mutually coupled, and the nonlinear quadratic terms as well as
Coriolis forces are involved in the full structure dynamics.

2.2. Accounting for reinforcing fibres misalignment

To take into consideration the composite fibres orientation tolerances let us assume that
the fiber angle in each k-th ply (k = 1, . . . , N) may be deviated from its nominal value αk by
the maximum acceptable tolerance limit ∆αk. Hence the actual orientation angle stays within
a range 〈αk − ∆αk;αk + ∆αk〉 – see Fig. 2a. Moreover, one assumes that the magnitude of
this misalignment is set arbitrary and it does not depend on the nominal fiber orientations αk.
Therefore, the tolerance stays equal for all layers and, thus, ∆αk = ∆α.

Fig. 2. Modelling the tolerances of laminate reinforcing fibres orientations
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This approach to model the imperfect laminate where only the nominal values and peak
deviations of fiber orientation angles are given renders their exact values unknown. However,
the maximum possible impact of the accepted ∆α inaccuracies on the mechanical properties of
the material may be estimated by means of a sensitivity analysis. To this aim, let us consider the
requested beam stiffnesses occurring in the partial differential equations of motion of the hub-
composite beam rotor as formulated in (Latalski et al., 2017) Eqs. (24)-(28). These stiffnesses are
calculated according to the Librescu composite beam theory (Georgiades et al., 2014; Librescu
and Song, 2006) and expressed as

a33 =

∫

c

[(
A22 −

A12A12
A11

)
z2 − 2

(
B22 −

A12B12
A11

)dy
ds
z +

(
D22 −

B12B12
A11

)(dy
ds

)2]
ds

a37 = 2

∫

c

[(
B26 −

A12B16
A11

)
z −

(
D26 −

B12B16
A11

)dy
ds

]
ds

a55 =

∫

c

[(
A66 −

A16A16
A11

)(dz
ds

)2
+A44

(dy
ds

)2]
ds

a77 = 2

∫

c

(
D66 −

B16B16
A11

)
ds

(2.6)

where the dummy variable s represents the beam profile coordinate measured along its width.
Terms a33, a55, and a77 are flapwise bending, transverse shear and twist stiffnesses, respectively.
The parameter a37 represents the laminate stiffness in coupled flapwise bending-twist deforma-
tion. In the nominal design, this is equal to zero since the considered multilayered laminate is
macroscopically isotropic. However, for a material with misaligned layers it is expected to be
different from zero. This is confirmed by results given in Table 1.

The above given stiffnesses are expressed in terms of individual elements of A, D and B ten-
sors representing stretching, bending and bending-stretching stiffnesses, respectively. Following
the Classical Laminate Theory they are given as

Aij =
18∑

k=1

Q
(k)
ij (zk − zk−1) Bij =

1

2

18∑

k=1

Q
(k)
ij (z

2
k − z2k−1)

Dij =
1

3

18∑

k=1

Q
(k)
ij (z

3
k − z3k−1)

(2.7)

where zk, zk−1 are the distances from the reference plane to the two surfaces of the k-th ply (see

Fig. 2b) and Q
(k)
ij are the members of the reduced stiffness matrix of this ply. These recent ones

depend on the fibres orientation angle αk

Q
(k)
11 = c

4Q11 + s
4Q22 + 2c

2s2(Q12 + 2Q66)

Q
(k)
22 = s

4Q11 + c
4Q22 + 2c

2s2(Q12 + 2Q66)

Q
(k)
12 = c

2s2(Q11 +Q22 − 4Q66) + (c4 + s4)Q12
Q
(k)
66 = c

2s2(Q11 +Q22 − 2Q12) + (c2 − s2)2Q66
Q
(k)
16 = cs

[
c2Q11 − s2Q22 − (c2 − s2)(Q12 + 2Q66)

]

Q
(k)
26 = cs

[
s2Q11 − c2Q22 + (c2 − s2)(Q12 + 2Q66)

]

(2.8)

where c = cosαk and s = sinαk.
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Bearing the above relations in mind, the impact of the considered reinforcing fibers misa-
lignment ∆αk on the beam mechanical properties given by Eqs. (2.6) may be evaluated by
performing a sensitivity analysis. The change of any beam stiffness coefficient aij is

∆aij =
18∑

k=1

∣∣∣
∂aij
∂αk

∆αk
∣∣∣ (2.9)

where ij pair is 33, 37, 55 or 77. The term ∂aij/∂αk represents the sensitivity of the specimen
stiffness with respect to changes in fibre orientations in the k-th individual laminate layer. Since
the signs of the derivative as well as the accepted inaccuracy ∆αk are arbitrary, an absolute
value operator is used to consider the most unfavourable case. Finally, two limit values for any
perturbed stiffness aij are possible, namely the lower one aij − ∆aij for a decreased stiffness
and the upper one aij +∆aij for an increased value. The presented above treatment based on
perturbation calculus is often encountered in reliability based structural design and represents
the so called ‘a worst case scenario’ analysis (Gutkowski and Latalski, 2003).

Calculations of ∂aij/∂αk sensitivities involve differentiation of the individual elements of
stretching, bending and bending-stretching tensors (2.7) with respect to the fibres angle α. These
derivatives are easily found by substituting to Eqs. (2.7) the expressions given by relations (2.8).

The results of stiffnesses (2.6) calculations for the proposed 18 layers stacking sequence
laminate beam are collected in Table 1. In the first section, the values for the nominal design
are given. Next, the small misalignment ∆α = 1◦ is assumed and the perturbed values for
increased and decreased stiffnesses are printed. Finally, the ∆α = 5◦ case is considered. The
graphite-epoxy material data used for these calculations are given in Table 2.

Table 1. Beam stiffnesses for the partial differential equations of motion; nominal design and
two perturbed cases by ∆α = 1◦ and ∆α = 5◦

Nominal design values

a33 = 0.117568 Nm
2 a37 = 0.0Nm

2 a55 = 67957.50 N a77 = 0.081397 Nm
2

Fibres misalignment ∆α = 1◦

perturbed values for increased stiffness

a33 = 0.121849 Nm
2 a37 = 0.000081 Nm

2 a55 = 68273.55 N a77 = 0.083996 Nm
2

perturbed values for decreased stiffness

a33 = 0.113266 Nm
2 a37 = −0.000138 Nm2 a55 = 67641.44 N a77 = 0.078523 Nm

2

Fibres misalignment ∆α = 5◦

perturbed values for increased stiffness

a33 = 0.138754 Nm
2 a37 = −0.000116 Nm2 a55 = 69537.77 N a77 = 0.091819 Nm

2

perturbed values for decreased stiffness

a33 = 0.095806 Nm
2 a37 = −0.001301 Nm2 a55 = 66377.23 N a77 = 0.064011 Nm

2

Table 2. Rotor geometric data and material properties used in numerical simulations

Geometric properties

l = 0.350m d = 0.034m h = 0.0009m R0 = 0.1× l

Material properties of the laminate

E1 = 143.2 GPa E2 = E3 = 3.1GPa G23 = 2.05GPa G12 = G13 = 3.28GPa
ν21 = ν31 = 0.00758 [–] ν32 = 0.2439 [–] ρc = 1350.0 kg·m3
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The performed numerical calculations confirm the already reported fully isotropic proper-
ties of the assumed nominal design stacking sequence laminate (a37 = 0). However, as can be
observed, the discussed stacking sequence configuration is sensitive to possible variations in fi-
bres orientations as confirmed by meaningful changes in the beam stiffnesses. In particular, the
possible very small misalignment of the fibres angle leads to anisotropic material behaviour and
induces mutual coupling of different components of specimen deformations (a37 6= 0). Finally,
the values of the coefficients present in the ordinary differential equations of motion (system of
Eqs. (2.5)) for the assumed mistuning magnitudes are listed in Table 3. The details regarding
the three studied cases of mistuned rotor configurations are also given there.

Table 3. The values of individual coefficients present in the ordinary differential equations of
motion; three studied rotor configurations

Case 1. Rotor with nominal design blades

Beam 1 α11 = 12.364453698 α12 = 1.779913785 α13 = 0.350955874 α14 = −1.551795958
Beam 2 α21 = 12.364453698 α22 = 1.779913785 α23 = 0.350955874 α24 = −1.551795958
Beam 3 α31 = 12.364453698 α32 = 1.779913785 α33 = 0.350955874 α34 = −1.551795958
Hub αh11 = −0.530660819 αh12 = −0.402771952 αh13 = −0.805543905

αh21 = −0.530660819 αh22 = −0.402771952 αh23 = −0.805543905
αh31 = −0.530660819 αh32 = −0.402771952 αh33 = −0.805543905

Case 2. Tolerance ∆α = 1◦:
beam 1 – nominal, beam 2 – decreased stiffness, beam 3 – increased stiffness

Beam 1 α11 = 12.364453698 α12 = −1.779913785 α13 = 0.350955874 α14 = 1.551795958
Beam 2 α21 = 11.911908455 α22 = −1.779874982 α23 = 0.350960254 α24 = 1.551834362
Beam 3 α31 = 12.814170650 α32 = −1.779950210 α33 = 0.350951758 α34 = 1.551759829
Hub αh11 = 0.530660819 αh12 = −0.402771952 αh13 = −0.805543905

αh21 = 0.530672090 αh22 = −0.402790584 αh23 = −0.805581169
αh31 = 0.530650234 αh32 = −0.402754446 αh33 = −0.805508893

Case 3. Tolerance ∆α = 5◦:
beam 1 – nominal, beam 2 – decreased stiffness, beam 3 – increased stiffness

Beam 1 α11 = 12.364453698 α12 = −1.779913785 α13 = 0.350955874 α14 = 1.551795958
Beam 2 α21 = 10.072877023 α22 = −1.779688026 α23 = 0.350983037 α24 = 1.552014103
Beam 3 α31 = 14.591731254 α32 = −1.780075869 α33 = 0.350937164 α34 = 1.551634747
Hub αh11 = 0.530660819 αh12 = −0.402771952 αh13 = −0.805543905

αh21 = 0.530725703 αh22 = −0.402879065 αh23 = −0.805758131
αh31 = 0.530613777 αh32 = −0.402693994 αh33 = −0.805387989

As the last remark to this Section, it should be noted that density of the material is not affec-
ted by the deviations of composite reinforcing fibers from their nominal orientations. Therefore,
the inertia coefficients for the nominal and misaligned composite beams are similar.

3. Numerical results

3.1. Forced vibrations – regular oscillations

To get inside into the dynamics of the structure the full nonlinear system of governing
equations (2.5) is solved numerically and appropriate diagrams are prepared. To this end, the
Auto-07p software (Doedel et al., 1998) adopting the multiparameter continuation method has
been used. To start the analysis, let us consider the system response if the structure is excited
by an external torque imposed to the hub. In general, we consider the forcing to be composed
of two terms, namely the constant and the harmonic one. Thus, the driving torque is defined as

µ(τ) = µ0 + ρ sin(ωτ) (3.1)
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where µ0 is a constant component, while ρ and ω correspond to the amplitude and frequency of
the periodic term, respectively. For the purpose of an initial analysis, we assume the constant
component to be equals to zero, µ0 = 0. The aim of this analysis is to establish the inherent
dynamic properties of the discussed system without the additional stiffening effect resulting from
the full rotational motion.

At the first stage, dynamics of the reference structure is examined (nominal design, case 1
in Table 3). In Fig. 3, we present resonance curves for all three beams as well as the angular
velocity of the hub (i.e. maximum magnitudes of these four variables) if the constant component
of the torque is neglected (µ0 = 0). One can observe, for the fully symmetric rotor, just a single
resonance zone is present with the peak response corresponding to the first natural frequency
ω01 = 3.0217. In this resonance zone, motions of all the blades are fully synchronised in magni-
tude and phase and they stay in anti-phase with respect to the hub motion shown in Fig. 3b.
It is worth to note that for very small values of excitation frequency ω angular speed of the
system gets large values – Fig. 3b. This case corresponds to the zero natural frequency and the
excitation of the system with the infinite period. However, this range of excitation is out of our
interest in this paper, therefore in next figures we perform analysis around non zero resonance
zones only.

Fig. 3. Resonance curves of beams q1, q2, q3 (a) and angular velocity of the hub ψ̇ (b); variant 1 of the
three reference (nominal) beams, µ0 = 0, ρ = 0.01, Jh = 5

Fig. 4. Resonance curves for individual beams q1 – black, q2 – blue, q3 – green (a) and angular velocity
of the hub ψ̇ (b). Rotor configuration in variant 2, ρ = 0.01, Jh = 5
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In the case of marginally mistuned beams (∆α = 1◦) represented by studied variant 2 the
response amplitudes of individual blades are slightly different and are dominated by the most
flexible beam 2 – presented in Fig. 4a. Similar to the above nominal design case, all the blades
are mutually synchronised and oscillate together in anti-phase with respect to the hub – see time
histories plots shown in Fig. 5a. Apart from the main resonance, two other minor resonances
occur due to the system mistuning. They are shifted to the right with respect to the main
resonance peak – Fig. 4a. Time histories for those additional resonances are presented in plots
shown in Figs. 5b and 5c. It is to be commented that the phase shift between individual beams
and the hub is a constant value. Moreover, note that the response of the hub is not affected in
any way by these two minor resonances – Fig. 4b.

Fig. 5. Time histories of beams q1 – black, q2 – blue, q3 – green and the angle of hub rotation
ψ – magenta for variant 2 and ω = 3.01 (a), ω = 3.50 (b), ω = 3.58 (c); µ0 = 0, Jh = 5, ρ = 0.01

The effect of blades mistuning is much more evident in variant 3 (see Table 3) corresponding
to the fibre orientation tolerance limit ∆α = 5◦. The resonance curves and time histories are
shown in Fig. 6 and Fig. 7, respectively.

Fig. 6. Resonance curves for individual rotor beams q1 – black, q2 – blue, q3 – green (a) and angular
velocity of the hub ψ̇ (b). Rotor configuration in variant 3, ρ = 0.01, Jh = 5

The direct comparison of system responses for the small and relatively large mistuning –
Figs. 4 and 6 – reveals some qualitative differences. Primarily, in the case of a higher structural
mistuning (variant 3) all three resonances are distinct and very well observed. This conclusion
refers also to the response of the hub which increases in all three resonance zones – Fig. 6b –
and is in contrast to the small mistuning case behaviour shown in Fig. 4b. Furthermore, a kind
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Fig. 7. Time histories of individual beams q1 – black, q2 – blue, q3 – green and the angle of hub rotation
ψ – magenta for variant 3 and the frequency of excitation close to the subsequent resonance zones for

ω = 2.9 (a), ω = 3.4 (b), ω = 3.75 (c); Jh = 5, ρ = 0.01

of vibration localisation can be noticed. For the first resonance zone the motion is localised in
the second beam (q2 coordinate in Fig. 6a), for the second resonance the motion is localised in
beam number one (q1 coordinate), and finally for the third resonance the motion is localised
in the third beam (q3 coordinate). This is confirmed by the time history plots and individual
blades amplitudes as shown in Figs. 7a-7c.

To examine the influence of rotational motion and anticipated stiffening effects, the relati-
vely large mistuning (∆α = 5◦) variant is studied again and the bifurcation diagram for the
µ0 component of the torque is presented in Fig. 8. It is to be noted here that any non-zero mean
value of the driving torque represents the case when the system is accelerating from the zero
initial velocity but only up to a certain moment where this torque is balanced by damping on
the hub. Finally, the system is performing full rotation with a constant non-zero mean value
angular velocity.

Fig. 8. Bifurcation diagram for the constant torque component µ0. Rotor configuration in variant 3,
ω = 2.8 (a), ω = 3.0 (b); ρ = 0.01, Jh = 5

To study the dynamics, we selected two frequencies around the first resonance peak as shown
in Fig. 6, namely ω = 2.8 and ω = 3.0. These correspond to the situations before and after the
resonance, respectively. As expected, full rotation of the structure changes the amplitudes of
blades vibrations due to the centrifugal stiffening effect. However, comparing these two plots,
one observes two different possible courses of the beams response while the µ0 is varied. The first
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one (Fig. 8a corresponding to the excitation frequency ω = 2.8) is the monotonic reduction in
amplitudes. This occurs particulary up to µ0 ≈ 1 and next becomes much less pronounced. Then
the beam vibrations are strongly suppressed, the differences in blades oscillations are negligible
and they behave almost like rigid bodies. The different scenario is observed for the case ω = 3.0
(Fig. 8b). While changing the µ0 component, the amplitudes initially increase and then decrease
rapidly to small values. The peak in Fig. 8b is a direct result of the angular speed which shifts to
the right the natural frequency of the blades. Therefore, the excitation ω = 3.0 occurs right at
the new resonance zone. Nevertheless, the further increase in µ0 results in a rapid reduction in
beam amplitudes, and for µ0 > 1 they are suppressed similarly to the case presented in Fig. 8a.

To study the influence of the torque amplitude ρ, the last analysis is repeated by setting
µ0 = 0.13 which is similar to the average torque value as assumed in computations for a chaotic
signal presented later in Section 3.2. Two torque oscillations amplitudes are analysed, namely
ρ = 0.27 and ρ = 1.0 as shown in Figs. 9 and 10, respectively. Studying these curves, one

Fig. 9. Resonance curves for individual rotor beams q1, q2, q3 (a) and angular velocity of the hub ψ̇ (b).
Rotor configuration in variant 3; µ0 = 0.13, ρ = 0.27, Jh = 5

Fig. 10. Resonance curves for individual rotor beams q1, q2, q3 (a) and angular velocity of the
hub ψ̇ (b). Rotor configuration in variant 3; µ0 = 0.13, ρ = 1.0, Jh = 5

observes again the centrifugal stiffening effect that shifts the resonance peeks towards higher
frequencies – check Fig. 6 for reference. Furthermore, direct comparison of Figs. 9 and 10 reveals
the linear nature of the response curves for relatively small oscillations. By contrast, if the
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amplitude of excitation is increased then the resonance curves presented in Fig. 10 demonstrate
a minor nonlinear softening phenomenon. However, these results are out of real dynamics of
the structure. Therefore, it can be concluded that the higher order terms present in governing
equations (2.5) do not have a significant impact on structural dynamic properties.

When studying the system of governing equations (2.5), we may expect that the hub motion
plays essential role in the entire rotor dynamics. To get more insight into this relation, let us
consider the solution corresponding to the peak in the first resonance zone occurring at ω = 2.9,
as shown in Fig. 6, and vary the mass moment of inertia Jh of the hub. The performed simulations
show the response peak to be reduced if the mass moment of inertia Jh = 5 is changed either
towards lower or higher values. The outcomes of these tests are shown in the bifurcation diagram
presented in Fig. 11.

Fig. 11. Influence of hub inertia on the beams responses q1 – black, q2 – blue, q3 – green (a) and angular
velocity of the hub ψ̇ (b). Calculations for the data corresponding to variant 3; ρ = 0.1, ω = 2.9

The next series of simulations demonstrates the influence of hub inertia if the excitation
frequency is varied. The tests are performed for different hubs starting from very light ones with
Jh = 0.1 up to the heaviest with Jh = 50. The corresponding curve plots are shown in Fig. 12.
Evidently, larger hub inertias lead to vibration reduction. Moreover, we may also observe an
interesting phenomenon of vibrations localisation clearly visible around frequencies ω = 3.1 and
ω = 3.5, which is independent of the hub inertia (Fig. 12).

3.2. Chaotic oscillations

Let us consider the case when the discussed three-bladed rotor is excited by a chaotic Duffing
type oscillator. The dimensionless driving torque µ(τ) in Eq. (2.5)1 is considered now to be given
by the formula µ = αxx (αx = 1), where the variable x is calculated from Duffing’s equation

ẍ+ kẋ+ x3 = β + ρ cos(ωτ) (3.2)

For numerical simulations, the constants k = 0.05, β = 0.03, ω = 1 and ρ = 0.16 are adopted
as originally used by Ueda (1980). This results in the chaotic torque characteristic with the
mean value of about 0.13, which is the one that has been used for harmonic excitation results
presented in Figs. 9 and 10. The presented below Poincaré maps have been obtained by means
of direct numerical simulations performed in Dynamics software.
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Fig. 12. Resonance curves of beams (a) q1, (b) q2, (c) q3, and (d) angular velocity of the hub ψ̇.
Calculations for the data corresponding to variant 3 and various hub inertias: Jh = 0.1 – black,

Jh = 0.5 – blue, Jh = 5 – green, Jh = 10 – red, Jh = 50 – magenta; ρ = 0.1

Fig. 13. Poincaré maps of beams responses (a) q1, (b) q2, (c) q3 subject to chaotic excitation given by
Eq. (3.2). Rotor configuration in variant 3; Jh = 5

The strange chaotic attractors are found for all the beams, both for slightly mistuned va-
riant 2 and for highly mistuned configuration given by case 3. The results for this last one are
shown in Fig. 13. Since the results for case 2 do not show evident differences between individual
blades they are not presented here.
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As can be observed in Fig. 13, the strange attractor for the second beam is significantly
bigger than the attractor for nominal beam 1 – subplots (a) and (b), respectively. Meanwhile,
the strange attractor of beam 3 is smaller – Fig. 13c. This comes from the significant differences
in stiffness of individual beams as already reported while discussing the regular excitation case.

To study the possible synchronisation phenomenon, the time series plots are prepared. The
time histories for a highly mistuned configuration given by case 3 are shown in Fig. 14. The
motions of all the beams are well synchronised, although the amplitudes are slightly different.
The amplitude of the second beam is the highest, while the amplitude of the third beam is the
smallest one. Again, these disparities can be explained by the differences in specimens stiffnesses.

Fig. 14. Time histories of the beams responses, the full time domain (a) and zoom window (b);
q1 – black, q2 – blue, q3 – green. Rotor configuration in variant 3, chaotic excitation; Jh = 5

The final stage of numerical simulations comprises the studies of system dynamics if both
the hub and the first beam are subjected to the same chaotic excitation signal µ = αxx, as
given in the previous example. To this end, the additional forcing term µ is added to the right
hand side of the governing equation of beam 1 – Eq. (2.5)2. The Poincaré maps are plotted for
each beam individually as well as for the oscillator itself. Defined variant 3 of high structural
mistuning is examined and corresponding plots are gathered in Fig. 15. It can be observed that
the strange attractor for the nominal beam is the biggest one. This results from the excitation
that has been applied to the hub and directly to this beam as well. Meanwhile, the Poincaré
map for the most rigid beam (blade 3) is the smallest – Fig. 15c.

In contrast to the previously studied case of chaotic excitation applied only to the hub
now, the synchronisation scenario is different. Beam 1 oscillates in anti-phase with respect to
complectly synchronised beams 2 and 3.

4. Final remarks and conclusions

The presented paper considers forced vibrations of a rotating structure consisting of a rigid
hub and three flexible beams made of a multilayered laminate. In the performed analysis, it is
assumed that the rotor has been mistuned due to manufacturing tolerances of reinforcing fibres
orientations in the composite material. Based on previous authors research, a system of four
mutually coupled dimensionless ordinary differential governing equations has been formulated.

The forced vibrations of the system under a regular excitation supplied to the hub have been
investigated. The direct comparison of system responses for small (∆α = 1◦) and relatively large
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Fig. 15. Poincaré maps of the beams response (a) q1, (b) q2, (c) q3, (d) x chaotic excitation given by
Eq. (3.2) and applied to the hub and nominal beam 1. (e) Time histories of individual beams responses

q1 – black, q2 – blue, q3 – green. Rotor configuration in variant 3; Jh = 5

(∆α = 5◦) mistuning cases has revealed some qualitative differences. This has concerned not
only oscillation amplitudes but synchronisation of motions as well. Further studies have dealt
with the influence of hub inertia on the mistuned system dynamics. An interesting phenomenon
of vibrations localisation clearly visible around two distinct frequencies has been observed. This
effect has been shown to be independent of the hub inertia magnitude.

Finally, the forced response of the structure under a chaotic excitation has been investigated.
Two cases of forcing load have been examined, namely (a) forcing supplied to the hub only
and (b) to the hub and to one of the rotor beams. The obtained results for both cases have
revealed some disparities in individual beams strange attractors magnitudes due to differences
in blades stiffnesses. Analysis of motion of the system with the excitation applied to the hub
has showed full synchronisation of the three beams motions despite chaotic motion of the full
structure. However, the chaotic excitation applied to the beam and to the hub has resulted in
the oscillations of beam 1 in anti-phase with respect to complectly synchronised beams 2 and 3.
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