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In the present study, the finite element (FE) implementation of elasto-plasticity without
a yield surface is discussed. For that purpose, the method of perturbing the deformation
gradient tensor is employed to calculate approximate tangent moduli. The development of a
user subroutine that enables one to use the proposed model within the FE programABAQUS
is covered. A number of exemplary numerical simulations is conducted in order to check the
performance of this subroutine. Material parameter values determined for different materials
are utilized. Finally, the presented constitutive equation is examined upon its ability to
capture the shear-softening process.

Keywords: constitutive equation, tangent moduli, UMAT, plasticity

1. Introduction

In this study, the finite element (FE) implementation of a plasticity theory is discussed, which
does not introduce neither the yield surface nor the split of strain measures into elastic and
plastic components. The basic concepts of the considered framework were first introduced as a
part of a viscoplastic constitutive model for polymeric materials, cf Suchocki (2015). Further
research proved applicability of the proposed theory to model the material response of metals
(Suchocki and Skoczylas, 2016). However, in the case of metallic materials, correct numerical
implementation of the considered class of constitutive equations requires a completely different
approach from the one used in polymer modeling. This new treatment employs the perturbed
deformation gradient method and is discussed in detail further in this work.
The proposed framework of constitutive modeling is a special case of the theory of plasticity

whose basic assumptions were introduced by Pipkin and Rivlin (1965). However, the concept
of an intrinsic time adopted therein and defined as the arclength in the nine-dimensional strain
space has been slightly modified for the purpose of present considerations (cf Suchocki, 2015;
Suchocki and Skoczylas, 2016). The fictitious time is utilized to build a functional of the defor-
mation history which determines the material stress response and is analogous to the history
functional known from the viscoelasticity theory (e.g. Holzapfel, 2010). The whole constituti-
ve model is written in terms of tensorial internal state variables whose change with time is
determined by proper evolution equations.
The FE implementation of the flow theory of plasticity based on the Huber-Mises-Hencky

(HMH) yield condition (e.g. Olesiak, 1975) has been a subject of research for a long time. Various
concepts of numerical integration have been proposed for the HMH flow plasticity such as radial
return algorithms, see for instance Simo and Hughes (2000). These algorithms are rather costly
in terms of numerical computations. In each iteration of the Newton-Raphson (N-R) procedure,
the criterion of material plastic flow has to be checked. If a plastic deformation occurs, another
N-R iterative process has to be initiated in order to calculate the increment of the equivalent
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plastic strain. Nevertheless, the numerical algorithms and codes for the HMH flow plasticity
have been optimized for decades and are considerably well established nowadays.
The FE implementation of plasticity theories which do not introduce a yield surface attracted

rather little attention over the years. Lee (1995) discussed numerical implementation of the
endochronic theory of plasticity that was developed by Valanis (1971a,b). Kästner et al. (2012)
developed and implemented into the finite element method (FEM) a viscoplastic constitutive
model which contained an elasto-plastic component similar to the endochronic formulation by
Valanis. Both aforementioned approaches referred to the small strain domain. The constitutive
equation proposed by Kästner et al. (2012) was further extended to the finite strain range by
Alkas Yonan et al. (2013) using the spatial description in the deformed configuration of material
continuum. The FE implementation was discussed as well. A viscoplastic model containing an
elasto-plastic term without a yield condition was also proposed and implemented into FEM by
Suchocki (2015). This model was formulated in the reference configuration using the material
description and presents itself a generalization of the hyperelasticity theory. The approximation
of the Material Jacobian (MJ) tensor proposed by Suchocki (2015) proved to be accurate enough
for the purpose of modeling the mechanical response of polymers. However, application of the
same constitutive modeling framework to metallic materials results in much higher values of the
model constants. Consequently, it was noticed that a more accurate approximation of the MJ is
required in order to describe the mechanical behavior of metals.
In the present work, the perturbed deformation gradient method proposed by Sun et al.

(2008) is utilized to implement into FEM the constitutive equation of elasto-plasticity without
the yield surface, cf Suchocki an Skoczylas (2016). The implementation of the model into the FE
program ABAQUS is facilitated by taking advantage of the user subroutine UMAT (UserMA-
Terial). The presented framework can also be adapted to other FE packages. The accuracy of
the implementation is checked using numerous FE simulations performed for different material
parameter values. The simplified approach which can be used for the modeling of polymeric ma-
terials such as polyethylene, for instance, is briefly discussed as well. The ability of the proposed
constitutive model to describe the shear-softening process (e.g. Kowalewski and Szymczak, 2009)
is investigated. Finally, an exemplary simulation is conducted to check the performance of the
user subroutine for the case of nonhomogenous stress and strain states.

2. Basic notions

The stored elastic energy functionW (C) is assumed in the decoupled form (e.g. Holzapfel, 2010)

W (C) = U(J) +W (C) (2.1)

where U(J) and W (C) are the volumetric and isochoric components, respectively. The multi-
plicative split of the deformation gradient F is utilized, i.e.

F = FvolF J = detF Fvol = J
1
31 F = J−

1
3F (2.2)

which enables one to define the isochoric right Cauchy-Green (C-G) deformation tensor C with
a set of algebraic invariants, i.e.

C = FTF = J−
2
3C Ī1 = trC Ī2 =

1
2
[( trC)2 − trC2] Ī3 = detC = 1

(2.3)

The total second Piola-Kirchhoff (P-K) stress S is assumed to be the sum of the elastic com-
ponent S0 and the tensorial internal state variables H̃k (k = 1, 2, . . . , N) which account for the
inelastic effects (cf Suchocki and Skoczylas, 2016), thus
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S = S0 +
N∑

k=1

H̃k S0 = Svol0 + S
iso
0

Svol0 = JpC
−1 Siso0 = J

− 2
3 DEV[S]

(2.4)

where

p =
∂U

∂J
S = 2

∂W

∂C

∣∣∣∣
C=C

T
DEV[S] = S− 1

3
(S ·C)C−1 (2.5)

The change of each of the internal state variables is governed by a separate evolution equation,
i.e.

˙̃
Hk +

1

D̃kM(|Ċ|)
H̃k = γkṠiso0 k = 1, 2, . . . , N (2.6)

with

M(|Ċ|) = J̄−
1
2
2 J̄2 = tr Ċ

2
(2.7)

whereas D̃k and γk are the material parameters k = 1, 2, . . . , N .

3. Finite element implementation

For the purpose of numerical implementation, the considered constitutive model has to be di-
scretized and further linearized, i.e. expressed as a linear relation between the finite increments
of stress and strain. Below both formulations are presented.

3.1. Discretized constitutive equation

According to Eqs. (2.4)1 and (2.4)2, for the time increment n+1, the total second P-K stress
is given as

Sn+1 = S0n+1 +
N∑

k=1

H̃k n+1 S0n+1 = Svol0n+1 + S
iso
0n+1 (3.1)

with the internal state variables being determined from the discretized evolution equations, i.e.

H̃k n+1 =

(
1− 1

D̃k

∆zn+1
2

)
H̃k n + γk(Siso0n+1 − Siso0n)

1 + 1

D̃k

∆zn+1
2

k = 1, 2, . . . , N (3.2)

where ∆zn+1 is the increment of arclength, namely

∆zn+1 =
√
∆Cn+1 ·∆Cn+1 (3.3)

The recurrence-update formula defined by Eq. (3.2) has been obtained by applying the central
difference rule to Eq. (2.6), cf Suchocki (2015).
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3.2. Linearized constitutive model

Taking the directional derivative on Eq. (3.1)1 yields

∆Sn+1 = C
e−p
n+1 ·

1
2
∆Cn+1 C

e−p
n+1 = 2

∂Sn+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

(3.4)

with Ce−pn+1 being the fourth-order elasto-plastic stiffness tensor. Pushing Eq. (3.4)1 forward to
the current configuration leads to the incremental rate equation

τ∇n+1 = Jn+1C
MJ
n+1 ·∆Dn+1 (3.5)

where the incremental Zaremba-Jaumann (Z-J) rate of the Kirchhoff stress τn+1 is given as

τ∇n+1 = ∆τn+1 −∆Wn+1τn+1 − τn+1∆WTn+1 τn+1 = Fn+1Sn+1FTn+1 (3.6)

The increments of the spin tensor Wn+1, the strain rate tensor Dn+1 and the deformation
gradient Fn+1 are defined by the following formulas

∆Wn+1 =
1
2
[
∆Fn+1F

−1
n+1 − (∆Fn+1F−1n+1)T

]

∆Dn+1 =
1
2
[
∆Fn+1F

−1
n+1 + (∆Fn+1F

−1
n+1)

T]

∆Fn+1 = Fn+1F−1n

(3.7)

whereas the MJ tensor takes the form

C
MJ
n+1 =

1
Jn+1
(Cτcn+1 + In+1) (3.8)

with

C
τc
n+1 = (FiPFjQFkRFlSCe−pPQRS)n+1ei ⊗ ej ⊗ ek ⊗ el

In+1 =
1
2
(δikτjl + τikδjl + δilτjk + τilδjk)n+1ei ⊗ ej ⊗ ek ⊗ el

(3.9)

where {ek} (k = 1, 2, 3) is a Cartesian base in the current configuration. For the class of con-
stitutive equations considered in this work, it is not possible to find an analytical, closed-form
equation determining the MJ tensor. Thus, approximation methods have to be employed.

3.3. Approximate formula for Material Jacobian

Inserting Eq. (3.1)1 into Eq. (3.4)2 yields

C
e−p
n+1 = 2

∂Sn+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

= 2
∂S0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

+
M∑

k=1

2
∂H̃k n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

(3.10)

where, according to (3.1)2, the elasticity tensor C0n+1 is given as

C0n+1 = 2
∂S0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

= 2
∂Svol0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

+ 2
∂Siso0n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

= Cvol0n+1 + C
iso
0n+1

(3.11)

In general, utilizing Eq. (3.2) for calculation of 2∂H̃k n+1∂Cn+1

∣∣
Cn+1=CTn+1

derivatives (k = 1, 2, . . . , N)

leads the approximate elasto-plastic stiffness tensor Ce−pn+1 to the loss of certain symmetries which
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are required for a material to be initially isotropic. This fact was previously highlighted by
Kästner et al. (2012) for the case of infinitesimal strains. However, for small values of constants γk
(k = 1, 2, . . . , N), the following approximation provides a good accuracy and preserves the initial
material isotropy, i.e.

2
∂H̃k n+1
∂Cn+1

∣∣∣∣
Cn+1=CTn+1

≈ γk
(
1 +

∆zn+1

2D̃k

)−1
C
iso
0n+1 (3.12)

Substitution of Eqs (3.11) and (3.12) into Eq. (3.10) leads to the formula

C
e−p
n+1 = C

vol
0n+1 +

[
1 +

N∑

k=1

γk
(
1 +

∆zn+1

2D̃k

)−1]
C
iso
0n+1 (3.13)

An analogous result can be found for the small strain formulation, cf Kästner et al. (2012). By
pushing Eq. (3.13) forward to the current configuration, the stiffness tensor associated with the
convected rate of the Kirchhoff stress is found, i.e.

C
τc
n+1 = C

vol
n+1 +

[
1 +

N∑

k=1

γk
(
1 +

∆zn+1

2D̃k

)−1]
C
iso
n+1 (3.14)

By inserting Eq. (3.14) into Eq. (3.8), the required form of the MJ is obtained. The discretized
form of the constitutive equation along with the approximate MJ have been implemented into
the FE program ABAQUS by utilizing the user subroutine UMAT written in FORTRAN 77 (cf
Hibbit et al., 2008).

3.4. Application to polymeric materials

Below the accuracy of MJ approximation defined by Eq. (3.14) is tested for the material
constants that have been determined for ultra-high molecular weigth polyethylene (UHMWPE)
using the previously developed parameter evaluation algorithm (Suchocki and Skoczylas, 2016),
cf Table 1. The isochoric stored-energy function W is chosen in the form proposed by Knowles
(1977), whereas the volumetic function U is assumed in the form used by Sussman and Bathe
(1987), i.e.

W =
µ

2b

{[
1 +

b

κ

(
Ī1 − 3

)]κ
− 1

}
U =

1
D1
(J − 1)2 (3.15)

Furthermore, it is assumed that the inelastic effects are modeled by a single internal variable
(N = 1).

Table 1. Material constitutive parameters

Material µ [MPa] b [–] κ [–] D1 [MPa−1] γ1 [–] D̃1 [–]

UHMWPE 62.042 3.63 0.25 3.3E-8 2.83 29E-3
Cast iron 665.16 - - 3.3E-8 57.40 22E-3
Brass 703.48 - - 1E-5 48.92 92E-4
WCL 1249.54 - - 1E-5 31.73 34E-3
Inconel 1114.68 - - 3.3E-8 83.43 34E-4

The test simulation involves a polymeric 1mm×1mm×1mm block undergoing ramp loading
and unloading (cf Fig. 1). The excitation is kinematic in the form of a prescribed displacement
∆u1 of the cube frontal face along direction “1”. This results in the stretch ratios λ1 and λ2 in
direction “1” and perpendicular directions “2” and “3”, respectively. The boundary conditions
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along with the undeformed and deformed configurations are illustrated in Fig. 1. The polymeric
block is first meshed using a single C3D8H1 element. The simulations are then repeated with
the mesh of 125 elements with the same results. The tests have been performed for both positive
and negative magnitude of ∆u1 (elongation and shortening, respectively).

Fig. 1. Uniaxial tension-compression simulation: (a) undeformed FE, (b) deformed FE

In order to verify the results obtained in FE simulations, a Scilab program has been utilized
which enables one to solve the one-dimensional process equations. This program is based on
the previously presented scalar equation system, cf Suchocki and Skoczylas (2016). As it can
be seen in Fig. 2, the ABAQUS UMAT and Scilab results are in an excellent agreement for
both tension and compression which allows one to conclude that for small values of γk constants
(k = 1, 2, . . . , N) Eq. (3.14) provides an accurate approximation of the elasto-plastic stiffness.

Fig. 2. Polymeric block undergoing: (a) ramp tensions with unloading, (b) ramp compression
with unloading

3.5. Perturbed deformation gradient approach

For the group of metallic materials, the model parameters reach considerably high values,
which makes approximate Eq. (3.14) inaccurate. Thus, the method of computing the approximate
tangent moduli is utilized which is based on a perturbation of the deformation gradient tensor.
This technique was originally proposed by Miehe (1996) and was further extended by Sun et al.
(2008).
The perturbed deformation gradient tensor in the time increment n+ 1 is defined as

F̂
(kl)
n+1 = Fn+1 +∆F

(kl)
n+1 (3.16)

where

∆F
(kl)
n+1 =

ε

2
(ek ⊗ elFn+1 + el ⊗ ekFn+1) (3.17)

with ε being the perturbation parameter. The increments of the strain rate tensor Dn+1 and the
spin tensorWn+1 due to the deformation gradient increment ∆F

(kl)
n+1 are given by the following

relationships
1Cubic, three-dimensional, 8 nodes, hybrid.
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∆D
(kl)
n+1 =

1
2
[
∆F
(kl)
n+1F

−1
n+1 + (∆F

(kl)
n+1F

−1
n+1)

T]

∆W
(kl)
n+1 =

1
2
[
∆F
(kl)
n+1F

−1
n+1 − (∆F

(kl)
n+1F

−1
n+1)

T]
(3.18)

Inserting Eq. (3.17) into Eqs (3.18) and performing the computations results in

∆D
(kl)
n+1 =

ε

2
(ek ⊗ el + el ⊗ ek) ∆W

(kl)
n+1 = 0 (3.19)

The increment of the Kirchhoff stress τn+1 is approximated by a finite difference, i.e.

∆τn+1 ≈ τn+1(F̂(kl)n+1)− τn+1(Fn+1) (3.20)

Substitution of Eqs (3.19) and Eq. (3.20) into Eqs (3.5) and (3.6)1 yields

τn+1(F̂
(kl)
n+1)− τn+1(Fn+1) ≈ Jn+1CMJn+1 ·

ε

2
(ek ⊗ el + el ⊗ ek) (3.21)

which, in turn, leads to the approximate formula for the components of MJ

CMJijkl =
1

Jn+1ε
[τn+1(F̂

(kl)
n+1)− τn+1(Fn+1)]ij (3.22)

In order to compute all 21 independent components of CMJn+1, the deformation gradient tensor
has to be perturbed for 6 times. During the entire procedure, the parameter ε is held constant
with its value being prescribed by the programmer.
The framework presented above has been utilized to implement the proposed constitutive

equation of elasto-plasticity into the FE package ABAQUS. A proper user subroutine UMAT
written in FORTRAN 77 was used for that purpose, cf Hibbit et al. (2008). In the case of all the
calculations described in this work ε = 1E-8 was assumed as recommended by Sun et al. (2008).

3.6. User subroutine UMAT

The perturbed deformation gradient method requires calculation of the Kirchhoff stress
tensor components for a number of different deformation gradients. Thus, in order to shorten
the UMAT code, a separate subroutine CALCSTRESS computing the stress tensor has been
written and is called within the main code whenever it is necessary to compute the stress. The
user subroutine is then used to simulate the mechanical response of metals. The structure of the
code is depicted in the attached scheme.

4. Application to metallic materials

For the purpose of modeling the constitutive response of metals, it has been assumed that the
isochoric stored energy had the form of neo-Hooke function, i.e.

W =
µ

2
(Ī1 − 3) (4.1)

with the volumetric energy component given by Eq. (3.15)2 which reflects a linear relationship
between the pressure and the relative volume change. A more detailed description of the volu-
metric material response can be achieved by the adjustment of a more sophisticated volumetric
energy U (cf Doll and Schweizerhof, 2000). However, such an approach would require a more
thorough experimental study.
The material parameter evaluation algorithm developed by Suchocki and Skoczylas (2016)

has been utilized to determine the constant values for: cast iron, brass, WCL steel and Inconel.
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Algorithm for the implementation in Abaqus

Subroutine UMAT(input: Fn+1, STATEV, PROPS; output: σn+1, CMJn+1)

1. Calculate transformation Jacobian Jn+1 = detFn+1
2. Extract STATEV, i.e. Siso0n, H̃k n, Cn (k = 1, 2, . . . , N)

3. Calculate Cauchy stress: Call CALCSTRESS, σn+1 = J
−1
n+1τn+1

Subroutine CALCSTRESS(input: Fn+1, Jn+1, STATEV, PROPS; output:
τn+1)

(a) Calculate strain measures from current increment

Cn+1 = FTn+1Fn+1 Cn+1 = J
− 2
3
n+1Cn+1

(b) Calculate elastic stresses from current increment

Svol0n+1 = Jn+1pn+1C
−1
n+1 pn+1 = ∂Jn+1U(Jn+1)

Siso0n+1 = J
− 2
3
n+1DEV [Sn+1] Sn+1 = 2∂Cn+1W (Cn+1)

∣∣
Cn+1=C

T
n+1

S0n+1 = Svol0n+1 + S
iso
0n+1

(c) Update internal state variables (k = 1, 2, . . . , N)

∆zn+1 =
√
∆Cn+1 ·∆Cn+1 ∆Cn+1 = Cn+1 −Cn

H̃k n+1 =

(
1− 1

D̃k

∆zn+1
2

)
H̃k n + γk(Siso0n+1 − Siso0n)

1 + 1

D̃k

∆zn+1
2

(d) Calculate total stress from current increment

Sn+1 = S0n+1 +
M∑

k=1

H̃k n+1 τn+1 = Fn+1Sn+1FTn+1

4. Calculate elastic-plastic stiffness: Call CALCTANGENT

Subroutine CALCTANGENT(input: Fn+1, Jn+1, STATEV, PROPS, τn+1;
output: CMJn+1)
For prescribed ij and rs:

(a) Call DEFGRAD

Subroutine DEFGRAD(input: Fn+1, rs; output: F̂
(rs)
n+1)

i. Calculate deformation gradient increment

∆F
(rs)
n+1 =

ε

2
(FsLer ⊗ eL + FrLes ⊗ eL)

ii. Calculate perturbed deformation gradient

F̂
(rs)
n+1 = Fn+1 +∆F

(rs)
n+1

(b) Call CALCSTRESS (F̂(rs)n+1 as input deformation gradient)

(c) Calculate Material Jacobian components:

CMJijrs =
1

Jn+1ε

[
τn+1(F̂

(rs)
n+1)− τn+1

(
Fn+1)

]
ij

5. Store Siso0n+1, H̃k n+1, Cn+1 in STATEV (k = 1, 2, . . . , N)
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Fig. 3. Metal block undergoing ramp loading-unloading: (a) cast iron tension, (b) cast iron compression,
(c) brass tension, (d) brass compression, (e) WCL tension, (f) WCL compression, (g) Inconel tension,

(h) Inconel compression

The parameter values have been gathered in Table 1. In simple tension experiments, metals
usually act like incompressible materials after reaching the axial strain value of 0.5% with their
Poisson’s ratio close to 0.5 (e.g. Kozłowska, 2011). Thus, the incompressibility condition is well
established within the theory of plasticity. In order to account for the material near incompres-
sibility of cast iron and Inconel, the hybrid elements C3D8H have been used during numerical
simulations. In order to check the performance of the UMAT code in the presence of a certain
amount of compressibility, D1 =∼ 1E-5MPa−1 has been set for brass and WCL steel. In the
case of the last two materials, ordinary cubic elements C3D8 were utilized.
For each of the considered materials ramp loading/unloading processes have been simula-

ted. Both tension and compression tests have been considered. The boundary conditions are
depicted in Fig. 1. In parallel to the FE simulations, every considered process has been inde-
pendently simulated in Scilab by direct integration of the one-dimensional process equations (cf
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Suchocki and Skoczylas, 2016). An excellent agreement has been found between ABAQUS and
Scilab predictions which is depicted in Fig. 3 and allows one to conclude that the utilized MJ
approximation method provides satisfying accuracy.

5. Comparison to HMH plasticity

In order to highlight the benefits of the proposed formulation of elasto-plasticity, a comparative
study has been conducted. The material parameters of the HMH plasticity with isotropic harde-
ning were determined for brass using the same experimental data that were utilized to evaluate
the constants of the proposed new constitutive equation.
The determined parameters of the HMH plasticity were defined in ABAQUS to perform a

simulation of ramp tension with unloading. The large strain formulation was utilized by setting
on the NLGEOM option. Again, the boundary conditions illustrated in Fig. 1 were used. The
results along with the list of material constants can be seen in Fig. 4a. The flow plasticity model
provides an accurate description of the monotonic loading process, however, at the price of
defining 16 material parameters (Fig. 4b). No Bauschinger effect has been observed.

Fig. 4. HMH plasticity model for brass: (a) ramp tension-compression response, (b) material parameters

In the next step, the HMH flow plasticity and the proposed elasto-plastic model have been
compared in their ability to describe the shear-softening process (e.g. Kowalewski and Szym-
czak, 2009). For that purpose, FE simulations were prepared in which a brass block with the
dimensions 1mm×1mm×1mm was undergoing simultaneous elongation and shear deformation.
The initial configuration of the block can be seen in Fig. 5d. The simulation was divided into two
stages, i.e. uniaxial tensile prestrain (stage one) and combined tension and shear (stage two).
For the first stage of the simulation, the following boundary conditions have been assumed (cf
Fig. 5e):

1. The displacement in “1” direction is set to zero on the face ABCD.

2. The displacement in “2” direction is set to zero on the face AA′BB′.

3. The displacement in “3” direction is set to zero on the face BB′CC ′.

4. On the face A′B′C ′D′, a ramp displacement in “1” direction is defined with the maximum
value ∆u1/2 = 0.0275mm.

The uniaxial deformation phase ends when t = t0 (Fig. 5e). For the second stage of the simulation
the boundary conditions listed below are assumed:

1. The displacement in “1” direction is set to zero on the edge DC.

2. The zero displacement is set for the point B.
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3. The displacements in “1” and “2” directions are set to zero for the point A.

4. The zero displacement in “3” direction is set for the edge B′C ′.

5. The displacements in “1” and “2” directions are imposed on the face A′B′C ′D‘. The
displacement in “1” direction is assumed to increase linearly strating from the initial value
∆u1/2 = 0.0275mm up to the maximum value ∆u1 = 0.055mm. The displacement in “2”
direction is given as a triangle periodic function (Fig. 5a).

The deformed cube at the time instant t ∈ (t0; t1〉 can be seen in Fig. 5f. The axial stress response
obtained for the HMH plasticity is depicted in Fig. 5b. The axial stress generated for the present
constitutive model (Fig. 5c) is in a better agreement with the experimental measurements (e.g.
Kowalewski and Szymczak 2009) than the predictions of the classical flow theory.

Fig. 5. Combined elongation and shear deformation: (a) displacement functions, (b) shear softening
(HMH plasticity), (c) shear softening (UMAT), (d) undeformed cube, (e) deformed cube at the end of
stage 1 of the deformation process, (f) deformed cube during stage 2 of the deformation process
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6. Simulation of nonhomogenous deformation process

In order to check the performance of the UMAT code in the case of nonhomogenous deformations,
a cylinder loaded by the internal pressure has been analyzed. The boundary conditions and
cylinder dimensions are depicted in Fig. 6a. Due to the axial symmetry of this problem, only
a quarter of the cylinder was taken into account. The FE mesh used C3D8 brick elements and
can be seen in Fig. 6b. The loading pressure p was defined to increase linearly until the value of
470MPa was reached. Subsequently, the unloading process began. A residual stress and strain
states remained in the cylinder after the unloading. The material parameter values determined
for the Inconel alloy (supersaturated) were utilized (Table 1). The results of FE simulation are
gathered in Fig. 7.

Fig. 6. Cylinder loaded by internal pressure: (a) boundary conditions, (b) FE mesh

Fig. 7. FE simulation results: (a) HMH stress, (b) HMH residual stress

7. Conclusions

In this work, the FE implementation of the elasto-plasticity without the yield surface is di-
scussed. As it is illustrated, in the case of metals, the proposed elasto-plastic model can be
implemented into FEM by utilizing the perturbed deformation gradient method. It should be
emphasized that the presented framework of modeling is universal in the sense that it provides
a uniform constitutive description for both metals and polymers. Furthermore, the number of
the material parameters required to be determined is considerably small. The proposed model
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uses 4 constants to describe the mechanical behavior of brass, whereas the HMH flow plasti-
city needed determination of 16 parameters. The developed constitutive model is capable of
describing the Bauschinger effect and shear-softening effects that the classical plasticity fails to
capture accurately. What is more, the computation cost turns out to be smaller in the case of
using the proposed elastic-plastic model. Further improvement in this matter can be expected
after the developed user subroutine is thoroughly optimized.
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This paper develops a cracked nanobeam model and presents buckling analysis of this de-
veloped model based on a modified couple stress theory. The Timoshenko beam theory and
simply supported boundary conditions are considered. This nonclassical model contains a
material length scale parameter and can interpret the size effect. The cracked nanobeam is
modeled as two segments connected by two equivalent springs (longitudinal and rotational).
This model promotes discontinuity in rotation of the beam and additionally considers di-
scontinuity in longitudinal displacement due to presence of the crack. Therefore, this multi-
-spring model can consider coupled effects between the axial force and bending moment
at the cracked section. The generalized differential quadrature (GDQ) method is employed
to discretize the governing differential equations, boundary and continuity conditions. The
influences of crack location, crack severity, material length scale parameter and flexibility
constants of the presented spring model on the critical buckling load are studied.

Keywords: buckling, crack, modified couple stress theory, Timoshenko nanobeam, spring
model

1. Introduction

Many applicable structures have been used in micro- and nano-scale dimensions. Size effects are
significant in the mechanical behavior of these structures. Since the classical continuum mecha-
nics cannot predict the size effect, some size-dependent continuum theories have been developed
to capture the size effect using some material length scale parameters. These parameters are
related to inherent properties of materials, which become considerable in small scale structu-
res. In view of the difficulties in determining these internal parameters, non-classical continuum
theories involving only one material length scale parameter are desirable. A modified couple
stress theory has been proposed by Yang et al. (2012). This theory uses only one material length
scale parameter to capture the size-dependent behavior of structures and employs only the sym-
metric part of the couple stress tensor as a suitable measure of the continuum micro-rotation.
Many studies have been done on the static and dynamic behavior of nanostructures based on
the modified couple stress theory. Here we focuse on the static and dynamic behavior of the
micro/nanobeams specially on the buckling of the nanobeams.
Park and Gao (2006, 2008) formulated a modified couple stress based model for the Euler-

-Bernoulli beam and that model was extended by Ma et al. (2008) for the Timoshenko beam
using Hamilton’s principle. Also, a microstructure dependent non-classical Reddy-Levinson be-
am model was developed by Ma et al. (2010), and the difference between the results obtained
from the non-classical and the classical models was illustrated for static bending and free vi-
bration. Simsek (2010) proposed analytical and numerical solution procedures for vibration of
an embedded microbeam under action of a moving microparticle and studied the influences of
the material length scale parameter, Poisson’s ratio, velocity of the microparticle and the elastic
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medium constant on the maximum dynamic deflections of the microbeam. A size-dependent
nonlinear Euler-Bernoulli beam model was presented by Xia et al. (2010). They studied nonli-
near size-dependent static bending, postbuckling and the free vibration of beams, and Asghari
et al. (2010) developed their model for Timoshenko beam theory. Ke and Wang (2011) investi-
gated dynamic stability of FGM Timoshenko microbeams and showed the significance of the
size effect on dynamic stability. Buckling analysis of microbeams with higher order theories and
general boundary conditions was investigated by Mohammad-Abadi and Daneshmehr (2014).
They revealed accuracy of the GDQ method for that modified couple stress based size-dependent
buckling problem. Also, Mohammad-Abadi and Daneshmehr (2015) developed vibration ana-
lysis of composite laminated beams in order of microns using the GDQ method. Akbarzadeh
Khorshidi and Shariati (2016b) presented a comprehensive solution for free vibration of a shear
deformable S-FGM nanobeam by the GDQ method. Dehrouyeh-Semnani et al. (2015) inve-
stigated dynamic characteristics of axially moving Timoshenko microbeams using Hamilton’s
principle and Galerkin’s method. An exact solution for prediction of postbuckling behavior of
shear deformable nanobeams was presented by Akbarzadeh Khorshidi and Shariati (2015). Also,
Akbarzadeh Khorshidi and Shariati (2016a) investigated the propagation of the stress wave in
a shear deformable nanobeam and evaluated the effects of shear deformation, material length
scale parameter and Poisson’s ratio on the phase velocity of it.

It is well known that cracks increase flexibility of a structure. Therefore, the presence of a
crack leads to reduction of the stiffness of a structure. So, a simple and accurate model should be
used to determine this reduction in stiffness. For this reason, the cracked beam is modeled as two
segments connected by means of massless springs (Freund and Herrmann, 1976; Adams et al.,
1978). Rice and Levy (1972) viewed the plate as a strictly two dimensional continuum with a local
reduction in bending and extensional stiffness along the crack line. This model, which has become
known as the line spring model for surface flaws, was also discussed in detail by Rice (1972). Most
of the studies which have been recently done utilized an equivalent massless rotational spring at
the cracked section. Thus, at the cracked section, a discontinuity in rotation due to bending must
be considered. This model has been extensively used for vibration, buckling and postbuckling
analyses of cracked structures like cracked beams. Chaudhari and Maiti (2000) presented a
method of modelling for transverse vibrations of geometrically segmented slender cracked beams.
Lele and Maiti (2002) studied transverse vibration of short beams to detect the location of a
crack. Yang and Chen (2008) investigated free vibration and elastic buckling of beams made of
FGMs containing three open edge cracks. Ke et al. (2009) studied the postbuckling response of
edge cracked FG Timoshenko beams. Also, there are many other research works in the context
of cracked structures by using the equivalent spring model, see for instance, Chati et al. (1997),
Krawczuk et al. (2003), El Bikiri et al. (2006), Kitipornchai et al. (2009), Yan et al. (2011). But,
these models cannot satisfy the multiple discontinuities at the cracked section. Loya et al. (2006)
considered a rotational and an extensional spring at the cracked section for bending vibration of
a Timoshenko cracked beam. Thus, in addition to the discontinuity in rotation due to bending,
a discontinuity in the transverse deflection due to shearing has been also defined at the cracked
section. However, the contribution of the extensional spring to the strain energy of the system is
small in comparison with that of the rotational spring, nevertheless, this discontinuity has been
considered for coherency with the general derivation of compliance for cracked beams (Okamura
et al., 1973; Tharp, 1987).

There are a few studies on cracked micro/nanostructures, which are mostly different types
of vibration analyses of cracked nanobeams based on a nonclassical continuum theory by means
of the rotational spring model. Flexural vibrations of cracked nanobeams based on the theory
of nonlocal elasticity applied to Euler-Bernouilli beams was studied by Loya et al. (2009). They
proposed a model containing a rotational and a longitudinal elastic spring at the cracked section
and defined compatibility relations of this model. This model presents a discontinuity in the
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rotation and a discontinuity in the longitudinal displacement. But, they simplified their model
to one spring only (rotational spring) by some assumptions, and many authors followed them
for free transverse vibration analyses of cracked nanobeams (Hasheminejad et al., 2011; Torabi
and Nafar Dastgerdi, 2012; Hosseini-Hashemi et al., 2014). Of course, those assumptions can
be acceptable for free transverse vibration. Also, Hsu et al. (2011) investigated longitudinal
frequency of a cracked nanobeam by means of the longitudinal spring model. They expressed
continuity conditions as a relation between the longitudinal displacement and axial force, and
nelegted the discontinuity in rotation. Also, Loya et al. (2014) analysed torsional vibrations of a
nanorod with a circumferential crack using a nonlocal elasticity model. They utilized a torsional
elastic spring at the cracked section to consider additional strain energy due to the presence of
the crack, so, a discontinuity in the torsion angle of the rod at the cracked section is introduced.
Therefore, an appropriate model can be selected to simulate the influence of the crack based on
the type of analysis and the applied loadings.
This paper makes one of the first attempts to investigate the buckling of cracked nanobeams

based on a modified couple stress theory. This modified couple stress based Timoshenko beam
model contains a material length scale parameter and can interpret the size effect. The present
model considers coupled effects between the axial force and bending moment using a longitudinal
and a rotational spring at the cracked section. Govrning equations are derived by using the
principle of minimum potential energy. The Generalized Differential Quadrature (GDQ) method
is employed to solve the governing differential equations. Then the critical buckling loads for
different crack locations, crack severities and ratios of the material length scale parameter to
thickness are computed, and the obtained results are compared with those corresponding to the
classical beam model.

2. Formulation

2.1. Modified couple stress theory

In this Section, a modified couple stress theory (Yang et al., 2012) with only one material
length scale parameter is employed to capture the size effect. According to this theory, the strain
energy U in an isotropic linear elastic beam under an axial compressive load P at both ends is
defined as (Mohammad-Abadi and Daneshmehr, 2014)

U =
1
2

∫

Ω

(σijδεij +mijδχij) dv −
1
2

L∫

0

P
(∂w
∂x

)2
dx i, j = 1, 2, 3 (2.1)

where ε, σ, χ and m are the strain tensor, Cauchy stress tensor, symmetric curvature tensor
and the deviatoric part of the couple stress tensor, respectively. These tensors are defined as

εij =
1
2
(∇u+ (∇u)T) = 1

2
(ui,j + uj,i) σij = λ tr (εii)δij + 2µεij

χij =
1
2
(∇θ + (∇θ)T) = 12(θi,j + θj,i) mij = 2ℓ2µχij

(2.2)

where ℓ is the material length scale parameter which is mathematically the square root of
the ratio of the modulus of curvature to the modulus of shear and is physically a property
measuring the effect of couple stress (Park and Gao, 2006; Ma et al., 2008). This parameter can
be determined from torsion tests of slim cylinders of different diameters or bending tests of thin
beams of different thickness. Also, λ and µ are Lame’s constants and are defined as

λ =
νE

(1 + ν)(1− 2ν) µ =
E

2(1 + ν)
(2.3)
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where E is Young’s modulus and ν is Poisson’s ratio. The rotation vector θ is given as

θ =
1
2
curl (u) (2.4)

2.2. Displacement field

Consider a beam of length L, width b and thickness h. The Timoshenko beam theory is
employed to describe the effect of shear deformation. According to the rectangular Cartesian
coordinate system shown in Fig. 1, where the x-axis is coincident with the centroidal axis of
the undeformed beam, the y-axis is the neutral axis and the z-axis is the symmetry axis, the
displacement field in a Timoshenko beam is described as

u1 = u(x, t)− zϕ(x, t) u2 = 0 u3 = w(x, t) (2.5)

where u1, u2 and u3 are, respectively, the x-, y- and z-components of the displacement vector u,
u and w are, respectively, the x- and z-components of the displacement vector of a point located
on the beam axis, and ϕ is the angle of rotation of the cross-section.

Fig. 1. Beam configuration and coordinate system

From Eqs. (2.2)1 and (2.5), the nonzero strains are given as

εxx =
∂u1
∂x
=
∂u

∂x
− z ∂ϕ

∂x
εxz =

1
2

(∂u1
∂z
+
∂w

∂x

)
=
1
2

(∂w
∂x
− ϕ

)
(2.6)

and from Eqs. (2.2)2 and (2.5), the nonzero stresses are given as

σxx = (λ+ 2µ)εxx = (λ+ 2µ)
(∂u
∂x
− z ∂ϕ

∂x

)

σxz = 2µεxz = µ
(∂w
∂x
− ϕ

) (2.7)

Using Eqs. (2.4) and (2.5), the nonzero component of the rotation vector is obtained as

θy = −
1
2

(
ϕ+

∂w

∂x

)
(2.8)

and from Eqs. (2.2)3,4 and (2.8), we have

χxy = −
1
4

(∂ϕ
∂x
+
∂2w

∂x2

)
mxy = −

1
2
ℓ2µ

(∂ϕ
∂x
+
∂2w

∂x2

)
(2.9)

2.3. Governing equations

Substituting Eqs. (2.6), (2.7) and (2.9) into Eq. (2.1), the total strain energy of the Ti-
moshenko nanobeam is achieved. Then, using the principle of minimum potential energy and
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fundamental lemma of the calculus of variation, the governing equations of the Timoshenko
nanobeam in terms of displacements are obtained as

(λ+ 2µ)A
∂2u

∂x2
= 0

KsµA
(∂2w
∂x2
− ∂ϕ

∂x

)
− 1
4
ℓ2µA

(∂4w
∂x4
+
∂3ϕ

∂x3

)
− P ∂

2w

∂x2
= 0

KsµA
(∂w
∂x
− ϕ

)
+
1
4
ℓ2µA

(∂3w
∂x3
+
∂2ϕ

∂x2

)
+ (λ+ 2µ)I

∂2ϕ

∂x2
= 0

(2.10)

where A and I are, respectively, the beam cross-sectional area and the second moment of cross-
-sectional area. Also, Ks is the Timoshenko shear coefficient which is introduced as a correction
factor to account for the non-uniformity of the shear strain over the beam cross-section (Park
and Gao, 2006) and is defined with Poisson’s ratio as Ks = (5 + 5ν)/(6 + 5ν).
Note that all of the body forces and body couples are neglected in this study. Therefore, the

governing equations presented in Eqs. (2.10) are identical to those given by Mohammad-Abadi
and Daneshmehr (2014).
the boundary conditions for a simply supported beam are stated as

u = w = Y =M = 0 at x = 0, L (2.11)

where Y is the couple moment, which is a resultant of the couple stress component mxy. Also,
M is the conventional bending moment. These moments are defined as

Y =
∫

A

mxy dA =
1
2
ℓ2µA

(∂2w
∂x2
+
∂ϕ

∂x

)
M =

∫

A

σxxz dA = (λ+ 2µ)I
∂ϕ

∂x
(2.12)

So, the boundary conditions defined in Eq. (2.11), can be writen as

u = w =
∂ϕ

∂x
=
∂2w

∂x2
= 0 at x = 0, L (2.13)

2.4. Cracked nanobeam model

Consider a crack at a distance Lc(e = Lc/L) at the left end of the beam (Fig. 2). It is
assumed that the crack is perpendicular to the beam surface and always remains open. As
shown in Fig. 2, the cracked beam is modeled as two segments connected by two massless elastic
springs (longitudinal and rotational) (Loya et al., 2009). This modeling promotes flexibility at
the cracked section and introduces discontinuity in rotation and discontinuity in longitudinal
displacement of the beam, which are proportional to coupled effects of the axial force and bending
moment. Therefore, the continuity conditions are developed for the Timoshenko nanobeam as
(at x = Lc)

w1 = w2 N1 = N2 M1 =M2
Q1 − Pϕ1 = Q2 − Pϕ2 ϕ2 − ϕ1 ∝ f(N,M) u2 − u1 ∝ g(N,M)

(2.14)

where subscripts 1 and 2 refer to the left segment and right segment of the beam divided by the
crack. Also, N and Q are, respectively, the axial force and the shear force, which are defined as

N =
∫

A

σxx dA = (λ+ 2µ)A
∂u

∂x
Q =

∫

A

σxz dA = KsµA
(∂w
∂x
− ϕ

)
(2.15)
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Using Eqs. (2.12) and (2.15), the continuity conditions can be written as (at x = Lc)

w1 = w2
∂u1
∂x
=
∂u2
∂x

∂ϕ1
∂x
=
∂ϕ2
∂x

KsµA
(∂w1
∂x
− ∂w2

∂x
+ ϕ2 − ϕ1

)
= P (ϕ1 − ϕ2)

ϕ2 − ϕ1 = KMM
∂ϕ

∂x
+KMN

∂u

∂x
u2 − u1 = KNN

∂u

∂x
+KNM

∂ϕ

∂x

(2.16)

where KMM , KMN , KNM and KNN are the flexibility constants and in nondimensional forms
they are given as k1 = KMM/L, k2 = KMN/L, k3 = KNN/L, k4 = KNM/L.
Then, governing equations (2.10) must be applied for each segment (r = 1, 2) of the cracked

beam, so, we have

(λ+ 2µ)A
∂2ur
∂x2r
= 0

KsµA
(∂2wr
∂x2r
− ∂ϕr
∂xr

)
− 1
4
ℓ2µA

(∂4wr
∂x4r
+
∂3ϕr
∂x3r

)
− P ∂

2wr
∂x2r
= 0

KsµA
(∂wr
∂xr
− ϕr

)
+
1
4
ℓ2µA

(∂3wr
∂x3r
+
∂2ϕr
∂x2r

)
+ (λ+ 2µ)I

∂2ϕr
∂x2r
= 0

(2.17)

where 0 ¬ x1 ¬ L1 and L1 ¬ x2 ¬ L.

Fig. 2. Model of the cracked beam

3. Solution procedure

The GDQ method (Shu, 1991; Bellman et al., 1972; Shu and Du, 1997) is employed to discretize
the governing equations, boundary conditions and continuity conditions, therefore, the differen-
tial equations are simplified to algebraic equations. In this method, the region is discretized into
several sample points. The sample points are obtained as

xi =
1
2

(
1− cos (i− 1)π

N − 1
)

i = 1, 2, . . . , N (3.1)

According to the GDQ method (to find details, see Akbarzadeh Khorshidi and Shariati, 2016b;
Shu and Du, 1997), governing equations (2.17) are discretized as

(λ+ 2µ)A
N∑

j=1

c
(2)
ij ur(xj) = 0 (3.2)
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and

KsµA
( N∑

j=1

c
(2)
ij wr(xj)−

N∑

j=1

c
(1)
ij ϕr(xj)

)
− 1
4
ℓ2µA

( N∑

j=1

c
(4)
ij wr(xj) +

N∑

j=1

c
(3)
ij ϕr(xj)

)

− P
( N∑

j=1

c
(2)
ij wr(xj)

)
= 0

KsµA
( N∑

j=1

c
(1)
ij wr(xj)− ϕr(xj)

)
+
1
4
ℓ2µA

( N∑

j=1

c
(3)
ij wr(xj) +

N∑

j=1

c
(2)
ij ϕr(xj)

)

+ (λ+ 2µ)I
( N∑

j=1

c
(2)
ij ϕr(xj)

)
= 0

(3.3)

where i, j = 1, . . . , N and c(n)ij is the weighting coefficient which can be found from the recursive
formula (Akbarzadeh Khorshidi and Shariati, 2016b; Shu and Du, 1997).
The discretized boundary conditions are expressed as

u1(x1) = w1(x1) =
N∑

j=1

c
(1)
1j ϕ1(xj) =

N∑

j=1

c
(2)
1j w1(xj) = 0

u2(xN ) = w2(xN ) =
N∑

j=1

c
(1)
Njϕ2(xj) =

N∑

j=1

c
(2)
Njw2(xj) = 0

(3.4)

also, continuity conditions (2.16) are discretized as

w1(xN ) = w2(x1)
N∑

j=1

c
(1)
Nju1(xj) =

N∑

j=1

c
(1)
1j u2(xj)

N∑

j=1

c
(1)
Njϕ1(xj) =

N∑

j=1

c
(1)
1j ϕ2(xj)

KsµA
( N∑

j=1

c
(1)
Njw1(xj)−

N∑

j=1

c
(1)
1j w2(xj) + ϕ2(x1)− ϕ1(xN )

)
= P

(
ϕ1(xN )− ϕ2(x1)

)

ϕ2(x1)− ϕ1(xN ) = KMM
N∑

j=1

c
(1)
Njϕ1(xj) +KMN

N∑

j=1

c
(1)
Nju1(xj)

u2(x1)− u1(xN ) = KNM
N∑

j=1

c
(1)
Nju1(xj) +KNN

N∑

j=1

c
(1)
Njϕ1(xj)

(3.5)

Using discretized equations (3.2)-(3.5), a set of algebraic equations is established, and by solving
the eigenvalue problem, the critical buckling load of cracked nanobeams is obtained.

4. Results and discussion

This Section presents the influence of crack location, crack severity and material length scale
parameter to thickness ratio on the nondimensional critical buckling load of simply supported
cracked nanobeams. The nondimensional critical buckling load is defined as P = PcrL2/EI. To
validate the presented results, the critical buckling load of an intact microbram is compared with
the obtained results by Mohammad-Abadi and Daneshmehr (2014). An excellent agreement is
shown in Table 1.
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Table 1. Nondimensional critical buckling load P of intact microbeams (E = 1.44GPa, L = 20h,
ℓ = 17.6µm, b = 2h, ν = 0.38)

h [µm]
17.6 52.8 88 123.2

Ref. [25] 60.3571 22.9608 19.9491 19.1188
Present paper 60.4853 22.9962 19.9795 19.1479
Ref. [25] – Mohammad-Abadi and Daneshmehr (2014)

To present a parametric study, a Timoshenko beam with L = 20h, b = 2h and ν = 0.38
with simply supported boundary conditions and an open edge crack is considered. The effects
of the flexibility constants k1, k2, k3 and k4 are shown in Tables 2-5. These tables present
nondimensional critical buckling loads for different flexibility constants. As mentioned, this study
introduces local flexibility by means of four constants which relate discontinuities of the cracked
section with the axial force and bending moment. Therefore, different conditions of these four
constants state different crack severities. It is found that the flexibility constant related to the
bending moment k1 is more effective on the buckling behavior of the cracked nanobeam than
the other constants. In fact, the discontinuity in rotation due to bending has a great effect on
the local flexibility introduced by the crack. However, the other constants k2, k3 and k4 have a
scant influence on the local flexibility, but this influence becomes larger when the crack severity
is increased (Tables 3-5). Also, the crossover flexibility constants caused by the coupled effects
between the axial force and bending moment (k2 and k4) have similar influences on the critical
buckling load (Tables 3 and 5).

Table 2. Effect of k1 on the nondimensional critical buckling load P (ℓ/h = 1 and e = 0.5)

k1 k2 = k3 = k4 = 0 k2 = k3 = k4 = 0.5 k2 = k3 = k4 = 1 k2 = k3 = k4 = 2

0 60.4853 59.4491 58.4024 55.5903
0.25 40.3538 39.7141 39.0139 37.1375
0.5 29.0547 28.5334 28.0332 26.6845
1 18.8317 18.1148 17.7901 16.9438
2 10.7610 9.8532 9.6804 9.2153

Table 3. Effect of k2 on the nondimensional critical buckling load P (ℓ/h = 1 and e = 0.5)

k2 k1 = k3 = k4 = 0 k1 = k3 = k4 = 0.5 k1 = k3 = k4 = 1 k1 = k3 = k4 = 2

0 60.4853 28.3580 18.3580 9.9372
0.25 60.4853 28.6881 18.2012 9.8551
0.5 60.4853 28.5334 18.0786 9.7668
1 60.4852 28.2029 17.7901 9.5905
2 60.4852 27.5220 17.1818 9.2153

Figure 3 shows the effect of the material length scale parameter to thickness ratio ℓ/h on
the critical buckling load of Timoshenko cracked nanobeams. It is observed that the critical
buckling load increases as ℓ/h increases, and this increase is decreased by the growing severity of
the crack. Note that ℓ/h = 0 virtually indicates the results obtained from the classical continuum
theory which neglects the couple stress effect.
The effects of crack location on the critical buckling load of simply supported nanobeams

for different crack severities and ℓ/h ratios are respectively demonstrated in Figs. 4 and 5. The
critical buckling load is sensitive to crack location and is decreased when the crack gets near to
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Table 4. Effect of k3 on the nondimensional critical buckling load P (ℓ/h = 1 and e = 0.5)

k3 k1 = k2 = k4 = 0 k1 = k2 = k4 = 0.5 k1 = k2 = k4 = 1 k1 = k2 = k4 = 2

0 60.4853 28.6977 18.4197 11.1871
0.25 60.4853 28.6128 18.2461 10.5983
0.5 60.4853 28.5334 18.0981 10.1732
1 60.4852 28.4527 17.7901 9.6471
2 60.4852 27.3721 17.5985 9.2153

Table 5. Effect of k4 on the nondimensional critical buckling load P (ℓ/h = 1 and e = 0.5)

k4 k1 = k2 = k3 = 0 k1 = k2 = k3 = 0.5 k1 = k2 = k3 = 1 k1 = k2 = k3 = 2

0 60.4853 28.8544 18.3579 9.9384
0.25 60.4853 28.6879 18.2010 9.8552
0.5 60.4853 28.5334 18.0787 9.7673
1 60.4852 28.2045 17.7901 9.5911
2 60.4851 27.5220 17.1817 9.2153

Fig. 3. Effects of ℓ/h ratio and crack severity on the nondimensional critical buckling load
(k2 = k3 = k4 = 1 and e = 0.5)

beam midpoint. Also, the influence of the crack tends to be very small as the crack gets closer
to the beam ends. By increasing the crack severity, the effect of crack location is increased; in
other words, the crack severity is more effective when the crack is located at the midpoint of the
beam (e = 0.5). Figure 5 indicates that the effect of crack location increases as the ℓ/h increases.
Also, it is found that the ℓ/h ratio at different crack locations has different effects on the critical
buckling load of cracked nanobeams, but these effects get similar when the crack gets near to
the midpoint.
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Fig. 4. Effects of crack location and crack severity on the nondimensional critical buckling load
(k2 = k3 = k4 = 1 and ℓ/h = 1)

Fig. 5. Effects of crack location and ℓ/h ratio on the nondimensional critical buckling load
(k1 = k2 = k3 = k4 = 1)
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5. Conclusion

The buckling behavior of cracked nanobeams is studied within the framework of Timoshenko
beam theory anda modified couple stress theory. A material length scale parameter is used to
capture the size effect. The crack is modeled as two massless elastic springs (rotational and
longitudinal) which promote discontinuities at the cracked section. This study employs four
flexibility constants which introduce crack severity by two discontinuities which are proportional
to the bending moment and axial force transmitted through the cracked section. The principle
of minimum potential energy is employed to derive the governing differential equations which
are discretized using the GDQ method. The effects of crack severity, crack location and material
length scale parameter to thickness ratio are studied.
The obtained results show that the first flexibility constant which connects the discontinuity

in rotation with the bending moment makes the main part of the crack severity. The material
length scale parameter to thickness ratio ℓ/h considerably affects the value of the critical buckling
load which increases as the ℓ/h increases. The influence of ℓ/h is stronger at lower crack severities,
in a general manner, reduction of the crack effects (crack severity and location) leads to a decrease
in the influence of ℓ/h. The critical buckling loads are significantly affected by crack location
and are continuously decreased when the crack gets near to the midpoint of the nanobeam. Also,
the crack location is more effective at high crack severities and ℓ/h ratios.
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Thermo-fluid properties are required for numerical modeling of nano/micro devices. These
properties are mostly obtained from the results of molecular dynamics (MD) simulations.
Therefore, efforts have been made to develop methods for numerical evaluation of fluid
properties such as pressure and velocity. One of the main challenges faced by numerical
simulations is to simulate steady molecular flow in channels with non-equal inlet and outlet
boundaries. Currently, periodic boundary conditions at the inlet and outlet boundaries are
an inevitable condition in many steady flow molecular dynamics simulations. As a result,
a nano-channel with different cross sectional areas at the inlet and outlet could not be
simulated easily. Here, a method is presented to generate and control steady molecular flow
in a nano-channel with different cross sectional areas at the inlet and outlet. The presented
method has been applied to a converging-diverging channel, and its performance has been
studied through qualitative and quantitative representation of flow properties.

Keywords: molecular dynamics, nano-channel, steady flow, non-equal inlet and outlet,
pressure

1. Introduction

Flow behavior at micro and nano scales has been the subject of interest in the recent years. As
a typical reduced-size fluid flow system, flow in a nanochannel can demonstrate different aspects
of nanofluid systems. Therefore, several investigations have been focused on the simulation of
nanochannel flows (Mi and Chwang, 2003).
Molecular Dynamics (MD) is a deterministic method to calculate the position of molecules

and their dynamic properties. Different potential functions have been introduced to represent
molecular forces in MD simulations (see for example Leach, 1999; Sadus, 2002). Extracting
macroscopic properties such as velocity, temperature and pressure from microscopic data has
also been a challenging issue (Allen and Tildesley, 1987; Karniadakis et al., 2002; Karimian et
al., 2011).
In earlier studies, the characterization of domain boundaries was not of the primary impor-

tance and thus they were treated as simple as possible. In most of the cases, therefore, periodic
boundary conditions were used in MD simulations (Stillinger and Rahman, 1974; Travis and
Evans, 1977; Koplik et al., 1989; Travis and Gubbins, 2000; Nagayama and Cheng, 2004). Howe-
ver, due to the rapid advancement of computational facilities in the recent years, new problems
with more complex boundaries have become a subject of MD simulations. As a result, imple-
mentation of realistic boundary conditions in MD simulation is now the center of attention,
especially in the field of fluid mechanics (Sun and Ebner, 1992; Huang et al., 2004; Hanasaki
and Nakatani, 2006; Huang et al., 2006).
One of the MD applications today that can practically be very beneficial is to present a

method for simulation of a specific known or predefined flow in a nanochannel with non-equal
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inlet and outlet cross-sectional areas. Different approaches can be found in the literature to create
flow fields in a nanochannel. The most simple and straightforward method is to implement an
external force or acceleration to move molecules in a specified direction (Koplik et al., 1988;
Fan et al., 2002; Ziarani and Mohamad, 2005; Sofos et al., 2009; Kamali and Kharazmi, 2011).
Other than this, some has used motion of a piston or plate upstream of the inlet to create flow
in nanotubes (Huang et al., 2004, 2006; Hanasaki and Nakatani, 2006). Implementation of flow
gradients such as the temperature gradient can also be used to create nanoflow (Han, 2008; Liu
and Li, 2010; Darbandi et al., 2011; Bao et al., 2015). In addition to these methods, in another
method, wall motion has been used to create molecular flow in nanochannels (Zhang et al., 2009;
Kim et al., 2010).
Implementation of a periodic boundary condition at the inlet and outlet is inevitable in all

the above-mentioned methods except for the second one in which a piston upstream of the inlet
is used to move the molecules. However, the disadvantage of this approach is that the solution
is limited to the period at which the piston moves in its stroke. Also, since additional molecules
are to be taken into account in stroke space upstream of the inlet, extra computational efforts
are required in this method.
While all of the above-mentioned methods achieve the goal of creating molecular flow in

nanochannels, they fail to model steady flow in a channel with different inlet and outlet cross-
-sectional areas since they use a periodic boundary condition at the inlet and outlet. Also, none
of the above methods offers a proper approach to produce specific known or predefined flow
in nanochannels. Therefore, the main objective of present study is to investigate flow behavior
in a channel of non-equal inlet and outlet cross-sectional areas with controllable flow. In the
following sections, we first introduce the calculation method used here to evaluate macroscopic
properties in nanoflow. Then we will discuss details about the nanoflow controlled by a tempe-
rature gradient. Finally, we introduce a method to solve molecular dynamic flow in a non-equal
inlet and outlet cross-sectional-area channel controlled by the temperature gradient.
Finally, a short review on boundary conditions is required since they are implemented on the

nanotube wall. The most common option is to model the walls by two rows of molecules. The
wall molecules are allowed to oscillate about their initial positions where they are fixed. This is
set up either by assigning heavy weights to the wall molecules (Koplik et al., 1988), rescaling the
velocity of wall molecules to their initial values (Huang et al., 2004), or using fictitious springs
(Fan et al., 2002; Huang et al., 2006; Sofos et al., 2009; Branam and Micci, 2009; Kamali and
Kharazmi, 2011). Meanwhile, some studies can be found where walls are modeled differently.
An example of such investigations is the study of Ziarani and Mohamad (2005), where the walls
were modeled as reflective. The investigation of wall boundary conditions is not the subject of
the present study, and the interested scientists are encouraged to refer to the literature for more
details. As will be described later, two rows of molecules that are allowed to oscillate about their
initial fixed positions represent channel walls.

2. Pressure and temperature formula in molecular dynamics

In this paper, the Non-Equilibrium Molecular Dynamics (NEMD) technique is used to simulate
flow of Argon. In molecular dynamics, positions of molecules are determined using Newton’s
second law. Intermolecular forces are calculated using Lennard-Jones 12-6 potential equation
(Rapaport, 2004) with a small correction by truncating at the cut-off distance and shifting to
eliminate the discontinuity (Leach, 1999)

V (rij) =




4ε
[( σ
rij

)12
−
( σ
rij

)6
−
( σ
rc

)12
+
( σ
rc

)6]
for rij ¬ rc

0 for rij > rc

(2.1)
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where rij is the intermolecular distance between atoms i and j, ε is the energy scale. We choose a
cut-off distance of rc = 2.5σ herein, which has commonly been used in other studies to simulate
Argon flow (Koplik et al., 1989; Priezjev, 2007; Sofos et al., 2009; Bao et al., 2015). σ is the finite
distance at which the intermolecular potential is zero, and it is equal to molecular diameter in the
hard sphere model. In this paper, wall and fluid molecules are formed from the same material.
Therefore, all interaction between wall molecules, fluid molecules or wall-fluid molecules follows
the above equation with Argon constants.
In a macroscopic analysis, pressure is calculated solely based on the virial equation of state.

In a microscopic system however, pressure is calculated from the virial equation of state on all
atoms plus the summation of intermolecular forces multiplied by the corresponding distances
between them. For pair-additive force fields, the fluid pressure P can be estimated through the
virial equation of state given below (Allen and Tildesly, 1987)

P =
NkBT

V
+
1
3V

N∑

i=1

N∑

j>i

rijfij (2.2)

where N is the number of molecules in the computational domain, kB is Boltzmann’s constant,
and V and T are volume and temperature of the computational domain, respectively. rij is the
distance between two interacting molecules i and j, and fij is the force of molecule j acting on
molecule i. The first term in Eq. (2.2) is called the kinetic term and contains temperature of the
computational domain. In a microscopic view, temperature is defined as

T =
m

3NkB

N∑

n=1

3∑

i=1

(Vni − V i)2 (2.3)

where n denotes the molecule number in the domain, i = 1, 2, 3 denotes the x, y and z compo-
nents of the atomic velocity Vn, V i is the i-th component of the mean flow velocity V, and m is
the atom mass. Mean velocity can be obtained from each of the several averaging methods like
SAM (Tysanner and Garcia, 2004), CAM (Tysanner and Garcia, 2005) or SMC (Karimian et al.,
2011) which reduces statistical errors in its calculation. In the present study, the SMC method
is used to calculate mean velocity. The velocity difference within parentheses that represents
instantaneous velocity due to thermal fluctuations is called virial velocity.
The pressure calculation method defined by Eqs. (2.2) and (2.3) has been implemented

in an in-house MD code developed in FORTRAN to extract pressure values from the results
of MD simulations. This code has been used in authors’ previous studies, where its accuracy
in calculation of macroscopic properties was demonstrated (Karimian et al., 2011; Karimian
and Namvar, 2012; Namvar and Karimian, 2012; Karimian and Izadi, 2013; Hasheminasab and
Karimian, 2015; Najafi and Karimian, 2016).
It should be noted that in regions near the boundary, all of the molecules including those

outside domain boundary should be taken into account within their cut-off region. This is crucial
for correct calculation of pressure (Najafi and Karimian, 2016).

3. Controlling flow with the temperature gradient in a channel with non-equal
inlet and outlet cross-sectional area

In (Najafi and Karimian, 2016), it was shown that uniform flow of molecules can be created by
enforcing two macroscopic properties such as temperature and mean flow velocity at a control
point; e.g. at a bin. Najafi and Karimian (2016) also showed that flow of molecules with a
gradient of flow properties, such as temperature, can be created if one flow property is defined
on an additional control point as well. In fact, they were able to set up a desired periodic flow. In
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the present study, we would like to apply the approach of Najafi and Karimian to set up a desired
flow field in a channel with non-equal inlet and outlet cross-sectional areas. To investigate this
idea, the following test case is defined.
Geometry of the nano channel considered here is a non-symmetric converging-diverging chan-

nel with length of 126.525 Å, inlet cross-sectional area of 36.15 Å×36.15 Å, outlet cross-sectional
area of 29.05 Å×36.15 Å, and ratio of throat to inlet cross-sectional areas of 0.6, as shown in
Fig. 1. Seven bins with equal lengths of 18.075 Å are located along the channel. Note that the
bin length cannot be very small. In this case, a sufficient number of molecules will not exist
in each bin and, therefore, fluctuations will appear in the calculated properties. On the other
hand, although smooth results are obtained in larger bins with a moderate number of molecules,
they cannot represent local properties accurately. More details about the effect of bin size on
sampling and averaging can be found in (Karimian and Izadi, 2013). Wall molecules in bin 1 are
arranged in a straight line. From the beginning of bin 2 to the end of bin 7, the wall molecules
are located on a half-sinusoidal profile. The throat of this channel is located at the boundary of
bins 5 and 6 that is 90.375 Å from the inlet. The wall profile of bins 6 and 7 is in symmetry with
that of bins 5 and 4. This non-symmetric channel is in fact the first part of a fully symmetric
converging-diverging channel with a length of 180.75 Å. As mentioned above, the desired flow
field can be developed in this channel by enforcing temperature and mean velocity at bin 2, and
temperature at bin 7.

Fig. 1. Non-symmetric channel with 7 bins along the x direction and different inlet and outlet
cross-sectional areas

In order to verify our results, we need to know the solution of molecular flow in this channel
for the desired values of mean velocity and temperatures at these two bins. For this purpo-
se, we can assume that the above-defined non-symmetric channel is a part of the symmetric
converging-diverging channel for which its solution is available. In this case, the solution of the
non-symmetric channel would be equal to the solution of this symmetric channel in its first
126.525 Å provided that values of mean velocity and temperatures extracted from the solution
of the symmetric converging-diverging channel are enforced at bins 2 and 7.
Therefore, we first solve molecular flow in a 180.75 Å length symmetric converging-diverging

channel, which has the exact wall profile of our test case in its first 126.525 Å. A schematic of
this channel with its initial configuration of molecules is shown in Fig. 2. This symmetric channel
is solved with the periodic boundary condition, and has exactly the same 7 bins of our test case
plus 3 extra bins in its 54.225 Å extended part. Obviously, this symmetric converging-diverging
channel has an inlet/outlet cross-sectional area of 36.15 Å×36.15 Å, and the ratio of throat to
inlet cross-sectional areas of 0.6.
This channel contains mono-atomic molecules of Argon gas with an atomic diameter of

σ = 3.4 Å and energy parameter of ε = 1.67 ·10−21 J. Argon molecules are initially arranged in a
FCC lattice form. Solution starts from the initial temperature of 120K and zero mean velocity.
The periodic boundary condition is applied in the x and z directions. In the y direction, the
channel is restricted at each side by two rows of fluid molecules as channel walls. Wall molecules
are allowed to oscillate about their initial fixed positions. Temperature of the wall molecules
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Fig. 2. Schematic of molecule positions in the symmetric converging-diverging channel with 1062 fluid
molecules and 1092 wall molecules

is maintained at 120K by scaling of the molecule velocities. This channel contains 1062 flow
molecules (N) and 1092 wall molecules (Nw). As seen in Fig. 2, the flow molecules are initialized
over the channel in a rectangular cube. Each wall has 546 molecules, arranged in a FCC lattice
form in a half-sinusoidal profile. Thus, molecular densities of the wall and fluid are 2237.79 kg/m3

and 1108.18 kg/m3, respectively. Low amplitude oscillations of the wall molecules, managed by
a spring stiffness coefficient of 5000N/m, decrease the possibility of molecule escape from the
domain boundaries.
The equation of motion is integrated over time with time steps of 10−16 s using the Verlet

scheme (Verlet, 1967). Note that the time step value should be chosen appropriately. Very
small time steps increase computational cost and solution time, and large time steps may cause
solution divergence. The solution domain is divided into 10 equal bins. The solution is preceded
for 15 000 000 time steps to reach equilibrium.
During the solution, temperature of 300K and mean velocity of 20m/s are continuously

enforced in the second bin. At each time step, mean velocity in this bin is modified by adding
the difference between desired and calculated mean velocities to the velocity of each molecule
inside the bin. In a similar fashion, temperature in the bin is updated by rescaling the virial
velocity of molecules at each time step. The SMC averaging method (Karimian et al., 2011) is
applied to calculate pressure and velocity at each time step using Eq. (2.2). Pressure, mean flow
velocity, molecular density and temperature variations along the channel are shown in Fig. 3.
Convergence rates of velocity and temperature in the bins are shown in Fig. 4.

Fig. 3. Variations of flow properties along the symmetric converging-diverging channel generated by
enforcement of temperature and mean velocity in bin 2, (a) velocity, (b) pressure and (c) molecular

density (d) temperature

It can be seen in Fig. 3a that the mean flow velocity increases through the channel from
the inlet to throat and, after that, decreases towards the end of the channel. The throat of this
channel is located between bins 5 and 6. Velocity enforcement at bin 2 results in molecules to
be driven towards the flow direction and leave the bin. Therefore, this bin would have the least
molecular density. Higher concentration of molecules in bin 3 leads to lower velocities and higher
pressures at this bin.



1146 H.R. Najafi, S.M.H. Karimian

Fig. 4. Convergence rates of: (a) velocity and (b) temperature, along the symmetric
converging-diverging channel generated by enforcement of temperature and mean velocity in bin 2

As shown in Fig. 3c, the highest value of molecular density occurs in bin 4 before the throat.
Temperature decreases from the control bin through the end of the channel, and the minimum
temperature occurs in bin 8. The temperature setting at the control bin influences upstream bins
at lower flow velocities. So the temperature rise could be observed in bins 1, 9 and 10. According
to Eq. (2.2), the pressure increases with temperature only through the first term while the
effect of molecular density appears in both terms, giving the temperature the dominant role in
determining the pressure value and its variation. Therefore, the highest pressure has occurred
at bin 3 near the highest temperature bin, as can be seen in Fig. 3b. It should be noted that
the flow energy decreases through the channel by restricting and scaling temperature of wall
molecules to a fixed value.
As mentioned before, these results will be used to verify the solution of our test case with

non-equal inlet and outlet cross-sectional areas, defined in Fig. 1. This non-symmetric channel
includes 7 bins. The equation of motion is integrated over time with time steps of ∆t = 10−16

second using the Verlet scheme. The solution proceeds for 15 000 000 time steps to reach equili-
brium. Similar to the symmetric channel flow, temperature of 300K and mean velocity of 20m/s
are continuously enforced in the second bin. In addition, temperature of 234K is enforced at
the outlet of the channel in bin 7. This temperature has been extracted from the solution of the
symmetric converging-diverging channel introduced in Fig. 3. There are 756 wall molecules and
803 fluid molecules between bins 1 to 7 which are equal to those in the same bins of the symme-
tric converging-diverging channel at the equilibrium. The number of molecules is not changed
during the solution. This means that for each molecule leaving the end of the channel, either
it should return back into the channel at the inlet or one molecule should be inserted into the
domain at the inlet. Insertion of molecules into the domain creates drastic intermolecular forces
and change the internal energy in the domain. Such instantaneous forces sometimes cause une-
xpected disorder in the motion of molecules, which normally results in divergence of the solution.
Some methods have been presented to perform the insertion process with minimum changes in
the domain internal energy (Sun and Ebner, 1992; Li et al., 1998). In those methods however,
inserted molecules may overlap with other molecules and, therefore, due to high internal forces
between them, one or both of them may be ejected out of the domain.
Due to difficulties associated with insertion of molecules at the inlet, it has been decided

to use a periodic boundary condition at the inlet and outlet of the channel. In this case, every
molecule that leaves the solution domain at the outlet will be returned back into the solution
domain at the inlet without any difficulty. However, the problem is that cross-sectional areas of
the inlet and outlet are not equal to each other. To resolve this problem, the molecules leaving
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the outlet of the non-symmetric channel will be sent into an adaption zone which expands
the flow cross-sectional area from the outlet of the non-symmetric channel to an area equal to
the inlet cross-sectional area of the channel, i.e. from area of 29.05 Å×36.15 Å, to an area of
36.15 Å×36.15 Å. Note that the periodic boundary condition is applied between the outlet of
the non-symmetric channel and the inlet of the adaption zone, and also between the outlet of the
adaption zone and the inlet of the non-symmetric channel. Different profiles can be designed for
the wall geometry in this zone; this will be discussed later in this Section. But we know that the
best option is to select a wall profile similar to the part of the symmetric converging-diverging
channel that has been cut off from it, i.e. a part of the channel with bins 8 to 10, as shown
in Fig. 5. This adaption zone, denoted by 1st, is filled with 259 Argon molecules to bring the
number of mono-atomic Argon molecules to 1062 in the solution domain. Results obtained from
the numerical solution of molecular flow in the non-symmetric channel are compared with the
results of the symmetric converging-diverging channel in Fig. 6.

Fig. 5. 1st adaptation zone with 3 bins along the x direction

Fig. 6. Variations of flow properties along the non-symmetric channel with temperature of 300K and
mean velocity of 20m/s at bin 2 and temperature of 234K at bin 7 in comparison to those of the

symmetric channel, (a) mean flow velocity, (b) pressure, and (c) temperature

As shown in Fig. 6, the agreement between results obtained from the solutions of symmetric
and non-symmetric channels is excellent, except for the pressure variation. Note that since
temperature of bin 7 is set up to 234K by rescaling of the Virial velocity of molecules in this
bin at each time step, the arrangement of molecules in this bin will be changed in comparison
to that of the symmetric converging-diverging channel. Due to this rearrangement of molecules
in bin 7, temperature variation is slightly underestimated. As noted before, temperature has the
main role in the determination of pressure. Therefore, rearrangement of molecules in bin 7 has
affected pressure through both terms of Eq. (2.2). As a result, a small difference between the
results of pressure depicted in Fig. 6b is inevitable. Therefore, we have been able to generate
specific flow in a channel with non-equal inlet and outlet cross-sectional areas by enforcement
of temperature and mean velocity at one bin, e.g. bin 2 here, and temperature at another bin,
e.g. bin 7 here.
In order to produce extra validation data for comparison purposes, molecular flow of Argon

in the symmetric converging-diverging channel of Fig. 2 has been solved for two additional
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conditions at bin 2: (a) temperature of 300K and mean velocity of 50m/s, and (b) temperature
of 300K and mean velocity of 100m/s. Other settings of these two numerical solutions are exactly
the same as those of the first solution with temperature of 300K and mean velocity of 20m/s.
Solutions of cases (a) and (b) indicate that temperature of bin 7 in these two cases reaches
263K and 279K, respectively. Now, once again molecular flow is solved in the non-symmetric
channel, having enforced temperature and mean velocity at bin 2, and extracted temperature
at bin 7. All other settings of the solution are as before. Comparison of pressure, mean flow
velocity, molecular density and temperature variations along the non-symmetric channel with
those of the symmetric converging-diverging channel are shown in Fig. 7.

Fig. 7. Comparison of velocity, pressure, molecular density and temperature along the non-symmetric
channel with those of the symmetric converging-diverging channel for two cases of (a) temperature of
300K and mean velocities of 50m/s at bin 2 and temperatures of 263K at bin 7, and (b) temperature

of 300K and mean velocities of 100m/s at bin 2 and temperatures of 279K at bin 7

Variation of the mean flow velocity along the channel shows a slightly different trend at
100m/s in comparison to 50m/s case as seen in Fig. 7a. Due to the accumulation of molecules
in the throat region, the mean velocity of molecules decreases in the throat upstream for both
cases. Downstream the throat however, molecules gain velocity as a result of less concentration
in this region. It could be seen in Fig. 7b that pressure increases with molecular density upstream
the throat. In this region, higher temperature has also caused the pressure to increase, according
to Eq. (2.2). The agreement between the results of the symmetric and non-symmetric channels
is more realized at higher mean flow velocities. Therefore, it is clear that the presented method
is more accurate at higher velocities of mean flow.
Again, comparison of the results in Fig. 7 proved that the presented approach has been able

to generate specific flow in the channel with non-equal inlet and outlet cross-sectional areas by
enforcement of temperature and mean velocity at one bin, and temperature at another bin if a
proper adaption zone is used. In order to generalize this approach, it is needed to investigate
the effect of adaption-zone geometry on the results. It is significant to demonstrate that the
presented approach is mainly independent of the shape of the adaption zone. The adaption zone
is characterized by its length, its wall slopes at the inlet and outlet, and cross-sectional areas at
the inlet and outlet. For any channel, the latter one is fixed, i.e. from inlet of 29.05 Å×36.15 Å
to outlet of 36.15 Å×36.15 Å. Therefore, we define test cases to investigate the effect of other
two parameters, i.e. length and slope of the adaption zone.
First, two different adaption zones shown in Fig. 8 are investigated. Test case (b) where

mean flow velocity of 100m/s is enforced at bin 2 is solved with these adaption zones. The
adaptation zones proposed in Figs. 8a and 8b as 2nd and 3rd geometries include three and two
bins, respectively; i.e. equal to 54.225 Å and 36.15 Å in length, respectively. In both cases, the
slope of the wall profile is 0.196 in the first bin, and is zero in the other bins.
The number of fluid molecules in the 2nd and 3rd adaptation zones of Figs. 8a and Fig. 8b are

equal to 259 and 153, respectively. The number of molecules in the geometries has been selected
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Fig. 8. Modified adaptation zones: (a) 2nd geometry (b) 3rd geometry

based on the average density of molecules in the non-symmetric channel. Therefore, the added
number of molecules is proportional to the adaptation zone volume. The results obtained from
these two solutions are compared with those obtained from the symmetric converging-diverging
channel and from the non-symmetric channel with the 1st adaption zone in Fig. 9.

Fig. 9. Comparison of velocity, pressure and temperature variations of flow variables along the
non-symmetric channel generated by temperature of 300K and mean velocity of 100m/s at bin 2 and
temperatures of 279K at bin 7 with 1st, 2nd, and 3rd adaption zones, with those of the symmetric

channel

In comparison to the results of the symmetric channel and those obtained using the 1st
adaption zone, both adaption zones have predicted flow properties very well, however, between
the 2nd and 3rd adaptation zones, the 2nd adaption zone leads to a better estimation of flow
properties. We believe that this is due to the facts that 1) the slope of the 2nd adaption zone
from the inlet to outlet is smoother than that of the 3rd adaption zone, and 2) length of the 2nd
adaption zone is longer. But we would like to have an adaption zone with small length in order
to minimize computational cost. For this purpose, two additional adaption zones denoted by
fourth (4th) and fifth (5th), with 36.15 Å in length are defined. Lengths of both adaption zones
are equal to the 3rd adaption zone. The 4th adaption zone shown in Fig. 10a has a smoother
wall slope. From the beginning of the first bin up to the middle of the second bin, the wall slope
is constant and equal to 0.13, i.e. with an angle of 7.4◦. From the middle of the second bin, the
slope of the wall is set equal to zero. The 5th adaption zone shown in Fig. 10b will be introduced
after analysis of the results obtained from the 4th adaption zone. The number of fluid molecules
in both adaptation zones is equal to 259.
Having solved molecular flow in the non-symmetric channel using the 4th adaption zone

with temperature of 300K and mean velocity of 100m/s at bin 2 and temperatures of 279K
at bin 7, its results are compared with the results of the symmetric channel and those of the
non-symmetric channel with the 2nd and 3rd adaption zones in Fig. 11. Having compared with
the results of the symmetric channel, results of Fig. 11 show that using the 4th adaptation zone,
the flow properties are estimated better than when the 3rd adaptation zone is used. We believe
that this is due to the fact that the wall of the 4th adaption zone has a lower wall slope. This
once again proves that the adaption zone with smoother wall profiles are preferred. Note that
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Fig. 10. (a) 4th adaptation zone (b) 5th adaptation zone

Fig. 11. Comparison of velocity, pressure and temperature along the non-symmetric channel generated
by temperature of 300K and mean velocity of 100m/s at bin 2 and temperatures of 279K at bin 7 with

2nd, 3rd and 4th adaption zones, with those of the symmetric channel

based on Fig. 11, although the results obtained using the 4th adaption zone do not give a better
estimation of flow properties in comparison to the results obtained using the 2nd adaptation
zone, it costs computationally less since it is shorter in length.
Careful inspection of the 4th adaption zone reveals that the slope of this adaptation zone

at its inlet is very close to the slope of the non-symmetric channel at its outlet. Therefore, to
achieve more correct results, it is necessary to match the inlet slope of the adaptation zone with
the outlet slope of the non-symmetric channel.
To account for these requirements, it is proposed to generate the wall profile of the adaption

zone with a 3rd degree (cubic) polynomial which will have an inlet slope equal to the outlet slope
of the non-symmetric channel and an outlet slope equal to the inlet slope of the non-symmetric
channel. Two other constants of the cubic polynomial are determined by the definition of the
beginning and the end coordinates of the adaption zone. This profile that has length equal to
that of the 4th adaption zone (2 bins) is shown in Fig. 10b. The previous flow simulation is
repeated but using the 5th adaption zone. The results of this simulation including variation of
velocity, pressure and temperature along the channel are shown in Fig. 12.

Fig. 12. Comparison between variations of flow variables along the non-symmetric channel generated by
temperature of 300K and mean velocity of 100m/s at bin 2 and temperatures of 279K at bin 7 with

4th and 5th adaptation zones, (a) velocity, (b) pressure and (c) temperature
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As seen in Fig. 12, the results obtained using the 4th and 5th adaptation zones are very
similar to each other. Especially, accurate results have been achieved at the end of the nozzle.
To show that this method does not depend on the number of molecules, the previous flow

simulations are repeated with 200 more and fewer molecules in the symmetric nanochannel and
the same trend is observed with the adaptation zones in variation of velocity, pressure and
temperature.

4. Conclusion

In this paper, it is shown that flow can be generated and controlled in a channel with different
inlet and outlet cross sections by setting temperature at two different regions and mean flow
velocity at one of these regions. In a channel with non-equal inlet and outlet, periodic boundary
conditions cannot be implemented. Therefore, to handle this difficulty, an adaption zone is used
to computationally expand the outlet of the channel to a cross sectional area equal to its inlet.
This adaption zone should have the following specifications to result in a more accurate flow
prediction.

• Length: If its length is too short then the accuracy of estimated flow properties along the
channel with variable cross-sectional area decreases. On the other hand, if the length of
the channel is too long, then the cost of computation will raise. In the non-symmetric
converging-diverging channel, for instance, the making use of the adaptation zone with
length and wall profile similar to the part that has been cut off from it, results in a more
accurate estimation of flow properties.

• Slope at junctions: To achieve more accurate results, it is necessary to set the inlet slope
of the adaption zone equal to the outlet slope of the channel, and also to set the outlet
slope of the adaption zone equal to the inlet slope of the channel.

• Wall profile: A 3rd degree (cubic) polynomial is used for the wall profile of the adaption
zone. With this profile, slopes at the inlet and outlet, and also length of the adaption zone
can be fixed to the desired values and, therefore, guarantee a smooth wall profile. Note
that the slope of the channel inlet (and thus the adaption zone outlet) is preferred to be
zero.
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The purpose of this paper is to present study of thermal creep stress and strain rates in a
non-homogeneous spherical shell by using Seth’s transition theory. Seth’s transition theory is
applied to the problem of creep stresses and strain rates in the non-homogeneous spherical
shell under steady-state temperature. Neither the yield criterion nor the associated flow
rule is assumed here. With the introduction of thermal effect, values of circumferential
stress decrease at the external surface as well as internal surface of the spherical shell. It
means that the temperature dependent materials minimize the possibility of fracture at the
internal surface of the spherical shell. The model proposed in this paper is used commonly
as a design of chemical and oil plants, industrial gases and stream turbines, high speed
structures involving aerodynamic heating.
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1. Introduction

Spherical shell structures have found widespread use in modern technology such as design of
chemical and oil plants, accumulator shells, pressure vessel for industrial gases or media trans-
portation of high-pressurized fluids and piping of nuclear containment, high speed structures
involving aerodynamic heating, submerged undersea structures, earth sheltered domes, and the
like. These spherical systems are effective from the perspectives of both structural and architec-
tural design. In many of these cases, the spherical shells have to operate under severe mechanical
and thermal loads causing significant creep and thus reducing its service life. The collapse or da-
mage is initiated by creep, shrinkage and thermal effects, or from their interaction with structures
that both experience or do not experience environmental degradation. Consequently, demand
for strengthening and upgrading the existing concrete structures, because of damage caused by
long-term effects and excessive structural deformations, has been recognized. However, before the
application of costly strengthening techniques, understanding of nonlinear long-term behaviour
of the existing and new spherical shells is essential, and the development of suitable and reliable
theoretical approaches for their analysis and safety assessment is required. Creep effects gene-
rally increase deformations of a shell structure even under room temperatures, and are usually
only considered to affect behaviour at the service ability limit states. Therefore, the analysis of
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long term steady state creep deformations of shells is very important in these applications (Ha-
med et al., 2010; Kashkoli and Nejad, 2014). Due to the occurrence of these creep deformations,
non-homogeneous materials are widely used in the engineering applications. Non-homogeneous
materials are a specific class of composite materials known as functionally graded materials
(FGM) in which constituents are graded in one or more direction with continuous variation
to achieve desired properties. The smooth grading of the constituents result in better thermal
properties, higher fracture toughness, improved residual stress distribution and reduced stress
intensity factors. These properties allow non-homogeneous structures to withstand high pressure
under elevated thermal environment. Therefore, the analysis of non-homogeneity in the spherical
shell through a mathematical model by taking one and all the complexities into consideration
is the major concern of researchers (Kar and Panda, 2016). Some degree of non-homogeneity is
present in a wide class of materials such as hot rolled metals, magnesium and aluminum alloys.
Non-homogenity can also be introduced by a certain external field which is a thermal gradient
material as the elastic moduli of the materials vary with temperature (Olszak, 1960). Penny
(1967) obtained the effects of creep in spherical shells by analysis similar to the corresponding
elastic ones described here. Miller (1995) evaluated solutions for stresses and displacements in
a thick spherical shell subjected to internal and external pressure loads. You et al. (2005) pre-
sented an accurate model to carry out elastic analysis of thick-walled spherical pressure vessels
subjected to internal pressure. Kellogg and King (1997) developed a finite element model of co-
nvection in a spherical axisymmetric shell that we use to simulate upwelling thermal plumes in
the mantle. Thakur (2011) analyzed creep transition stresses of a thick isotropic spherical shell
by finitesimal deformation under steady state of temperature and internal pressure by using
Seth’s transition theory. Seth’s transition theory does not acquire any assumptions like the yield
condition, incompressibility condition, and thus poses and solves a more general problem from
which cases pertaining to the above assumptions can be worked out. This theory utilizes the
concept of a generalized strain measure and asymptotic solution at critical points or turning
points of differential equations defining the deformed field and has been successfully applied to
a large number of problems (Seth, 1962, 1966; Thakur, 2011, 2014; Thakur et al., 2016, 2017).
Seth (1962) defined the concept of generalized strain measures as

eii =

A
eii∫

0

(
1− 2 Aeii

)n
2
−1
d
A
eii=
1
n

[
1−

(
1− 2 Aeii

)n
2

]
i = 1, 2, 3 (1.1)

where n is the measure and
A
eii are the Almansi finite strain components. For n = −2,−1, 0, 1, 2 it

gives the Cauchy, Green Hencky, Swainger and Almansi measures respectively. Non-homogeneity
in a spherical shell has been taken as the compressibility of the material as

C = C0r−k (1.2)

where a ¬ r ¬ b, C0 and k are real constants.

2. Governing equations

We consider a spherical shell whose internal and external radii are a and b, respectively, and is
subjected to uniform internal pressure pi of gradually increasing magnitude and temperature Θ0
applied to the internal surface r = a as shown in Fig. 1. The components of displacement in
spherical co-ordinates are given by (Seth, 1962, 1966)

u = r(1− β) v = 0 w = 0 (2.1)
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Fig. 1. Geometry of the spherical shell

where u, v, w are displacement components, β is a position function depending on r.
The generalized components of strain are given by Seth (1966)

err =
1
n
[1− (rβ′ + β)n] eθθ =

1
n
(1− βn) = eϕϕ erθ = eθϕ = eϕr = 0 (2.2)

where n is the measure and β′ = dβ/dr.
Stress-strain relation. The stress-strain relations for a thermo-elastic isotropic material are given
by (Parkus, 1976)

Tij = λδijI1 + 2µeij − ξΘδijTij i, j = 1, 2, 3 (2.3)

where Tij are stress components and eij is strain component, λ and µ are Lame’s constants,
I1 = ekk is the first strain invariant, δij is Kronecker’s delta, ξ = α(3λ + 2µ), α being the
coefficient of thermal expansion, and Θ is temperature. Further, Θ has to satisfy

∇2Θ = 0 (2.4)

Substituting the strain components from Eq. (2.2) in Eq. (2.3), the stresses are obtained as

Trr =
2µ
n
[1− (rβ′ + β)n] + λ

n
[3− (rβ′ + β)n − 2βn]− ξΘ

Tθθ = Tϕϕ =
2µ
n
(1− βn) + λ

n
[3− (rβ′ + β)n − 2βn]− ξΘ

Trθ = Tθϕ = Tϕr = 0

(2.5)

Equation of equilibrium. The radial equilibrium of an element of the spherical shell requires

dTrr
dr
+
2
r
(Trr − Tθθ) = 0 (2.6)

where Trr and Tθθ are the radial and hoop stresses, respectively.
Boundary conditions. The temperature satisfying Laplace equation (2.4) with boundary condi-
tions

Θ = Θ0 ∧ Trr = −pi at r = a

Θ = 0 ∧ Trr = 0 at r = b
(2.7)

where Θ0 is constant, is given by (Parkus, 1976)

Θ =
Θ0 log(r/b)
log(a/b)

(2.8)
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Critical points or turning points. Using Eq. (2.5) in Eq. (2.6), we get a non-linear differential
equation in β as

nP (P + 1)n−1βn+1
dP

dβ
=
(µ′

µ
− C ′

C

)
{3− 2C − βn[2(1− C) + (1 + P )n]} − 2C ′r(1− βn)

− nβnP [2(1 − C) + (1 + P )n] + 2Cβn[1− (1 + P )n]− nCΘ0
2µβn

(
ξ + rξ′ log

r

b

) (2.9)

where Θ0 = Θ0/ log(a/b), C = 2µ/λ+2µ and rβ′ = βP (P is a function of β and β is a function
of r only). The transition or turning points of β in Eq. (2.9)) are P → −1 and P → ±∞.

3. Analytical solution

For finding thermal creep stresses and strain rates, the transition function is taken through the
principal stress difference (see Seth, 1962, 1966; Thakur, 2011, 2014; Thakur et al., 2016, 2017)
at the transition point P → −1. We define the transition function ψ as

ψ = Trr − Tθθ =
2µβn

n
[1− (P + 1)n] (3.1)

where ψ is a function of r only, and ψ is the dimension.
Taking logarithmic differentiation of Eq. (3.1) with respect to r and substituting the value

of dP/dβ from Eq. (2.9), we get

d logψ
dr

=
np

r
+
µ′

µ
− 1
rβn[1− (1 + P )n]

[
r
(µ′

µ
− C ′

C

)
{3− 2C − βn[2(1 − C) + (1 + P )n]}

− 2rC ′(1− βn)− nβnP [2(1− C) + (1 + P )n]

+ 2Cβn[1− (1 + P )n]− nCΘ

2µ

(
ξ + rξ′ log

r

b

)]
(3.2)

Taking asymptotic value of Eq. (3.2) at P → −1, we get

d

dr
(logψ) =

3µ′

µ
− 2C

′

C
− 3n

r
+X (3.3)

where

X =
2(n − 1)C

r
− 2Cµ

′

µ
+
2C ′

βn
−
(µ′

µ
− C ′

C

)3− 2C
βn

+
nCΘ0
2µrβn

(
ξ + rξ′ log

r

b

)

Integrating equation (3.3), we get

ψ = A
µ3

C2r3n
exp(h) (3.4)

where h =
∫
X dr and A is a constant of integration, which can be determined from the boundary

condition. From Eq. (3.1) and Eq. (3.4), we have

Trr − Tθθ = A
2rµ3

2C2r3n+1
exp(h) =

ArH

2
(3.5)

where

H =
2µ3

C2r3n+1
exp(h)
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Substituting Eq. (3.5) in Eq. (2.6) and integrating, we get

Trr = B −A
∫
H dr (3.6)

where B is a constant of integration, which can be determined from the boundary condition and
asymptotic value of β as P → −1 is D/r, with D being a constant.
Using boundary condition Eq. (2.7) in Eq. (3.6), we get

A = − pi
b∫
a
H dr

B = − pi
b∫
a
H dr

∫
H dr (3.7)

where pi is pressure at the inner surface of the spherical shell. Using the integration constants
A and B in Eq. (3.6), we get

Trr =
pi

b∫
a
H dr

b∫

r

H dr (3.8)

Substituting Eq. (3.8) into Eq. (3.5), we get

Tθθ = Tϕϕ =
pi

b∫
a
H dr

( b∫

r

H dr +
rH

2

)
(3.9)

We introduce non-homogeneity in the spherical shell due to variable compressibility as given in
Eq. (1.2), then Eq. (3.8) and Eq. (3.9) become

Trr =
pi

b∫
a
H dr

b∫

r

H1 dr Tθθ = Tϕϕ =
pi

b∫
a
H1 dr

( b∫

r

H1 dr +
rH1
2

)
(3.10)

where Trr, Tθθ are radial and circumferential stresses, and

H1 =
2µ3

C2r3n+1
exp(h1) =

r−(3n+k+1)

4(1 −C0r−k)3
exp(h1)

h1 = −
2(n − 1)

k
C0r
−k − 2kC0r

n−k

Dn(n− k) +
kC0
Dn

∫
rn−k−1(3− 2C0)r−k
1− C0(bR)−k

dr + 2 log(1− C0r−k)

+
αnΘ0
Dn

∫
(1− C0r−k)

(
3 +

C0r
−k

1− C0r−k
− kC0r

−k log(r/b)
1−C0r−k

)
rn−1 dr

C ′ = −kC0r−k−1
µ′

µ
=

C ′

C(1− C)

Equations (3.10)1,2 give thermal creep stresses for a spherical shell made of a non-homogeneous
material under steady-state temperature. We introduce the following non-dimensional compo-
nents as: R = r/b, R0 = a/b, σrr = τrr/pi, σθθ = τθθ/pi and αΘ0 = Θ1. Equations (3.10)1,2 in
non-dimensional form become

σrr =

1∫
R
H2 dR

1∫
R0

H2 dr

σθθ = σϕϕ =
1

1∫
R0

H2 dR

( 1∫

R

H2 dR+
RH2
2

)
(3.11)
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where

H2 =
(bR)−(3n+k+1)C0λ3

4(1− C0b−kR−k)3
exp(h2)

h2 = −
2(n− 1)

k
C0(bR)−k −

2kC0(bR)n−k

Dn(n− k)

+
kC0b

n−k

Dn

∫
Rn−k−1(3− 2C0)R−k
1− C0(bR)−k

dR+ 2 log(1− C0b−kR−k)

+
nΘ1

Dn lnR0

∫
(1− C0b−kR−k)

(
3 +

C0(bR)−k

1− C0b−kR−k
− kC0(bR)−k logR
1− C0b−kR−k

)
Rn−1 dR

Particular case: In the absence of temperature gradient (i.e. Θ1 = 0), Eqs. (3.11), become

σrr =

1∫
R
H∗2 dR

1∫
R0

H∗2 dR

σθθ = σϕϕ =
1

1∫
R0

H∗2 dR

( 1∫

R

H∗2 dR +
RH∗2
2

)
(3.12)

where

H∗2 =
(bR)−(3n+k+1)C0λ3

4(1 −C0b−kR−k)3
exp(h∗2)

h∗2 = −
2(n− 1)

k
C0(bR)−k −

2kC0(bR)n−k

Dn(n− k)

+
kC0b

n−k

Dn

∫
Rn−k−1(3− 2C0)R−k
1− C0(bR)−k

dR+ 2 log(1− C0b−kR−k)

4. Estimation of creep parameters

When the creep sets in, the strains should be replaced by strain rates, then stress-strain relations
are given (Sokolnikoff, 1946; Parkus, 1976)

eij =
1 + ν
E

Tij −
ν

E
δijT + αΘ (4.1)

where eij is the strain component and T = Tii is the first stress invariant and ν = (1−C)/(2−C)
is Poisson’s ratio. Differentiating Eq. (2.2) with respect to time t, we get

ėθθ = −βn−1β̇ (4.2)

For Swainger measure (i.e. n = 1), Eq. (4.2) become

ε̇θθ = β̇ (4.3)

where ε̇θθ is the Swainger strain measure. From Eq. (3.1), the transition value β is given at the
transition point P → −1 by

β =
( n
2µ

) 1
n
(Trr − Tθθ)

1
n (4.4)

Using Eqs. (4.2)-(4.4) in Eq. (4.1), we get

ε̇rr = m(σrr − νσθθ + αΘ) ε̇θθ = m(σθθ − νσrr + αΘ)
ε̇ϕϕ = −m[ν(σrr + σθθ) + αΘ]

(4.5)

where ε̇rr, ε̇θθ and ε̇ϕϕ are strain rates, σrr, σθθ are stress components and
m = [n(σr − σθ)(1 + ν)]

1
n
−1. These are the constitutive equations used by Odquist (1974)

for finding the creep stresses, provided we put n = 1/N and N is the measure.
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5. Numerical results and discussion

For calculating creep stresses and strain rates on the basis of the above analysis, the following
values have been taken, ν = 0.5 (incompressible material C0 = 0), ν = 0.42857 (compressible
material C0 = 0.25) and 0.333 (compressible material C0 = 0.50), n = 1/3, 1/5, 1/7 (i.e. N = 3,
5, 7), thermal expansion coefficient α = 5.0 · 10−5 degF−1 for Methyl Methacrylate (Levitsky
and Shaffer, 1975) and Θ1 = αΘ0 = 0 and 0.5, D = 1. In classical theory, the measure N is equal
to 1/n. The definite integrals in Eqs. (3.11) have been evaluated by using Simpson’s rule. From
Figs. 2-4, curves are presented between stresses along the radii ratio R = r/b in the spherical
shell made of compressible as well as incompressible materials for k = −1, 0, 1. It can be seen
form Figs. 2 and 3 that the circumferential stresses are maximum at the external surface for
n = 1/7 and k = −1, 0 for a compressible material as compared to the incompressible material.
From Fig. 4, the circumferential stress is maximum at the internal surface for non-homogeneity
k = 1. The non-homogeneity increases the values of circumferential stress (i.e. k = −1, 0), but
reverse the result for k = 1.

Fig. 2. Creep stresses in a non-homogeneous (k = −1) spherical shell along the radii ratio R = r/b;
(a) without temperature, (b) for temperature Θ1 = 0.5
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Fig. 3. Creep stresses in a non-homogeneous (k = 0) spherical shell along the radii ratio R = r/b;
(a) without temperature, (b) for temperature Θ1 = 0.5

With the introduction of a temperature gradient, the values of circumferential stress are de-
creased at the external surface as well as internal surface of the spherical shell for different values
of non-homogeneity. It means that temperature dependent materials minimize the possibility of
fracture at the internal surface of the spherical shell. From (Fig. 5), curves are produced between
strain rates along the radii ratio R = r/b for the spherical shell made of compressible material
C = 0.25, i.e. saturated clay for k = −1, 0, 1. It can be seen that the strain rates are maximum
at the external surface for k = −1, 0 and reverse in the case k = 1. With the introduction of
a temperature gradient, the strain rates decrease at the internal surface as well as the external
surface. It means that the temperature dependent materials minimize the possibility of fracture
at the internal surface of the spherical shell.
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The locally resonant (LR) phononic crystal double panel structure made of a two-dimensional
periodic array of a two-component cylindrical LR pillar connected between the upper and
lower plates is proposed, and the bandgap properties of the structure are investigated theore-
tically in this paper. The band structures, displacement fields of eigenmodes and transmis-
sion power spectrums of the corresponding 8×8 finite structure are calculated by the finite
element method. Numerical results and further analysis demonstrate that a band gap with a
low starting frequency and a wide band width is opened by the coupling between dominant
vibrations of the pillars and plate modes of the upper and lower plates when the vibration
source and the receiver are considered on different sides of the structure. By comparing the
band structures and displacement fields of the double panel and those of the single plate
with the same parameters, many common characteristics are displayed. Then, the influence
of geometrical parameters on the band gap are studied and understood with the help of a
simple ‘spring-mass’ model.

Keywords: bandgap property, phononic crystal double panel, band structure, displacement
field, transmission power spectrum

1. Introduction

Due to the advantageous sound-insulated property, double panels are extensively used as the
containment structures in many areas such as marine, transport, aerospace engineering and civil
construction projects (Carnael and Fuller, 2004; Pietrzko and Mao, 1992). As it is well-known,
vibrations are mostly propagated along containment structures from vibration sources, and
structural noises are produced by radiation of the vibrations. The proposition of the phononic
crystal concept provides a new idea for the investigation on theory about vibration insulation and
noise reduction. Over the past two decades, the propagation of elastic waves in phononic crystals
has attracted a lot of attention which mainly focuses on calculation methods and bandgap
properties, but the application researches particularly on the field of vibration insulation and
noise reduction are still immature. Brag scattering (Saindou et al., 2002; Sigalas and Economou,
1992; Vasseur et al., 2002; Zhang et al., 2003) and locally resonant (Goffaux et al., 2004; Hirsekorn
et al., 2004; Ho et al., 2003; Liu et al., 2000) are developed as the two main mechanisms for the
creation of band gaps, in which the frequency range of band gaps based on the first mechanism
is almost two orders of magnitude higher than that based on the second mechanism (Liu et al.,
20007). Hence, the studies on double panel structures with the design idea of locally resonant
phononic crystal introduced provide a new idea for restraining structural vibration and reducing
noise in the unmanageable low frequency region (Hsu, 2011; Oudich et al., 2011; Qian and Shi,
2017; Xiao et al., 2017) of some industrial products.



1168 D. Qian, Z. Shi

For now, bandgap properties of double panel structures with the design idea of a locally
resonant phononic crystal introduced have rarely been studied. However, such an idea has been
widely implemented in single plates recently. By etching holes periodically in a solid matrix plate
and then filling them with scatters, the so-called filled-in system is formed. By stubbing resonant
units periodically onto free surfaces of the plate, a stubbed-on system is formed (Ma et al., 2014).
Hsu and Wu (2007) and Xiao et al. (2008) investigated vibration of band gaps of epoxy base
plates with filled-in rubber resonant units and filled-in rubber-coated heavy mass resonant units
by using the plane wave expansion method, respectively. Similarly, the three-component and
two-component stubbed-on systems constructed by periodically depositing rubber stubs with
and without Pb capped on the surface of the base plate were studied by using the finite element
method by Oudich et al. (2010). Besides, Xiao et al. (2012) researched flexural wave propagation
and vibration transmission in a locally resonant thin plate with a two-dimensional periodic array
of attached spring-mass resonators, which can be regarded as a simplified model of the stubbed-
on system. Zhao et al. (2016) proposed a double-vibrator (rubber-steel-rubber-steel layers) three-
component pillared PC plate on the basis of the traditional uni-vibrator (rubber-steel layers)
three-component pillared PC plate and studied propagation characteristics of band gaps of
flexural vibration and longitudinal vibration in the two-layer stubbed-on system. By revisiting
the filled-in and stubbed-on structures, Ma et al. (2014) proposed a new structure with three-
layered spherical resonant units, which opens a large sub-wavelength full band gap. By combining
the filled-in and stubbed-on units, Li et al. (2015) investigated propagation characteristics of
Lamb waves in a locally resonant phononic crystal single plate with the combined resonant unit.
Based on this, Li et al. (2016) further researched the expansion of locally resonant complete band
gaps in two-dimensional phononic crystals using a double-sided stubbed composite PC plate with
composite stubs. Recently, Qian and Shi (2016) investigated the propagation characteristics
of flexural waves in the locally resonant phononic crystal double panel structure made of a
two-dimensional periodic array of a spring-mass resonator surrounded by n springs connected
between the upper and lower plates.

In this paper, we investigate propagation characteristics of flexural vibration and longitudinal
vibration in a locally resonant double panel structure consisting of a two-layer uniform thin plate
with periodically attached cylindrical LR pillars in the cavity. At first, the band structures,
displacement fields of eigenmodes and transmission power spectrums of the corresponding finite
structure are calculated to study the formation mechanisms of the band gap. Then, a comparison
between the band structure of the double panel and that of the single plate with the same
parameters is displayed. Further, the influence of the geometrical parameters such as height of
the rubber layer in the pillar, height of the Pb layer, radius of the pillar, thickness of the base
plate and the lattice constant on the band gap of the proposed structure are discussed.

Fig. 1. (a) The LR phononic crystal double panel structure with periodically attached pillars, (b) its
unit cell (upper plate is ignored), a is the lattice constant, e is thickness of the base plates, r is radius of

the pillar, h1 is height of rubber layer in the pillar, and h2 is height of Pb layer in the pillar,
(c) meshing of the unit cell, (d) and the irreducible first Brillouin zone (1BZ)



Bandgap properties in locally resonant phononic crystal double panel... 1169

2. Model and method

As shown in Fig.1a, the studied system is constructed by periodically depositing the two-
-component cylindrical LR pillars squarely onto the surfaces of the upper and lower thin plates.
The material of the first and last layers in the pillar is rubber, and the materials of the plates
and the middle layer in the pillar are epoxy and Pb, respectively. The lattice constant, thickness
of the base plates, radius of the pillar, and heights of different layers in the pillar in a unit cell
are denoted by a, e, r, h1 and h2, which can be seen in Fig. 1b. Table 1 displays the material
parameters used in the calculation, and all materials are assumed to be elastically isotropic.

Table 1. Material parameters used in calculations

Material
Mass density Young’s modulus Poission’s
[kg/m3] [1010 N/m2] ratio

Epoxy 1180 0.435 0.368
Rubber 1300 1.175e-5 0.469
Pb 11600 4.08 0.37

The band structure of the proposed system is calculated by the finite element method (FEM),
which is implemented by adopting the commercial software, COMSOL Multiphysics. For the
mesh elements, the default tetrahedral mesh provided by the software is used and the meshing
of the unit cell is shown in Fig. 1c. From the figure, we can see only that one unit cell is taken
into consideration, which can be attributed to the periodicity of the structure. The stress-free
boundary conditions are applied to the free surfaces, and the periodic boundary conditions
according to the Bloch-Floquet theorem are used for the interfaces between the nearest unit
cells (Hsu and Wu, 2007; Xiao et al., 2008)

ui(x+ a, y + a) = ui(x, y)e−i(kxa+kya) i = x, y, z (2.1)

where ui denotes the elastic displacement along the x-, y- and z-direction, respectively, when
i equals to x, y and z; kx and ky are components of the Bloch wave vector limited in the
irreducible first Brillouin zone (1BZ), as shown in Fig. 1d.

3. Numerical results and analyses

3.1. Band structures, eigenmodes and transmission power spectrums

In this Section, the band structure of the proposed double panel structure is calculated,
as shown in Fig. 2b. The parameters are as follows: a = 0.1m, e = 0.005m, r = 0.04m,
h1 = 0.01m, and h2 = 0.03m. To verify the accuracy of the calculated result, the transmission
power spectrums of the flexural vibration and the longitudinal vibration in the corresponding
finite system are displayed in Figs. 2a and 2c, separately. In this work, the finite double panel
structure is made of 8×8 unit cells and the excitation point is picked on one end of the lower
plate as well as the response point is picked on the other end of the upper plate, as shown in
Fig. 3.
From Fig. 2b, a narrow complete band gap is observed between 72Hz and 83Hz. But from

Figs. 2a and 2c, the frequency range of the attenuation in the transmission power spectrum is
very wide no matter the finite structure is vibrated flexurally or longitudinally, which should
have matched well with the frequency range of the band gap. To find more attenuation charac-
teristics, both the response point and the excitation point are picked on the lower plate, and
the transmission power spectrum of the longitudinal vibration is shown in Fig. 2d. From it,
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Fig. 2. Band structure of the proposed double panel structure and transmission power spectrums of the
corresponding finite 8×8 system: (a) transmission power spectrum of flexural vibration when the

response point and excitation point are picked on different plates; (b) band structure; (c) transmission
power spectrum of longitudinal vibration when the response point and excitation point are picked on
different plates; (d) transmission power spectrum of longitudinal vibration when both the response and

excitation point are picked on the same plate

Fig. 3. Meshing of the finite locally resonant double panel structure made of 8×8 unit cells

hardly any frequency range of the attenuation can be observed. To reveal the mechanisms of
typical phenomena displayed in transmission power spectrums of the locally resonant double
panel structure, the displacement fields of the eigenmodes labeled in Fig. 2b are shown in Fig. 4.
For modes B3, B8 and B9, the dominant vibration translating along the z direction couples

with the out-of-plane plate mode of the upper and lower plates. In mode B3, the vibration
energy is concentrated in the pillar with two plates static. Both in modes B8 and B9, the
middle Pb layer of the pillar acts as a stationary layer. What is opposite, the two base plates
achieve dynamic balance in the inverse flexural vibration in mode B8 while the uniform flexural
vibration of the two plates achieve dynamic balance in mode B9, based on which, modes B8
and B9 are called as the symmetric flexural vibration mode and antisymmetric flexural vibration
mode, respectively. As a result of the coupling, a partial flexural vibration band gap between
B3 and B8 with a frequency interval 72Hz-230 Hz is opened, which is why the big attenuation
exists in the transmission power spectrum of the flexural vibration, as shown in Fig. 2a.
For modes B1 and B2, the dominant vibration rotating in the xy plane couples with the out-

-of-plane shear deformation of the upper and lower plates. Both modes B1 and B2 concentrate
the vibration energy in the pillar with the two stationary plates. As for modes B4-B7, they
can be treated as the result of the coupling between the dominant vibration translating in the
xy plane and the in-plane shear deformation of the upper and lower plates. In all the four
modes, the middle Pb layer of the pillar keeps stationary. Meanwhile, the uniform longitudinal
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Fig. 4. The displacement fields of eigenmodes labeled in Fig. 2b

vibration of the lower and upper plates achieve dynamic balance in mode B4 and B5 while the
two plates achieve dynamic balance in the inverse longitudinal vibration in mode B6 and B7.
Similarly, modes B4-B5 and modes B6-B7 are called as the antisymmetric longitudinal vibration
mode and symmetric longitudinal vibration mode, respectively. As a result of the couplings, a
partial longitudinal vibration band gap with a frequency interval 66Hz-83Hz is opened. The
corresponding attenuations existing in the transmission power spectrums of the longitudinal
vibration shown in Figs. 2c and 2d are not obvious, which is consistent with the phenomenon
described in (Xiao et al., 2008).

What should be noted is that the vibration of the upper plate is weakened because the
vibration phases of the upper plate in the antisymmetric longitudinal vibration mode B4 and
the symmetric longitudinal vibration modeB6 are inverse, as well as in B5 and B7. Based on this,
the big attenuation displayed in the transmission spectrum of the longitudinal vibration shown in
Fig. 2c can be understood. Meanwhile, the attenuation is absent in Fig. 2d because the lower plate
vibrates strongly with the uniform phase. To further illustrate the attenuation characteristic,
Fig. 5 shows a view of the vibration mode of the frequency located inside the frequency range of
the attenuation. The calculation model is shown in Fig. 3. Here, the displacement excitation along
three directions is imposed on the excitation point and the frequency is chosen as f = 140Hz.
From Fig. 5, when both flexural and longitudinal excitations are imposed on the lower plate,
none of the flexural and longitudinal vibrations can be propagated along the upper plate while
only the longitudinal vibration can be propagated along the lower plate. In consequence, if the
vibration source and the response area are on different sides of the double panel structure,
the band gap with the starting frequency (higher frequency between B2 and B3) and cutoff
frequency B8 can be regarded as complete with the wide frequency range of attenuation in both
flexural and longitudinal vibrations of the corresponding finite structure.
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Fig. 5. The vibration mode of the frequency located inside the frequency range of attenuation
(f = 140Hz)

3.2. Comparison of double panel and single plate

When the upper plate and the upper rubber layer of the pillar are taken away in Fig. 1b,
the unit cell of the locally resonant single plate is formed. The band structure of the single plate
is shown in Fig. 6a, where the parameters are same as those in the example shown in Fig. 2.
To ease the comparison, the band structure of the locally resonant double panel, which is been
shown in Fig. 2b, is replotted in Fig. 6b. In addition, the displacement fields of the eigenmodes
labeled in Fig. 6a are shown in Fig. 7.

Fig. 6. Band structures of (a) the locally resonant single plate and (b) the locally resonant double panel
with the same parameters

Fig. 7. The displacement fields of eigenmodes labeled in Fig. 6a
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Similarly, the coupling between the dominant vibration translating along the z direction and
the out-of-plane plate mode of the base plate as shown in modes b3 and b6 opens a partial flexural
vibration band gap. Meanwhile, both the coupling between the dominant vibration rotating in
the xy plane and the out-of-plane shear deformation of base plate as shown in modes b1 and b2
and the coupling between the dominant vibration translating in the xy plane and the in-plane
shear deformation of the base plate as shown in modes b5 open a partial longitudinal vibration
band gap. As a result, a narrow complete band gap is opened in both flexural and longitudinal
vibrations.
For modes B1-B3 and b1-b3, the base plates in all of them remain still and the dominant

vibrations displayed in B1 and b1, dominant vibrations displayed in B2 and b2 as well as the
dominant vibrations displayed in B3 and b3 are consistent, respectively. Here, the mass-spring
models as shown in Fig. 8 are applied to help one to understand the vibration modes, which
(a) and (b) with eigen frequencies

√
k/m and

√
2k/m are regarded as simplified models of the

vibrations in modes b1-b3 and B1-B3, respectively. According to such an analysis, the frequencies
of modes B1-B3 should be

√
2 times larger than those of modes b1-b3. From Fig. 6, the frequencies

of modes B1-B3 are 65.3 Hz, 65.6 Hz and 72Hz, and the frequencies of modes b1-b3 are 46.9 Hz,
47.2 Hz and 51Hz, which matches very well with fB1−B3 =

√
2fb1−b3 .

Fig. 8. The simplified mass-spring models applied to help understanding the vibration modes in
(a) the single plate and (b) double panel

For modes B4-B9 and b4-b6, the middle Pb layer of the pillar in all of them stays stationary
and the vibration modes displayed in B4, B6 and b4, vibration modes displayed in B5, B7 and b5
as well as vibration modes displayed in B8, B9 and b6 are consistent, respectively. For each set
of the corresponding vibration modes, the lower plate vibrates in the same direction as shown
in the displacement fields. What should be noted is that the two vibration modes of the double
panel are corresponding to each vibration mode of the single plate, which can be attributed
to the effect of the upper plate. Besides, the vibration directions of the upper plate in the two
different vibration modes of the double panel are opposite. Similarly, the mass-spring models
shown in Fig. 8 can also be used to help understanding the vibration modes. Here, the mass m
is static and both the vibrations of the two base plates M shown in Fig. 8b can be treated as
vibration of the single plate shown in Fig. 8a. Therefore, both the eigenfrequencies of the two
models are the same

√
k/M . From Fig. 6, the highest frequencies of the bands traveling modes

B4-B9 are 280Hz, 280Hz, 281Hz, 281Hz, 282Hz, 285Hz and the highest frequencies of the
bands traveling modes b4-b6 are 281Hz, 281Hz and 284Hz, which matches quite well with the
analysis above. But in the low frequency range of the bands, traveling modes B4-B9, the middle
Pb layer in the pillar cannot remain absolute still like in the high frequency range. The vibration
amplitudes of the upper and lower plates have slight differences and the two vibration modes
in the double panel corresponding to that of the single plate are not entirely same as shown
in Fig. 4, so the bands traveling B4-B5, B6-B7 and B8-B9 are all divided unlike in the high
frequency range, which can be understood as the division of the bands traveling b4, b5 and b6 in
the single plate, respectively.
In general, the band structures of the double panel and the single plate have much in common,

and the overall trends between them displayed in Fig. 6 are similar. In addition, some pairs of
the bands in the double panel structure can be treated as the division of the corresponding
bands in the single plate. But the particular property displayed in the band structure of the
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double panel that a wide complete band gap is opened when the excitation and response areas
are on different sides of the structure is incomparable.

3.3. Influence of parameters on the band gap

As is well known, the vibration source and the receiver are on the opposite sides of the
double panel commonly. Thus, the band gap formed by B2, B3 and B8 is considered and in-
vestigated below. To get the band gap with a low starting frequency and a wide band width,
some geometrical parameters are picked to analyze the influences on the band gap. Here, the
height of the rubber layer in the pillar h1, height of the Pb layer in the pillar h2, radius of the
pillar r, thickness of the base plate e and the lattice constant a are chosen as the influencing
parameters. During the study, the rest parameters are same as those in the example shown in
Fig. 2a while considering the influence of one parameter on the starting frequency fs (B2 or B3),
cutoff frequency fc (B8) and band width fw.
Figure 9 shows the influence of height of the rubber layer h1 on f2, f3, f8 and fw. In the

figure, fw equals to the difference between f8 and f3 as f2 is always located under f3. In addition,
both f3 and f8 decrease with an increase in h1, which can be understood by the model shown in
Fig. 8b. In the model, the rubber layers are simplified as springs and f3 and f8 can be described
by
√
2k/m and

√
k/M qualitatively. Because the equivalent spring stiffness k decreases with an

increase in h1, f3 and f8 decrease with an increase in height of the rubber layer. In addition,
the equivalent mass of the Pb layer m is larger than the equivalent mass of the base plate M
obviously, so the slope of f3 is smaller than that of f8 from

√
2k/m and

√
k/M as shown in

Fig. 9, which leads fw to decrease with an increase in h1 as shown in Fig. 9.

Fig. 9. The influence of the height of the rubber layer in the pillar h1 on f2, f3, f8 and fw

Figure 10 shows the influence of the height of the Pb layer h2 on f2, f3, f8 and fw. In the
figure, fw also equals to the difference between f8 and f3. Moreover, both f2 and f3 decrease
with an increase in h2 because the equivalent mass of the Pb layer m in the simplified model
shown in Fig. 8b is proportional to h2. f8 keeps nearly constant because the Pb layer is static in
the vibration mode shown in Fig. 4. The variation trends of f3 and f8 lead to an increase in fw
with an increase in h2 as shown in the figure.
Figure 11 shows the influence of the radius of the pillar r on f2, f3, f8 and fw. In the figure,

fw is obtained by the difference between f8 and f3 as f2 is always under f3. Both f2 and f3
increase slowly with an increase in r, which can be attributed to an increase in the equivalent
spring stiffness k and the equivalent mass m with an increase in r, and the larger slope of k than
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Fig. 10. The influences of the height of the Pb layer in the pillar h2 on f2, f3, f8 and fw

Fig. 11. The influences of the radius of the pillar r on f2, f3, f8 and fw

that of m. Besides, f8 increases rapidly with an increase in r because the Pb layer is static here
and only an increase in k makes the slope of f8 large. Hence, the rapid increase of f8 and slow
increase of f3 lead fw to increase with an increase in r.
Figure 12 shows the influence of the thickness of the base plates e on f2, f3, f8 and fw. fw is

obtained by the difference between f8 and the maximum of f2 and f3. From the figure, f2 is
larger when e is less than 3.42 ·10−3m and f3 is larger when e is greater than 3.42 ·10−3 m. Both
f2 and f3 increase with an increase in e, which can be understood well with the help of Fig. 13.
Figure 13 shows the displacement fields of modesB2 andB3 when e takes the value of 0.003m and
0.007m, respectively. From the figure, the base plates are vibrated but not absolutely static, and
the vibration mode of the base plate is more easily displayed when e equals to 0.003m because
of the smaller stiffness. Hence, the equivalent spring stiffness k in the simplified model shown
in Fig. 8b can be treated as a combined effect of both the base plates and the rubber layer in
the pillar. Because the stiffness of the base plate increases with an increase in e, the equivalent
spring stiffness k increases, which results in an increase in f2 and f3. In addition, f8 decreases
with an increase in e because the equivalent mass of the base plate M increases with an increase
in e. As a result, the decrease of f8 and the increase of f2 and f3 lead fw to decrease with an
increase in e.
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Fig. 12. The influences of the thickness of the base plates e on f2, f3, f8 and fw

Fig. 13. The displacement fields of modes B2 and B3 when e takes the value of 0.003m and 0.007m,
respectively

Figure 14 shows the influence of the lattice constant a on f2, f3, f8 and fw. fw is obtained
by the difference between f8 and the maximum of f2 and f3. From the figure, f3 is larger
when a is less than 0.132m and f2 is larger when a is greater than 0.132m. f2 keeps almost
constant and f3 decreases with an increase in a, which can also be understood with the help
of the displacement fields of modes B2 and B3 when a takes the value of 0.085m and 0.2m,
respectively, as shown in Fig. 15. From the figure, what can be concluded is that the stiffness of
the base plate decreases with an increase in a. Besides, the variation of the stiffness of the base
plate in mode B2 is not big by comparing the displacement fields of modes B2 when a equals to
0.085m and 0.2m separately. Hence, the variation trends of f2 and f3 are explained. In addition,
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f8 decreases with an increase in a because the equivalent mass of the base plate M increases
with an increase in e. As a result, the rapid decrease of f8 and the slow decrease of f2 and f3
shown in Fig. 14 lead fw to decrease with an increase in a.

Fig. 14. The influences of the lattice constant a on f2, f3, f8 and fw

Fig. 15. The displacement fields of modes B2 and B3 when a takes the value of 0.08 5m and 0.2m,
respectively

4. Conclusions

In this paper, we propose a three-component pillared phononic crystal double panel structure
and study the bandgap properties of the structure by applying the finite element method. A
complete band gap with a low starting frequency and a wide band width is opened according
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to the band structure and the transmission power spectrums when the vibration source and
the receiver are on different sides of the structure, and the formation mechanisms of the band
gap is revealed according to the displacement fields of the eigenmodes. By comparing the band
structure of the double panel and that of the single plate, the bands of the double panel can be
treated as the division of the corresponding bands of the single plate by the effect of the upper
and lower plates. Besides, the influence of height of the rubber layer in the pillar, height of the
Pb layer in the pillar, radius of the pillar, thickness of the base plate and the lattice constant
on the band gap are studied and understood. In general, by increasing the height of the Pb
layer or decreasing the thickness of the base plate, the starting frequency and band width of the
band gap gets lower and wider. By decreasing the height of the rubber layer, the band width of
the band gap gets wider, but increases the starting frequency. By increasing the radius of the
pillar or decreasing the lattice constant, the band width of the band gap also gets wider, and
the change in the starting frequency is not big. All the results of the investigation provide a
new idea for restraining the vibration and reducing the noise of the low frequency region in the
double panel structure.
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The frictional contact between two solids, one of which having a periodically grooved sur-
face, under the action of normal and shear load is investigated. The interface between the
contacting solids consists of a periodic array of gas-filled gaps and a periodic array of contact
regions, where stick-slip contact occurs. The corresponding plane contact problem is reduced
to a set of two singular integral equations. A solution to the contact problem is obtained
for a certain shape of the grooves. The analysis of dependences of contact parameters of the
solids on the applied load and gas pressure is carried out.

Keywords: stick-slip contact, periodically grooved surface, gas pressure

1. Introduction

The surface microtexturing, which consists in forming regularly (periodically) arranged grooves
of the same shape on a surface of a solid, is one way of improving performance of joints. A
regular surface texture may be generated by several methods (Etsion, 2004; Greco et al., 2009;
Nakano et al., 2007; Schreck and Zum Gahr, 2005; Stepien, 2011): laser texturing, precise dia-
mond turning, rolling, embossing, etching, vibrorolling, abrasive jet machining, micro electrical
discharge machining, grinding. When periodically grooved surfaces are placed in contact, perio-
dically arranged intercontact gaps occur at the interface. These gaps are usually filled with some
substance (a natural substance (gas, liquid), a substance used for functional purposes (grease,
coolant) or a biological fluid (synovia)). The effect of the interstitial medium filling the gaps
of different nature on mechanical behavior of bodies was investigated by Kit et al. (2009), Ma-
chyshyn and Nagórko (2003), Martynyak and Slobodyan (2009), Evtushenko and Sulim (1981),
Kaczyński and Monastyrskyy (2004), Monastyrskyy and Kaczyński (2007).
The contact between microtextured surfaces is usually realized not only under normal load,

but also under shear load. This shear load may cause partial slip of surfaces, and the filler of
the gaps may have some effect on propagation of the slip zones. However, the existing studies
of stick-slip contact (Ciavarella, 1998a,b; Chang et al., 1984; Block and Keer, 2008; Hills et al.,
2016; Goryacheva and Martynyak, 2014) do not consider this effect.
When contacting solids are subjected to heating, thermal deformations can also cause partial

slip of surfaces. The thermally induced partial slip of a rigid flat-ended punch and an elastic
half-space with different temperatures was investigated in (Pauk, 2007). The thermoelastic stick-
slip contact problem for two semi-infinite solids in the presence of a single thermoinsulated gap
at the interface was studied in (Malanchuk et al., 2011). The effect of thermal conductivity
of a medium filling the interface gaps on partial slip between a textured half-space and a flat
half-space, which was caused by an imposed heat flow, was studied in (Chumak et al., 2014).
The goal of this research is to investigate partial slip between a half-space with a periodically

grooved surface and a flat half-space, which is caused by the applied shear load, taking into
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account pressure of an ideal gas in the interface gaps. The stick-slip contact between a surface
with a single groove and a flat surface in the presence of an ideal gas in the interface gap was
previously studied in (Slobodyan et al., 2014). The model of partial slip between a periodically
grooved surface and a flat one was presented in (Slobodyan et al., 2016). However, that model
did not take into account the effect of the interstitial medium.

2. Statement of the problem

Consider the contact between two isotropic elastic half-spaces made of an identical material
under plane strain conditions. The upper solid D2 has a flat surface. The surface of the lower
solid D1 has an array of grooves of width 2b spaced with the period d (d > 2b). The shape of
each groove is described by a smooth function r(x) (r(x)≪ b, r′(x)≪ 1, r(±b) = 0, r′(±b) = 0).
The solids are successively loaded by normal and shear loads. At the first stage of loading, the
solids are pressed together by a monotonically increasing nominal pressure pn = P/d applied at
infinity, where P denotes the normal force per one period. The compressive load is assumed to
vary quasistatically. Due to the regular surface texture of the lower solid, the interface consists of
a periodic array of gaps and a periodic array of contacts. The width 2a (a < b) and height h(x)
of the interface gaps are unknown and decrease monotonically with an increase of the nominal
pressure. The gaps are filled with an equal amount of the ideal gas, whose pressure P1 changes
during the loading. The relation between the gas pressure Pl and gas volume V = l

∫ a
−a h(x) dx

is described by the ideal gas law

P1V =
m1
µ
RT (2.1)

where m1 is mass of the gas, µ is molar mass of the gas, T is gas temperature, R is the ideal
gas constant, R = 8.3145 JK−1mol−1 and l = 1m.
The shear displacements of the contacting surfaces due to the normal load are the same

because of identity of the materials. The shear stresses do not, therefore, arise at the interface
and the slip of the solids does not occur at the first loading phase. At the second loading phase,
the normal load is held fixed and the bodies are subjected to the action of the nominal shear
loading sn = S/d applied at infinity (Fig. 1). Here, S denotes the shear force per one period.
According to the Coulomb-Amontons law, the surfaces of the bodies are in stick until the contact
shear stress τxy is less than the contact pressure |σy| multiplied by the friction coefficient f
(τxy < f |σy|). The applied shear force leads to the frictional slip of the contacting surfaces in
the regions (−c + kd,−a + kd), (a + kd, c + kd), which, due to symmetry of the problem with
respect to y-axis, are located symmetrically relative to the origin of each gap, k = 0,±1,±2, . . ..
In the slip zones, τxy = f |σy|. The direction of slip is indicated by arrows in Fig. 1.
Denote Iik = [−i + kd, i + kd], J ik = [−d/2 + kd,−i + kd] ∪ [i + kd, d/2 + kd], i = a, b, c,

Y c,ak = [−c+ kd,−a+ kd] ∪ [a+ kd, c+ kd], hereinafter k = 0,±1,±2, . . ..
The boundary conditions are:

— at the gaps (x ∈ Iak )

σ−y (x, 0) = σ
+
y (x, 0) σ−y (x, 0) = −P1

τ−xy(x, 0) = τ
+
xy(x, 0) τ−xy(x, 0) = 0

(2.2)

— in the slip zones (x ∈ Y c,ak )

σ−y (x, 0) = σ
+
y (x, 0) τ−xy(x, 0) = τ

+
xy(x, 0) v−(x, 0) − v+(x, 0) = −r(x)

τ−xy(x, 0) = −fσ−y (x, 0)
(2.3)
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Fig. 1. Contact of the solids (within one period)

— in the stick zones (x ∈ Jck)

σ−y (x, 0) = σ
+
y (x, 0) τ−xy(x, 0) = τ

+
xy(x, 0) v−(x, 0) − v+(x, 0) = −r(x) (2.4)

— at infinity

σy(x,±∞) = −pn σx(x,±∞) = 0 τxy(x,±∞) = sn (2.5)

Here, r(x) = 0 when x ∈ Jbk, σy(x, y), σx(x, y), τxy(x, y) are stress components, u(x, y), v(x, y)
are displacement components, superscripts + and − denote the boundary values of the functions
on the x-axis in the upper and lower solid, respectively.
Note that because of identity of the contacting materials, the frictional slip does not influence

the normal contact stress and width as well as and height of the gaps.

3. Solution to the problem

Let us represent the stresses and displacements in both solids throughout three functions: height
of the grooves r(x), height of the gaps h(x), and relative tangential shift of the solids surfaces
U(x) = u−(x, 0)− u+(x, 0) (Slobodyan et al., 2014; Muskhelishvili, 1953)

σx + σy = 4Re[Φj(z)]− pn
σy − iτxy = Φj(z)− Φj(z) + (z − z)Φ′j(z)− pn − isn
2G(u′ + iv′) = (3− 4ν)Φj(z) + Φj(z)− (z − z)Φ′j(z) + νpn + isn

Φ1(z) = −Φ2(z) =
(−1)j+1G
4π(1 − ν)

∞∑

k=−∞

(
i
c+kd∫

−c+kd

U ′(t) dt
t− z +

a+kd∫

−a+kd

h′(t) dt
t− z +

b+kd∫

−b+kd

r′(t) dt
t− z

)

z ∈ Dj j = 1, 2

(3.1)

where U(x) = 0 when x ∈ Jck, z = x+ iy, i =
√
−1, ν is Poisson’s ratio, G is the shear modulus.
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Representations (3.1) have been constructed so that they satisfy boundary conditions (2.3)1,
(2.4) and (2.5). Taking into account the periodicity of the functions U(x), h(x) and r(x) (Schmu-
eser and Comninou, 1979), the complex functions Φ1(z), Φ2(z) can be rewritten as

Φ1(z) =
(−1)j+1G
4d(1 − ν)

(
i
c∫

−c

U ′(t) cot
π(t− z)

d
dt +

a∫

−a

h′(t) cot
π(t− z)

d
dt

+
b∫

−b

r′(t) cot
π(t− z)

d
dt

)

Φ2(z) = −Φ1(z) z ∈ Dj j = 1, 2

(3.2)

The normal and shear stresses at the interface y = 0 calculated from expressions (3.1), are

N(x) = σy(x, 0) =
G

2d(1− ν)

( b∫

−b

r′(t) cot
π(t− z)

d
dt+

a∫

−a

h′(t) cot
π(t− z)

d
dt

)
− pn

S(x) = τxy(x, 0) = −
G

2d(1 − ν)

c∫

−c

U ′(t) cot
π(t− z)

d
dt+ sn

(3.3)

In order to satisfy boundary condition (2.2)1, we substitute (3.3)1 into (2.2)1, which leads
to a singular integral equation

1
d

a∫

−a

h′(t) cot
π(t− x)

d
dt = −1

d

b∫

−b

r′(t) cot
π(t− x)

d
dt+
2(1− ν)

G
(pn − P1) |x| ¬ a

(3.4)

From boundary conditions (2.2)2 and (2.3)2, and expression (3.3)2, we obtain a singular
integral equation for the function U ′(x)

1
d

c∫

−c

U ′(t) cot
π(t− x)

d
dt =

2(1 − ν)sn
G

+





0 x ∈ Iak

f

(
1
d

a∫

−a

h′(t) cot
π(t− x)

d
dt+
1
d

b∫

−b

r′(t) cot
π(t− x)

d
dt

)

− 2(1 − ν)f
G

(pn − P1) x ∈ Y c,ak

(3.5)

As a result, we get a set of two singular integral equations with the Hilbert kernel for the
functions h′(x) and U ′(x).
It is obvious from Eq. (3.5) that the gas pressure P1 influences the relative tangential shift

U(x) of the contacting surfaces.
The functions h(x) and U(x) satisfy the conditions

h(±a) = 0 h′(±a) = 0
U(±c) = 0 U ′(±c) = 0

(3.6)

The first condition in (3.6)1 means that the gaps between the solids vanish in the contact
regions. The second condition in (3.6)1 represents smooth closure of the gaps at x = ±a and
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ensures that the normal contact stress is bounded at x = ±a. The first condition in (3.6)2 follows
from the continuity of shear displacements of the contacting surfaces. The second condition in
(3.6)2 ensures that the shear stress is bounded at the edges of the slip zones x = ±c.
By changing variables ξ = tan(πx/d), η = tan(πt/d), α = tan(πa/d), β = tan(πb/d),

γ = tan(πc/d), we reduce set (3.4), (3.5) to a set of singular integral equations with the Cauchy
kernel

α∫

−α

h′(η) dη
η − ξ = −

β∫

−β

r′(η) dη
η − ξ +

2d(1 − ν)
G(1 + ξ2)

(pn − P1) |ξ| ¬ α

γ∫

−γ

U ′(η) dη
η − ξ =

2d(1 − ν)sn
G(1 + ξ2)

+





0 |ξ| ¬ α

f

( α∫

−α

h′(η) dη
η − ξ +

β∫

−β

r′(η) dη
η − ξ

)

− 2d(1 − ν)f
G(1 + ξ2)

(pn − P1) α ¬ |ξ| ¬ γ

(3.7)

In the new variables, conditions (3.6) have the form

h(±α) = 0 h′(±α) = 0
U(±γ) = 0 U ′(±γ) = 0

(3.8)

To solve set (3.7), the function r(x), which describes the shape of the grooves, should be

specified. We preset it as follows: r(x) = −r0
(
1 − tan2(πx/d)/ tan2(πb/d)

)3/2
, x ∈ Ibk, where

r0 is the maximum depth of the grooves, and 0 < r0 ≪ b. In the new variables, the shape of the
grooves is r(ξ) = −r0(1− ξ2/β2)3/2, |ξ| < β.
In accordance with the second condition in (3.8)1, we find a solution to Eq. (3.7)1 that is

bounded at ξ = ±α. The bounded solution of a singular integral equation with the Cauchy
kernel is possible only if the right-hand side of the equation satisfies the consistency condition
(Muskhelishvili, 1953) for Eq. (3.7)1

α∫

−α

[−3r0π
β

(1
2
− ξ2

β2

)
+
2d(1− ν)(pn − P1)

G(1 + ξ2)

) dξ√
α2 − ξ2

= 0 (3.9)

Carrying out integrations, Eq. (3.9) reduces to an equation that relates the semi-width α of
the gaps to the applied nominal pressure pn

3r0π
β

(α2

β2
− 1

)
+
4d(1 − ν)(pn − P1)

G
√
1 + α2

= 0 (3.10)

The bounded solution (Muskhelishvili, 1953) of Eq. (3.7)1 is

h′(ξ) = ξ
√
α2 − ξ2

(
−3r0
β3
+
2d(1− ν)(pn − P1)
πG
√
1 + α2(1 + ξ2)

)
|ξ| ¬ α (3.11)

Integration of Eq. (3.11) from −α to ξ in view of the first condition in (3.8)1 gives the gaps
height (|ξ| ¬ α)

h(ξ) = r0

√(α2
β2
− ξ2

β2

)3
+
d(1− ν)(pn − P1)

πG

(
2
√
α2 − ξ2√
1 + α2

− ln
∣∣∣∣∣

√
1 + α2 +

√
α2 − ξ2√

1 + α2 −
√
α2 − ξ2

∣∣∣∣∣

)

(3.12)
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Substituting Eq. (3.12) into the formula for gas volume and carrying out integration, ideal gas
law (2.1) can be rewritten as

P1
[πr0
β3

(√
(1 + α2)3− 1− 3

2
α2
)
+
d(1− ν)(pn − P1)

G

(
2− 2√

1 + α2
− ln(1+α2)

)]
=
m1
µ
RT

(3.13)

Note that the function h(ξ) includes two unknown parameters: the parameter α and gas
pressure P1. For determination of these parameters, we use (3.10) and (3.13). Since Eqs. (3.10)
and (3.13) are nonlinear with respect to α and the difference pn−P1 appears in both equations,
the following technique is proposed for solving set (3.10), (3.13):

i) the external load pn is assumed to be unknown, while the gaps width α is set from the
range 0 < α ¬ β;

ii) the difference between the external load pn and the gas pressure P1 is then determined
from Eq. (3.10) as

pn − P1 =
3πGr0

√
1 + α2

4(1− ν)β3d (β
2 − α2) (3.14)

the gas pressure P1 is then obtained from Eq. (3.13) after substituting (3.14) for pn − P1

P1 =
β3m1RT

2πµr0

(
(
√
1 + α2 − 1)(3β2 + 2)−

√
α2 + 1
2
[2α2 + 3(β2 − α2) ln(1 + α2)]

)−1

iii) once the gas pressure P1 for a given value of α is known, the external load pn is calculated
from Eq. (3.10) as

pn = P1 +
3πGr0

√
1 + α2

4(1− ν)β3d (β
2 − α2)

Substituting Eq. (3.11) into Eq. (3.3)1, we find the normal contact stress:
— for α ¬ |ξ| ¬ β

N(ξ) =
3πGr0(1 + ξ2)
4d(1 − ν)β3

(√
1 + α2 + |ξ|

√
ξ2 − α2

1 + ξ2
(β2 − α2)− 2|ξ|

√
ξ2 − α2

)
− pn (3.15)

— for |ξ|  β

N(ξ) =
3πGr0(1 + ξ2)
4d(1 − ν)β3

[√
1 + α2 + |ξ|

√
ξ2 − α2

1 + ξ2
(β2−α2)+2|ξ|

(√
ξ2 − β2−

√
ξ2 − α2

)]
−pn

(3.16)

By taking Eqs. (3.15) and (3.16) into account, Eq. (3.7)2 appears as follows

γ∫

−γ

U ′(η) dη
η − ξ =

2d(1 − ν)sn
G(1 + ξ2)

+ L(ξ) |ξ| ¬ γ (3.17)
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where

L(ξ) ≡
{
0 |ξ| ¬ α
F (ξ) α ¬ |ξ| ¬ γ

F (ξ) =





3fr0π
2β3

(√
1 + α2 + |ξ|

√
ξ2 − α2

1 + ξ2
(β2 − α2)− 2|ξ|

√
ξ2 − α2

)
− fpn ξ ¬ β

3fr0π
2β3

(√
1 + α2 + |ξ|

√
ξ2 − α2

1 + ξ2
(β2 − α2)

+ 2|ξ|
(√

ξ2 − β2 −
√
ξ2 − α2

))
− fpn ξ > β

Since conditions (3.8)2 must be met, we find a solution to Eq. (3.17) that is bounded at
ξ = ±γ. The solution to singular integral equation (3.17) is (Muskhelishvili, 1953)

U ′(ξ) =
2d(1 − ν)snξ

√
γ2 − ξ2

πG
√
1 + γ2(1 + ξ2)

−
√
γ2 − ξ2
π2

γ∫

−γ

L(η) dη√
γ2 − η2(η − ξ)

|ξ| ¬ γ (3.18)

Using a piecewise constant approximation of the function L(ξ) for evaluation of the integral
in the right-hand side of Eq. (3.18), we obtain

U ′(ξ) =
2d(1 − ν)snξ

√
γ2 − ξ2

πG(1 + ξ2)
√
1 + γ2

+
1
2π2

m−1∑

j=0

Lj
(
Γ (γ, ξ, ζj+1)− Γ (γ, ξ, ζj)

)
|ξ| ¬ γ

(3.19)

where ζj = −γ+2jγ/m, j = 1, 2, . . . ,m are nodes of the approximation; Lj are the nodal values
of the function L(ξ), that is Lj = L(ζj), j = 1, 2, . . . ,m; and

Γ (γ, ξ, ζ) = ln
γ2 − ξζ +

√
(γ2 − ξ2)(γ2 − ζ2)

γ2 − ξζ −
√
(γ2 − ξ2)(γ2 − ζ2)

Integration of Eq. (3.19) from −γ to ξ in view of the first condition in Eq. (3.8)2 gives the
relative tangential shift

U(ξ) =
d(1− ν)sn

πG

(
ln

∣∣∣∣∣

√
1 + γ2 −

√
γ2 − ξ2√

1 + γ2 +
√
γ2 − ξ2

∣∣∣∣∣+
2
√
γ2 − ξ2√
1 + γ2

)

+
1
π2

m−1∑

j=0

Lj
{
(ξ − ζj+1)Γ (γ, ξ, ζj+1)− (ξ − ζj)Γ (γ, ξ, ζj)

+ 2
(√

γ2 − ζ2j+1 −
√
γ2 − ζ2j

)[
arcsin

( ξ
γ

)
+
π

2

]}
|ξ| ¬ γ

(3.20)

By setting ξ = γ in Eq. (3.20) and in view of the first condition in Eq. (3.8)2, we obtain an
equation for width γ of the slip zones

2d(1 − ν)sn
G
√
1 + γ2

+
1
π2

m−1∑

j=0

Lj
(√

γ2 − ζ2j+1 −
√
γ2 − ζ2j

)
= 0 (3.21)

This equation is solved numerically. Substituting Eq. (3.19) into Eq. (3.3)2 and performing
some integrations, we find shear contact stresses in the stick zones (|ξ|  γ)

S(ξ) =
sn√
1 + γ2

(
ξ2 + 1− |ξ|

√
ξ2 − γ2

)
+

G

2d(1 − ν)π (ξ
2 + 1)

·
m−1∑

j=0

Lj
[
arcsin

(ζj+1
γ

)
− arcsin

(ζj
γ

)
− arcsin

( ξζj+1 − γ2
γ(ξ − ζj+1)

)
+ arcsin

( ξζj − γ2
γ(ξ − ζj)

)] (3.22)
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As d→∞, we obtain results for the single groove (Slobodyan et al., 2014). By putting in Eqs.
(3.10)-(3.12) and (3.15)-(3.22) m1 = 0, we obtain results for the frictional contact interaction
between two solids, one of which having a regular surface texture in form of periodically arranged
grooves, in the case when the gaps do not contain a filler (Slobodyan et al., 2016).

4. Numerical results and discussion

The obtained results are illustrated in Figs. 2-6, where the dimensionless parameters x = x/d,
a = a/d, b = b/d, c = c/d, r = r/d, h = h/d, U = U/d, σy = 4σy(1 − ν)G−1, τxy = 4τxy(1 −
ν)G−1, pn = 4pn(1− ν)G−1, sn = 4sn(1− ν)G−1, P 1 = 4P1(1− ν)G−1, m1 = m1RTµ−1d−1 are
introduced. The maximum depth of the grooves r0 is taken to be 10−3, the half-width of the
grooves b = 0.3, and the friction coefficient f = 0.1.
The nonlinear dependence of the half-width a of the gaps on the applied pressure pn is given

in Fig. 2. The half-width a of the gaps decreases with an increase in the applied pressure pn.

Fig. 2. Dependence of the half-width a of the gaps on the applied pressure pn

Figure 3a shows height of the gaps for different values of the applied pressure pn. The height h
of the gaps decreases with the increasing nominal pressure and has its maximum value in the
center of the gap. The height h of the gaps for different values of the gas mass m1 is given in
Fig. 3b, where pn = 0.003. The curve for m1 = 0 corresponds to the case of gaps without a filler.
As seen in the figure, h is the largest in the case of filled gaps and increases with increasing m1.
Figure 4a shows the dependence of the half-width c of the slip zones on the shear load sn

for different values of the applied pressure pn. If the edge of the slip zone is located within the
groove (a < c < b), then this dependence is nonlinear. If the edge of the slip zone exceeds the
bounds of the groove (c > b), then this dependence is almost linear. The width c of the slip
zones monotonically increases with the increasing shear load sn.
The rate of the increase of c with a change of sn is greater for smaller values of pn. The

curves c = c(sn) have specific kinks at the points c = b = 0.3 (the right/left end of the right/left
slip zone reaches the right/left end of the groove). If c > b, then the slope of curves c = c(sn)
increases significantly. This effect can be explained by the fact that the normal contact stress has
its maximum value at the edges of the grooves and rapidly decreases in the region beyond the
grooves (see Fig. 6a). The dependence of the half-width c of the slip zones on the gas mass m1
is given in Fig. 4b, where pn = 0.003. As seen in the figure, for a fixed sn, c is the smallest
in the case of gaps without a filler (the curve that corresponds to m1 = 0) and increases with
increasing m1 (curves that correspond to m1 = 8 · 10−7, m1 = 9 · 10−7, m1 = 10−6).
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Fig. 3. The height h of the gaps

Fig. 4. Dependence of the half-width c of the slip zones on the shear load sn

Figure 5a shows the relative tangential shift U of the surfaces within one period for different
values of the applied pressure pn. The relative tangential shift U of the surfaces increases with
the increasing applied pressure pn and has its maximum value in the center of the grooves. At the
gaps, the relative tangential shift U is larger than in the slip zones. The relative tangential shift U
of the surfaces within one period for four values of the gas mass m1 (0; 8 · 10−7; 9 · 10−7; 10−6)
is given in Fig. 5b, where pn = 0.001. The relative tangential shift U is smallest in the case of
gaps without the filler (the curve that corresponds to m1 = 0) and increases with increasing m1
(curves that correspond to m1 = 8 · 10−7, m1 = 9 · 10−7, m1 = 10−6).
Figure 6a shows the distribution of the contact normal stress σy for different values of

the nominal pressure pn. The magnitude of the contact normal stress |σy| increases with the
increasing nominal pressure pn and has its maximum value at the edges of the grooves (x = b =
±0.3). As required by boundary condition (2.2)1, σ±y = −P1 at the surfaces of the gaps. Beyond
the grooves, the contact normal stress monotonically decreases.
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Fig. 5. The relative tangential shift U of the surfaces

Fig. 6. Distribution of the stresses

The distributions of the shear contact stress τxy (solid curves) and the normal contact
stress f |σy| multiplied by the friction coefficient (dashed curve) are given in Fig. 6b. The solid
curves are plotted for two values of the shear load sn. For sn = 1.3 · 10−4; 2.6 · 10−4, the
corresponding values of c are 0.28; 0.35. The shear contact stress τxy increases with the increasing
shear load sn. The stress τxy has the maximum value at x = ±c (the ends of the slip zones)
if the applied shear load sn is such that slip occurs within the grooves (c < b) (the curve that
corresponds to sn = 1.3 · 10−4), and at x = ±b (the ends of the grooves) if the applied shear
load sn is such that slip extends outside the grooves (c  b) (the curve that corresponds to
sn = 2.6 · 10−4). At the surfaces of the gaps, τxy = 0 and f |σy| = fP1. As required by boundary
condition (2.3)2, the solid curves coincide with the dashed curve in the slip zones. Outside the
slip zones, τxy is less than f |σy| (the solid curves lie below the dashed curve).
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5. Conclusions

The contact problem for two half-spaces of the same material under sequential application of the
nominal pressure and nominal shear stress has been considered. One of the contacting surfaces
is textured in form of periodically arranged grooves, and the other is flat. Partial slip of the
surfaces of the solids is induced by shear load, and the first points to slip are the ends of each
gap. The contact problem has been solved for the case when the interface gaps are filled with
the ideal gas. Analysis of contact parameters of the contact pair on the applied load has been
carried out. It has been shown that the half-width and height of the gaps decrease when the
nominal pressure increases. The height of the gaps is the largest in the case of filled gaps and
increases with the increasing mass of the gas, and has the maximum value in the center of the
gaps. The normal contact stress increases with the increasing nominal pressure and has the
maximum value at the edges of grooves. The width of the slip zones, relative tangential shift of
the surfaces and shear contact stress increase with the increasing shear load. For a fixed load,
the relative tangential shift and width of the slip zones is the smallest in the case of gaps without
the filler and increases with the increasing gas mass. The shear contact stress has the maximum
value at the ends of the slip zones if the applied shear load is such that slip occurs within the
grooves and at the ends of the grooves if the applied shear load is such that slip extends outside
the grooves.
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In this paper, two sets of multisine signals are designed for system identification purposes.
The first one is obtained without any information about system dynamics. In the second ca-
se, the a priori information is given in terms of dimensional stability and control derivatives.
Magnitude Bode plots are obtained to design the multisine power spectrum that is optimi-
zed afterwards. A genetic algorithm with linear ranking, uniform crossover and mutation
operator has been employed for that purpose. Both designed manoeuvres are used to excite
the aircraft model, and then system identification is performed. The estimated parameters
are obtained by applying two methods: Equation Error and Output Error. The comparison
of both investigated cases in terms of accuracy and manoeuvre time is presented afterwards.

Keywords: flight dynamics, optimal input design, multisine excitations, system identification,
least squares, maximum likelihood

1. Introduction

System identification (Sys-ID) techniques play an important role in the development of high-
-quality aircraft-simulation models from flight-test data (Grauer, 2016; Albisser et al., 2017;
Viana, 2016). The main purpose of those approaches is to develop a mathematical model of the
aircraft. To achieve this aim, an adequate input has to be designed in order to obtain dynamic
characteristics of the object from flight tests.
The research on this topic started in the 1960s when Levin (1960) made the first systematic

attempt at obtaining optimal inputs. Later, in the late 60s, Nahi and Wallis (1969) made a
significant step by using an optimality criterion to design inputs in the time domain. Since then
the use of optimality criteria was a great deal of interest and was investigated by, e.g., Fedorov
(1972), Kalaba and Springarn (1982) or Goodwin and Payne (1997). At first, designed inputs
were used for manoeuvres in which only one flight control was deflected. Further investigation
made by, e.g., Wells and Ramachadran (1977) or Morelli and Klein (1990) showed that desi-
gning sets of excitations in which flight-control surfaces were deflected simultaneously was also
possible. Even though, none of the theoretical developments seemed to be fully adapted for so-
lving complex issues. Some recent progress has been made in applying numerical algorithms and
incorporating them with other tools to design optimal inputs (Seren et al., 2006, 2013; Lichota,
2016; Lichota et al., 2017).
To shorten the time of the flight test campaign, multisine excitations that allow simultane-

ous flight control deflections can be used. Planning manoeuvres with those inputs requires the
designing of their power spectrum. In our study, a genetic algorithm has been used to optimize
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that energy distribution. The main purpose is to improve the input effectiveness by maximizing
the power stored in certain harmonics.
The organization of this article is as follows. First, we describe the process of designing

multisine signals for simultaneous aileron and elevator deflections. That section is divided into
two parts. In the first one, a method for designing the inputs without a priori knowledge of
the object is presented. In the second part, the optimization process (based on the available
information of the aircraft dynamics) that leads to obtaining energy optimized multisine exci-
tations is described. Parameter estimation methods used for estimating stability and control
derivatives from the model response are presented in the next Section. Comparison of inputs
in terms of manoeuvre time and Sys-ID accuracy is shown thereafter. The paper closes with a
short summary of conclusions.

2. Multisine input design

One of the approaches that allows one to shorten the time spent during flight tests in order to
reduce the total cost of the Sys-ID process is to design a manoeuvre with simultaneous flight
control deflections. Multisine input signals that are mutually orthogonal in the time and frequ-
ency domain can be easily designed for those purposes. To achieve this aim different harmonics
need to be assigned to each flight control (Morelli, 2009)

u =
M∑

k=1

Ak sin(2πfkt+ φk) (2.1)

where fk are consecutive harmonic frequencies, Ak is the amplitude of k-th harmonic, φk is the
phase shift angle and t denotes time.

2.1. Uniform power spectrum

When there is no knowledge about the aircraft dynamics, it should be assumed that the
same amount of information can be obtained from each power spectrum component. Therefore,
the amplitude of each harmonic is designed for the energy content that is uniformly distributed
along the frequency range of interest

Aj,k = Aj
√
pj,k (2.2)

where pj,k is the power of the k-th harmonic component assigned to the j-th flight control.
To increase the efficiency of the input signal, the phase shift angles φk have to be adjusted

by minimizing the Relative Peak Factor

RPF (uj) =
max(uj)−min(uj)
2
√
2rms(uj)

(2.3)

Initial values of the phase angles are obtained by using the Schroeder formula (Schroeder, 1970)

φj,k = φj,k−1 + 2π(fj,k−1 − fj,k)
k − 1
Mj

T (2.4)

The Nelder-Mead simplex algorithm (Lagarias et al., 1998) has been used to minimize the non-
-linear cost function.
In order to obtain non-corellated inputs, even harmonics have been assigned to the elevator

and the rest of the set to the ailerons. The first harmonic is omitted due to signal optimization
which is performed later, therefore the lowest frequency is 0.1 Hz. The total set is sampled with
a resolution of 0.05Hz and the upper bound of the frequency range of interest is set to 2Hz.
Moreover, to start and finish the control vector with zero amplitude, each input signal is shifted
along the time axis. As a result, we obtain a control vector u shown in Fig. 1.
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Fig. 1. Multisine input signals

2.2. Non-uniform power spectrum

In the second case, the multisine inputs are designed by including the a priori knowledge of
the system dynamics. The initial information is given in terms of dimensional stability and con-
trol derivatives. Improvement of the signals efficiency is achieved by using the a priori knowledge
in order to design a power spectrum with the energy that is maximized at significant frequencies.
To select the frequencies at which more power should be stored, the magnitude Bode plots for
all aerodynamic force and moment components are created. One of the Bode plots used for the
reference power spectrum design is presented in Fig. 2.

Fig. 2. Rolling moment Bode plot for aileron deflection

The reference power spectrum designed on the Bode plots base and Marchand method (Mar-
chand, 1974) is showed in Fig. 3.
In order to optimize the design, the power stored at different harmonics is adjusted by

introducing weighting factors so that the energy distribution minimizing the RPF maximizes
the input efficiency.
A genetic algorithm with linear ranking, uniform crossing and 5% mutation probability has

been used to obtain the final values of the weighting factors. We chose the genetic algorithm for
optimization because the cost function has multiple local minima and the search space is large.
Due to mutual orthogonality of the multisine inputs, this procedure is performed separately for
each control surface. The obtained optimized power spectrum shown in Fig. 4 is used later to
design the control vector u that is presented in Fig. 1.
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Fig. 3. Reference Power Spectrum

Fig. 4. Optimized Power Spectrum

3. System identification

The general aim of the parametric Sys-ID is to determine an adequate mathematical model
which contains unknown values of certain system coefficients that have to be obtained indirectly
from measured data. To achieve this goal, specific experiments have to be done in order to excite
the system sufficiently and register inputs and object responses. From the modelling aspect, it
means that determined equations must provide the model response y which matches adequately
the measured system response z.
In this paper, to perform the Sys-ID experiment, simultaneous multsine inputs for both

investigated cases are used as excitations for a transport aircraft model with cross-coupling de-
rivatives. To perform parameter estimation, the input signals (elevator and ailerons deflections)
and aircraft response (longitudinal velocity, angle of attack, sideslip angle, roll, pitch, yaw ra-
tes, roll and pitch angles and linear acceleration components) are recorded. As the signals are
corrupted with measurement noise, a 15-th point low-pass digital filter is used (Kendall et al.,
1983)

yn =
1
320
(−3un−7 − 6un−6 − 5un−5 + 3un−4 + 21un−3 + 46un−2 + 67un−1 + 74un

+ 67un+1 + 46un+2 + 21un+3 + 3un+4 − 5un+5 − 6un+6 − 3un+7)
(3.1)

3.1. Equation Error Method

Multiple different approaches can be used to perform the aircraft Sys-ID, e.g., Equation Error
Methods, Output Error Methods, Filter Error Methods or Artificial Neural Networks. Equation
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Error Methods minimize the cost function defined directly by the input-output equation. Among
this class, the Ordinary Least Squares (OLS) is the most popular due to its mathematical
simplicity

Y = XΘ+ ǫ (3.2)

where Y are dependent variables, Θ denotes unknown parameters, ǫ represent equation errors
and X are independent variables. To obtain the estimates, the cost function which is the sum
of the squares of the residuals is minimized

J(Θ) =
1
2

N∑

k=1

ǫ2(k) =
1
2
[Y −XΘ]T[Y −XΘ] (3.3)

where k are discrete time points indices.
As a result, the estimates of the unknown parameters are given by

Θ̂ = (XTX)−1XTY (3.4)

The block schematic of the OLS is presented in Fig. 5.

Fig. 5. Block schematic of the Least Squares Method

Before using the OLS to estimate stability and control derivatives, a data preprocessing step
is performed. It is required to differentiate selected measured object responses and eliminate
biases from the signals. To increase the accuracy of the estimates by eliminating parameters
that have no physical meaning, Eq. (3.2) is solved independently for each output signal. In
the parameter estimation process, the backward elimination is used to determine the model
structure.

3.2. Output Error Method

After performing the Sys-ID using the OLS it turned out that the obtained results are not
satisfying. Regardless of the excitations set, the absolute relative error is considered too high
for Nr. When the identification experiment is designed without a priori knowledge Mu, Mq
and Nβ are estimated with large uncertainty. When the a priori information is included, it is
observed for Np.
As the estimates are biased due to measurement noise in the registered signals, to increase

accuracy of the estimates, the Output Error Method (OEM) is used. This approach is the most
widely applied Sys-ID technique. The main reason for its popularity is its good representation
of a natural formulation for a dynamic system. The block schematic of the OEM is shown in
Fig. 6.
The OEM used in this study is based on the Maximum Likelihood Estimation (MLE),

therefore it seeks for maximizing the probability of observing the measured responses for model
parameters (Jategaonkar, 2015)

Θ̂ = argmax
Θ

p(z|Θ) (3.5)
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Fig. 6. Block schematic of the Output Error Method

where z denotes the measured response, Θ are model parameters and the hat symbol stands for
the estimates. To obtain the estimates, the cost function which is negative log-likelihood, has
been minimized

L(Θ|z) = 1
2

N∑

k=1

[z(tk)− y(tk)]TR−1[z(tk)− y(tk)] +
nN

2
ln(2π) +

N

2
ln(det(R)) (3.6)

where tk is the discrete time at the k-th point, k = 1, . . . , N , R is the measurement noise
covariance matrix and n denotes the number of model outputs. The unknown measurement
covariance matrix R is estimated from

R̂ =
1
N

N∑

k=1

[z(tk)− y(tk)][z(tk)− y(tk)]T (3.7)

Substituting the measurement covariance matrix into Eq. (3.6) and neglecting the constant terms
allows one to simplify the cost function to the form given by

J(Θ) =
m∏

l=1

1
N

N∑

k=1

(
zi(tk)− yi(tk)

)2 (3.8)

where l = 1, . . . ,m is the number of system outputs.
Similarly to the OLS, when the MLE is applied, backward elimination is used to determine

the model structure.

4. Results

To determine if including the a priori knowledge in the multisine inputs design improves the
identification experiment, several criteria are used. For that purpose, deviations from the trim
condition, magnitude coherence function and estimates accuracy are investigated.

4.1. Manoeuvre analysis

To increase the model efficiency designed manoeuvres should allow the aircraft to remain close
to the equilibrium point in which it is excited, and the time spent to perform a flight experiment
should be minimized. Small deviations from the trim conditions decrease the stabilization time,
so the next manoeuvre can be performed faster.
Deviations of various flight parameters from the equilibrium point for both investigated cases

are presented in Fig. 7. From the cross-plot, it can be seen that the dispersion of the motion
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parameters from their initial values are slightly smaller for the uniform power spectrum. It leads
to a conclusion that designing the inputs by only optimizing their power spectrum does not
result in shortening the manoeuvre time. Nevertheless, the obtained deviations from the trim
point are small for both cases. This means that both designs are short in time in comparison
to the conventional approach, and even the global aerodynamic parameter estimation can be
performed.

Fig. 7. Cross-plots of flight parameters

To asses the amount of information that can be obtained from a specific manoeuvre, the
magnitude squared coherence function (known as coherence) can be used (Young and Patton,
1988) as it is a measure of the linear dependence between the input and output signals

Γ 2xy(fk) =
|Gxy(fk)|2

Gxx(fk)Gyy(fk)
(4.1)

where Gxy, Gxx, Gyy are cross, input and output spectral densities.
When there is an ideal linear dependency between the input and output signal, the coherence

equals 1, whilst 0 means that there is no dependence between those signals. Typically, a value
above 0.6 provides a good object response mapping for multi-output systems (Tischler and
Remple, 2012).
Coherence for the roll rate due to ailerons and pitch rate due to elevator deflection for both

investigated designs is shown in Fig. 8. In our study, we observed that the coherence obtained
for both manoeuvres is comparable. As it can be seen from the plots, the coherence is almost 1
in the whole frequency range when the elevator is deflected, and over 0.6 when the ailerons
are used. For the roll rate due to ailerons deflection, the design with the a priori knowledge is
slightly better in the low frequency range, however both manoeuvres provide sufficient amount
of information as the coherence is above the assumed threshold.

4.2. Estimates accuracy

After the whole data set containing excitations (aileron δA and elevator deflections δE) and
model response (longitudinal velocity u, angle of attack α, sideslip angle β, angular rates p,
q, r, attitude angles φ, θ and linear acceleration components ax, ay, az) has been collected and
filtered, Sys-ID is performed. The OLS are used for that purpose. To obtain a mathematical
model of the object, the recorded signals are preprocessed and the backward elimination is
used to determine the model structure. To compare the results obtained for both manoeuvres
(uniform and non-uniform power spectrum), an absolute relative error for each aerodynamic
coefficient is evaluated. The obtained outcomes are presented in Table 1.
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Fig. 8. Coherence function

Table 1. Absolute relative error for Equation Error Method, [%]

Name Uniform Optimized Name Uniform Optimized

Xα 2.74 1.35 Lβ 2.03 2.89
Zα 5.07 5.42 Lp 7.33 4.55
Mu 16.29 8.83 Lr 3.64 1.42
Mα 6.13 3.68 LδA 1.14 0.83
Mq 13.31 8.58 Nα 0.06 1.23
MδE 2.26 1.72 Nβ 10.51 6.23
Yβ 0.15 0.36 Np 6.29 14.47
Yp 0.23 0.03 Nr 31.35 34.18
Yr 1.09 0.02 NδA 2.88 4.13
YδA 0.03 0.05

From Table 1 it can be observed that the absolute relative error values are high for both
investigated cases. It could be caused by the fact that there is a measurement noise in the
registered signals. As it was mentioned earlier, the Sys-ID is performed again using a more
sophisticated method, which is the MLE, because it allows one to include the measurement
noise. The outcomes are presented in Table. 2.
Table 2 shows that the parameters are estimated with high accuracy in both cases. It can

be seen that the non-uniform power spectrum allows one to evaluate slightly better the out-
comes. On the other hand, one has to have in mind that for a non-uniform case, additional
computational time has to be spent to perform power spectrum optimization. The results of the
Sys-ID performed using the MLE in form of lateral and longitudinal acceleration time histories
are presented in Fig. 9.
In the plots, the recorded object response obtained for both sets of the input signals is

represented by blue lines, whilst the red lines with black markers show the results of the Sys-ID
process. Almost an ideal match between the measurements for all flight parameters is observed
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Table 2. Absolute relative error for Output Error Method, [%]

Name Uniform Optimized Name Uniform Optimized

Xα 0.3346 0.2409 Lα 1.8495 1.8454
Zα 0.3134 0.2233 Lβ 0.1540 0.0573
ZδE 2.1896 0.8917 Lp 0.1689 0.1440
Mu 0.5759 0.1646 Lr 0.3220 0.0698
Mα 0.0598 0.1160 LδA 0.1409 0.1221
Mq 0.3982 0.0529 Nα 0.0205 0.0304
MδE 0.2597 0.0846 Nβ 0.0369 0.0471
Yβ 0.0568 0.0228 Np 0.2287 0.0540
Yp 0.2089 0.3757 Nr 0.0329 0.0748
Yr 0.1619 0.0261 NδR 0.2930 0.0426
YδR 0.3917 0.3380

Fig. 9. Time histories for MLE

for both cases. The flight parameters time history plots confirm also our previous conclusion
regarding the stabilization time, i.e. when the uniform power spectrum has been used, the aircraft
returned to the trim point slightly faster. Moreover, if the non-uniform energy distribution has
been selected, a new equilibrium point was reached.

5. Conclusions

In this paper, it is shown how to design multisine input signals with a priori information of the
system dynamics in order to improve the Sys-ID accuracy. Two types of multisine excitations
are used in our investigation.
In the first case, the input signals are obtained without any information of the aircraft dyna-

mics. However, for the majority of Sys-ID tests, there is an a priori knowledge of aerodynamic
coefficients provided that can be used to improve the excitations effectiveness. In our study, this
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knowledge is given in terms of dimensional stability and control derivatives. Those parameters
are used to obtain magnitude Bode plots that allow one to design an optimized input ener-
gy distribution. In order to achieve this aim, a genetic algorithm has bee used. The obtained
non-uniform power spectrum has been used later to design multisine signals.
The model is excited with both sets of inputs, and the Sys-ID is performed for both cases

separately. For estimating the stability and control derivatives, two methods are used: Equation
Error and Output Error. The model parameters obtained from the OLS are biased as the appro-
ach is not resistant to the measurement noise in the independent variables. The second method
allows one to obtain stability and control derivatives with a very high accuracy. On the basis of
those outcomes, it is found that both manoeuvres allow one to obtain accurate estimates. Al-
most an ideal match between the results and measurements is observed. Introducing the a priori
information in the manoeuvre design enables evaluation of slightly better estimates.
However, when the initial knowledge of the system dynamics is not included, a slightly shorter

time required for stabilization is observed. Nevertheless, in both cases the time that is required
for performing the experiment is greatly reduced in comparison to the conventional approach, so
both designs lower the overall cost of the Sys-ID process. The only noticeable drawback of the
novel approach is that an additional time has to be spent on performing the energy distribution
optimization.
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The use of steel fibers in reinforced concrete (RC) structural members aims at the impro-
vement of mechanical properties of such members. This study focuses on shear strength
characteristics of steel fiber reinforced concrete (SFRC) beams without stirrups. Test speci-
mens consisting of three RC and ten SFRC beams without stirrups have been tested under
three-point loading in order to investigate the effects of fiber content and shear span-to-
-effective depth ratio on the shear strength. Furthermore, an equation developed previously
for predicting the ultimate shear strength of SFRC beams without stirrups is proposed to
predict the diagonal cracking strength of SFRC beams without stirrups.
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1. Introduction

Concrete is a brittle material that has a relatively low tensile strength. This makes reinforced
concrete (RC) beams without any shear reinforcement vulnerable to shear failure. Such brittle
materials have been reinforced by using various types of fibers since ancient times. A substantial
amount of research has been carried out to investigate the use of steel fibers for enhancing
mechanical properties of concrete over the last half century (ACI, 1996). The focus of this study
is on shear strength characteristics of low- and normal-strength steel fiber reinforced concrete
(SFRC) beams without stirrups. It has been shown through experimental studies that the use
of steel fibers improves those characteristics significantly (Batson et al., 1972; Kadir and Saeed,
1986; Mansur et al., 1986; Uomoto et al., 1986; Lim et al., 1987; Narayanan and Darwish,
1987; Li et al., 1992; Swamy et al., 1993; Noghabai, 2000; Kwak et al., 2002; Rosenbusch and
Teutsch, 2002; Dupont and Vandewalle, 2003; Cucchiara et al., 2004; Parra-Montesinos, 2006;
Parra-Montesinos et al., 2006; Dinh et al., 2010; Ding et al., 2011; Aoude et al., 2012; Minelli
and Plizzari, 2013; Minelli et al., 2014; Sahoo and Sharma, 2014; Shoaib et al., 2014; Singh
and Jain, 2014; Sahoo et al., 2015). Besides, various studies have been conducted to develop
an accurate model for predicting the shear strength of SFRC beams without stirrups (Sharma,
1986; Narayanan and Darwish, 1987; Ashour et al., 1992, Swamy et al., 1993; Imam et al., 1997,
Khuntia et al. 1999; Kwak et al., 2002; RILEM, 2003; Yakoub, 2011; Gandomi et al., 2011;
Dinh et al., 2011; Arslan, 2014). Despite these studies, SFRC has not yet achieved a widespread
structural use. It is essential to increase the experimental database for both verifying the current
models and developing more accurate ones.
The objective of this study is to investigate shear strength characteristics of low- and normal-

-strength SFRC beams without stirrups experimentally. A total of thirteen specimens, three of
which being RC and the others SFRC beams, have been tested under three-point loading in order
to examine the effects of volume fraction of steel fibers Vf and shear span-to-effective depth
ratio a/d on the shear strength of SFRC beams without stirrups. Furthermore, the ultimate
shear strengths and diagonal cracking strengths of test specimens have been predicted by using
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a number of equations available in the literature, and a comparison of those predictions is
presented. A modified version of the equation proposed by Arslan (2014) for predicting the
ultimate shear strength of SFRC beams without stirrups is suggested for predicting the diagonal
cracking strength of SFRC beams without stirrups.

2. Experimental program

Test specimens consisting of three RC and ten SFRC beams have been divided into three groups
as A2.5, A3.5 and A4.5 series based on the shear span-to-effective depth ratio. The beams of
A2.5 series have a shear span-to-effective depth ratio of 2.5, which is usually defined as the lower
limit for slender RC beams without stirrups. The shear span-to-effective depth ratios of the
beams of A3.5 and A4.5 series have been chosen as 3.5 and 4.5, respectively, in order to observe
shear failure resulting from diagonal tension. The geometrical properties of test specimens are
shown in Fig. 1. All beams have the same cross-section of 150mm by 230mm with an effective
depth of 200mm. The beams of A2.5 series are 1400mm long, whereas the beams of A3.5 and
A4.5 series are 2200mm long.

Fig. 1. Configuration and geometry of test specimens; (a) A2.5 series, (b) A3.5 series, (c) A4.5 series

A longitudinal reinforcement ratio ρ of 1.34% has been chosen to avoid any premature flexural
failure. Two deformed (S420 grade) steel bars of 16mm diameter were used as the longitudinal
reinforcement for all beams. Hooked-end steel fibers with a length Lf of 30mm and a nominal
diameter Df of 0.55mm, resulting in an aspect ratio Lf/Df of 54.5, were used as the only shear
reinforcement. Each group of test specimens includes beams with the volume fraction of steel
fibers ranging from 0.0% to 3.0%.
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A specimen label consists of a combination of letters and numbers. Each label starts with
an “A” followed by 2.5, 3.5 or 4.5 to designate the shear span-to-effective depth ratio and
continues with an “F” to indicate the volume fraction of steel fibers followed by 1.0, 2.0 or 3.0
to designate the volume fraction of steel fibers. For example, a beam having a shear span-to-
-effective depth ratio of 3.5 with a volume fraction of steel fibers equal to 1.0% is labeled as
A3.5F1.0. The specimens labeled as A2.5R, A3.5R and A4.5R are the reference beams that do
not contain any steel fibers.

Table 1. Properties of test specimens

Test specimen fc [MPa] Vf [%] a/d l [mm]

A2.5R 39.00 0.0
A2.5F1.0a 33.68 1.0
A2.5F1.0b 24.53 1.0 2.5 1400
A2.5F2.0 21.43 2.0
A2.5F3.0 9.77 3.0
A3.5R 31.52 0.0

3.5 2200
A3.5F1.0 20.21 1.0
A3.5F2.0 21.43 2.0
A3.5F3.0 27.91 3.0
A4.5R 41.82 0.0

4.5 2200
A4.5F1.0 24.53 1.0
A4.5F2.0 21.43 2.0
A4.5F3.0 27.91 3.0

The properties of test specimens are summarized in Table 1, where fc is the concrete com-
pressive cylinder strength and l is the length of test specimen. All specimens have been cast
with the concrete mix given in Table 2. The concrete compressive strength of each specimen has
been determined by using either 150×150×150 mm cube or 100×100mm cylinder samples. The
concrete compressive strength of A2.5F3.0 is notably low compared to the others. This might
have been occurred due to poor mixing and/or compacting of concrete leading to a relatively
low concrete compressive strength.

Table 2. Concrete mix

Materials

A2.5R, A2.5F3.0, A2.5F1.0a, A2.5F1.0b,
A3.5R, A3.5F3.0, A2.5F2.0, A3.5F1.0, A3.5F2.0,
A4.5R, A4.5F3.0 A4.5F1.0, A4.5F2.0

Mixture proportions [kg/m3]

0-5mm crushed sand 1180 1150
5-12mm crushed stone 721 310
12-22mm crushed stone – 470
Fly ash (40% of binder) 80 90
Cement CEMI 42.5R 240 220
Water/binder 0.55 0.55
Superplasticizer 3.20 3.10

A load-controlled test procedure has been followed such that all specimens were incrementally
loaded up to the failure. After each load increment, the deflections were measured by means of
linear variable differential transducers (LVDTs) placed at locations 1, 2 and 3 shown in Fig. 1,
and the crack pattern was monitored visually throughout the test.
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3. Experimental results

At the early stages of loading, fine vertical cracks were observed in the vicinity of mid-span of
each beam. With the increasing load, new flexural cracks formed away the mid-span. With a
further increase in the load, the flexural cracks started then to propagate diagonally towards the
applied load and additional diagonal cracks began to form farther away the mid-span. The failure
mechanisms of test specimens except for A4.5F2.0 and A4.5F3.0 were characterized by a wide
diagonal crack. It was observed that (i) the failure mechanisms were controlled by an increased
shear strength and the dowel effect, and reduced crack spacing and crack width resulting from
the crack-bridging ability of steel fibers, and (ii) the specimens exhibited large deflections at
failure. The crack patterns of test specimens at failure are shown in Fig. 2.

Fig. 2. Crack patterns of test specimens

It is usually assumed that the diagonal tension failure of an RC beam without stirrups
initiates when the principal tensile stresses within the shear span exceed the tensile strength of
concrete and a diagonal crack propagates through the beam web. In the studies of Arslan (2008,
2012) and Arslan and Polat (2013), a diagonal crack is defined as a major inclined crack extending
from the level of the longitudinal reinforcement towards the applied load, and the load at the
growth of the first inclined crack is termed as the diagonal cracking load. The diagonal cracking
load Pcr, the mid-span deflection at diagonal cracking δcr, the ultimate load Pu, the ultimate
mid-span deflection δu, the diagonal cracking strength vcr and the ultimate shear strength vu for
each test specimen are given in Table 3, where the diagonal cracking strength and the ultimate
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shear strength are the diagonal cracking load and the ultimate load divided by the product of
beam thickness bw and effective depth, respectively. The load-deflection curves of all specimens
are plotted in Fig. 3.

Table 3. Experimental results

Test Pcr δcr Pu δu vcr vu δu/δcr vu/vcrspecimen [kN] [mm] [kN] [mm] [MPa] [MPa]

A2.5R 65 1.23 81 1.89 1.08 1.35 1.54 1.25
A2.5F1.0a 85 4.31 130 6.69 1.42 2.17 1.55 1.53
A2.5F1.0b 70 4.41 88 5.71 1.17 1.47 1.29 1.26
A2.5F2.0 70 2.75 100 5.09 1.17 1.67 1.85 1.43
A2.5F3.0 60 4.90 78 7.79 1.00 1.30 1.59 1.30
A3.5R 60 2.81 62 2.83 1.00 1.03 1.01 1.03
A3.5F1.0 55 2.80 65 4.26 0.92 1.08 1.52 1.17
A3.5F2.0 60 3.08 85 6.36 1.00 1.42 2.06 1.42
A3.5F3.0 95 5.09 117 6.83 1.58 1.95 1.34 1.23
A4.5R 60 5.51 76 7.37 1.00 1.27 1.34 1.27
A4.5F1.0 60 4.60 85 8.70 1.00 1.42 1.89 1.42
A4.5F2.0∗ 45 8.54 70 15.35 0.75 1.17 1.80 1.56
A4.5F3.0∗∗ – – 97 18.63 – 1.62 – –
∗ Failed in shear-flexure; ∗∗ failed in flexure

3.1. Influence of volume fraction of steel fibers

Experimental results given in Table 3 and Fig. 3 clearly show that the use of steel fibers
improved the shear strength and deformation capacity considerably. In the case of A2.5 series,
the use of steel fibers in the amounts of 1.0% and 2.0% by volume increased the ultimate shear
strength by 9% and 23%, respectively, and increased the deflection capacity 3.02 and 2.69 times,
respectively. It is to be noted that increasing the volume fraction of steel fibers from 1.0% to 2.0%
for approximately the same concrete compressive strength (A2.5F1.0b and A2.5F2.0) increased
the ultimate shear strength by 14% but did not increase the deflection capacity. A2.5F3.0 cannot
be compared directly since its concrete compressive strength is significantly low. In the case of
A3.5 series, an increase in the ultimate shear strength due to the use of steel fibers in the
amounts of 1.0%, 2.0% and 3.0% is 5%, 37% and 89%, respectively, and the deflection capacity
is increased 1.51, 2.25 and 2.41 times, respectively.
For a better understanding of the effect of fiber content on the shear strength, the normalized

maximum shear stress against the volume fraction of steel fibers for each beam is plotted in Fig. 4.
It is clearly observed that the normalized maximum shear stress increases with the fiber content
in the case of A2.5 and A3.5 series. A similar trend cannot be observed in the case of A4.5 series
since A4.5F2.0 and A4.5F3.0 failed in flexure.
Even though the use of steel fibers enhanced the shear strengths and deformation capacities

of the beams considerably, it was still not able to change the failure mechanisms of the beams
of A2.5 and A3.5 series. On the other hand, the use of steel fibers in the amount of 3.0% in the
case of A4.5 series both increased the shear strength and the deformation capacity by 28% and
152%, respectively, and changed the failure mode from shear to flexure. It is to be noted that a
high volume fraction of steel fibers, i.e. 3.0%, was required to prevent the shear failure and use
the flexural capacity. However, it may not be practical to work with a concrete mix having such
a high volume fraction of steel fibers. Instead, steel fibers can be used together with a limited
amount of stirrups to modify the failure mode.
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Fig. 3. Load-deflection curves; (a) A2.5 series, (b) A3.5 series, (c) A4.5 series

Fig. 4. Normalized maximum shear stress vs. fiber content
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It is observed in Table 3 that the ratio of the ultimate shear strength to the diagonal cracking
strength increases with the volume fraction of steel fibers up to 2.0% for the beams of all three
series, but decreases with an increase in the volume fraction of steel fibers from 2.0% to 3.0% for
the beams of A2.5 and A3.5 series. A4.5F3.0 exhibited flexural failure and the diagonal cracking
was not observed in this specimen.

3.2. Influence of shear span-to-effective depth ratio

It can be seen in Table 3 that the diagonal cracking strength decreases with the increasing
shear span-to-effective depth ratio as a result of the increased flexural moment and the associated
principal stresses and the diminishing arching effect. The shear span-to-effective depth ratio
eventually affects the ultimate shear strength. As expected for the reference beams, the ultimate
shear strength of A2.5R, which has the smallest shear span-to-effective depth ratio, is greater
than that of the other reference beams; however it has a smaller deflection capacity. A similar
relationship between the beams with the volume fraction of steel fibers of 2.0% is observed.
A2.5F2.0 has a greater load carrying capacity and a smaller deflection capacity than A3.5F2.0
and A4.5F2.0 do.
It is observed that increase in the deflection capacity decreases with the increasing shear span-

to-effective depth ratio for a given fiber content. The deflection capacities of A2.5F1.0b, A3.5F1.0
and A4.5F1.0 are 3.02, 1.51 and 1.18 times those of A2.5R, A3.5R and A4.5R, respectively.
The use of steel fibers in the amount of 2.0% by volume resulted in deflection capacities 2.69,
2.25 and 2.08 times those of the reference specimens for A2.5F2.0, A3.5F2.0 and A4.5F2.0,
respectively. Experimental results manifest that it is essential to consider the effect of shear
span-to-effective depth ratio in predicting the shear strength of SFRC beams, as done by Sharma
(1986), Narayanan and Darwish (1987), Ashour et al. (1992), Imam et al. (1997), Kwak et al.
(2002), Gandomi et al. (2011) and Arslan (2014).

4. Predicting the shear strengths of test specimens

A number of equations proposed for predicting the ultimate shear strength and diagonal cracking
strength of SFRC beams without stirrups are considered. The statistical evaluations of the
equations considered within the scope of this study are available in the work of Arslan (2014).
In this study, the equations are used only for predicting the ultimate shear strength and diagonal
cracking strength of test specimens.

4.1. The equations for ultimate shear strength

Sharma (1986) proposed a simple empirical equation for predicting the ultimate shear
strength of SFRC beams without stirrups. The equation, which is recommended by ACI (1988)
(vu in MPA), is

vu = kfct
(d
a

)0.25
(4.1)

where fct is the concrete tensile strength, k = 1 if fct is obtained by a direct tension test, k = 2/3
if fct is obtained by an indirect tension test and k = 4/9 if fct is obtained by using the modulus
of rupture or fct = 0.79

√
fc.

Narayanan and Darwish (1987) proposed an empirical equation as

vu = e
(
0.24fsp + 80ρ

d

a

)
+ vb (4.2)
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where e = 1.0 for a/d > 2.8 and e = 2.8d/a for a/d ¬ 2.8, fsp = fcuf /(20 −
√
F ) + 0.7 +

√
F is

the computed value of split-cylinder strength of fiber concrete, fcuf is the cube strength of fiber
reinforced concrete, F = (Lf/Df )Vfdf is the fiber factor (df is the fiber bond factor that is 0.5
for round, 0.75 for crimped and 1.0 for indented fibers), vb = 0.41τF is the pull-out strength of
fibers along the inclined crack and τ is the average fiber matrix interfacial bond stress equal to
4.15MPa.
Ashour et al. (1992) revised the equations given by the ACI 318 code (ACI, 2014) and

Zsutty (1971) for predicting the ultimate shear strength of RC beams without stirrups in order
to propose two empirical equations for SFRC beams with a/d  2.5 as

vu =
(
0.7
√
fc + F

)d
a
+ 17.2ρ

d

a
vu =

(
2.11 3

√
fc + 7F

) 3
√

ρ
d

a
(4.3)

respectively.
Swamy et al. (1993) proposed an equation based on the truss model as

vu = 0.37τVf
Lf
Df
+ 0.167

√
fc (4.4)

where τ is assumed to be 4.15MPa as suggested by Narayanan and Darwish (1987).
Imam et al. (1997) modified the equation that Bazant and Sun (1987) had developed to

predict the ultimate shear strength of RC beams without stirrups to propose the relationship

vu = 0.6
1 +

√
5.08/da√

1 + d/25da
3

√
ρ(1 + 4F )

(
f0.44c + 275

√
ρ(1 + 4F )
(a/d)5

)
(4.5)

where da is the maximum aggregate size and df is 0.5 for smooth, 0.9 for deformed and 1.0 for
hooked fibers.
Khuntia et al. (1999) proposed the following equation

vu = (0.167 + 0.25F )
√
fc (4.6)

where df is 2/3 for plain and round, 1.0 for hooked or crimped fibers.
Kwak et al. (2002) developed an equation by using the form of the equation proposed by

Zsutty (1971) combined with an additional term accounting for the contribution of steel fibers
and proposed two versions of the equation with different constants as

vu = 2.1ef0.7sp
(
ρ
d

a

)0.22
+ 0.8v0.97b (4.7)

where e = 1.0 for a/d > 3.5 and e = 3.5d/a for a/d ¬ 3.5, and

vu = 3.7e 3
√
f2sp

3

√

ρ
d

a
+ 0.8vb (4.8)

where e = 1.0 for a/d > 3.4 and e = 3.4d/a for a/d ¬ 3.4.
According to RILEM (2003), the ultimate shear strength of SFRC beams without stirrups

is calculated as

vRd,3 = 0.12k
3
√
100ρfc + 0.7kfk1τfd (4.9)

where k = 1 +
√
200/d ¬ 2 (d is in mm), ρ ¬ 0.02, kf is a factor considering the contribution

of flanges in a T-section and is equal to 1 for rectangular sections, k1 = 1 +
√
200/d ¬ 2 (d is
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inmm), τfd = 0.12fRk,4 is the design value of increase in shear strength due to steel fibers and
fRk,4 is the characteristic residual strength for the ultimate limit state.
Yakoub (2011) used an expression developed for predicting the contribution of steel fibers

to the shear strength of SFRC beams to modify the equations given by Bazant and Kim (1984)
and CSA A23.3-04 (CSA, 2004). The resulting equations for a/d  2.5 are

vu = 0.83ξ 3
√
ρ

(
√
fc + 249.28

√
ρ

(a/d)5

)
+ 0.162F

√
fc

vu = β
√
fc(1 + 0.70F )

(4.10)

respectively, where ξ = 1/
√
1 + d/(25da) is the aggregate size effect factor, β = [0.4/(1 +

1500εx)][1300/(1000 + sxe)] (sxe is in mm), εx = (M/dv +V )/(2EsAs) is the longitudinal strain
at the mid-depth of the beam web, M and V are the external failure moment and shear acting
on the section, respectively, dv is the flexural lever arm equal to 0.9d or 0.72h (h is the beam
height), whichever is greater, sxe = 35sx/(16 + da)  0.85sx is the equivalent crack spacing
factor that accounts for the maximum aggregate size effects on the shear strength, sx is the
crack spacing parameter that accounts for the crack spacing at the mid-depth of the beam and
df is 0.79 for sheared, 0.83 for crimped, 0.89 for duoform, 0.91 for rounded, 0.92 for indented
cut wire and 1.00 for hooked fibers.
Gandomi et al. (2011) developed a nonlinear model by means of linear genetic programming

as

vu = 2
d

a
(ρfc + vb) + 2

d

a

ρ

(288ρ − 11)4 + 2 (4.11)

Dinh et al. (2011) proposed an equation as the summation of the shear stress carried across
the compression zone and the vertical component of the diagonal tension resistance provided by
steel fibers, such that

vu = 0.13ρfy + 1.2
4

√
Vf
0.0075

(
1− c

d

)
(4.12)

where fy is the yield strength of flexural reinforcement and c is depth of the compression zone,
which can be simply taken as 0.1h.
Arslan (2014) proposed an equation by considering the influences of the shear span-to-

-effective depth ratio, dowel strength of tensile reinforcement and contribution of steel fibers
to the shear strength as

vu =
(
0.2 3
√
f2c
c

d
+
√
ρ(1 + 4F )fc

)
3

√
3
a/d

(4.13)

where (c/d)2 + (600ρ/fc)(c/d) − 600ρ/fc = 0.

4.2. The predictions for ultimate shear strength

The ultimate shear strengths of test specimens excluding the reference beams (A2.5R, A3.5R
and A4.5R), A4.5F2.0 and A4.5F3.0 – since they failed in shear-flexure and flexure, respectively
– have been predicted by using Eqs. (4.1)-(4.13) and the predictions were compared with the
experimental values. The mean value (MV), standard deviation (SD) and coefficient of variation
(COV) of the ratios of the experimental values to the corresponding predictions are given in
Table 4.
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Table 4. Statistics of the ratios of the experimental values to the predictions

The model MV SD COV

Sharma (1986) 1.241 0.186 0.150
Narayanan and Darwish (1987) 0.593 0.183 0.309
Ashour et al. (1992), Eq. (4.3)1 0.504 0.186 0.369
Ashour et al. (1992), Eq. (4.3)2 0.783 0.214 0.274
Swamy et al. (1993) 0.734 0.239 0.326
Imam et al. (1997) 0.633 0.201 0.317
Khuntia et al. (1999) 0.853 0.192 0.225
Kwak et al. (2002), Eq. (4.7) 0.543 0.128 0.235
Kwak et al. (2002), Eq. (4.8) 0.574 0.145 0.253
RILEM (2003) 1.361 0.227 0.167
Yakoub (2011), Eq. (4.10)1 0.858 0.126 0.147
Yakoub (2011), Eq. (4.10)2 1.342 0.329 0.246
Gandomi et al. (2011) 0.480 0.116 0.242
Dinh et al. (2011) 0.725 0.172 0.238
Arslan (2014) 0.833 0.098 0.118

The equations proposed by Sharma (1986), RILEM (2003) and Yakoub (2011) (Eq. (4.10)2)
underestimate the ultimate shear strengths of test specimens involved in this study, whereas the
ones proposed by Narayanan and Darwish (1987), Ashour et al. (1992) (Eq. (4.3)1), Imam et
al. (1997), Kwak et al. (2002) and Gandomi et al. (2011) largely overestimate the experimental
values. It is observed from the statistics given in Table 4 that the equation proposed by Yakoub
(2011) (Eq. (4.10)2) and Arslan (2014) provide the most accurate predictions for the specimens
involved in this study, where as the predictions of the equation of Arslan (2014) are slightly
better. The ratios of the experimental values to the corresponding predictions of the equation of
Arslan (2014) have a mean value of 0.833 with the lowest coefficient of variation equal to 0.118.

4.3. The equations for diagonal cracking strength

Narayanan and Darwish (1987) proposed an empirical equation for predicting the diagonal
cracking strength as

vcr = 0.24fsp + 20ρ
d

a
+ 0.5F (4.14)

Kwak et al. (2002) proposed an equation by following a procedure similar to the one followed
for developing Eqs. (4.7) and (4.8) as

vcr = 3 3
√
f2sp

3

√

ρ
d

a
(4.15)

The equation proposed by Arslan (2014) and given in Eq. (4.13) has been modified by
introducing a strength reduction factor of 0.6, which was obtained through a regression analysis
undertaken to identify the strength reduction factor in calculating the diagonal cracking strength
of SFRC slender beams without stirrups by using the results of existing experimental data. The
resulting equation is

vu = 0.6
(
0.2 3
√
f2c 3

c

d
+
√
ρ(1 + 4F )fc

)
3

√
3
a/d

(4.16)
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4.4. The predictions for diagonal cracking strength

The diagonal cracking strengths of test specimens containing steel fibers excluding A4.5F3.0
that failed in flexure have been predicted by using Eqs. (4.14)-(4.16). The mean value, standard
deviation and coefficient of variation of the ratios of the experimental values to the corresponding
predictions are given in Table 5. It is observed from Table 5 that Eq. (4.16) performed better
in predicting the diagonal cracking strengths of the considered test specimens than the other
equations do. The ratios of the experimental values to the corresponding predictions obtained
from Eq. (4.16) have a mean value of 1.032 with the lowest coefficient of variation equal to 0.079.

Table 5. Statistics of the ratios of the experimental values to the predictions

The model MV SD COV

Eq. (4.16) 1.032 0.082 0.079
Narayanan and Darwish (1987) 0.899 0.166 0.185
Kwak et al. (2002) 1.102 0.131 0.119

5. Conclusion

An experimental study has been conducted to investigate shear strength characteristics of low-
and normal-strength SFRC slender beams without stirrups. The fact that the use of steel fibers
improves the ultimate shear strength, diagonal cracking strength and ductility significantly is
justified based on the following observations.
• The use of steel fibers with volume fractions of 1.0% and 2.0% increased the ultimate shear
strength by 9% and 23%, respectively, in the case of a shear span-to-effective depth ratio
of 2.5 and by 5% and 37%, respectively, in the case of a shear span-to-effective depth ratio
of 3.5.

• The use of steel fibers in an amount of 3.0% was not able to change the failure mode of
test specimens with a shear span-to-effective depth ratio of either 2.5 or 3.5, but it made
the beam with a shear span-to-effective depth ratio of 4.5 fail in flexure instead of shear.
However, it is to be noted that 3.0% may not be a practical volume fraction in the context
of workability of a concrete mix. The use of steel fibers with a limited amount of stirrups
can be a more practical way to modify the failure mode.

• The ratio of the ultimate shear strength to the diagonal cracking strength increased with
the volume fraction of steel fibers up to 2.0% for all series of beams.

• The diagonal cracking strength decreased with the increasing shear span-to-effective depth
ratio, which eventually affected the ultimate shear strength. This implies that it is essential
to consider the effect of shear span-to-effective depth ratio in predicting the shear strength
of SFRC beams.

• The use of steel fibers increased the deflection capacities significantly in all cases.
Besides the experimental study, the ultimate shear strengths and diagonal cracking streng-

ths of SFRC beams involved in the experimental study were predicted by various equations
available in the literature. Among the fifteen equations considered for predicting the ultimate
shear strength of SFRC beams without stirrups, the equation proposed by Arslan (2014) had the
best performance. The equation of Arslan (2014) was modified to predict the diagonal cracking
strengths of SFRC beams involved in this study by introducing a strength reduction factor equal
to 0.6. The modified equation had a better performance than those of the other two considered
equations. Since the number of test specimens was limited, the modified version of the equation
of Arslan (2014) should be verified with more data.
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The paper describes mechanical behavior of aluminum alloy AW5005 (EN AW5005) un-
der impact loading. The work is focused on tensile tests and the process of perforation of
aluminum alloy AW5005 sheets. Experimental, analytical and numerical investigations are
carried out to analyse in details the perforation process. Based on these approaches, ballistic
properties of the structure impacted by a conical nose shape projectile are studied. Different
failure criteria are discussed, coupling numerical and experimental analyses for a wide range
of strain rates. Optimization method functions are used to identify the parameters of the
failure criteria. Finally, good correlation is obtained between the numerical and experimental
results for both tension and perforation tests.
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1. Introduction

In this paper, a study on aluminum alloy AW5005 behavior is reported. This alloy contains
nominally 0.8% magnesium and it presents a medium strength, good weldability and good
corrosion resistance in marine atmospheres. The metallurgical state of the aluminum alloy used
in this work is as received. It has a lower density and an excellent thermal conductivity compared
to other aluminum alloys. It is the most commonly used type of aluminum in sheet and plate
forms (Kulekci, 2014).
The ballistic behavior and resistance of aluminum sheet plates is strongly dependent on the

material behavior under dynamic loading. The ballistic properties of the structure are intensely
related to the material behavior and to the interaction between the projectile and a thin alumi-
num target during the perforation process. Therefore, to find expected curves, many dynamic
constitutive relations have been studied in several works. For instance, Johnson and Cook (1983)
proposed a dynamic constitutive relation based on a phenomenological approach. The model has
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been often used in impact and perforation problems analysis. Verleysen et al. (2011) investiga-
ted the effect of strain rate on the forming behavior of sheet metals and described stress-strain
curves of the material using the Johnson-cook model. Erice et al. (2014) presented a coupled
elastoplastic-damage constitutive model to simulate the failure behavior of inconel plates. Rusi-
nek and Rodŕıguez-Mart́ınez (2009) provided two extensions of the original Rusinek-Klepaczko
constitutive relation (Rusinek and Klepaczko, 2001) in order to define the behavior of aluminum
alloys at wide ranges of strain rates and temperatures showing a negative strain rate sensitivity.
Børvik et al. (2009) studied the influence of a modified Johnson-Cook constitutive relation using
numerical simulations of steel plate perforation. Jankowiak et al. (2013) considered perforation
of different configurations: mild steel and sandwich plates. The effectiveness of these kinds of
structures was checked. The authors also presented the effect of strain rate sensitivity models
(Johnson-Cook and Rusinek-Klepaczko) on the ballistic curve. Additionally, several effects were
considered: strain hardening, yield stress and projectile mass. Based on these results, it was
possible to optimize the structure and find the right plate thickness to prevent its perforation.
The sandwich configuration containing two sheets of steel is less efficient than a monolithic steel
sheet of an equivalent total thickness. It was proven that thickness of the target had an im-
portant effect on the ballistic performance. This analysis can be used for the present AW5005
structure optimization. Kpenyigba et al. (2013) and Rusinek et al. (2008) studied the influence
of the projectile nose shape (conical, blunt and hemispherical) and the projectile diameter on
ballistic properties and failure modes of thin steel targets. In order to simulate the behavior of
impacted and perforated structures, the finite element method with an explicit time integration
procedure was an effective technique (Kpenyigba et al., 2013; Rusinek et al., 2008; Rusinek and
Rodŕıguez-Mart́ınez, 2008; Quinney and Taylor, 1937; Xue and Belytschko, 2010). Numerical
simulations, in particular by the FE method, are also effective supplements for theoretical and
experimental investigations which were carried out to analyze the dynamic behavior of impacted
structures.
In order to determine mechanical characteristics of the material in quasi-static conditions,

tensile tests have been carried out according to the methodology discussed in (Zhong et al.,
2016).

2. Experimental approach

There are little references about this material, especially concerning mechanical properties of
this specific aluminum alloy. However, Kulekci (2014) published that the yield strength is equal
to 45 MPa and the tensile strength is 110 MPa. Additionally, it is described that the elongation
of this alloy is close to 15%. In the present paper, a tensile test is used to calibrate the material
behavior. The specimen is machined from a 1.0mm thickness aluminum sheet. The dimensions
of the specimen are presented in Fig. 1. Additionally, the perforation test is used to describe
ballistic properties of the material and failure modes for the conical projectile nose shape see
Fig. 4. Compression using a sandwich specimen (Zhong et al., 2015) and shear tests (Rusinek
and Klepaczko, 2001; Bao and Wierzbicki, 2004) also reports for this material but it is out of
scope of this analysis.

2.1. Tensile test

Quasi-static uniaxial tensile tests of AW5005 aluminum have been performed using a conven-
tional hydraulic machine. The dimensions of the flat dumbbell-shaped specimen are shown in
Fig. 1 (Zhong et al., 2016). The first part of the specimen is embedded on 40mm while the other
end of the specimen is fixed to the mobile crosshead. The loading force and the displacement
are recorded during the tests for the imposed velocity.
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Fig. 1. Dimensions of the tensile specimens

Fig. 2. Description of kinematic failure for three selected time points: (a) homogeneous deformation,
elastic part, (b) strain localization ε = 0.015, (c) shear band before failure ε = 0.045, (d) force versus

displacement curve for strain rate of 0.001 s−1

During the tests, an inclined fracture plane occurs along thickness of the specimens and a
shear failure zone is observed along the oblique direction as Fig. 2 shows. The shear fracture is
the main failure mode for AW5005 aluminum alloy subjected to quasi-static tension. A camera
has been used to investigate the specimen behavior during quasi-static tensile tests. The results
are given in Fig. 2 for a strain rate equal to 0.001 s−1. A set of perpendicular lines is drawn on
the specimen surface with a gap of 2.25mm between them. The tension process is recorded to
estimate local deformation along the specimen loaded in tension. The failure process is presen-
ted together with the force displacement curve in Fig. 2. The analysis of the three frames A, B
and C has allowed one to report the failure development of the specimen. On the frame A, the
tensile process starts and the force is increasing together with the displacement. By coupling
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the force and displacement measurements obtained using the hydraulic machine and the displa-
cement observed from the camera measurement, the behavior can be defined. After the force
reaches the maximum level, the process of tensile plastic strains localization starts as reported
on the frame B. Finally, the plastic strain localizes, see the frame C. If the local critical failure
strain is reached, a crack is formed and the measured force decreases to zero. Using local strain
measurements, it is observed that the local nominal strains before the failure is close to 0.55
compared to the global strain which equals 0.1.
The quasi-static tensile tests are performed for four different strain rates, i.e. 0.001, 0.01,

0.1 and 0.15 s−1. The resulting stress-strain curves are presented in Fig. 3. The experimental
tests show that there is no strain rate sensitivity for aluminum alloy AW5005 behavior in the
range of the strain rate used, but there is a significant difference in terms of ductility. The
macroscopic true strains values at failure varies from 0.042 to 0.1. It is also observed that the
ductility increases with the strain rate, Fig. 3. It shows that the average yield strength of the
AW5005 aluminum is close to 147MPa.

Fig. 3. Stress-strain curves for different strain rates at room temperature, aluminum AW5005

2.2. Perforation test

This part describes the mechanical behavior of aluminum sheets under impact loading. Expe-
rimental, analytical and numerical investigations have been carried out to analyze in details the
perforation process (Kpenyigba et al., 2013). A wide range of impact velocities from 40 to
180m/s has been covered during the tests. A conical projectile with an angle of 72◦ has 13mm
in diameter and the plate is 1.0mm thick. The active part of the specimen during perforation
is presented in Fig. 4.
The projectile is launched using a pneumatic gas gun, it accelerates in the tube to reach

the initial impact velocity V0. Then, the projectile impacts the alumium sheet with partial or
complete perforation depending on quantity of kinetic energy delivered to the tested plate. At
the end, the residual velocity VR of the projectile is measured after the projectile perforates the
plate. Laser sensors are used to measure the initial velocity and a laser barrier for the residual
velocities of the projectile during perforation. The projectile mass mp is 28 g. The material used
for machining the projectile is maraging steel with heat treatment to reach the yield stress of the
projectile of 2GPa. Therefore, the projectile is assumed as rigid during the perforation process
(Kpenyigba et al., 2013). The results in terms of the ballistic curve VR-V0 are reported in Fig. 5a.
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Fig. 4. Dimensions of the projectile and target used during perforation tests

Fig. 5. (a) Ballistic curve obtained during perforation and determination of ballistic limit, (b) energy
absorbed by plate during impact test, determination of failure energy

The residual velocity of the projectile can be calculated using the following equation proposed
by Recht and Ipson (1963)

VR = (V κ0 − V κB )
1
κ (2.1)

where V0 is the initial velocity and VB is the ballistic velocity. In the above equation, the constants
VB is equal to 40m/s, and κ is the ballistic curve shape parameter equal to 1.65.
The energy absorbed by the plate Ed can be calculated using the following equation

Ed =
mP
2
(V 20 − V 2R) (2.2)

The difference of the initial and residual kinetic energy can be calculated using the experi-
mental data, then based on the Recht-Ipson approximation, the energy absorbed by the plate can
be calculated, see Fig. 5b. Using Eq. (2.2), the minimum energy to perforate is 28 J (mP = 28 g
and V0 = VB = 40m/s).
In Fig. 6, for the initial impact velocity of V0 = 85m/s, the failure pattern is presented

with four petals for the residual velocity of VR = 66.5m/s. The same failure is observed for
V0 = 132.3m/s with VR = 120.2m/s, respectively. The number of petals is equal to 4 in the
whole range of impact velocities, i.e. from 40 to 180m/s. A complete description concerning the
number of petals depending on the projectile shape and the failure mode was published and
discussed in details in (Atkins and Liu, 1998).
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Fig. 6. Experimental observation of failure patterns, V0 = 85.3m/s and 132.3m/s

3. Johnson-Cook material model

Using experimental tests, the parameters of the Johnson-Cook (JC) model (Johnson and Cook,
1983) have been identified and used to simulate tension and perforation tests. The thermo-
-viscoplastic behavior of AW5005 aluminum alloy is defined as follows

σ = (A+Bεnpl)
(
1 + C ln

ε̇pl
ε̇0

)
(1− T ∗m) (3.1)

where A is the yield stress, B and n are strain hardening coefficients, C is the strain rate
sensitivity coefficient, ε̇0 is the strain rate reference value and m is the temperature sensiti-
vity parameter. In this work, isothermal conditions are assumed. Therefore, the last term of
the JC model related to the non-dimensional temperature T ∗ is not considered. All numerical
simulations are done at room temperature T = 300K.
The material constants are obtained by experimental tests. The parameter C has been cal-

culated using the presented experimental tests for a quasi-static loading (strain rates from 0.001
to 0.15 s−1). In this range small strain rates sensitivity has been observed. The optimization
using the minimum least square method gives the value of C equal to 0.003. These constants
are shown in Table 1.

Table 1. Material parameters for the Johnson-Cook model

A [MPa] B [MPa] n [–] C [–]

147 60 0.9 0.003

In order to define the material behavior completely, a failure criterion was proposed by
Johnson and Cook (1985). When mixed with their classical constitutive law, Eq. (3.1), it enabled
one to reflect failure modes of structures or materials.
The Johnson-Cook failure model is applied widely because of the simplicity of formulation.

A number of material parameters that are available in literature were provided by Johnson
and Holmquist (1989). However, Johnson and Cook only determined the positive range of the
stress triaxiality based on some tensile tests and shear tests, and no small or negative values of
stress triaxiality were expressed. In order to effectively apply the Johnson-Cook fracture model,
researchers extended the model in different ways. Liu et al. (2014) proved that the Johnson-Cook
fracture model can be used as damage initiation coupled with damage evolution in metal cutting
simulations. Moreover, the damage evolution combines two different fracture modes effects.
In Fig. 7, the progressive damage model is used for aluminum alloy. The description includes

the elastic part with E0 (part a-b) and the plasticity range (b-c). The damage initiation with the
JC criterion can be expressed by Eq. (3.2) (c). Along the line (c-e), the damage variable evolution
grows from 0 to the maximum degradation ratio Dmax (d), therefore, stiffness of the material is
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degraded and reduced to (1−D)E0 where D is the damage variable and E0 is the initial Young
modulus. The damage evolution is described by mesh-independent measurements (displacement
at failure and damage energy dissipation) in the model. A linear evolution damage rule is used
by defining a value of displacement at failure uf (e). Thus, the maximum degradation of stiffness
as well as the maximum damage have been taken finally as the failure criterion (d). The element
after reaching the failure criterion is deleted from the mesh in simulation.

Fig. 7. Schematic representation of tensile test data in stress-displacement space for elastic-plastic
materials (ABAQUS, 2011)

The Johnson-Cook damage initiation model (Johnson and Cook, 1985; Johnson and Hol-
mquist, 1989) describes the strain at damage initiation εplD−init including effects of the stress
triaxiality, strain rate and temperature, as shown in the following equation

εplD−init = [d1 + d2 exp(−d3η)]
(
1 + d4 ln

ε̇

ε̇0

)
(1 + d5T ∗) (3.2)

where d1, d2, d3, d4, d5 are material parameters, η is the stress triaxiality factor, ε̇0 is the reference
strain rate and T ∗ is the non-dimensional temperature. The first bracket in Eq. (3.2) concerns
the influence of the stress triaxiality factor on the value of strain at damage initiation εplD−init.
The value of the first bracket decreases as the stress triaxiality factor increases. The second
bracket represents the influence of the strain rate on that value, while the third one represents
the effect of thermal softening.

Table 2. Failure parameters for tension and perforation

Tensile test Perforation test
Test 1 4 3 4

103 s−1 104 s−1
(0.001 s−1) (0.01 s−1) (0.1 s−1) (0.15 s−1)

Damage initiation strain εplD−init 0.008 0.03 0.08 0.12 0.9 0.96
Displacement at failure uf 0.0008m
Max. degradation Dmax 0.6

By using those analytical approaches coupled to experiment results, the failure parameters
have been deduced and used in the numerical model for both traction and perforation tests.
They are presented in Table 2. The tensile test values are obtained from experiments, whereas
the perforation test values are obtained using a numerical analysis and available literature data
for similar materials (Jankowiak et al., 2013, 2014; Kpenyigba et al., 2013). The strain rates for
perforation tests ε̇ = 1000 s−1 and ε̇ = 10000 s−1 correspond to initial impact velocities V0 of
120m/s and 180m/s, respectively. They have been observed locally using numerical simulations.
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4. Numerical approach

Numerical models are built using Abaqus/Explicit. The tests using this numerical model are
conducted at different strain rates in quasi-static and dynamic conditions with impact velocities
up to 180m/s. The shell element type S4R with 8 degrees of freedom and 4 nodes with reduced
integration (ABAQUS, 2011) have been used. The same element type with the element size of
0.5mm×0.5mm has been proposed for tension and perforation analysis as presented in Fig. 9a.
The effectiveness of such elements for this type of analysis was previously proved by Ambati
and Lorenzis (2016), Amiri et al. (2014), Elnasri and Zhao (2016).
In order to extend experimental results, some other thickness of the aluminum plate has

been added for both tensile and perforation simulations, therefore, thicknesses of 1.0mm and
1.5mm have been used.

4.1. Modelling procedures of tensile and perforation tests

In order to verify the Johnson-Cook constitutive and failure models, tension and perforation
tests have been simulated using Abaqus/Explicit version 6.14.

4.1.1. Tensile test

The aim of this numerical analysis has been to reproduce experimental results by checking
the observed failure mode. The constitutive parameters have been identified based on the experi-
mental tests. The constants are reported in Table 1. The number of elements used for meshing is
16356, and 16731 is the total number of nodes. The distribution of the equivalent plastic strains
called PEEQ in Abaqus is presented in Fig. 8b.

Fig. 8. Numerical simulation of tensile test, (a) equivalent plastic strain distribution for macroscopic
strain equal to ε = 0.04, (b) equivalent plastic strain distribution for macroscopic strain ε = 0.045

The numerical simulations are in agreement with experimental observations where the failure
mode is by shearing, see Fig. 2c.
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4.1.2. Perforation test

The optimal mesh has been obtained using a convergence method (stability of the results
without mesh dependency). The mesh is denser in the projectile-plate contact zone, thickness of
the plate in this area is 1.0mm and the velocity is defined in predefined fields with the range of
impact velocities from 40 to 180m/s as conceded in the experiment. This model contains 6048
elements in the central part of impact and 6161 using the same element size (0.5mm×0.5mm).
The ballistic curves are reported in the following Section and compared to the experimental

results. The interior zone of the model allows one to initiate the process of crack propagation in
a precise way. The projectile behavior has been defined as rigid, because a kinematic coupling
constraint (rigid body) has been applied to avoid deformation of the projectile. The friction
coefficient is assumed to be equal to 0.2.

Fig. 9. Numerical model used during numerical simulations and mesh density distribution: (a) mesh,
(b) equivalent plastic strain distribution for macroscopic strain ε

A decrease of the number of petals with a nose angle of 72◦ has been observed when the
value of failure strain is changed. An analytical model for prediction of the number of petals
proposed by Atkins and Liu (1998) has been used and confirmed by FE simulations.

4.2. Failure criterion model

4.3. Model I (Johnson-Cook model)

Using values illustrated in Table 2, the parameters are used to identify the Johnson-Cook
damage initiation model. The triaxiality dependent part is neglected because the triaxiality
in all cases is 1/3. The influence of temperature is also ignored since there is no effect on all
strain rates captured by the temperature camera that have been used during the tests. The final
equation used to determine the Johnson-Cook damage initiation strain εplD−init as a function of
strain rates ε̇ corresponding to aluminum alloy is

εplD−init = [d1]
[
1 + d4 ln

ε̇

ε̇0

]
(4.1)

In order to determine the parameters d1, d4, an algorithm with Matlab optimization using Eq.
(4.1) has been developed, and the adopted values are presented in Table 3.



1228 A. Bendarma et al.

Fig. 10. Plot of damage initiation strain versus plastic strain rate using Model I JC), Eq. (4.1)

For tensile tests cases 2, 3 and 4, the damage initiation Johnson-Cook model gives too high
values of the initial damage strain because it is linear in the interval of the strain rate. Finally,
the global behavior in space stress-strain is too ductile, therefore, another approach has been
proposed.

4.3.1. Failure modeling using optimized Model II

Another function has been proposed to better fit the damage initiation model. This function
(Eq. (4.2)) contains three constants E, F and G to be determined by using an optimization
algorithm. The constants are reported in Table 3

εplD−init = G
exp(E + F ε̇)
1 + exp(E + F ε̇)

(4.2)

As demonstrated in Fig. 11, there is a good correlation between the fitted curve, the expe-
rimental and numerical values, however, there is still a bit of miss-match between some points
in the middle of the curve.

Fig. 11. Plot of damage initiation strain versus plastic strain rate using optimized Model II, Eq. (4.2)
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4.3.2. Failure modeling using Model III

The next damage initiation criterion (Eq. (4.3)) is defined with two glued functions with four
constants H, I, J and K. Using an optimization method, a good correlation in a wide range of
strain rates is obtained (see Fig. 12)

εplD−init =

{
f(ε̇) = H exp(I log10 ε̇) if ε̇ ¬ ε̇transmition
g(ε̇) = J −K exp(log10 ε̇) if ε̇  ε̇transmition

(4.3)

The estimated constants are reported in Table 3 with ε̇transmition = 1 s−1.

Table 3. Parameters for failure models

Model I (JC) Model II Model III
d1 [–] d4 [–] E [–] F [–] G [–] H [–] I [–] J [–] K [–]

0.007 78.722 −0.89 1.13 1.0085 −0.398 1.4523 1.0085 0.6647

Fig. 12. Plot of failure strain versus plastic strain rate using optimized Model III

5. Comparison of numerical and experimental results

5.1. Tensile test comparisons

A comparison has been made between three initiation damage models using test number 3.
As it is presented in Fig. 13, the best results are obtained with Model III. This is why this model
has been adopted for an other analysis.
Initiation damage Model III has been implemented into the numerical model and then com-

pared with the experimental data for different strain rates (0.001, 0.01, 0.1 and 0.15 s−1). The
results are shown in Fig. 14.
As it might be seen in Fig. 15, there is a good correlation between the experimental and

numerical results. In the case of test 3, the numerical model has demonstrated more ductile
behavior at the failure start, whereas for test 4, it has revealed ductility at the terminal phase
of failure.
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Fig. 13. Comparison between experimental and numerical curves using 3 failure criteria

Fig. 14. Comparison between experimental and numerical curves using optimized initiation
damage model (Model III)

Fig. 15. Numerical result for conical projectile shape, V0 = 120m/s, comparison between
experiments and simulations

5.2. Perforation test comparison

During this study, the same model (Model III) has been used to compare the numerical and
experimental results in the dynamic field using the perforation process in Abaqus/Explicit with
a wide range of impact velocities from 40 to 180m/s and with target thicknesses of 1.0 and
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1.5mm. As it is shown in Fig. 15, the number of petals is the same as in the experiments, four
petals are observed. It was reported in (Atkins and Liu, 1989; Landkof and Goldsmith, 1985)
that the number of petals N observed during dynamic perforation coupled to a conical projectile
shape was related to the nose angle φ. In this work, one angle (72◦) has been used to analyze the
results. In (Kpenyigba et al., 2013) during the analysis of results it was observed that generally
the number of petals N decreased when the projectile angle φ/2 increased.
Figure 16 contains both the experimental and the numerical results of simulations with

the same interval of velocity. Damage initiation criterion Model III has been used to verify the
correlation between the numerical curve and the experiment. There is a good correlation between
the experimental and numerical results which adds to the credibility of correctness of the failure
criterion model. It can be observed that for thicker plates than 1.5mm, the value of the ballistic
limit is shifted from 40m/s to 50m/s.

Fig. 16. The ballistic curve in experiment and in simulation

6. Conclusions

Mechanical characteristics of new aluminum alloy AW5005 have been investigated. The identi-
fication of material parameters has been done using the coupling of the simulation and expe-
rimental techniques. Additionally, three damage initiation criteria have been used in numerical
modelling for both tension and perforation simulations. A good agreement has been observed
between the experimental results and FE simulations in terms of the stress-strain curve and bal-
listic curves as well as the energy absorbed. It confirms the correctness of the damage initiation
criterion.
The future work will investigate the behavior of a composite material in form of a sandwich

structure with two plates of aluminum (AW5005) and one internal layer of polyethylene.
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Recommendations for the optimal thickness of the cement mantle in cemented hip arth-
roplasty are outlined based on the results obtained with the finite element method. The
investigations show that distal femur cement thickness higher than 2mm positively affects
mechanical behaviour of the cement mantle and can be useful in reducing stress-strain levels
in the distal part of the femur what leads to prevention of development of a stress-shielding
effect. The results of the study can contribute to the success of long-term implants.
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1. Introduction

Nowadays, hip replacement is one of the most common and effective surgical methods for treat-
ment of musculoskeletal system diseases and restoration of motion of the hip joint (Jenkins et
al., 2013). Since 1959, by virtue of the work of Sir John Charnley (Charnley, 1960), numerous
researchers working on the fixation in arthroplasty have used bone cement to fasten implants.
Such a fixation of the prosthesis is advantageous in the case of a wide medullary canal of femur,
osteoporosis, bone dysplasia, and consequences of mechanical injuries of hip and has been also
traditionally used for femoral revision (Sullivan et al., 1994; Davis et al., 2003; Warth et al.,
2014). Furthermore, cement fixation allows for a reduction of a rehabilitation period.
In the case of a cemented stem endoprosthesis of the hip joint, an important role is played by

both strong bond between the implant surface and the bone cement as well as stable mechanical
interaction between the cement and bone tissue. During the long-term use of the prosthesis,
various difficulties, which can lead to aseptic loosening of the prosthesis and also to partial or
complete loss of functionality of the whole system, occur (Huiskes, 1993; Bhambri and Gilbertson,
1995; Kroell et al., 2009). The above-mentioned conditions are usually observed in patients who
have an overly active lifestyle or suffer from osteoporosis and/or overweight. They may also
occur if the implant is incorrectly installed or if thickness of the cement mantle is wrongly
chosen (Gunn et al., 2012), what results from low skills of a surgeon.
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It is of particular importance to properly choose thickness of the cement mantle while im-
planting a hip joint endoprosthesis, since too thin cement mantle may contribute to cracking of
the cement, which, in turn, may lead to aseptic loosening of the implant. The complete absence
of the mantle may lead to wear of bone (the so-called stress shielding effect) due to micro friction.
On the other hand, too thick cement mantle will poorly transfer the load to the bone, which
can lead to the bone atrophy and lysis. Thus, correctly chosen thickness of the cement mantle
and proper positioning of the stem of the hip joint endoprosthesis in the medullary canal should
ensure a long-term implant success.
However, the optimal thickness of the cement mantle has not been defined. Typically, its

selection is the surgeon’s responsibility and depends on the surgeon experience (Shah and Porter,
2005). In this regard, the development of a biomechanical rationale for the choice of the optimal
cement mantle thickness in the cemented hip replacement is a compelling and urgent task, which
will improve the outcome of treatment and increase durability of the prosthesis.
Currently, numerical simulation (especially the finite element method (FEM)) is one of the

most effective and informative methods of research of problems related to biomechanics. By
virtue of the FEM, it is possible to avoid difficulties associated with the use of analytical methods
for calculation of the stress-strain state of biomechanical systems and, most importantly, to
obtain high accuracy of results (Yamako et al., 2014).
The aim of this study is to analyse the stress state arising in a bone-cement-implant system

with different sizes of tapered stems, depending on the thickness of the cement mantle. Such
an analysis will contribute to finding the rationale for the size of the implant to avoid fatigue
fracture of the cement and to provide even distribution of stress in the bone.

2. Materials and methods

For the analysis, a three-dimensional model of femur has been developed using computed to-
mography (CT), which is a method allowing creation of highly accurate models of organs. CT
provides information on the shape and properties of soft and bone tissue, giving almost an in
vivo model. The algorithm of generation of a three-dimensional geometric model of the femur
includes several steps. At first, CT images of the patient are downloaded for subsequent segmen-
tation of the object. The segmentation is performed based on the obtained axial projections of
the object, using the selection as a separate mask. Then, a STF file with the 3D object made on
the mask is created. In the third step, the quality of the model is improved by employing various
surface smoothing functions. Eventually, mechanical characteristics of femur are found by calcu-
lating analytical dependences between the Hounsfield units (HU) obtained from the computed
tomograms (Fig. 1). Hounsfield units determine the dependence between radiographic density
of the femur tissue, presented in arbitrary units (Cann, 1988; Peng et al., 2006), the actual
bone density ρ [g/cm3], and the elastic modulus E [MPa] (Yosibash et al., 2007; Helgason et al.,
2008; Khan et al., 2014). One can find numerous relationships between bone density and HU for
different bone types. In our study, the relationship ρ = 1 + 7.185 · 10−4 ·HU (Peng et al., 2006;
Laz et al., 2007; Snethen, 2013; Pérez et al., 2014) is used. Material properties of cortical and
cancellous bone have been assigned according to the equations proposed by Wirtz et al. (2000)

E [MPa] = E(ρ) =

{
20653.09 if ρ > 1.2 g/cm3 (cortical bone)
19041.64 if ρ ¬ 1.2 g/cm3 (cancellous bone)

Poisson’s ratio is assumed to be 0.3 for the whole analysed bone (Wirtz et al., 2000).
The model used in this work has the shape and size of an ORTAN R○ tapered femoral com-

ponent (Ukraine). In general, such implants consist of two elements: a stem and a ball head
(Fig. 2b). The stem comprises four parts, including cervical (2), head (1), metaphyseal (3), and
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Fig. 1. Three-dimensional femur model created from CT images: (a) CT image, (b) solid geometry of
the bone, (c) distribution of material properties: density ρ [g/cm3] and elastic modulus E [MPa] in the

cross section of proximal femur

Fig. 2. Size 1 tapered stem hip endoprosthesis: (a) photograph of the implant; (b) 3D model used in
numerical simulations (1 – head, 2 – cervical part at an angle of 130◦ to the stem; 3 – metaphyseal part
and 4 – diaphyseal part); (c) geometric model of cemented endoprosthesis with thickness of cement

mantle (light grey) equal to 1, 2, 3, 4 and 5mm, respectively
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diaphyseal (4) ones. Cervical part (2), which is used to install head (1), has a form of a (Morse)
cone. The stem of the prosthesis is wedge-shaped with an angle α to the sagittal plane and β to
the frontal plane. For this type of endoprosthesis, the cervico-diaphyseal angle is equal to 130◦.
The diameter of the head of the hip joint endoprosthesis is 28mm. Wedge-shaped metaphyseal
part (3) contributes to stability and strength of fixation of the stem in the bone and resists sub-
sidence of the stem prosthesis. Distal part of the stem (4) has a conical shape and is jammed in
the front-rear direction. In the developed model, the femoral component has physical properties
of stainless steel (316L) with Young’s modulus E = 200GPa and Poisson’s ratio 0.3.
In this paper, we consider several possible variations of installation of stems with different

sizes in the bone cement that fills the medullary canal of femur. Owing to varying implant
thickness, the thickness of the cement mantle is changed in a range between 1mm and 5mm
(Fig. 2c). Young’s modulus of the cement equals 2.5GPa and Poisson’s ratio is 0.29. All contact
surfaces of the cement mantle are assumed to be perfectly bonded to the surrounding bone.
Contact between the implant and the cement is modelled using a surface-to-surface contact
algorithm (in Abaqus software) with the Coulomb stick-slip model of friction with the friction
coefficient equal to 0.25, simulating the surface finish for the stem, consistent with the surface
finish of the ORTAN R○ stems. The cement mantle is assumed to be fixed to the surrounding
cortical and trabecular bone.

Fig. 3. Load cases: (a) hip contact force acting from the acetabular cup to the implant head of the
magnitude F and its components Fx (frontal axis), Fy (sagittal axis) and Fz (vertical axis); numbers 1
and 2 indicate points where the muscle forces act; (b) values of components Fx, Fy , and Fz of the

contact force F in percentage of the body weight [%BW] during normal walking

Table 1. Physiological loading conditions on the lateral surface of femur during normal walking

Muscle
Load component [N] Initial
X Y Z point

Abductor 406 30.1 605.5 1
Tensor fascia lata, proximal part 50.4 81.2 92.4 1
Tensor fascia lata, distal part −3.5 −4.9 −133 1
Vastus lateralis −6.3 129.5 −650.3 2

The contact load, acting from acetabulum to the head of the endoprosthesis, can be repre-
sented as a principal vector F, which can be decomposed into three components acting along
axes of the local Cartesian coordinate system associated with the centre of the prosthesis head.
The force F and its components are presented in Fig. 3a. The dependence between Fx, Fy,
and Fz (expressed in percentage of the body weight) during a normal gait cycle is shown in
Fig. 3b (Bergmann et al., 2001; Bergmann, 2008; Levadnyi et al., 2017). According to the plot,
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the maximum values of the components Fx, Fy, and Fz are equal to: Fx = 0.743Q, Fy = 0.254Q,
Fz = 2.649Q, respectively, where Q is the weight of a human body (for body mass assumed to
be 70 kg and the acceleration of gravity 9.81m/s2). In this case, the load acting on the femoral
head equals: Fx = 510.2N, Fy = 174.4N, Fz = 1918.1N. In addition, the forces acting on the
bone surface in muscle attachment sites have been also taken into account (Table 1) (Heller et
al., 2005).
The finite element models of the bone-cement-implant system used in this study contain

1100123 3D solid four-node tetrahedral elements. For all elements of the system, length of the
edge of mesh elements equals 1mm.

3. Results

In Figs. 4-6, the distributions and values of the equivalent von Mises stress in the bone-cement-
-hip implant system are reported for different thicknesses of the cement mantle and stem sizes.
The curve number corresponds to thickness of the cement mantle inmm.
As shown, the stresses in bones are smaller if thinner stems are used, and bigger in the case of

thicker implants. The results show that an increase in the stem thickness and the corresponding
decrease in the cement mantle yield a stress increase in the distal part of femur. The maximum
bone stresses are found on the medial side of femur, in the vicinity of the distal end of the stem.
If the cement mantle thickness is equal to 1 to 2mm, there is a high concentration of stresses on
the medial side of femur, in the contact zone of the distal stem and the cortical bone (Fig. 4).
This can lead to development of the stress shielding effect and hypertrophy of femur. An increase

Fig. 4. (a) Distribution of the maximum equivalent stress on the lateral side of the femur depending on
thickness of the cement mantle, (b) femur model, (c) distribution of the maximum equivalent stress on

the medial side of the femur depending on thickness of the cement mantle

in thickness of the cement mantle causes a decrease in stresses in the distal part of the bone. If
the thickness of the cement mantle ranges from 3.5 to 5mm, the stress values (tensile) on the



1240 I. Levadnyi et al.

lateral side and stress values (compression) on the medial side of the bone are evenly distributed
excluding excessive stress concentration (Fig. 4).
For thickness of the cement mantle between 1 and 1.5mm, a peak stress is observed in the

distal part. Its value exceeds the limit of durability of the bone cement (Fig. 5). In such a case, the
cement mantle will not be able to ensure long-term functioning of the system, and hence there is
a greater likelihood of loosening of the femoral component. According to the results, an increase
in thickness of the cement mantle leads to reduction of stresses in the distal part of the cement
mantle. Taking into account that, according to the manufacturers, the fatigue limit of bone
cements is 8-10MPa (Kunh, 2000), a cement mantle thicker than 1.5mm provides satisfactory
conditions for functioning of the prosthesis under functional loads. Notice that while analysing
the stress-strain state of the cement mantle, it is necessary to take into account stresses that
occur on the lateral side (tensile stresses), since mechanical properties of the cement in tension
are 9 times lower than those of the cement in compression.

Fig. 5. (a) distribution of the maximum equivalent stress on the lateral side of the cement mantle
depending on its thickness, (b) cement mantle model, (c) distribution of the maximum equivalent stress

on the medial side of the cement mantle depending on its thickness

The stress-strain state of the stem is determined by a combination of the bending moment
acting in the frontal plane and compression forces acting in the axial direction. The results show
that the maximum stresses in the implant are found on the medial side, in the vicinity of the
distal end of the stem of the prosthesis (Fig. 6). In general, the calculation results indicate that,
regardless of the size of the endoprosthesis, the maximum implant stress does not exceed the
yield strength of the material, and all implants are in the state of elastic deformation. This
means that stresses in the material of implants under the functional loads are not dangerous to
the structure of the implant. In this case, the dangerous stress value is assumed to be greater
than the fatigue strength of 316L stainless steel, which is usually used to manufacture implants,
this is greater than about 250MPa (Maruyama et al., 2011). Thus, the use of these structures
provides a sufficient safety margin. However, the above observations are valid only for correct
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implantation of the prosthesis in femur. In the case of incorrect installation or presence of
defects, pores, cracks, gaps, or distortions in the bone, implant or cement mantle, an increase
in the stresses near the concentrator is observed, which causes fatigue failure of components or
loss of stability of the system.

Fig. 6. (a) distribution of the maximum equivalent stress on the lateral side of the stem depending on
thickness of the cement mantle, (b) model of the stem, (c) distribution of the maximum equivalent

stress on the medial side of the stem depending on thickness of the cement mantle

4. Discussion

Improved cementing techniques and stem positioning are considered to be crucial factors for
a long-term implant success. One of the methods used by researchers aimed at improving the
orthopedic clinical practice is the finite element method, which is also applied in the present
study.
For all considered thicknesses of the cement mantle under the action of functional loads,

intensity and distribution of stresses have been obtained for both medial and lateral sides. The
stress-strain state of the stem, cement mantle, and femur have been determined by combining the
bending moment acting in the frontal plane and compression forces acting in the axial direction.
As described in Section 3, the longitudinal tensile stress acts on the lateral side and the cervical
part of the stem, cement mantle and bone, while compressive stresses are present on the medial
side. The values of tensile stress in the cement mantle and femur are smaller than the values of
the compressive stress.
The results have shown that changes in the cement mantle thickness around cemented femoral

components can lead to significant changes in the stress-strain state of bone-cement-femoral
component systems. For instance, an increase in the cement mantle thickness from 2 to 5mm
has led to a 47% reduction in stress in the distal medial strain gage and a 50% reduction in
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the distal lateral cement stress. This data is an experimental verification of the results from
finite-element modeling reported by Estok et al. (1991), in which a 45-55% reduction in peak
distal cement strains was obtained by increasing cement mantle thickness from 2.5 to 5mm and
keeping the prosthesis diameter constant. A subsequent computational study by Lee et al. (1994)
showed a reduction in peak tensile cement stresses by 45% when the cement mantle thickness
was increased from 2 to 5mm by means of reducing the prosthesis diameter. Also Fisher et al.
(1997) conducted an experiment with two different sizes of cobalt-chromium stems and proved
that in the case of increasing the cement mantle thickness from 2.4 to 3.7mm, substantial strain
reductions in the distal cement (40-49%) were observed.
In our work, the numerical simulation results have also shown that thickness of the cement

mantle affects only the distal part of the cement mantle and does not affect the proximal one.
Thus, one may conclude that the cement mantle should not be of the same thickness throughout
the medullary canal of femur. Instead, to provide satisfactory conditions of functioning of the
prosthesis under action of functional loads, the cement mantle should not be thicker than 1mm
in the proximal part of the femur. At the same time, most of the cement should be located in
the distal part. The above-mentioned conditions should be ensured: 1) satisfactory conditions of
functioning of the prosthesis, 2) even distribution of stresses in the bone (stresses concentration
can be avoided). According to outcomes of this study, a slightly thicker cement mantle (up to
3mm) can be useful in reducing stress-strain levels around cemented femoral components. To
thicken the cement mantle, either a smaller stem can be used or the femoral medullary canal
can be expanded in the distal femur.

5. Conclusions

To obtain reliable results of the finite element analysis, models of both femur and endoprosthesis
have been generated. The size, shape, material physicomechanical properties, and values of
physical load of the models obtained for numerical simulations are the same as of real objects.
It has been found that, since all system elements work under cyclic load, the stress analysis

should be conducted for comparison of the occurred stresses in the system components and the
limit durability of the material from which the elements are made of. It has been also detected
that when the bone cement in distal parts is thicker than 3mm, the load acting on tissue in
the distal part of femur is significantly reduced. On the other hand, in the proximal part of
femur, thickness of the cement mantle should not be smaller than 1.5mm to ensure satisfactory
conditions for functioning of the prosthesis under action of functional loads. What should be
also emphasized, stresses in the stem of the endoprosthesis, regardless of thickness of the cement
mantle, are lower than the fatigue strength of 316L steel used in hip implants, and thus fatigue
fractures of stems are unlikely to occur.
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In this paper, the force transfer mechanism of three mechanical elements “inerter, spring and
damper” is analyzed based on the “force-current” analogy theory. The vibration isolation
performance of the two types of simple three-element vehicle suspensions S1 (inerter is in
parallel with damper) and S2 (inerter is in series with damper) are studied. The dual-
-mass system model of the suspensions is built by means of using the mechanical impedance
method. The influence of parameters variation on vibration transfer characteristics is also
investigated.

Keywords: vehicle, suspension, inerter, vibration analysis

1. Introduction

The vehicle suspension is a general term for power transmission device located between wheels
and axles. The performance of suspension has a great impact on the vehicle ride comfort, handle
and stability (Rajamani, 2012). There are three types of vehicle suspensions including passive
suspension, semi-active (Eltantawie, 2012; Huang et al., 2013; Tudon-Martinez et al., 2013) and
active suspension (Hac, 1992; Roh and Park, 1999; Youn and Hac, 2006). Recently, a new type
of vehicle suspension employing an inerter has drawn the attention of scholars.
The inerter (Smith, 2002) is a newly proposed two-terminal element. It has a characteristic

that the force applying to the two terminals is proportional to relative acceleration. The dynamic
equation is

F = b(v̇1 − v̇2) (1.1)

where F is the force applying to the two terminals, v1, v2 are velocities of the two terminals,
b is the inertance, the unit is kg.
In the “force-current” analogy between mechanical circuit and electric circuit, the mass,

spring and damper correspond to capacitor, inductor and resistor. There is a restriction in the
mass element for its one-terminal property, so that the capacitor should be grounded. With the
birth of the inerter, the mechanical circuit mass element is replaced by the inerter corresponding
to the capacitor in an electric circuit. Also, the traditional mechanical spring-damper network
performance can be improved by inclusion of the inerter and has been widely used in vehicle
suspensions (Smith and Wang, 2004; Papageorgiou and Smith, 2006; Kuznetsov et al., 2011; Hu
et al., 2014; Wang and Chan, 2011), train suspensions (Wang et al., 2009; Wang and Liao, 2010),
building suspensions (Wang et al., 2010) and the steering compensation for high-performance
motorcycles (Evangelou et al., 2004).
The earliest types of inerters are rack-and-pinion and ball-screw inerters (Papageorgiou and

Smith, 2005). Experiments were also carried out to verify the effectiveness of mechanical in-
erters. Furthermore, the influence of the inerter on natural frequencies of vibration systems
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was investigated (Chen et al., 2014) to demonstrate that the inerter can reduce the natural
frequencies of the vibration system. The benefits of semi-active suspensions with inerters were
investigated by Zhang and Mehdi (2012). It was also observed that the inerter and spring force
were in anti-phase to each other (Ming et al., 2014), but the force transfer mechanism of the
three elements and the influence of the parameters on the vibration transfer characteristics of
the vehicle suspension remained unknown.
This paper intends to study the force transfer mechanism of the inerter, spring and damper

based on the “force-current” analogy, and to investigate the effectiveness of the mechanical
network compromising the inerter. Meanwhile, vibration transfer characteristics of the vehicle
suspension are also studied to draw some conclusions. The paper is arranged as follows:
In Section 2, the force transfer mechanism of the three types of elements is analyzed. Then,

a single mass model is built in Section 3 to demonstrate the effectiveness of the new mechanical
network compromising the inerter from the perspective of the force transferred in suspension. In
order to analyze the influence of variable parameters on the vibration transfer characteristics,
a dual mass model is built in Section 4, and the effect is studied in Section 5. At last, some
conclusions are drawn in Section 6.

2. Force transfer mechanism of the three elements

The force and velocity in a mechanical field correspond to the current and voltage in an electric
field. The force and current are both “through-variables” while velocity and voltage are both
“across-variables”. In the current transfer process, it is known that the current phase is ahead
of the voltage phase between two terminals of the capacitor. But for the inductor, the voltage
phase is ahead of the current phase. In the mechanical element, the direction of the force between
two terminals of an inerter is always opposite to that of the spring (Ming et al., 2014). In the
following, the force transfer mechanism of the three elements will be studied. Figure 1 shows the
force transfer model of the three elements, where q0 is displacement of the input, k0 is stiffness,
b0 is inertance, c0 is damping coefficient.

0
k

0
b 0

c

0
q

Fig. 1. Force transfer model

The force between the two terminals of the spring, inerter and damper fk, fb, and fc are

fk = k0q0 fb = b0q̈0 fc = c0q̇0 (2.1)

when q0 is set as

q0 = A sin(wt) (2.2)

where A is the amplitude equal to 0.1m and w is the circle frequency set as 2π. The velocity
between the two terminals is

q̇0 = Aw cos(wt) (2.3)
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In simulation, k0 = 10N/m, c0 = 1.5N s/m, b0 = 0.1 kg.
Figures 2a to 2c show the force and velocity of the two terminals of the spring, inerter, and

damper.

Fig. 2. Force and velocity of the two terminals of (a) the spring, (b) the inerter, (c) the damper

It can be seen that the velocity phase of the spring is ahead of the force phase, which is con-
sistent with the relationships between the voltage and current phase of the inductor. For inerter,
the force phase is ahead of the velocity phase which is consistent with the relationships between
the current phase and the voltage phase of the capacitor. The force phase is always synchronous
with the velocity phase, which is consistent with the relationships between the current phase
and the voltage phase of the resistor. The analysis above demonstrates the effectiveness of the
“force-current” analogy again.

3. Single mass system model

There are many types of vehicle suspensions employing the inerter. In this paper, two types
of a simple three-element vehicle suspension are investigated. Both of them have a spring to
bear the sprung mass. For S1 suspension, the inerter is in parallel with the damper. For S2
suspension, the inerter is in series with the damper. Two types of the suspension structures and
the traditional passive suspension S0 compromising parallel “spring and damper” are shown in
Fig. 3 (z, z1, z2 are displacements of the mass, q, q1, q2 are displacements of the input, zb is
displacement of the inerter, k, k1, k2 are stiffnesses of springs, c, c1, c2 are damping coefficients,
b1, b2 are inertances).
The force in S0 is

fS0 = fk + fc = k(q − z) + c(q̇ − ż) (3.1)
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Fig. 3. Three types of the suspension structure

The force in S1 is

fS1 = fk + fb + fc = k1(q1 − z1) + b1(q̈1 − z̈1) + c(q̇1 − ż1) (3.2)

The force in S2 is

fS2 = fk + b2(z̈b − z̈2) (3.3)

where

b2(z̈b − z̈2) = c2(q̇2 − żb) (3.4)

Assuming the λ is

λ =
w

w0
w0 =

√
k

m
(3.5)

The model parameters are all kept the same, see Table 1.

Table 1. Model parameters

Parameters Value

Sprung mass m, m1, m2 [kg] 320
Stiffness k, k1, k2 [kN/m] 15
Inertance b1, b2 [kg] 10
Damping coefficient c, c1, c2 [N s/m] 1095

The input displacement is also set as a sine wave with an amplitude of 0.1m. Figure 4 shows
the amplitude ratio of the force in S1 and S2 with S0.
The solid line corresponds to the constant value of 1. When the amplitude of the ratio of

the force in the suspension structure is less than 1, it indicates that the vibration isolation
performance is superior to the traditional passive suspension. In the range from 0 to 8 of λ,
both ratios S1 and S2 are less than 1, which means that their vibration isolation performance
is superior to the traditional passive suspension in low frequency. The amplitude of ratio of S1
is becoming larger than 1 with an increase in λ but for S2, the amplitude of the ratio is always
less than 1. It can be inferred that the vibration isolation performance of the mechanical circuit
is improved in the low frequency by involving of the inerter element, which is consistent with
the capacitor function to block the low frequency current. Also, suspension S2 has a superior
isolation performance with respect to S1 and is more suitable for vehicle suspension design.



Analysis of vibration transfer characteristics of vehicle... 1249

Fig. 4. Amplitude ratio of the force

4. Dual-mass system model

In the “force-current” analogy, the spring, damper and inerter have the same forms of dynamic
equations like the inductor, resistor and capacitor. So, the impedances of the spring, damper
and inerter also have the same forms of k/s, c and bs, just like the electric impedance 1/(Ls), Cs
and 1/R of inductor, resistor and capacitor, where k is stiffness of the spring, c is the damping
coefficient, b is the inertance, L is the inductance coefficient, C is the capacitance coefficient,
R is the resistance coefficient. Analysis of vibration transfer characteristics in the frequency
domain can become more convenient by using the impedance methods. A dual mass system
model compromising the sprung and unsprung mass is built in Fig. 5, where ms is the sprung
mass, mu is the unsprung mass, kt is the stiffness of the tire, zs is the displacement of the sprung
mass, zu is the displacement of the unsprung mass, zr is the displacement of the road input,
T (s) is the velocity impedance of the suspension.

Fig. 5. Dual mass system

The dynamic model is

mss
2Zs + sT (s)(Zs − Zu) = 0

mus
2Zu − sT (s)(Zs − Zu) + kt(Zu − Zr) = 0

(4.1)

where Zs, Zu and Zr are the Laplace transforms of zs, zu and zr and:



1250 Y. Shen et al.

— for S1

T1(s) =
k1
s
+ b1s+ c1 (4.2)

— for S2

T2(s) =
k2
s
+

1
1
b2s
+ 1c2

(4.3)

So, the gain of the body acceleration is

H(s)z̈s∼zr =
Zs
Zr
s2 =

T (s)kts2

[mss+ T (s)][mus2 + sT (s) + kt]− sT 2(s)
(4.4)

The gain of the suspension deflection is

H(s)(zs−zu)∼zr =
Zs − Zu
Zr

=
−msskt

[mss+ T (s)][mus2 + sT (s) + kt]− sT 2(s)
(4.5)

The gain of the dynamic tire load is

H(s)(zu−zr)kt∼zr =
Zu − Zr
Zr

kt =
( [mss+ T (s)]kt
[mss+ T (s)][mus2 + sT (s) + kt]− sT 2(s)

− 1
)
kt (4.6)

In simulation, the parameters of the suspensions are optimized by using a genetic algorithm.
The model parameters are shown in Table 2. In order to show the performance of the vehicle
suspension employing the inerter, a traditional passive suspension (stiffness is 22 kN/m and
damping coefficient is 1000N s/m) is set as a comparison object.

Table 2. Simulation parameters

Parameters Values

Sprung mass ms [kg] 320
Unsprung mass mu [kg] 45
Stiffness of tire kt [kN/m] 190
Stiffness of S1 k1 [kN/m] 28
Damping coefficient of S1 c1 [N s/m] 2800
Inertance of S1 b1 [kg] 20
Stiffness of S2 k2 [kN/m] 22
Damping coefficient of S1 c2 [N s/m] 1300
Inertance of S2 b2 [kg] 500

The other parameters are remained unchanged in order to analyze the effect of one parameter.
The variation of the parameters are shown in Table 3.

Table 3. Parameters

b1 b2 c1 c2 k1 k2
[kg] [kg] [kN s/m] [kN s/m] [kN/m] [kN/m]

Value 20 500 2.8 1.3 28 22
+6dB 40 1000 5.6 2.6 56 44
-6dB 10 250 1.4 0.65 14 11
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5. Analysis of vibration transfer characteristics

5.1. Effect of variable stiffness

Firstly, the damping coefficient and the inertance remain unchanged. Figures 6-8 show the
gains of body acceleration, suspension deflection and dynamic tire load of variable stiffness. The
red line represents passive suspension S0 while the blue and green lines represent S1 and S2
suspensions. The direction of the arrows means an increase of the stiffness.
In Fig. 6, it can be seen that both the gains of the body acceleration of S1 and S2 become

larger and even beyond S0 with an increase of the stiffness in low frequency. But in high frequ-
ency, the gains become smaller and slightly lower than S0 in S1 while become larger and higher
than S0 in S2. Furthermore, both their resonance frequencies become larger with an increase of
stiffness.

Fig. 6. Gains of body acceleration of variable stiffness

Figure 7 shows the gains of suspension deflection of variable stiffness. Both their gains and
resonance frequencies become larger with an increase of stiffness except for the gains in high
frequency. Note that all the peak values of S1 and S2 are smaller than S0 except for S2 where
k = 44 kN/m. At last, the gains of dynamic tire load of variable stiffness are shown in Fig. 8.

Fig. 7. Gains of suspension deflection of variable stiffness

It can be seen that the trends are all consistent with the suspension deflection that their
gains become larger in low frequency and become smaller in high frequency. Compared with the
passive suspension, the peak value in low frequency becomes larger than S0 but always smaller
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Fig. 8. Gains of dynamic tire load of variable stiffness

than S0 in high frequency. Both the resonance frequencies become larger with an increase of
stiffness.
It can be concluded that the gains of S1 and S2 become larger in low frequency and become

smaller in high frequency except for the gains of body acceleration of S2 with an increase of
stiffness. Both their resonance frequencies become larger with an increase of stiffness.

5.2. Effect of variable damping coefficient

Then, the stiffness and the inertance remain unchanged. Figures 9-11 show the gains of body
acceleration, suspension deflection and dynamic tire load of variable damping coefficient. The
red line represents passive suspension S0 while the blue and green lines represent S1 and S2
suspensions. The direction of the arrows means an increase of the damping coefficient.
It can be seen that both the gains of the body acceleration become smaller than S0 at the

original two resonance frequencies with an increase of the damping coefficient. Furthermore, the
original two resonances change to one resonance.

Fig. 9. Gains of body acceleration of variable damping coefficient

Figure 10 shows the gains of suspension deflection of the variable damping coefficient. The
trends are consistent with the body acceleration that their gains become smaller than S0 at the
original two resonance frequencies with an increase of the damping coefficient. At the same time,
the original two resonances change to one resonance. At last, the gains of dynamic tire load of
the variable damping coefficient are shown in Fig. 11.
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Fig. 10. Gains of suspension deflection of variable damping coefficient

Fig. 11. Gains of dynamic tire load of variable damping coefficient

It can be seen that the trends are all consistent with the suspension deflection and body
acceleration that their gains become smaller than S0 at the original two resonance frequencies,
The original two resonances change to one resonance with an increase of the damping coefficient.
It can be concluded that the gains of S1 and S2 have the same trends that their gains become

smaller than S0 at the original two resonance frequencies, and the original two resonances change
to one resonance with an increase of the damping coefficient.

5.3. Effect with variable inertance

Lastly, the stiffness and the damping coefficient remain unchanged. Figures 12-14 show the
gains of body acceleration, suspension deflection and dynamic tire load of variable inertance.
The red line represents passive suspension S0 while the blue and green lines represent S1 and
S2 suspensions. The direction of the arrows means an increase of the inertance.
It can be seen that both the gains of the body acceleration of S1 and S2 become smaller

than S0 in low frequency, and the resonance frequencies become smaller in S1 while become
larger in S2 with an increase of inertance. But in high frequency, the gains of S1 become larger
than S0 and the resonance frequencies become smaller while there is no obvious change in S2.
Figure 13 shows the gains of suspension deflection of variable inertance. The trends are con-

sistent with the body acceleration that both the gains become smaller than S0 in low frequency
and the resonance frequencies become smaller in S1 while become larger in S2 with an increase
of the inertance. But in high frequency, the gains of S1 become larger but still less than S0, and
the resonance frequencies become smaller while there is no obvious change in S2. At last, the
gains of dynamic tire load of variable inertance are shown in Fig. 14.
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Fig. 12. Gains of body acceleration of variable inertance

Fig. 13. Gains of suspension deflection of variable inertance

Fig. 14. Gains of dynamic tire load of variable inertance

It can be seen that the trends are all consistent with the suspension deflection and body
acceleration that both of the gains become smaller than S0 in low frequency and the resonance
frequencies become smaller slightly in S1 while become larger slightly in S2 with an increase of
inertance. But in high frequency, the gains of S1 become larger but still less than S0, and the
resonance frequencies become smaller while there is no obvious change in S2.
It can be concluded that the gains of S1 and S2 have the same trends that both the gains

become smaller than S0 in low frequency and the resonance frequencies become smaller in S1
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while become larger in S2 with an increase of inertance. But in high frequency, the gains of S1
become larger but still less than S0 except for the body acceleration where b = 20 kg and 40 kg,
and the resonance frequencies become smaller while there is no obvious change in S2.

6. Conclusion

In this paper, the force transfer mechanism of the three types of mechanical elements, i.e. the
inerter, spring and damper are analyzed. A “force-current” analogy is further demonstrated
that the force phase is ahead of the velocity phase in the inerter, the velocity phase is ahead
of the force phase in the spring, while the force phase is always synchronous with the velocity
phase in the damper. Then, the vibration isolation performance of S1 and S2 suspensions are
deemed improved by compromising the inerter in low frequency from the prospective of the force
transferred. At last, the dual-mass model of the suspension is built by means of the impedance
method. The velocity impedances of the mechanical elements are used in frequency analysis for
they have the same forms of dynamic equations of the electric elements according to the “force-
-current” analogy. The influences on the vibration transfer characteristics of the parameters
variation are investigated. The conclusions are drawn that the gains of S1 and S2 become larger
in low frequency and become smaller in high frequency, except for the gain of body acceleration
in S2 with an increase of stiffness. Both their resonance frequencies become larger with an
increase of stiffness. For the damping coefficient, the gains of S1 and S2 have the same trends
that their gains become smaller at the original two resonance frequencies, and the original two
resonances change to one resonance with an increase of the damping coefficient. With an increase
of inertance, the gains of S1 and S2 have the same trend that both the gains become smaller in
low frequency and the resonance frequencies becomes smaller in S1 while become larger in S2.
But in high frequency, the gains of S1 become larger and the resonance frequencies become
smaller while there is no obvious change in S2.
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Composite materials are widely used in aircraft structures, their relative rigidity/weight
confers their advantage over metal structures, and the stacking sequence plays an important
role for their use. The objective of this work is to analyze by the finite element method
the mechanical behavior of a single lap joint of composite/composite type under a tensile
load. In order to see the effects on the failure load, two basic parameters are taken into
consideration; the stacking sequence of composite and thickness of each layer constituting
the composite. Calculation of the failure load is made numerically with the ABAQUS code
using the developed technique of VCCT (Virtual Crack Closure Technique) based on fracture
mechanics. Finally, the influence of the bonding defect on the failure load is analyzed. The
results clearly show the importance of optimizing fiber orientation and hence the stacking
sequence for proper use of composite in bonded assemblies.

Keywords: Virtual Crack Closure Technique (VCCT), laminate sequence, single lap joint,
bonding defect

1. Introduction

Single lap joints are widely used, in particular, in aeronautics. Their main problem is the non-
-uniform stress distribution in the adhesive joint. These stresses are concentrated at the edges
of the adhesive. This concentration is usually due to misalignment of two forces that engender
creation of additional stresses at the edges of the bending moment, which causes subsequent joint
failure. The behavior analysis of the assembly leads directly to the analysis of mechanical beha-
vior of the adhesive by determination of stresses in the adhesive joint and the adhesive/composite
interface.
Several authors analyze stresses in the adhesive by analytical methods, see Adams et al.

(1986), to estimate the response of the adhesive against the applied load. Others have extended
their research to analyze the stress distribution by numerical methods, Tsai et al. (1995), to vary
more mechanical and geometric parameters influencing the adhesive durability. The effect of the
nature of materials to be assembled on the bonding strength of single lap joints is still not fully
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understood. Conventional elastic analyzes predict that the resistance increases with strength of
the adherent, and experimental results confirm this.
The analysis of breakdown of composite laminate or composite bonded joints is essential

to ensure a long structure life, see Shiming et al. (2011), Ray and Majamuder (2014) and Liu
et al. (2015). It has led researchers to use more effective methods, namely the Virtual Crack
Closure Technique (VCCT), the eXtended Finite Element Methods (XFEM) and the Cohesive
Zone Method (CZM).
The Virtual Crack Closure Technique (VCCT) is a well-established method for calculating

the energy release rate (ERR) when analysing fracture problems through the finite element
method (FEM). The technique is based on the numerical implementation of Irwin (1958). The
crack closure integral was first proposed for two-dimensional problems by Rybicki and Kanninen
(1977), and later extended to three-dimensional problems by Shivakumar et al. (1988). In the
recent years, the VCCT has gained great popularity in the study of mixed-mode fracture pro-
blems such as delamination of composite materials and interfacial fracture between dissimilar
materials. In these cases, the VCCT is used to compute not only the total ERR, but also the
contributions of three fracture modes (I or opening, II or sliding and III or tearing) Krueger
(2004).
A comprehensive review of VCCT formulae for different element types was given by Krueger

(2004) and Whitcomb (1989) who were first to introduce the use of the VCCT to determine
ERR for circular delamination. Since then, a lot of numerical analyses have been performed by
using this technique, many of them dealing with initiations and growth of delamination, see
Mukherjee et al. (1994), others with growth evolution, Klug et al. (1996).
The Virtual Crack Closure Technique (VCCT) is a fracture analysis method that is typically

used when plastic dissipation does not exist. More recently, several researchers have developed
this method in their failure analysis in composite structures, namely composite materials and
bonded assemblies.
Delamination can be assimilated to a fracture process between anisotropic layers (interla-

minar damage). Thus, fracture mechanics principles by Janssen et al. (2004) can be used to
study behaviour of composite structures in presence of interlaminar damage and to determine
conditions for the initiation and growth of delamination. If the delamination growth process is
considered as a crack propagation phenomenon, fracture mechanics concepts can be generally
transferred to the analysis of delaminated composite structures. The propagation of a crack is
possible when the energy released for a unit width and length of the fracture surface (named
Strain Energy Release Rate, G) is equal to a threshold level or fracture toughness, characteristic
for each material, see Janssen Zuidema et al. (2004).
Jokinen et al. (2015) studied the applicability of VCCT for crack growth analyses of a bonded

joint with a ductile adhesive and self-similar crack growth. Their analyses were performed for a
Double Cantilever Beam (DCB) specimen with epoxy adhesive. Their force-displacement curve
matched well with the experimental data.
Shokrieh et al. (2012) proposed new finite element methods for modeling the crack growth

taking into account the Timoshenko beam element with only displacement degrees of freedom
addressed for laminated composite beams. Then, they proposed a finite element procedure for
simulation of mode I delamination growth in symmetric multidirectional double cantilever be-
am (DCB) specimens based on the fracture mechanics using the above-mentioned element. A
variable strain energy release rate was used instead of constant initiation fracture toughness.
The strain energy release rate was computed using Virtual Crack Closure Technique (VCCT)
method. Their results of the finite element simulation corresponded well with the experimental
data available in the literature.
Ahn andWoo (2015) presented in their paper the p-convergent partial discrete-layer elements

with the Virtual Crack Closure Technique (VCCT) for delamination analysis of laminated com-
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posite plates. The proposed element could be formulated by suitable dimensional reduction from
a three-dimensional solid to a two-dimensional plate. The three-dimensional VCCT was also sli-
ghtly modified to incorporate with the proposed elements and estimate the energy release rate.
Then for fracture analysis, the efficiency of their proposed approach was demonstrated with the
help of two additional problems such as the double cantilever beam test and the orthotropic
laminated square plate with interior delamination.
The objective of this study is to analyze numerically the effect of composite stacking sequence

on the resistance of an assembly of composite/composite type. Six stacking sequences for the
laminate have been selected in order to see the effect of fiber orientation on the failure load
of the joint. Different values of fracture energy of the adhesive have been proposed in order to
see their effect on the assembly failure load value. The thickness effect of the composite ply on
the assembly failure load value has been highlighted. For this, four thickness values of various
layers of the composite have been studied, namely, 0.125, 0.2, 0.25 and 0.3mm, and that for
each stacking sequence of laminate plates. The analysis of the numerical results show that the
failure load increases as the laminated plate has high strength.

2. Description of model geometry and material properties

The objective of this study is to determine, by a three-dimensional numerical analysis, the failure
load for a single lap joint of composite/composite type under tensile load as shown in Fig. 1.
The dimensions of the two substrates and the adhesive are shown in Table 1. The composite is
of carbon/epoxy type. Its mechanical properties are shown in Table 2.

Fig. 1. Single lap joint geometry

Table 1. Dimensions of different layers of a single lap joint

Thickness of lower and upper parent laminate tp = 2mm
Free length of parent laminate Lf = 60mm
Overlap length Lr = 20mm
Wide of parent laminate w = 15mm
Applied tensile displacement U = 2mm

Table 2. Mechanical properties of the used laminates, Campilho et al. (2005)

E1 = 1.09E+05MPa ν12 = 0.342 G12 = 4315MPa
E2 = 8819MPa ν13 = 0.342 G13 = 4315MPa
E3 = 8819MPa ν23 = 0.380 G23 = 3200MPa

E – Young’s modulus, ν – Poisson’s ratio, G – shear modulus
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The adhesive used for bonding is Araldite 420, its tensile curve is represented in Fig. 2. The
different mechanical properties of the adhesive are given in Table 3 and taken directly from the
literature, see de Moura et al. (2006). This adhesive is used also in the aerospace industry given
its important mechanical characteristics.

Fig. 2. Stress-strain relationship of Araldite R○420adhesive (de Moura et al., 2006)

Table 3. Elastic, strength and fracture properties of the used adhesive (de Moura et al., 2006);
σu,I , σu,II – local strength in mode I and II, respectively, GIC , GIIC – critical strain energy
release rate in mode I and II, respectively

Elastic Strength Fracture energy

E = 1850MPa σu,I = 40MPa GIC = 0.3N/mm
ν = 0.3 σu,II = 24.1MPa GIIC = 0.6N/mm

Different ply orientations of the composite adherent are considered in this study to investi-
gate their effect on the failure load. The value of θ (orientation angle) is measured from the
longitudinal direction of the structure (x-axis) and varied from 0◦ to 90◦ (Table 4). Then, in the
second case, a change of thickness of the layer which has fiber orientation except for 0◦ and 90◦

(Fig. 3) is introduced. All layers have the same matrix (epoxy) and the same fiber materials
(carbon).
The numbers 1, 2, . . . , 6 show the laminate type chosen in the x-axis of different curves. The

laminate type is presented in Table 4.

Table 4. Different ply orientations used in analyses (Campilho et al., 2005)

Laminate 1 – (08)S Laminate 4 – (02/452/452/902)S
Laminate 2 – (02/152/− 152/902)S Laminate 5 – (02/602/− 602/902)S
Laminate 3 – (02/302/− 302/902)S Laminate 6 – (02/752/− 752/902)S

To simulate the crack onset and it is growth as well as to obtain the failure load associated
with delamination of the bonded area, linear behaviour of the materials has been assumed using
shell elements and a 4-node plain part. Figure 6 shows a detail of the mesh used at the lower
and upper bonded edge. The adhesive has been modeled as an interface where it is necessary
to introduce the mechanical parameters listed in Table 2. The delamination has been modeled
between the lower and upper plate using two superimposed shell elements with contact constraint
defined to prevent penetration of the elements.
The debonding has been simulated in the finite element model by maintaining merged nodes

on the two adjacent faces of the overlap region (adhesive/composite). It is necessary to have
an appropriate number of the mesh member in the overlap region since this modeling approach
is based on the number of nodes. When the number of nodes increases, the failure load value
decreases to a steady value regardless of the increase in the number of nodes (approximately
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Fig. 3. Stacking sequence as function of layer thickness

6800 nodes in the overlapping area). However, the interlaminate failure of the plate has not
been considered in this analysis in order to promote only the separation between plates as it
was verified by several authors (Adkins and Pipes, 1988; Kumar et al., 2006).
Delamination is merely debonding between two adjacent parts of the same structure along

thickness. This debonding can be simulated in the finite element method by maintaining not
merged nodes on two adjacent faces of the volumes or surfaces representing respectively two
sublaminates (Fig. 4).

Fig. 4. Delamination simulated by maintaining not merged nodes with identical coordinates belonging
to adjacent elements

The two layers of elements are tied at the interface during the loading. It should also be
noted that some concerns have been raised, mainly related to the convergence of the model by
introducing regular viscosity for an adequate time increment.
The interfacial properties which ensure the adhesion between the laminate plates are assigned

to the nodes, the more the node number increases, the more the interfacial energy decreases to
an optimal number when the separation energy is independent of the number of nodes (see
Fig. 5).

3. Effect of stacking sequence and layers thickness of the laminate plate

In bonded assemblies, the stress distribution in the adhesive joint is heterogeneous. The edges are
always overstretched while the heart of the adhesive is generally inactive. Whether participants
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Fig. 5. Mesh convergence of the merged nodes in the interface using VCCT

Fig. 6. Detail of the mesh at the bonded region

(composite) are too rigid, much of the applied load is transmitted to the adhesive layer and the
fracture will be located at the edges of the adhesive.
The finite element analysis allows one to simulate the traction-separation of a single lap joint

using the VCCT method.
A change in fiber orientation of the composite modifies its resistance and, therefore, minimizes

the charge transfer to the adhesive. The objective is to see how the stiffness of the composite
(stacking sequence) can affect the fracture load value of the overall assembly.
Interface finite elements are placed at the same locations to enable simulation of the crack

onset and its growth, and predict the joint strength under the mixed failure mode. In all cases,
an interfacial failure has been observed. Failure onset occurs at the interface starting in the
borders of the covering surface. This fact is explained by highly pronounced stresses (shear and
peel peaks) at these locations. This overstress peak becomes wider in the presence of defect
bonding, especially at the edges of the adhesive.
Figure 7 presents the fracture load for different stacking sequences of the laminate composite.

According to the analysis results in Fig. 7, the failure load is controlled by the rigidity of the
assembled plates and the bonding surface.
In our analysis, the stiffness is not only due to the composite (Mokhtari et al., 2013; Cam-

pilho et al., 2005), but it is the composite/adhesive/composite stiffness. Figure 7 shows the
composite/adhesive/composite stiffness during loading for each laminate.
For a unidirectional composite in which individual layers have the same orientation of the

fibers and parallel to the direction of the applied load, the stiffness of the composite is very
elevated and, therefore, the structure (composite/adhesive/composite) gets a minimum ductility
ensuring a high failure load and a minimum displacement. However, if the plates are less rigid,
the displacement is greater and, therefore. the tensile strength is less important.
So the failure load is controlled by the rigidity of the assembled plate. The more ductile

the plates are, the greater is the elongation and, therefore, the lower is the failure load. In our
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Fig. 7. Failure load-displacement curves for different stacking sequences of Carbon-Epoxy laminate

Fig. 8. Interfacial failure of the bonded joint

study, the stiffness of the plates is explained by orientation of the fibers relative to the loading
axis (stacking sequence effect), which also explains the rapid separation with the load failure.
However, for laminate 2, 3 and 4, the stacking sequence have some effect on the results in
contrast to laminates 5 (02/602/− 602/902)S and 6 (02/752/− 752/902)S , where the results are
very similar, so the effect is much less.
A change in the composite fiber orientation modifies its mechanical properties which affects

directly the charge transfer to the adhesive and thus the assembly rupture. If thickness of the
plies forming the composite is changed, the composite is consolidated gradually and hence its
section increases. Therefore, more energy is necessary to deform the assembly and thus fracture
load will be higher. The more ply thickness increases, the more the separation force increases,
and this applies to all stacking sequences.

4. Effect of fracture energy and layers thickness of the laminate plate

Different composite bonded systems can have significantly different fracture energies (Varughese
and Mukherjee, 1997). So, it is appropriate to investigate whether variation of this parameter
will affect the predicted failure mechanisms and loads. The fracture energies GI and GII are
varied but the ratio of GI to GII is kept constant. Other parameters are fixed at the baseline
values given in Tables 3. Figure 9 summarizes the effect of fracture energy on the predicted
tensile failure load.
From Figs. 10 and 11, it should be noted that if the fracture energy increases, the assembly

resistance becomes higher, leading to a longer lifetime. The magnitude of this resistance varies
with the variation of the stacking sequence specifically with fiber orientation. The combination
of high breaking energy and stacking sequence for which the fiber orientation is less than 45◦

gives the assembly with high fracture load.
Changing the thickness of the composite ply generates a great resistance to the composite

and thus difficult transfer load to the adhesive and, therefore, high fracture load.
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Fig. 9. Failure load as a function of layer thickness for each stacking sequence

Fig. 10. Failure load as a function of fracture energy for different stacking sequences
(ply thickness of 0.125mm)

Fig. 11. Failure load as a function of fracture energy for different stacking sequences
(ply thickness of 0.2mm)
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5. Effect of bonding defect on the failure load

Most of the research in the bonding area has not considered the presence of bonding defects in
numerical calculations. However, at the end of the stage of implementation of bonded joints,
various defects are likely to be created at different areas of the overlap length. The presence of
porosities in the adhesive joint can be created due to volatile compounds evaporation and/or the
existence of trapped air bubbles during the curing. It is obvious that these types of defects are
prime areas for degradation of the interface by introduction of water or oxygen. More recently,
Karachalios et al. (2013), Shishesaz and Bavi (2013), and Benchiha and Mandi (2015) analyzed
the resistance of a bonded lap joint in the presence of defect by experimental, numerical and
analytical methods. Their results showed that the resistance of the assembly was associated to
the position and size of the defect.
In this part of the work, the effect of presence of a circular defect (diameter of 2mm) is

studied for seven different possible positions (Fig. 12).

Fig. 12. Different positions of defect

Figure 13 shows the mesh for each defect position. The results of the value of the breaking
load are very sensitive to the mesh since the method is based on the number of nodes at the
level of the overlap zone. It is also important to ensure the same mesh for the plates, especially
at the position of the defect. For all cases, it has been observed that separation of two plates
begins at the defect location, especially when the latter is placed near the free edge.

Fig. 13. Detail of the mesh at the region of the bond area for different positions of defects

The architecture of the mesh follows the location of the defect, and the number of nodes is
checked at each analysis. Figure 5 illustrates the effect of the number of nodes on the results.
If the defect is in the middle of the adhesive (position D), the breaking strength value will

not be affected by this position, but by the stacking sequence.
If the defect is on the free edge of the adhesive, it may have a more serious effect on the

breaking strength value, leading to easy separation of the two substrates. If the material stiffness
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is high and the defect is on the free edge of the adhesive, the value of the failure load decreases
considerably (the case of stacking sequence and orientation of fibers less than 45◦).

Fig. 14. Debonding area as a function of the stacking sequence and different positions of defects

Figure 15 shows that the defect presence decreases the fracture load. This decrease is remar-
kable for stack 0◦ (laminate1) and becomes smaller with the increasing angle of fiber orientation.
Therefore, the plate rigidity in the loading direction focuses the defect effect on the separation
load, when comparing the effect of defect position. We find that it is more pronounced and may
go up until 1KN except for some stacks (02/752/− 752/902) and (02/752/− 752/902). Figure 15
presents delaminations paths for different bonding defect positions and stacking sequences. The
delamination path depends both of the defect position and the stacking sequence.
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Fig. 15. Failure load as a function of different positions of defects for each stacking sequence

6. Conclusion

This study has been focused on numerical simulation based on the Virtual Crack Closure Tech-
nique (VCCT) of a single lap joint with and without the presence of the bonding defect. The
following conclusions could be deduced from the obtained results:
• VCCT technique has been used to estimate the failure load value of two composite sub-
strates.

• The failure load value is directly related to stiffness of the material. If the material is more
rigid, the failure load value is elevated, but the displacement decreases.

• An increase in thickness of different layers increases rigidity of the composite plate and,
consequently, increases the failure load.

• Fiber orientation plays a crucial role on the composite mechanical properties. If the fiber
orientation is parallel to the traction direction, the composite acquires high rigidity and,
therefore, a significant failure load.

• If the fiber orientation angle exceeds 45◦, the material stiffness decreases and the elongation
is more important for the plates in the longitudinal axis of the load, which decreases the
failure load.

• If energy separation GI increases, the failure load increases.
• The failure load considerably decreases with variation of the adhesive separation energy
and stacking sequence of the composite if the adhesive has a bonding defect.
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The fatigue crack growth rate can be explained using features of the surface of a structure.
Among other methods, linear regression can be used to explain crack growth velocity. Non-
linear transformations of fracture surface texture features may be useful as explanatory
variables. Nonetheless, the number of derived explanatory variables increases very quickly,
and it is very important to select only few of the best performing ones and prevent overfitting
at the same time. To perform selection of the explanatory variables, it is necessary to assess
quality of the given sub-model. We use fractographic data to study performance of different
information criteria and statistical tests as means of the sub-model quality measurement.
Furthermore, to address overfitting, we provide recommendations based on a cross-validation
analysis. Among other conclusions, we suggest the Bayesian Information Criterion, which
favours sub-models fitting the data considerably well and does not lose the capability to
generalize at the same time.
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1. Introduction

One of the tasks of quantitative fractography consists of modelling the relation between the
fatigue crack growth rate (CGR) and textural features of images of fatigue fracture surfaces as
explained in (Lauschmann and Siska, 2012; Nadbal et al., 2008; Lauschmann et al., 2006). For
this purpose, e.g. a multilinear regression model (Sekeresova and Lauschmann, 2008; Kunz et al.,
2010) or a neural network may be used. Of these two, the neural network allows us to analyze
and describe the structure of the obtained modeland better imagine the textural subset which
is mutually related with the CGR (Lauschmann and Goldsmith, 2009).
The parameters of the respective regression model may be estimated using the least squares

method. However, in real-world applications, the basic linear model is not flexible enough to
fit the data. This can be solved by adding terms defined by non-linear functions of the basic
features, e.g. logarithm, square root, etc. However, adding such features is soon limited by the
given number of images.
According to Lauschmann and Goldsmith (2009), one possible way around this limitation is a

two-phase stepwise regression with the first stage being bottom-up stepwise regression beginning
with a constant model and terminating at a given overfitting level p0. In each iteration, a new
explanatory variable is included – the one which maximally decreases the sum of squares of
residui. The second stage is top-down stepwise regression beginning with the final sub-model



1270 M. Mojzeš et al.

from the first stage and terminating at the given final overfitting level pF . In this procedure, an
explanatory variable is selected for the elimination via the Wald test on a selected critical level.
While keeping in mind the relevant motivation for this problem, we suggest that instead

of the stepwise regression, an alternative statistical approach based on the method of sub-
-model multiple testing may provide better results (Mojzeš et al., 2012). There is a vast set of
possible criteria that evaluate the quality of a given sub-model and are to be minimized. Further
in the paper, we elaborate on the selection and assessment of some of the criteria. They are
are interesting in the fractographic context, but may be applied generally to multi-parametric
recognition as well.

2. Material and methods

2.1. Linear model

Denote by vj the crack growth rate assigned to the j-th image of the fracture surface, and
by fuj the set of image features. The multilinear model in its basic form is based on the formula

log10 vj ≈ c0 +
∑

u

cufuj (2.1)

Parameters cu can be estimated by the least squares method. Since the linear model is not
flexible enough to fit the data, we may add different non-linear functions of basic features and,
therefore, modify the model to the following form

log10 vj ≈ c0 +
∑

q

cqhq (2.2)

where h are selected from an extended set of features containing the features fu and a selection
of their basic non-linear functions, e.g.

{hv} ⊂ P ∪Q ∪R (2.3)

where

P = {fu} Q = {log10 fu, f−1u , f1/2u , f2u}, R = {Fuv , F−1uv , F 1/2uv , F 2uv |u > v}
(2.4)

where Fuv = fufv.
The next task will consist of defining a specific methodology on how to select and assess a

distinct combination of explanatory variables, i.e. how to select the best sub-model from the
extended feature set.

2.2. Sub-model selection

A sub-model should be considered a nested subset of the full model consisting of all the
variables from the extended feature set. There are two extreme cases: the first is the full model
and the second one corresponds to the constant model.
Let n ∈ N be the length of v (i.e. the number of observations),m ∈ N the extended feature set

cardinality and k ∈ {0, 1, . . . ,m} the number of explanatory extended feature set variables used
in the sub-model. Also, let c = [c0, c1, . . . , ck] be the vector representing sub-model coefficients
calculated solving Eq. (2.2). This vector can be divided into cred = [c1, c2, . . . , ck] as its significant
part and c0 = [c0] as the constant term coefficient.
Furthermore, we may express the sum of squares for the optimum c of a given sub-model as

SSQ and SSQ0 as the sum of squares for c0. Lastly, we will use the sub-model error defined as

s2e =
SSQ

n− k − 1 (2.5)
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2.3. Data description

The methods developed in this paper will be applied to fatigue fracture surfaces of three
laboratory specimens of the heat-resistant steel P92. Compact tension specimens (Fig. 1) (Lau-
schmann et al., 2011) were loaded in air at 20◦C by constant sinusoidal cycles with parameters
of the external force according to Table 1. The loading frequency was lowered in steps from
13Hz to 4Hz in the final stage.

Fig. 1. Compact tension specimen

Table 1. External force parameters

Specimen Fmin [N] Fmax [N]

1 140 3300
2 2000 4800
3 3300 5500

The fatigue crack surfaces were documented using SEM with magnification 200×, real field
of view was 0.6mm×0.45mm (examples in Fig. 2). The sequence of images was located in the
middle of the crack surface along the same axis according to which the crack length was measured
(Fig. 3). The recorded areas were mutually shifted by 0.4mm. The direction of crack growth in
the images was bottom-up. Digital representation in 1200×1600 pixels and 256 brightness values
was used. The estimates of CGR were computed from frequently repeated records of the crack
length. The course of the CGR related to the crack length was estimated, and every image was
assigned a value of the CGR pertinent to its middle.

Fig. 2. Examples of SEM pictures of fracture surface; (a) low crack growth rate, (b) high crack
growth rate
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Fig. 3. Layout of snaps in crack surface (schematic plot)

For image textural features, energies of a 2D discrete wavelet transform were taken (Lausch-
mann and Goldsmith, 2009). Decomposition using the Type 3 Daubechies wavelet at 8 levels was
computed by Matlab function wavedec2. The energy is the mean square of wavelet coefficients
for a given level and direction.
The basic sequence of features, x1, x2, . . . , x24, may be regarded as a set of

H1, V1,D1, . . . ,H8, V8,D8 where Hj, Vj ,Dj are wavelet decomposition energies at the j-th le-
vel in the horizontal, vertical and diagonal directions. The vector y represents decimal logarithm
of the crack growth rate y = log10 v.
The analysed data consisted of n = 162 observations and a total of 1224 features in the

expanded feature set. It comprises:
• basic linear features P, card(P) = 24,
• non-linear transformations of the basic features Q, card(Q) = 96,
• dot product transformations of the basic features R, card(R) = 1104,

as stated in (2.3).
To minimize potential numerical errors when working with the data, input data standardi-

zation was implemented as follows

xk =
hk − Eh√
Dh

(2.6)

using Eh and Dh as the mean value and dispersion of the explanatory data.
Last, but not least – apart from the significance of the data, we can make use also of physical

distribution of the data in the given data set, which is divided randomly into three separate
groups. This will be especially useful when dealing with the cross-validation.

2.4. Selection heuristic

Searching for the best available sub-model is a binary optimization task that can be defined
as minimization of the objective function f : D→ R where

D = {x ∈ {0, 1}m | 0 ¬ x ¬ 1} (2.7)

is the binary domain. Here, the binary vector x is directly representing utilization of the extended
feature set, i.e. its components that are equal to “one” are included in the corresponding sub-
-model. Therefore, 0 refers to the constant model, and 1 to the full model.
Furthermore, suppose that we have an acceptable value of the objective function f∗. Then,

we can define a set of solutions, the goal set, as

G = {x ∈ D | f(x) ¬ f∗} (2.8)

where

f∗  min{f(x) | x ∈ D} (2.9)
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For that purpose, we may utilize some of the well-known heuristic algorithms. We have chosen
physically motivated Fast Simulated Annealing (FSA) (Kvasnička et al., 2000) with reputable
efficiency in the case of integer optimization tasks. FSA performs mutation on the ring neigh-
bourhood

N(x) = {y ∈ D | ‖y − x‖1 = 1} (2.10)

Beginning with k = 0, Tk > 0 and the initial solution vector generated by uniform distribu-
tion x0 ∼ U(D), we perform FSA mutation as a uniformly generated random binary vector
yk ∼ U(N(xk)). Using ηk ∼ U([−1,+1]), we set

xk+1 =





yk for f(yk) < f(xk) + Tk tan
πη

2

xk for f(yk)  f(xk) + Tk tan
πη

2

(2.11)

until a solution from the goal set is found, or the pre-defined number of objective function
evaluations is exhausted. The cooling strategy is represented by a non-increasing sequence of
positive temperatures Tk.
We have been inspired by the increased efficiency of hybrid heuristics in the case of combi-

nation of a differential evolution and the steepest descent (Tvrd́ik and Křivý, 2011). And since
the previously defined set of optimization problems has many local minima, we have enhanced
the FSA algorithm by a hybrid part – the steepest descent, which may increase the probability
of reaching the global optimum.
In our approach to hybrid heuristic optimization, instead of f(x) optimization, we optimize

g(x) = f(h) where x = x0, h = xH are the first and last members of any series {xk}Hk=0
satisfying xj ∈ N(xj−1), f(xj) < f(xj−1) for j = 1, . . . ,H. This means h is the best solution
in terms of the steepest descent heuristic. Before any problem solution vector is evaluated, its
nearest local neighbourhood is iteratively searched for a better solution until no further advance
in terms of the objective function can be made (or until a pre-defined maximum number of local
evaluations is exceeded).
This way we were able to set a higher temperature T0 and use a more benevolent cooling

strategy. In other words, the algorithm is able to prevent getting stuck in a local minimum and
still not lose the ability to fine-tune a given solution. Thus the FSA performance, on this specific
task, has been improved.

2.5. Cross-validation

Having the data divided into three distinct groups allows us to perform strong cross-
-validation to assess how the results of a specific criterion will generalize to an independent
data set.
We will perform the optimization on two out of three groups (training groups) and validate

the analysis on the remaining third group (verification group). To improve the overall consistency,
multiple rounds of cross-validation will be performed using different permutations of the data
sets, and the verification results will be aggregated over the rounds.
As the goodness of fit measure we propose to use R as the correlation coefficient between

the original data and the data proposed by the respective sub-model. However, during the
optimization itself, we will use the original objective function based on the minimization of the
CRIT value.
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3. Theory of sub-model selection

At this point, we should choose some of many possibilities for testing sub-model quality. We
have selected a few of them in accordance with (Mojzeš et al., 2016) that can be divided in two
sets, based on the concepts they are based on. The first one comprises traditional statistical tests
and the criterion that will reflect the quality of a sub-model will be the logarithm of the pvalue .
On the other hand, the second set contains different statistical information criteria regarding
selection of the model. In the latter case, we are simply minimizing the value of the selected
information criterion.

3.1. Sub-model testing

Here, we test significance of a sub-model described by its cred . Respective hypotheses are
defined as

H0 : cred = 0

H1 : cred 6= 0

and the R-square as well as the Wald test are used for their testing.

R-square test

In order to use R2 for the analysis of the sub-model and constant model, according to the
variance analysis (Wooldridge, 2002), we must define the stochastic variable F

F =
SSQ0 − SSQ
SSQ

n− k − 1
k

(3.1)

Here F belongs to Fk,n−k−1 and the respective pvalue = 1− Fk,n−k−1(F ).

Wald test

Alternatively, to test sub-model hypotheses via the Wald test (Anděl, 1978), the variable Z
has to be used

Z =
1
ks2e
cTW−1c (3.2)

The matrix W is a result of (XTX)−1 without the first row and column. Finally, Z has the
distribution Fk,n−k−1 and pvalue = 1− Fk,n−k−1(Z).
Lastly, for both tests, the resulting sub-model quality criterion can be defined as

CRIT = log10 pvalue (3.3)

to be minimized. Due to the fact that values of pvalue may get very close to zero, it is necessary to
avoid potential numerical issues and express pvalue in terms of an incomplete gamma distribution.

3.2. Information criteria

Another approach to the assessment of the sub-model quality is based on statistical infor-
mation criteria. The selected criteria are presented in order from the least stringent one.
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Wilks Information Criterion

Ralston and Rabinowitz (2001) according to Wilks (1962) recommend searching for a sub-
-model having the minimal error s2e. The corresponding logarithmic form, consistent with the
following criteria, can be defined as

WIC = n ln s2e (3.4)

In this basic criterion, k (i.e. the number of explanatory variables included in the sub-model) is
already indirectly penalizing the information quality.

Akaike Information Criterion

Furthermore, an additional penalty for adding more explanatory variables is included in the
Akaike criterion measuring relative goodness of the sub-model (Akaike, 1974) denoted as

AIC =WIC + 2k (3.5)

Bayesian Information Criterion

Bayesian criterion (Schwarz, 1978) prevents overfitting even more by generating a stronger
penalty for extra explanatory variables. Following the existing terminology, the criterion may
be defined as

BIC =WIC + k lnn (3.6)

for n  8.
As opposed to the logarithm of pvalue , the final CRIT to be minimized is directly equal to

values of the information criteria.

4. Results and discussion

4.1. Heuristic optimization

In order to compare the results achieved with the hybrid heuristic to the stepwise alternative,
we have implemented a traditional stepwise approach (Mojzeš et al., 2012). Despite using only
125 variables (basic linear and non-linear transformations, P and Q) the heuristic sub-model
optimization approach was superior to the stepwise approach based on the best correlation
coefficient found.
Table 2 aggregates the best results achieved with the current, much more computationally

demanding, data. In multiple runs of the heuristic optimization, we were able to obtain even
better values of the correlation coefficient. Still, as the ultimate target should be the ability
to generalize the independent data set, we will draw final conclusions based on the following
cross-validation.

4.2. Cross-validation

The full data set has been divided into three groups of data, each having 59 (Group I),
53 (Group II) and 50 (Group III) observations. For each permutation of training and verification
groups the hybrid heuristic optimize the sub-model to make the model fit the training data as
well as possible according to the respective method. The same settings and conditions were used
as in the case of the full data set without cross-validation. The detailed results are organized
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Table 2. Optimal sub-model quality and features using hybrid heuristic

Method CRIT R kopt
Term

fu f
1/2
u f2u f−1u log10 fu Fuv F

1/2
uv F 2uv F−1uv

F-test −117.92 0.9909 27 0 0 0 0 0 7 4 11 5
Wald test −100.29 0.9839 15 0 0 0 1 0 1 3 7 3
WIC −1099.00 0.9993 88 1 1 4 1 1 14 19 22 25
AIC −927.03 0.9992 82 0 1 2 1 0 20 19 18 21
BIC −626.86 0.9871 20 0 0 1 0 1 1 2 13 2

Table 3. Cross-validation results

Method Training groups CRIT Rtrain Rverify kopt

R2 test I+II −86.72 0.9970 0.5937 34
R2 test II+III −76.70 0.9900 0.5785 13
R2 test I+III −79.29 0.9924 0.9594 22
Wald test I+II −74.29 0.9867 0.8624 10
Wald test II+III −71.34 0.9848 0.6661 5
Wald test I+III −66.24 0.9854 0.9476 13
WIC I+II −736.29 0.9991 0.4471 55
WIC II+III −804.83 0.9997 0.5214 61
WIC I+III −716.25 0.9993 0.8286 63
AIC I+II −619.41 0.9988 0.8292 48
AIC II+III −674.31 0.9996 0.1351 56
AIC I+III −584.22 0.9987 0.9229 48
BIC I+II −479.12 0.9984 0.6896 45
BIC II+III −500.70 0.9995 0.3800 53
BIC I+III −430.91 0.9926 0.9574 21

in Table 3. The most important results are in the column of the correlation coefficient Rverify
which measures the quality of the fit on the verification data set.

These results are aggregated using the mean of respective methods and, furthermore, expan-
ded by comparing the data composed from distinct verification data sets to the original one in
Table 4. Also, the results of composed cross-validation are depicted in Fig. 4 as log-log plots of
measured and predicted CGRs. The predicted data are distinguished by group symbols (×,+, ◦).
The results of WIC and AIC are the worst ones, since the outliers had to be omitted to enable
the plotting. As can be seen, the Wald approach and BIC criterion offer the best results.

Table 4. Cross-validation summary

Method Mean R Composed R

R2 test 0.7105 0.7043
Wald test 0.8254 0.7702
WIC 0.5990 0.5320
AIC 0.6291 0.3281
BIC 0.6757 0.6096
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Fig. 4. Prediction of Crack Growth Rate (CGR) using various techniques of sub-model selection
(× representing data in group I, + in group II, and ◦ in group III)

5. Conclusions

The benefits of the solution described above are considerable. Nearly an unlimited set of expla-
natory variables may be offered without any respect to the original number of observations in
a given case. Very good models have been obtained also in previously unsolvable cases with a
very small number of observations.
Of course, the final result is mostly dependent on the approach of sub-model selection. As

it is apparent from the results of cross-validation, and also based on our experience, we are
recommending BIC, Wald test and potentially also R2 test and WIC. Nevertheless, there are
significant differences between these four and, more specifically, we are suggesting:
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• BIC as a universal criterion,
• Wald test as a well balanced criterion, similar to BIC,
• R2 test as a legitimate criterion with respect to the variance analysis approach,
• WIC as a criterion that leads to considerable adherence to the data, however, as opposed
to other criteria, lacks the ability of generalization.
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Various components made of anisotropic materials (plast-mass, glass material, etc.) have
been widely used in the production of modern mechanisms and machinery. Precise calcula-
tion of these elements, constituting the design, holds great importance. In general, fracture
and distribution are essential issues in safety calculations. In this study, torsion of a beam
with an S oblast having outer and inner constraints as L2 and L1 circles with R2 and R1
radii, respectively, is investigated.

Keywords: anisotropic medium, orthotropic beams, isotropic beams, affine connections, con-
formal mapping functions

1. Introduction

There is no study available in the literature a solution of the mentioned in the abstract cases,
since the contour L1 is void of the mapping function. In this study, the solution of the problem
is presented with numerical values.
Here, torsion of an area limited with an outer circle L2 with radius R2 and inner circle L1

with radius R1, having two linear cracks, is investigated. The coordinates of the end points of
these cracks are taken as ±e. Volumetric forces are neglected.

Fig. 1. Anisotropic beam and its cross-section after affine transformation

The beam is twisted by means of a torsional moment applied to the edges (Fig. 1). Here, the
coordinate origin is taken as the center of cross-section. The beam is assumed to be made of a
homogeneous anisotropic material. At least one elastic plane of symmetry is available on each
point of the beam. In this case, all stresses except τxz and τyz are zero.
As known (Kosmodamianskii, 1976; Lethniskii, 1971; Kuliyev, 1991), solutions to torsion

problems related to orthotropic beams are found using the solutions to torsion problems of
beams with other cross-sections. In this case, affine connections are used
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x1 = x and y1 = βy (1.1)

It should be noted that if the affine connection is assumed as below, then the beam will not
be orthotropic

x1 = x+ αy and y1 = βy (1.2)

With expression (1.1), none of the horizontal values in the beam cross-section changes (since
the horizontal axis does not change) as for the vertical values (i.e. those on Oy axis), they will
either increase or decrease depending on the coefficient β that characterizes anisotropy of the
beam.
Thereby, in order to evaluate stresses on orthotropic bars, firstly, the torsion problem of an

isotropic beam with S1 cross-section (which is obtained with affine connection = x1 and y1 = βy)
should be solved.
According to the previous studies, τx1y1 and τy1z1 stresses are found from the following

equation

τx1z1 − iτy1z1 = i[2F ′(z1)− z1] (1.3)

where τx1z1 and τy1z1 are components of the tangential stresses on the cross-section S1, and
i – imaginary unit, F (z1) is the regular function on the cross-section S1, z1 = x1 + iy1 and
z1 = x1− iy1 are complex variables. F (z1) is calculated from boundary conditions, i.e., from the
states of equilibrium and the equation of deformations on the boundaries.
These boundaries can be written as follows

εx = 0 εy = 0 εz = 0

γxy = 0 γxz = a55τxz γyz = a44τyz

where a44 and a55 are elastic constants that characterize anisotropy of the material.
Equations (1.1) with affine connections, semi axes of L2 contour with radius R2 are trans-

formed into an ellipse a = x1 and b = βy1, on the other hand, the contour L1 with radius R1 on
the Ox axis with two cracks, is transformed into an ellipse with two cracks (here it is assumed
that β 6= 1).
If β < 1, then the linear values decline along the Oy axis, in the case of β > 1 the same

values increase.
F (z1) regular function within the enclosed area S1 can be evaluated using the below given

boundary conditions (Kosmodamianskii, 1976; Kuliyev, 1991, 2004; Sherman, 1992)

F (z1)− F (z1) = it1t1 + Ck (1.4)

where t1 are affixes of the points on one of the contours of the cross-section S1. Ck is an arbitrary
constant.
Components of τx1z1 and τy1z1 tangential stresses on characteristic points of the cross-

-section S1 can be calculated by equation (1.4) (here, the end points of the cracks are also
included).
Afterwards, τxz and τyz can be calculated for an orthotropic beam by the following equation

(Kosmodamianskii, 1976; Lethniskii, 1971; Kuliyev, 1991)

τxz = βτx1z1 τyz = τy1z1

As indicated by these equations, τyz and τy1z1 stresses do not vary on isotropic and anisotropic
beams. Here, τxz tangential stress varies depending on the parameter β. It increases or decreases
depending on β (β =

√
a44/a55).
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F (z1) regular function can be expressed as follows for the contour L2 within the enclosed S1
area (Kosmodamianskii, 1976; Kuliyev, 1991, 2004; Sherman, 1992)

F (t2) = i
∞∑

k=0

αk
(A2
t2

)k
+ i

∞∑

k=0

bk
( t2
A2

)k
on L2 (1.5)

where

αk =
k∑

ν=k−2E(k/2)

∗

ανL(k−ν)/2 bk =
∞∑

n=k

βka
(2)
(n−k)/2 (1.6)

F (z1) function can be defined as follows in the inner L1 contour (an ellipse with two linear
cracks) (Kosmodamianskii, 1976; Kuliyev, 1991; Sherman, 1992)

F (t1) = i
∞∑

k=0

αkξ
−k
1 + i

∞∑

k=1

H1(k)ξk1 + i
∞∑

k=0

H2(k)ξ
−k
1 on L1 (1.7)

The following notations are given in equation (1.7)

H1(k) =
∞∑

ν=k

bν
(A1
A2

)ν
m
ν−k
2
1 C

ν−k
2
ν H2(k) =

∞∑

ν=ε

∗

bν
(A1
A2

)ν
m
ν+k
2
1 C

ν+k
2
ν

ε′ = ε+
1
2
(k + ε) ε = 0 ε = 1

bk =
∞∑

n=k

∗

βna(n−k)/2

(1.8)

The outer circle with contour L2 (with semi axes a2 = R2 and b2 = βR2) is mapped on the
circle with the unit diameter (equals to 1) using the mapping function (Kosmodamianskii, 1976;
Kuliyev, 1991, 2004; Sherman, 1992)

t2 = A2
(
τ +

m2
τ

)
A2 =

R2 + βR2
2

m2 =
R2 − βR2
R2 + βR2

(1.9)

The inner contour L1 is mapped onto the circle with the unit diameter (equals to 1) using the
mapping function (Kuliyev, 1991, 2004)

t1 = A1τ
∞∑

n=0

τ−nΠn (1.10)

where

A1 =
R1 + βR1
2

m1 =
R1 − βR1
R1 + βR1

Πn =
∞∑

k=0

γk−1Tn−k Tn =
n∑

ν=n−2E(n/2)

∗

m
n−ν
2
1 γ

n−ν
2
−1 ln−νν

The inverse functions of (1.9) and (1.10) mapping functions are as bellow (Kosmodamianskii,
1976; Kuliyev, 2004; Sherman, 1992)

ξ2 =
z2
A2

∞∑

n=0

a(2)n

(A2
z2

)2n
ξ1 = χ(z) =

z1
A1

∞∑

n=0

Ek
(A1
z1

)k
(1.11)
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The coefficients of the serial elements of the analytical functions F1(z) and F2(z) can be fo-
und using proper boundary conditions given below: (Kosmodamianskii, 1976; Kuliyev, 1991;
Sherman, 1992)

F1(t1) + F1(t1) = it1 +C1

F1(t2) + F1(t2) = it2 +C2
(1.12)

where t1 and t2 variables are properly found from (1.9) and (1.10) equations.
As we place equations (1.6) and (1.7) into boundary condition (1.12), we obtain a linear

algebraic system depending on two unknown coefficients following some mathematical connec-
tions and remarks by Kosmodamianskii (1976), Kuliyev (1991, 2004). Here, we proceed with the
variable τ since ττ = 1 on the unit circle)

αk +H1(k) +H2(k) =
∞∑

n=k

Πn−kΠ on L1

V1(k) + V2(k) + V3(k) = A22m2ε on L1

(1.13)

where V1(k), V2(k), V3(k) are respectively found from the following equations (Kuliyev, 1991,
2004)

V1(k) =
k∑

ν=0

∗(A1
A2

)k
C
k−ν
2
−ν m

k−ν
2
2 αν V2(k) =

∞∑

ν=k

∗

bνC
k+ν
2
ν m

k+ν
2
2

V3(k) =
∞∑

ν=k

∗

bνC
k−ν
2
ν m

k−ν
2
2

(1.14)

From the first terms of these equations, a system of equations is obtained. αk and βk are
coefficients that can be found using these equations.
This is presented with the following numerical example.
Cross-sectional dimensions of the beam are assumed in accordance with the following ratio

for numerical calculations.

1. In the case of β = 1/2, the semi axes of the outer contour (curvilinear line, the circle with
radius R2) are transformed into the ellipse with semi axes a2 = R2; b2 = βR2, and the inner
contour (the one with two cracks and radius R1) is transformed into the ellipse with two cracks.
The semi axes of such ellipses can be defined as a1 = R1; b1 = βR1. Accordingly, the problem
related with torsion of the beam depending on the parameter β is calculated using the torsion
problem of another beam with a different cross section.
Tangential τxz and τyz stresses, given in Table 1, are found using equation (1.3).

Table 1. Tangential τxz and τyz stresses for choice 1

Choice 1 Points τxz/(µτa2) τyz/(µτa2)

β = 1/2 z = 0.65 – 24.58
a1 = 2b1 z = 0.70 – 13.29

a1 = 0.25a2 z = 0.75 – 8.02
z = 1.00 – 2.92
z = 0.5ia1 0.548 –
z = 0.7ia1 0.141 –
z = 1.0ia1 0.118 –
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2. In the case of β = 1/2, R2 = 0. The inner contour transforms into the linear crack with
length l = 2e; and the outer contour transforms into the ellipse with semi axes a2 = R2,
b2 = βR2. This way, the problem, the subject of the current study, is solved by means of the
solution to the torsion problem of the elliptical beam with a central linear crack.
The values of τxz and τyz tangential stresses for choice 2 are given in Table 2.

Table 2. Values of τxz and τyz tangential stresses

Choice 1 Points τxz/(µτa2) τyz/(µτa2)

β = 1/2 z = 0.65 – 14.17
b1 = 0 z = 0.70 – 7.76

a1 = 0.5a2 z = 0.75 – 4.77
z = 1.00 – 1.56
z = 0.5ia1 −1.01 –
z = 0.7ia1 −0.031 –
z = 1.0ia1 −0.48 –

2. Conclusion

Calculations of torsion of orthotropic beams can be performed using calculations of isotropic
beams with different cross-sections (the cross-section S is obtained with affine connection x1 = x
and y1 = βy). Here, the linear values on the x axis do not vary with the varying parameter β),
the ones on the y axis increase or decrease in direct proportion with β.
The stresses on orthotropic beams can be calculated using the equations given below (τx1z1

and τy1z1 are known)

τxz = β2ττx1y1 τyz = βττy1z1 (2.1)
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Viscoelastic materials have been widely used as devices for vibration control in general.
Frequently, dynamic properties of those materials are provided by manufacturers only in a
graph form in the frequency domain. This is a recurring problem in industry and academia.
Thereby, the goal of this work is to contribute to this important issue which is to obtain
the properties of viscoelastic materials from nomograms supplied by the manufacturer. The
methodology is based on the digitalization of the nomogram of the material and on the sub-
sequent reading of a set of points from two curves in different temperatures. An optimization
problem with simple restrictions is built having characteristic constants of the constituti-
ve models as design variables. The problem is solved by applying a hybrid optimization
technique. The results obtained are presented, and prove to be very promising.

Keywords: identification, optimization, viscoelastic materials, Zener fractional model,
Wiechert model

1. Introduction

Viscoelastic materials (VEMs) have very common applications as structural components or as
elements for mitigating vibrations in vehicular structures, aeronautic structures, rotating axes,
etc. (Rao, 2002; Ribeiro et al., 2015). Due to the great variety of applications of this type of
materials, in the recent decades there has been an increase in the need for more precise models
to describe their mechanical behavior. In this sense, a plenty of works have been presented in
the recent years, not only in the frequency domain but also in the time domain.
In this context, among the works in the frequency domain, one can mention Park (2001), and

Costa and Ribeiro (2011). In these works, the Wiechert generalized model is used to perform an
interconversion of the relaxation modulus function (written in terms of Prony series) from the
time domain to the frequency domain, obtaining a complex modulus. In this function, the real
part represents the equivalent of the stored modulus in mechanical systems, while the imaginary
part represents the equivalent of the loss modulus. Thereby, the authors use optimization tech-
niques for fitting theoretical curves of the loss and storage modulus to the experimental curves.
Following the same line, starting from a VEM composite with one-degree-of-freedom system,
Lopes et al. (2004) proposes an identification methodology based on experimentally measured
transmissibility curves of constitutive models based on fractional calculus. Agirre and Eleja-
barrieta (2010) present an inverse identification method using Laplace transforms, in which a
four-parameter fractional model is converted from the time domain to the frequency domain.
In order to identify properties of a material, an optimization problem is proposed aiming at
minimization of the distance between the theoretical and the experimental values of dynamic
response in a clamped beam, in a given frequency range. Likewise, Jrad et al. (2013) investi-
gate the VEM’s behavior in terms of the dynamic stiffness in the frequency domain using the
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Wiechert model. The constants related to springs and dampers of the model are identified. Mo-
re recently, Jalocha et al. (2015) propose a method to identify VEM material parameters, in
which the relaxation times are optimized based on numerical integration involving the measured
relaxation spectra.

From this brief review of literature, one can observe that different approaches to the charac-
terization of VEMs are based on experimental data. However, one frequently faces the situation
in which the user of such a material has access only to the nomogram provided by the manu-
facturer. That nomogram (exemplified in Fig. 1, for material EAR R○ C1002) provides a graphic
representation for the dynamic modulus and loss factor in a reference temperature, and (using
the concept of ‘reduced frequency’) the possibility of obtaining those variables in other tempe-
ratures.

Fig. 1. Material: C1002 – nomogram provided by the EAR R○ manufacturer

The present work aims at developing and applying a numerical methodology to identify the
properties of a linear and thermorheologically simple VEMs based exclusively on nomograms.
Such a methodology is based on the digitalization of points of the curves from the nomogram,
namely, the dynamic modulus and the loss factor, for different temperatures and frequencies. An
objective function to be minimized is defined by taking into account the distance between the
theoretical model and the digitized points. The design variables of the optimization process are
parameters of the VEM constitutive model. Through mathematical optimization, one minimizes
the objective function. However, due to the optimal point being strongly dependent of the
initial point in the optimization process, we opt for a hybrid algorithm. In this case, initially a
heuristic optimization method, based on the Genetic Algorithm, is used in order to approximate
the probable optimum global point (XGA). This point is used as the starting point for an
optimization process based on nonlinear programming. This last step aims at generating a better
approximation of the global optimum.
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2. Models for linear viscoelastic material response

VEMs can be defined as those which present elastic and viscous behavior simultaneously (Brin-
son and Brinson, 2008; Lemini, 2014). In order to describe their mechanical behavior, various
works (Welch et al., 1999; O’Brien et al., 2001; Jrad et al., 2013) make use of rheological models
of linear viscoelasticity that consist of combinations of springs and dampers in which the springs
represent the elastic part of the behavior and dampers represent its viscous part. Therewith,
and associating those elements in series, parallel, series-parallel, etc., various constitutive equ-
ations appear, which can be written applying the classical mechanical model or the fractional
calculus (Mainardi, 2010). In addition, by interconversion, those models can be defined in time
or frequency domains.

2.1. Wiechert constitutive model (classical mechanical model)

Aiming at describing the mechanical behavior of VEMs, Brinson and Brinson (2008) discuss
a classical physical model named ‘Wiechert model’ or ‘generalized Maxwell model’ (Fig. 2a).
The mathematical modeling of this mechanical system in the time domain t, considering the
influence of temperature T , creates the relaxation modulus function E(t, T ), written in terms of
a series of decreasing exponentials, named ‘Prony Series’, as follows

E(t, T ) = E∞ +
NT∑

i=1

Ei exp
( −t
αT τi

)
(2.1)

where NT is the total number of terms of that series; E∞ is a constant named as ‘equilibrium
modulus’, representing the purely elastic response of the material; Ei and τi are the elastic
constant and the relaxation time, respectively, associated to the i-th component of the Wiechert
model (Soussou et al., 1970; Brinson and Brinson, 2008; Suchocki et al., 2013). Additionally,
αT is a constant defined as a shift factor that describes the dependence of the relaxation times
in relation to temperature and, in the present work, follows the Williams-Landel-Ferry empirical
equation (Williams et al., 1955) given by

log αT = −
CT1 (T − T0)
CT2 + (T − T0)

(2.2)

where CT1 and C
T
2 are constants to be determined, which are related to the material properties

(Ferry and Stratton, 1960; Ward and Sweeney, 2004; Brinson and Brinson, 2008).

Fig. 2. (a) Wiechert model and (b) fractional Zener model

To analyze the VEMs behavior in the frequency domain, it is common in the literature
(Nashif et al., 1985; Honerkamp, 1989; Bavastri, 1997; Park, 2001; Lopes et al., 2004; Jalocha et
al., 2015) to rewrite Eq. (2.1) as follows

E(Ωr) = ERe(Ωr) + iEIm(Ωr) (2.3)
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defined as a complex dynamic modulus. The variable Ωr, defined as the ‘reduced frequency’,
groups temperature effects T and frequency Ω. The reduced frequency can be represented by

Ωr = αTΩ (2.4)

It is important to highlight that the real part of Eq. (2.3), defined as the ‘storage modulus’, is
given by

ERe(Ωr) = E∞ +
NT∑

i=1

(Ωrτi)2Ei
(Ωrτi)2 + 1

(2.5)

and the imaginary part, defined as the ‘loss modulus’, is given by

EIm(Ωr) =
NT∑

i=1

ΩrτiEi
(Ωrτi)2 + 1

(2.6)

The storage modulus and the loss modulus indicate how much the material behavior approaches
the elastic or viscous behavior, respectively. In this case, the loss factor η, is defined as the ratio
between the loss and the storage, that is

η(Ωr) =
EIm(Ωr)
ERe(Ωr)

(2.7)

This equation describes the ratio between energies dissipated and stored by the material in a
cycle. Consequently, Eq. (2.3) can be written as follows

E(Ωr) = ERe(Ωr)[1 + iη(Ωr)] (2.8)

The real storage modulus and the corresponding loss factor are referred to as dynamic pro-
perties of the material at issue. Such information is useful, for example, for designing projects in
which it is necessary to know the frequencies that results in a greater or lesser energy dissipation.

2.2. The fractional Zener constitutive model

Another mathematical model that describes VEMs behavior is the fractional Zener model
(Fig. 2b) whose differential equation of a non-integer order (often named ‘fractional order’ in
the literature) is given by

σ(t) +
C

E1 + E2

dβσ(t)
dtβ

=
E1E2
E1 + E2

ε(t) +
E2C

E1 + E2

dβε(t)
dtβ

(2.9)

where E1 and E2 are the stiffness modulus of the elastic elements, C is the viscosity coefficient
and β is the non-integer order of differentiation of the Scott-Blair model (Bagley and Torvik,
1986; Mainardi, 2010). Defining the parameters E0 = E1E2/(E1 +E2), rE = (E1 +E2)/E1 and
(τa)β = C/(E1 + E2), it is possible to rewrite Eq. (2.9) as follows

σ(t) + (τa)β
dβσ(t)
dtβ

= E0ε(t) + E0rE(τa)β
dβε(t)
dtβ

(2.10)

This mathematical model is known in the literature as a ‘four-parameter fractional constitutive
model’. Consequently, the relaxation modulus, in the time domain, can be put as follows

E(t) = E0
[
1 + rEEβ

(
−
( t
τa

)β)]
(2.11)
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where Eβ(·) is the Mittag-Leffler (ML) function of an β order parameter (Mainardi and Spada,
2011).
The ML function, denoted by Eβ(z) with β > 0, can be defined by a representation in

convergent series in the complex plane C as follows

Eβ(z) =
∞∑

n=0

zn

Γ (1 + βn)
β > 0, z ∈ (C) (2.12)

where Γ is the Euler gamma function. For the convergence of the series of potencies in Eq.
(2.12), the parameter β can be complex, since Re(β) > 0 (Mainardi, 2010).
To obtain the dynamic modulus in the frequency domain, one can apply the Fourier transform

to all terms in Eq. (2.10), producing

σ(Ω) + (τa)β(iΩ)βσ(Ω) = E0ε(Ω) + E0rE(τa)β(iΩ)βε(Ω) (2.13)

From Eq. (2.13), one can define the complex modulus of the material, Ec(Ω), as follows

Ec(Ω) =
σ(Ω)
ε(Ω)

=
E0 + E0rE(iτaΩ)β

1 + (iτaΩ)β
(2.14)

Regarding the influence of temperature, Eq. (2.14) can be rewritten as a function of the reduced
frequency (Pritz, 1996; Cruz, 2004; Lopes et al., 2004; Jalocha et al., 2015) according to

Ec(Ωr) =
E0 + E∞b1(iΩr)β

1 + b1(iΩr)β
(2.15)

where E∞ = E0rE and b1 = (τa)β . Equation (2.15) is the classical model of a four-parameter
fractional derivative in the frequency domain, and can be rewritten as follows

Ec(Ωr) = ERe(Ωr) + iEIm(Ωr) = ERe(Ωr)[1 + iη(Ωr)] (2.16)

In this case, the storage modulus can be expressed as

ERe(Ωr) =
E0 + (E0 + E∞)b1(Ωr)β cos

(
βπ
2

)
+ E∞b21(Ωr)

2β

1 + 2b1(Ωr)β cos
(
βπ
2

)
+ b21(Ωr)2β

(2.17)

and the loss factor as

η(Ωr) =
(E∞ − E0)b1(Ωr)β sin

(
βπ
2

)

E0 + (E0 + E∞)b1(Ωr)β cos
(
βπ
2

)
+ E∞b21(Ωr)2β

(2.18)

3. Methodology

Starting from the nomogram of a given material, the methodology is based on the digitalization
of that image and in the subsequent reading of a set of points on the two characteristic curves
of the material (storage modulus and loss factor) in different frequencies and temperatures.
Next, the parameters of the theoretical model are identified through minimization, using a
hybrid optimization technique, of the relative squared distance between that model and the
curves obtained by digitalization. The standard optimization problem is solved based on the
corresponding differences between the curves of the storage dynamic modulus RReqk and the loss
factor Rηqk in the k-th point 1 ¬ k ¬ Npt (Npt is the total number of points of each analyzed
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curve) and in the q-th temperature 1 ¬ q ¬ Ntemp (Ntemp is the total number of evaluated
curves in different temperatures). That is

RReqk =
EExpRe (Ωk, Tq)−ERe(Ωk, Tq)

EExpRe (Ωk, Tq)
Rηqk =

ηExp(Ωk, Tq)− η(Ωk, Tq)
ηExp(Ωk, Tq)

(3.1)

This way, the total relative squared distance RT2 is given by

RT2 =
1

NtotalPts

Ntemp∑

q=1

Npt∑

k=1

(
(RReqk )

2 + (Rηqk)
2
)

(3.2)

where NtotalPts is the sum of the total number of all curves. In this case, the goal is to minimize
the total relative squared distance. Thus, the standard optimization problem for the Wiechert
model is defined as

minimize RT2(x) : RNT+3 → R

where x = (E∞, Ei, CT1 , C
T
2 ), i = 1, 2, . . . , NT

with restrictions: xlow ¬ x ¬ xupp
(3.3)

where the superscripts “low” and “upp” indicate the upper and lower limit values of each design
variable.
On the other hand, in the optimization procedure considering the four-parameter fractional

Zener model, the optimization problem is written as follows

minimize RT2(x) : R6 → R

where x = (E∞, E0, b1, β, CT1 , C
T
2 )

with restrictions: xlow ¬ x ¬ xupp
(3.4)

The solution to those problems (Eq. (3.3) or (3.4)) provides the characteristic parameters of
VEM under study according to the selected constitutive model.

3.1. Computational structure

The computational implementation of the proposed methodology has been carried out in a
MATLAB R○ environment, as seen in the flowchart presented in Fig. 3.
The characterization procedure is based on a hybrid optimization technique. In that tech-

nique, an approximation of the optimal material parameters is initially obtained using Genetic
Algorithms (GAs). Next, this result is improved by using a deterministic algorithm of Non-Linear
Programming (NLP). In the process of optimization by GA, a sub-routine (ga.m) is used with a
population of 5 000 individuals, 500 generations and a 1.0% mutation rate. Moreover, in NLP, a
sub-routine (fmincon.m) is used with a maximum number of iterations of 1 000, 1E-11 tolerance
and a maximum number of evaluation of the objective function of 10 000.
For the optimization procedure, the simple limits for parameters related to the WLF model,

equilibrium modulus, terms of the Prony series and the fractional Zener model are listed in
Table 1. Those limits are based on numerical experiments so that the upper and/or lower limits
should not be obtained as optimal points.
Regarding the Wiechert model, the relaxation times τi, are fixed and defined dividing the

interval between the minimum (τ1) and the maximum (τNT ) relaxation time into equal intervals
on a logarithmic scale. This procedure is common in the literature (Honerkamp, 1989; Chen et
al., 2000; Soussou et al., 1970; Jalocha et al., 2015). Each material has specific properties and,
thus, different time limits of relaxation. In this sense, Table 2 presents different intervals for each
material.
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Fig. 3. Computational flowchart implemented in MatLab R○ environment

Table 1. Interval limits of the material properties used in the optimization process

Model Variable Nomenclature Interval limits

WLF
WLF 1 material constant CT1 0 ¬ CT1 ¬ 1000
WLF 2 material constant CT2 [

◦C] 0 ¬ CT2 ¬ 2000

Wiechert
equilibrium modulus E∞ [MPa] 0 ¬ E∞ ¬ 10000
Prony series constants Ei (i = 1, . . . , NT ) [MPa] 0 ¬ Ei ¬ 5000
equilibrium modulus E∞ [MPa] 102 ¬ E∞ ¬ 105

Zener instantaneous modulus E0 [MPa] 10 ¬ E0 ¬ 102
fractional fractional derivative parameter b1 10−5 ¬ b1 ¬ 10−2

fractional derivative order β 0 < β < 1

Table 2. Relaxation time intervals for each material

Material Minimum time τ1 Maximum time τNT
C1002 10−8 103

C2003 10−9 103

ISODAMP 10−9 103

4. Results

4.1. C1002 – material identification

The proposed methodology is applied to the identification of the EAR R○ C1002 material
using Wiechert constitutive models with 8, 16, 32 Prony terms and the fractional Zener model.
One can observe – according to Fig. 4 – that the more Prony terms, the better adjustments are
obtained, so much so that above 16 terms there are no significant improvements, evidencing that
from that quantity of terms on, it is already possible to describe the dynamic characteristics of
the material under study with desired precision. On the other hand, the theoretical curves of
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the fractional model adjust almost perfectly to the data, evidencing a good identification of that
material model. The results can be seen in Fig. 4d.

Fig. 4. C1002 identification: (a) 8 Prony terms, (b) 16 Prony terms, (c) 32 Prony terms,
(d) fractional Zener model

The parameters obtained for each identification are presented in Table 3 and 4. Analyzing
the optimal numerical values of constants CT1 , C

T
2 and E0, one observes that the results – for

the different analyses – are close, evidencing an adequate computational implementation.

Table 3. C1002 parameters obtained by hybrid optimization using the Wiechert model

Number of CT1 CT2 E0 =
∑NT
i=1Ei E∞ NLP

Prony terms [◦C] [◦C] [MPa] [MPa] error

8 33.40 317.23 2.54E+3 1.96 5.71E-2
16 35.27 340.77 2.67E+3 1.95 9.30E-3
32 34.75 336.15 2.69E+3 1.95 8.50E-3

Table 4. C1002 parameters using the fractional Zener model

Constants
CT1 CT2 E∞ E0 b1 β

τa NLP
[◦C] [◦C] [MPa] [MPa] [sβ] [s] error

Numerical
34.577 333.037 2.706E+3 1.927 2.089E-3 0.538 1.048E-5 1.225E-2

values
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Furthermore, one must notice that the constant E∞ of the fractional model corresponds
to E0 of the Wiechert model, and E0 corresponds to E∞. Comparing the corresponding values,
one notices a good correlation reaffirming that both models characterize precisely the mechanical
behavior of that material.

4.2. C2003 – material identification

From the proposed methodology, similar identifications to those carried out with C1002
have been performed, and the graphic results are presented in Fig. 5. The numerical values that
characterize the dynamics behavior of that material are shown in Table 5 and 6.

Fig. 5. C2003 identification: (a) 8 Prony terms, (b) 16 Prony terms, (c) 32 Prony terms,
(d) fractional Zener model

Table 5. Parameters of C2003 material obtained by hybrid optimization using the Wiechert
model

Number of CT1 CT2 E0 =
∑NT
i=1Ei E∞ NLP

Prony terms [◦C] [◦C] [MPa] [MPa] error

8 137.16 1165.16 9.30E+3 7.28 7.25E-2
16 178.62 1564.92 9.71E+3 7.17 4.70E-3
32 186.17 1632.68 9.70E+3 7.17 4.20E-3
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Table 6. Parameters of material C2003 using the fractional Zener model

Constants
CT1 CT2 E∞ E0 b1 β

τa NLP
[◦C] [◦C] [MPa] [MPa] [sβ] [s] error

Numerical
146.012 1281.529 9.863E+3 6.989 1.593E-3 0.466 9.913E-7 6.54E-3

values

4.3. Identification of ISODAMP material

The characterization of the EAR R○ ISODAMP material is performed in a similar way the
previous cases. The graphic results are illustrated in Fig. 6. The numerical values of each iden-
tification procedure are presented in Table 7 and 8.

Fig. 6. ISODAMP identification: (a) 8 Prony terms, (b) 16 Prony terms, (c) 32 Prony terms,
(d) fractional Zener model

Table 7. ISODAMP parameters obtained by hybrid optimization using the Wiechert model

Number of CT1 CT2 E0 =
∑NT
i=1Ei E∞ NLP

Prony terms [◦C] [◦C] [MPa] [MPa] error

8 14.34 153.35 1.68E+4 9.70E+1 6.63E-2
16 14.58 160.42 1.74E+4 9.72E+1 2.90E-3
32 14.56 160.13 1.75E+4 1.01E+2 2.60E-3
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Table 8. ISODAMP parameters using the fractional Zener model

Constants
CT1 CT2 E∞ E0 b1 β

τa NLP
[◦C] [◦C] [MPa] [MPa] [sβ] [s] error

Numerical
14.785 162.518 1.757E+4 9.787E+1 4.704E-3 0.443 5.623E-6 3.52E-3

values

4.4. Relaxation modulus in the time domain

Previously, the parameters characterizing the mechanical behavior of EAR R○ C1002, C2003
and ISODAMP materials have been obtained. Replacing such parameters in the relaxation
modulus, Eq. (2.1), it is possible having a graphic visualization, in the time domain, as illustrated
in Fig. 7.

Fig. 7. Relaxation modulus by Wiechert model with increasing Prony terms and using fractional Zener
model: (a) C1002, (b) C2003, (c) ISODAMP

5. Final remarks

The main goal of the present work is to obtain material parameters of constitutive models that
seek to describe the dynamic modulus and the loss factor. Therefore, one starts from nomograms
of EAR R○ C1002, C2003 and ISODAMP materials provided by their own manufacturer. Using
a hybrid optimization technique, identifications are carried out involving the Wiechert model
and the fractional Zener derivative model. Regarding the first model, various identifications are
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performed using increasing Prony terms. One can observe that the greater is the quantity of
Prony terms, the better adjustments are obtained, so that for designs involving those VEMs
under study, 16 Prony terms proved to be enough for their characterization. Regarding identi-
fication involving the fractional Zener model, more accurate adjustments are obtained not only
for the dynamic modulus but also for the loss factor. Besides that, for having less parameters,
the fractional Zener model leads to a shorter computational time of the optimization process.
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In this paper, the first investigation on free vibration analysis of three-layered nanobeams
with the shear effect incorporated in the mid-layer based on the nonlocal theory and both Eu-
ler Bernoulli and Timoshenko beams theories is presented. Hamilton’s formulation is applied
to derive governing equations and edge conditions. In order to solve differential equations of
motions and to determine natural frequencies of the proposed three-layered nanobeams with
different boundary conditions, the generalized differential quadrature (GDQM) is used. The
effect of the nanoscale parameter on the natural frequencies and deflection modes shapes of
the three layered-nanobeams is discussed. It appears that the nonlocal effect is important
for the natural frequencies of the nanobeams. The results can be pertinent to the design and
application of MEMS and NEMS.

Keywords: beams theories, nonlocal elasticity theory, vibration analysis, GDQ method

1. Introduction

In the last few years, scientific researchers have been focusing on nanotechnology and the re-
sulting nano-materials which play key roles in many engineering devices at the nano-scale used
in several applications including microactuators, microswtiches, biosensors, nanowires, nanopro-
bes, ultra-thin films and micro-and nano-electromechanical systems (MEMS and NEMS) studied
in works of (Hung and Senturia, 1999; Li et al., 2003; Moser and Gijs, 2007; Pei et al., 2004;
Najar et al., 2010). In fact, nano-materials have special mechanical, chemical, electrical, optical
and electronic properties. Modeling and analysis of nanostructures including nanobeams, nano-
fils, carbon and boron-nirtide nanotubes, nanoribbons and nanoplates which are mostly applied
MEMS and NEMS, and tracking their mechanical behavior can give truthful and promising
results for designing such devices.
Although classical theories of linear and nonlinear vibration of strings and beams at ma-

croscales are well established, the vibration behavior of structures at the nanoscale, which is
significantly size dependent, is far from being well understood. In fact, experimental and mole-
cular dynamics simulation results (Bauer et al., 2011) have shown that the small-scale effects in
the analysis of mechanical properties of nano- and micro-structures cannot be neglected. Due
to being scale-free, the classical continuum theory is unable to accurately detect the static and
dynamic mechanical behavior of nano- and micro-structures.
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Nonlocal continuum theories of elasticity has found successful applications in nanomecha-
nics including lattice dispersion of elastic waves, wave propagation in composites, dislocation
mechanics, fracture mechanics (Peddieson et al., 2003). Nonlocal theories that have been studied
in the literature include Eringen’s nonlocal elasticity theory (Eringen, 1972), modified couple
stress theory of Mindlin (1963), Koiter (1964), and Toupin (1964), and the strain gradient theory
(Mindlin, 1965; Lam et al., 2003). Eringen’s nonlocal elasticity can be classified into a differential
nonlocal form or an integral nonlocal form. Detailed review of both forms is discussed by Lim
(2010).

Numerous researchers have studied the mechanical behavior of nano-sized structures based
on Eringen’s nonlocal elastic theory. Analytical solutions for bending, buckling and vibration of
beams using the Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam theories have been
developed by Reddy (2007). Analytical study of bending, buckling and vibration response of a
Euler-Bernoulli nanobeam was proposed in the work of Thai (2012). Using a meshless method
based on collocation with a radial basis, Roque et al. (2011) studied static bending, buckling
and free vibration behavior of a Timoshenko nanobeam. Considering the perturbation method,
free vibration, steady-state resonance and stability of a vibrating nanobeam subjected to a va-
riable axial load was studied by Li et al. (2011). Moreover, the finite element method was used
by Eltaher (2013) to solve the vibration problem of a Euler-Bernoulli nanobeam. Nonlinear vi-
bration of nanobeams is reported in several works. Reddy (2010) reformulated classical shear
deformation beam and plate theories taking into account the von Karman nonlinear strains.
The nonlinear pull-in instability of a nanoswitch modeled as an Euler-Bernoulli nanobeam sub-
jected to electrostatic and intermolecular forces and having different boundary conditions was
investigated by Mousavi et al. (2013) using the differential quadrature method. Later, nonlinear
finite element analysis of the Euler-Bernoulli and Timoshenko beam theories with the von Kar-
man nonlinear strains and Eringen’s nonlocal model was developed by Reddy and El-Borgi
(2014).

The choice of a discretization process is indispensable for obtaining the number of resul-
ting ordinary differential equations. Discretized models are time efficient and can be stron-
gly employed to determine dynamics of systems subject to simple excitations with very
small displacements about a given equilibrium point (Shkel, 2006). Finite element lumping
of MEMS and NEMS, including complex geometry and using commercial softwares would
provide more rigorous results. However, this discretization remains a heavy step in the de-
sign procedure, even when using automated size-reduction routines. Furthermore, the dy-
namic behavior cannot be totally inspected using these models. However, there are other
discretization methods, such as the generalized differential quadrature method (GDQM),
which approximate the original mechanism by a small number of ordinary differential equ-
ations. These techniques preserve the complexity of the system response, due to nonli-
nearities, in a parameterized model that is well suited for relatively complex geometries.
Using this approach, the system dynamics can be precisely modeled using fewer degrees of
freedom.

This paper makes the first attempt to investigate vibration of three-layered nanobeams incor-
porating the mid-layer shear effect based on Eringen’s nonlocal theory as well as Euler Bernoulli
and Timoshenko beam theories. The nonlocal nanobeam model is developed to capture the size
effect in three-layered nanostructures. The governing equations and boundary conditions are de-
rived by using Hamilton’s principle. The generalized differential quadrature method (GDQM) is
employed to discretize the governing equations which are then solved to obtain natural frequen-
cies and mode shapes of three-layered nanobeams with different edge conditions. The influence
of the nonlocal parameter on the vibration of the three-layered nanobeams incorporating the
mid-layer shear effect are discussed.
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2. Equations of motion and boundary conditions of the nonlocal three-layred
nanobeam model

The majority of existing works on nonlocal elasticity are pertaining to the analysis of single
nanobeams: nanotubes (Wang et al., 2007; Reddy, 2007; Behera et al., 2014) and nanoribbons
(Nazemnezhad et al., 2015). Though mechanical studies of nanobeams may include buckling
and vibration of multiple-walled nanotubes and multilayer nanoribbons, the study of discrete
multi-layered nanobeams has not been reported in literature.
Recently, Nazemnezhad et al. (2016) discussed nonlocal vibration of multi-layer graphene

nanoribbons (MLGNRs) incorporating the interlayer shear effect. In fact, multilayer graphene
nanoribbons (MLGNRs) are single layers of nanoribbons held together by weak van der Waals
(vdWs) forces. According to Nilsson et al. (2008) and Hosseini Kordkheili et al. (2013), these
weak interlayer vdWs bindings induce considerable changes in electrical and mechanical proper-
ties of MLGNRs (Nilsson et al., 2008) and (Hosseini Kordkheili et al., 2013) and, consequently,
static and dynamic behavior of MLGNRs will change.
Based on the above discussion, in this paper an investigation is carried out to illustrate

the small-scale effects in the behavior of a three-layered nanobeam incorporating the interlayer
shear effect. The studied nanobeam is constructed of a thin elastic layer sandwiched between two
identical elastic layers. The following general assumptions are made when developing governing
differential equations of motion in free vibration of a three-layered nanobeam and associated
boundary conditions:

• The theory of linear elasticity is applied to all displacements and strains.
• Transverse normal strains in the three layers are negligible.
• There is continuity of displacement at the interfaces between the layers.

Considering Cartesian coordinate system, Fig. 1 shows a three-layered nanobeam of length L.
Each layer has its own geometric properties with a subscript i denoting the layer number (i = 1
for the top layer). Thus each layer has thickness hi, width bi (so that area Ai = hibi).

Fig. 1. Schematic configuration for a three-layered nanobeam incorporating the mid-layer shear effect

The system of displacements used is as follows. All three layers have common flexure in the
y-direction with the flexural displacement denoted by w. The axial displacement (i.e. displace-
ment in the x-direction) of the mid-plane of each layer is ui (i = 1, 2, 3) which varies linearly
through thickness, as shown in Fig. 1.
Assuming that the cross-section of each layer does not rotate so as to be normal to the

common flexure, but it necessarily shears at the central layer, we propose to model the upper
and lower layers by considering the Euler-Bernoulli beam formulation, and the central layer
behavior is captured using the Timoshenko beam formulation taking into account small-scale
effects.
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According to the Euler-Bernoulli beam theory, the displacement of an arbitrary point of lay-
er (1) and layer (3) of the three-layered nanobeam along the x and z axes denoted by uxi(x, z, t)
and uzi(x, z, t), respectively, are:

— for h22 ¬ z ¬ h22 + h1

uz1(x, z, t) = w1(x, t) ux1(x, z, t) = u1(x, t) −
(
z − h1 + h2

2

)
w,x(x, t) (2.1)

— for −h3 − h22 ¬ z ¬ −h22

uz3(x, z, t) = w3(x, t) ux3(x, z, t) = u3(x, t) −
(
z +

h3 + h2
2

)
w,x(x, t) (2.2)

where ‘,’ symbolizes differentiation with respect to coordinates and u1, w1, and u3, w3 are the
axial and transverse displacements of an arbitrary point located on the mid-axis of layer (1) and
layer (3), respectively, and t is time. It is further assumed for the transverse displacement that
uz1 = uz2 = uz3 = w(x, t). For layer (2), the displacement is expressed using the Timoshenko
beam theory for the shear effect taken into account

uz2(x, z, t) = w(x, t) uc(x, z, t) = u2(x, t) + zφ(x, t) − h2
2
¬ z ¬ h2

2
(2.3)

where φ is rotation of the beam cross-section.
The strain-displacement equations of the three-layered nanobeam are given as follows

ε
(1)
xx = u1,x −

(
z − h1 + h2

2

)
w,xx ε

(2)
xx = u2,x + zφ,x

γ
(2)
xz = w,x + φ ε

(3)
xx = u3,x −

(
z +

h3 + h2
2

)
w,xx

(2.4)

The strain energy U of the three-layered nanobeam resulting from the advent of variation in
the stresses with respect to the initial configuration is given by

U =
1
2

L∫

0

∫

A

(
σ(1)xx ε

(1)
xx + σ

(2)
xx ε
(2)
xx + σ

(2)
xz γ
(2)
xz + σ

(3)
xx ε
(3)
xx

)
dAdx

=
1
2

L∫

0

[
N (1)x u1,x +N (2)x u2,x +N (3)x u3,x −

(
M (1)x +M

(3)
x

)
w,xx

+M (2)x φ,x +Q(w,x + φ)
]
dx

(2.5)

where N (i)x , M
(i)
x and Q are the normal resultant force, the bending moment and the transverse

shear force for layer (i), respectively. They are obtained from

N (1)x =
∫

A

σ(1)xx dA = EA1u1,x = A11u1,x N (2)x =
∫

A

σ(2)xx dA = EA2u2,x = A12u2,x

N (3)x =
∫

A

σ(3)xx dA = EA3u3,x = A13u3,x M (1)x =
∫

A

σ(1)xx z
(1) dA = b1Dw,xx = B11w,xx

M (3)x =
∫

A

σ(3)xx z
(3) dA = b3Dw,xx = B13w,xx M (2)x =

∫

A

σ(2)xx z dA = b2Dφ,x = B12φ,x

Qx = ks
∫

A

σ(2)xz dA = ksGA(φ+ w,x) = ksC12(φ+ w,x)

(2.6)
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in which A1, A2 and A3 are the cross section areas of layer (1), layer (2) and layer (3), respecti-
vely. D is the bending rigidity of the three-layered nanobeam. ks is the shear correction factor
depending on the shape of the cross section of the beam.
The kinetic energy T can be expressed as

T =
1
2

L∫

0

∫

A

ρ(u̇2xi+ u̇
2
zi) dAdx =

1
2

L∫

0

[I1(u̇21+ ẇ
2)+ I2(u̇22+ ẇ

2)+ I3φ̇2+ I4(u̇23+ ẇ
2)] dx (2.7)

where ‘.’ signifies differentiation with respect to time, {I1, I2, I3, I4} = ρ{A1, A2, I, A3} and
Ai = bihi, I = b2h32/12.
Using Hamilton’s principle (

∫ t
0 (δT − δU) dt = 0), the classical governing equations of the

three-layered nanobeam are obtained as follows

N (1)x,x = I1ü
2
1 N (2)x,x = I2ü

2
2 N (3)x,x = I4ü

2
3 M (1)x,xx = I1ẅ

2

M (2)x,x −Qx = I3φ̈2 Qx,x = I2ẅ2 M (3)x,xx = I4ẅ
2

(2.8)

Considering a beam-type structure, thicknesses and widths are much smaller than its length.
So that, for a beam with transverse motion in the xz-plane, we can assume that the nonlocal be-
havior is negligible in the thickness direction (Reddy, 2007). Then, nonlocal constitutive relation
(2.3) can be approximated to a one-dimensional form expressed as in the following

σxx − (e0a)2
∂2σxx
∂x2

= Eεxx σxz − (e0a)2
∂2σxz
∂x2

= Gγxz (2.9)

where E and G are respectively the elastic modulus and shear modulus of the beam. e0a is
the scale coefficient revealing the size effect on the response of the structures in the nanosize.
e0 is a material constant, and a and L are the internal and external characteristic lengths of the
nanostructures, respectively. µ = e0a/L is the nonlocal parameter.
To develop the nonlocal governing equations of motion of the three-layered nanobeam, it

is necessary to obtain the nonlocal normal resultant force N (i)x , shear force Qx and bending
moment M (i)x . From Eqs. (2.9) and (2.8), the nonlocal N

(i)
x , Qx and M

(i)
x are defined as

N (1)x − (e0a)2N (1)x,xx = A11u1,x N (2)x − (e0a)2N (2)x,xx = A12u2,x
N (3)x − (e0a)2N (3)x,xx = A13u3,x M (1)x − (e0a)2M (1)x,xx = B11w,xx
M (3)x − (e0a)2M (3)x,xx = B13w,xx M (2)x − (e0a)2M (2)x,xx = B12φ,x
Qx − (e0a)2Qx,xx = ksC12(w,x + φ)

(2.10)

By substituting Eq. (2.10), into Eq. (2.8), the explicit expression of the nonlocal normal
resultant force N (i)x , shear force Qx and bending moment M

(i)
x can be written as

N (1)x = A11u1,x + (e0a)
2I1ü1,x N (2)x = A12u2,x + (e0a)

2I2ü2,x

N (3)x = A13u3,x + (e0a)
2I4ü3,x M (1)x = B11w,xx + (e0a)

2I1ẅ,x

M (3)x = B13w,xx + (e0a)
2I4ẅ,x M (2)x = B12φ,x + (e0a)

2I3φ̈,x

Qx = ksC12(w,x + φ) + (e0a)2I2ẅ,x

(2.11)

Then, the nonlocal governing equations of motion of the three-layered nanobeam can be expres-
sed as

A11u1,xx = I1(ü1 − (e0a)2ü1,xx) A12u2,xx = I2(ü2 − (e0a)2ü2,xx)
A13u3,xx = I4(ü3,xx − (e0a)2ü3,xx) B12φ,xx − ksC12(w,x + φ) = I3(φ̈− (e0a)2φ̈,xx)
(B11 +B13)w,xxxx + ksC12(w,xx + φ,x) = (I1 + I2 + I4)(ẅ − (e0a)2ẅ,xx)

(2.12)
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3. Non-dimensional form of governing equations of motion of the nonlocal
three-layred nanobeam model

The non-dimensionalization procedure has important applications in the analysis of differential
equations. In this part, all parameters of the governing equations of motion are changed to
a dimensionless form in order to facilitate the resolution process. Considering the following
dimensionless parameters as

ξ =
x

L
η =

L

H
µ =

e0a

L
τ =

t

L

√
At
It

At = A11 +A12 +A13

It = I1 + I2 + I4 H = h1 + h2 + h3 (U1, U2, U3,W ) =
(u1
H
,
u2
H
,
u3
H
,
w

H

)

φ∗ = φ C12 =
c12
A12

(A11, A12, A13) =
(A11
A11

,
A12
A12

,
A13
A13

)

(B11, B12, B13, C12) =
( B11
A11h21

,
B12
A12h22

,
B13
A13h23

,
C12
A12

)

(I1, I2, I3, I4) =
(I1
I1
,
I2
I2
,
I3
I2h22

,
I4
I4

)

(3.1)

Governing equation (2.12) can be rewritten taking into account the dimensionless parameters
as

A11U1,ξξ = I1(Ü1 − µ2Ü1,ξξ) A12U2,ξξ = I2(Ü2 − µ2Ü2,ξξ)
A13U3,ξξ = I4(Ü3 − µ2Ü3,ξξ) B12φ

∗
,ξξ − ksC12η(W,ξ + ηφ∗) = I3(φ̈∗ − µ2φ̈∗,ξξ)

(B11 +B13)W,ξξξξ + ksC12(W,ξξ + ηφ∗,ξ) = (I1 + I2 + I4)(Ẅ − µ2Ẅ,ξξ)
(3.2)

The related edge conditions can also be adjusted in the dimensionless form:
— for a clamped-clamped (C-C) three-layred nanobeam

U1 = U2 = U3 =W = φ∗ = 0 at ξ = 0, 1 (3.3)

— for a simply supported-simply supported (SS-SS) three-layred nanobeam

U1 = U2 = U3 =W =M
(2)
x = 0 at ξ = 0, 1 (3.4)

— for a clamped-simply supported (C-SS) three-layred nanobeam

U1 = U2 = U3 =W = φ∗ = 0 at ξ = 0

U1 = U2 = U3 =W =M
(2)
x = 0 at ξ = 1

(3.5)

4. Modal discretization

In this part, a reduced order method is used to analyze the behavior of the three-layered na-
nobeam incorporating the mid-layer shear effect. The derivative terms, in governing equations
Eq. (3.2) and related boundary conditions Eqs. (3.3)-(3.5) are discretized by using the Genera-
lized Differential Quadrature Method (GDQM) in order to determine natural frequencies and
deflection mode shapes of the three-layred nanobeam. GDQM’s main concept is to consider the
derivative of a function at a chosen point as a linear weighted sum of the function values at all
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of the surrounding sample points in the corresponding domain (Ke and Wang, 2012). Hence, U1,
U2, U3, W , φ∗ and their k-th derivatives regarding ξ can be expressed as

{U1, U2, U3,W, φ∗} =
N∑

m=1

lm(ξ){U1m(ξm, t), U2m(ξm, t), U3m(ξm, t),Wm(ξm, t), φ∗m(ξm, t)}
(4.1)

and

∂k

∂ξk
{U1, U2, U3,W, φ∗}

∣∣∣
ξ=ξi

=
N∑

m=1

C
(k)
im {U1m(ξm, t), U2m(ξm, t), U3m(ξm, t),Wm(ξm, t), φ∗m(ξm, t)}

(4.2)

where N is the number of grid points dispersed along the beam axis, the nanobeam deflection
at the Chebyshev-Gauss-Lobatto grid points ξi (Ke and Wang, 2012) is given by

ζi =
1
2

[
1− cos π(i− 1)

N − 1
]

i = 1, 2, . . . , N (4.3)

The Lagrange interpolation polynomials lm(ξ) are expressed as

lm(ξ) =
R(ξ)

(ξ − ξm)R(1)(ξ)
R(ξ) =

N∏

m=1

(ξ − ξm) R(1)(ξ) =
N∏

m=1,m6=i

(ξi − ξm) (4.4)

and C(k)im are the weighting coefficients of the k-th order differentiation, which can be deter-
mined by employing a set of recurrence formulae through the following equations

[D(k)ξ ]ij =C
(k)
ij =





[Ix]ij k = 0

R(ξi)
(ξi − ξm)R(ξm)

i 6= m ∧ i,m = 1, . . . , N ∧ k = 1

k
(
C
(1)
imC

(k−1)
ii − C

(k−1)
im

ζi − ζm

)
i 6= m ∧ m = 1, . . . , N ∧ k = 2, 3, . . . , N−1

−
N∑

m=1,m6=i
C
(k)
im i= m ∧ i,m = 1, . . . , N ∧ k = 2, 3, . . . , N−1

(4.5)

where Ix is the N ×N identity matrix.
Considering U1, U2, U3,W and φ∗ defined as

U1 = [U11, U12, U13, . . . , U1N ]T U2 = [U21, U22, U23, . . . , U2N ]T

U3 = [U31, U32, U33, . . . , U3N ]T W = [W1,W2,W3, . . . ,WN ]T

φ∗ = [φ∗1, φ
∗
2, φ
∗
3, . . . , φ

∗
N ]
T

(4.6)

and

U1i = U1(ξi) U2i = U2(ξi) U3i = U3(ξi)

Wi =W (ξi) φ∗i = φ
∗(ξi)

(4.7)

consequently, we obtain discretized governing equations of motion expressed as

MẌ+KX = 0 (4.8)
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whereX,K andM denote, respectively, the vector of variables, stiffness matrix and mass matrix
defined as

X =
[
UT1 U

T
2 U

T
3 W

T φ∗T
]T

K =




A11C
(2)
ξ 0 0 0 0

0 A12C
(2)
ξ 0 0 0

0 0 A13C
(2)
ξ 0 0

0 0 0 (B11 +B13)C
(4)
ξ + ksC12C

(2)
ξ ksC12ηC

(1)
ξ

0 0 0 −ksC12C(1)ξ B12C
(2)
ξ − ksC12ηC

(0)
ξ




M =




I1Dξ 0 0 0 0
0 I1Dξ 0 0 0
0 0 I4Dξ 0 0
0 0 0 (I1 + I2 + I4)Dξ 0
0 0 0 0 I3Dξ




(4.9)

with Dξ = C
(
ξ0)− µ2C

(2)
ξ .

Accordingly, the related edge conditions can be handled in the same way. It follows that for a
simply supported-simply supported (SS-SS) three-layred nanobeam incorporating the mid-layer
shear effect one obtains

U11 = U21 = U31 =W1 =M
(2)
x1 = 0 at ξ = 0

U1N = U2N = U3N =WN =M
(2)
xN = 0 at ξ = 1

(4.10)

with

M
(2)
x1 = B12

N∑

m=1

C
(1)
1mφm + µ

2I2

N∑

m=1

C
(1)
1mẄm

M
(2)
xN = B12

N∑

m=1

C
(1)
Nmφm + µ

2I2

N∑

m=1

C
(1)
NmẄm

(4.11)

5. Results and discussion

In the design of nanostructures, many nano-materials have been used such as carbon nano-
tubes (CNTs) (Behera et al., 2014) and graphene nanoribbons (GNRs) (Nazemnezhad et al.,
2014). The choice of the two nano-materials is based on the superiority of mechanical and
electrical properties (Geim, 2009). In fact, these nano-materials have an ultrahigh frequency
range up to the terahertz order. In this part, we present numerical results of vibration of the
clamped-clamped (–C), simply supported-simply supported (SS-SS) and clamped-simply sup-
ported (C-SS) three-layred nanobeam. The three-layred nanobeam is made of bilayer Graphene
nanoribbon (BLGNR) with the following material properties ρ = 2260 kgm−3, G = 4.6GPa and
E = 1.06TPa (Nazemnezhad et al., 2014) and (Hosseini Kordkheili et al., 2013). The effects
of the dimensionless nonlocal parameter µ on vibration frequencies and deflection mode shapes
under different boundary conditions are discussed. It is assumed that the length of the nanobe-
am is L = 14 nm, thicknesses h1 = h3 = 0.3 nm, h2 = 0.1 nm and the shear correction factor
ks = 0.563.
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5.1. Comparison and convergence studies

In this Section, behavior of the three-layered nanobeam incorporating the mid-layer shear
effect with different end supports are analysed. Table 1 presents the fundamental ω1 [THz] of the
three-layred nanobeam with a different number of elements N used for computing the GDQM
with µ = 0.2. It can be seen that the numerical values get similar to each other as N increases,
and those with N = 18 and 20 are similar for different boundary conditions C-C, SS-SS and
C-SS. Therefore, N = 18 is employed in all subsequent computing.

Table 1. Fundamental frequency ω1 [THz] of the C-C, SS-SS and C-SS three-layred nanobeam
with different N

N C-C SS-SS C-SS

8 0.93886 0.63522 0.71865
10 0.85984 0.41472 0.60103
14 0.86111 0.43731 0.60156
18 0.86117 0.45077 0.60228
20 0.86117 0.45077 0.60228

Until now, no theoretical simulations, experimental observations and molecular dynamic
results on nonlocal three-layred nanobeams are reported that we can examine and compare the
present work against. Hence, in order to ensure efficiency and validity of the proposed model,
we consider the two following cases.
In fact, if we decrease thickness of the central layer of the beam comparing to the upper

and lower layers thicknesses, the shear effect is neglected and the present model can be directly
reduced to the nonlocal Euler-Bernoulli beam model.
Further, if we increase thickness of the central layer of the beam comparing to the upper

and lower layers thicknesses, the shear effect is prevalent, so that the present model can be
considered as the nonlocal Timoshenko beam model.
Moreover, Wang et al. (2007) analytically analyzed free vibration of an elastic nanobeam

based on the nonlocal theory. Tables 2 and 3 give non-dimensional linear frequencies of single-
-walled carbon nanotubes based on respectively the nonlocal Euler-Bernouilli and Timoshenko
beam model. The analytical results provided by Wang et al. (2007) are also given for comparison.
Parameters used in this example are taken as (Wang et al., 2007): diameter d = 0.678 nm,
Young’s modulus E = 5.5TPa, Poisson’s ratio ν = 0.19, length of beam L = 10d and shear
correction factor ks = 0.563.
Solutions obtained by the proposed model of three-layered nanobeams with the shear effect

incorporated in the mid-layer based on nonlocal elasticity theory are in good agreement with the
analytical results given byWang et al. (2007) using the nonlocal Euler-Bernoulli and Timoshenko
beam theory as well.

5.2. The proposed nanobeam vibration analysis

The effect of the scaling parameter µ on the first four natural frequencies ω1 − ω4 [THz]
of the three layred nanobeam incorporating the mid-layer shear effect for different boundary
conditions is presented in Fig. 2. It should be mentioned that the nonlocal parameter µ = 0
corresponds to classical nanobeams without the nonlocal effect.
It can be clearly noticed that the nonlocal parameter has a marked effect on the natural

frequencies of the three layred nanobeam incorporating the mid-layer shear effect for different
edge conditions. Indeed, an increase in the nonlocal parameter leads to a decrease in the natural
frequencies. This reduction is more manifested when we consider higher vibration modes. The
reduction can be explained by the fact that the nonlocal model may be seen as atoms linked by
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Table 2. Dimensionless frequency of single-walled carbon nanotubes based on the nonlocal Euler
Bernoulli beam model considering h1 = h3 = 0.3 nm and h2 = 0.078 nm for different boundary
conditions

Frequency
parameter

µ = 0.1 µ = 0.3
Wang et al.

Present
Wang et al.

Present
(2007) (2007)

C-C
1 4.5945 4.4958 3.9184 3.7276
2 7.1402 7.1803 5.1963 5.2607
3 9.2583 9.3447 6.2317 6.1826
4 11.016 11.157 7.0482 7.1145

SS-SS
1 3.0685 3.2293 2.6800 2.7139
2 5.7817 5.4906 4.3013 4.3293
3 8.0400 8.1050 5.4423 5.5188
4 9.9162 10.072 6.3630 6.4189

C-SS
1 3.8209 3.7139 3.2828 3.3506
2 6.4649 6.4293 4.7668 4.6857
3 8.6517 8.6378 5.4423 5.4614
4 10.469 10.521 6.3630 6.4952

Table 3. Dimensionless frequency of single-walled carbon nanotubes based on the nonlocal
Timoshenko beam model considering h1 = h3 = 0.039 nm and h2 = 0.6 nm for different boundary
conditions

Frequency
parameter

µ = 0.1 µ = 0.3
Wang et al.

Present
Wang et al.

Present
(2007) (2007)

C-C
1 4.3026 4.2512 3.2420 3.3238
2 6.3507 6.4276 3.9940 4.1702
3 8.1969 7.9274 4.4769 4.4708
4 9.5447 9.1456 5.1131 4.9152

SS-SS
1 3.0243 3.1423 2.2867 2.4693
2 5.5304 5.7235 3.4037 3.2657
3 7.4699 7.2662 4.1644 4.0209
4 8.9874 8.6490 4.7436 4.5083

C-SS
1 3.6939 2.9972 2.7471 2.9446
2 6.0348 6.3202 3.7312 3.8269
3 7.8456 7.5816 4.1644 4.2341
4 9.2751 8.8744 4.7436 4.6686

elastic springs while in the case of a local continuum model, the spring is constant and supposed
to take the infinite value. Consequently, the presence of the nonlocal effect tends to decrease the
stiffness of nanostructures and, hence, decreases the values of frequencies (Reddy 2007; Wang
et al., 2007).
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Fig. 2. Effect of the scaling parameter on the first four natural frequencies of three-layered nanobeams
for different boundary conditions: (a) C-C, (b) SS-SS, (c) C-SS

Fig. 3. Effect of the scaling parameter on the first four deflection shapes for C-C three layered
nanobeams: (a) first deflection, (b) second deflection, (c) third deflection and (d) fourth deflection
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Fig. 4. Effect of the scaling parameter on the first four deflection shapes for C-SS three layered
nanobeams: (a) first deflection, (b) second deflection, (c) third deflection and (d) fourth deflection

The C-C nanobeam has higher natural frequencies while the SS-SS has lower natural fre-
quencies since the end support is stronger for the C-C nanobeam and weaker for the SS-SS
nanobeam.
Sometimes, the knowledge of higher modes is necessary before finalizing the design of an

engineering system. Hence, the first four deflections of nonlocal C-C and C-SS of the proposed
three-layred nanobeam are shown respectively in Figs. 3 and 4 for different scaling parameters.
It can be noticed that the deflection mode shapes are affected by an increase in the nonlocal

parameter. Deflection graphs of nonlocal C-C and C-SS three-layred nanobeams incorporating
the mid-layer shear effect are plotted in this study for different scaling effect parameters to
be useful for benchmarking. In fact, by understanding the modes of vibration, we can design
structures better in accordance with the need.

6. Conclusion

This paper investigates free vibration of three-layered nanobeams incorporating the mid-layer
shear effect based on the nonlocal theory, Euler-Bernoulli and Timoshenko beam theories. The
GDQM is employed to obtain natural frequencies and deflection mode shapes of the three-layered
nanobeams incorporating the mid-layer shear effect with different end supports. Effects of the
scaling parameter on vibration characteristics of the proposed nanobeams model are discussed.
The results show that an increase in the nonlocal parameter leads to a decrease in the natural
frequencies, and the nonlocal parameter nanobeam has a distinguished effect on the mode shapes
for the C-C and C-SS nanobeams, but has a less effect on the mode shapes for the SS-SS of the
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proposed nanobeam. Numerical solutions presented herein may be useful to design MEMS and
NEMS devices.
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Numerical calculations of heat transfer characteristics of an impingement cooling system with
a non-uniform temperature on a cooled surface using ANSYS CFX have been performed. The
influence of a surface heat flux qw(x) and a nozzle shape on the Nusselt number distribution on the
cooled surface has been studied. The setup consisted of a cylindrical plenum with an inline array of
ten impingement jets. Cylindrical, convergent divergent shapes of nozzles and linear temperature
distribution on the cooled surface have been considered for various heat fluxes qw(x). Results
indicate that geometry of the cylindrical nozzles resulted in the highest Nusselt numbers along the
cooled surface. The line of the averaged Nusselt number has a trend to increase in the direction of
the flow for the cooling system with increasing values of the surface heat flux q(x). This tendency
can be observed for all presented shapes of jets. On the other hand, for decreasing functions of the
heat flux qw(x), the Nusselt number distribution is more uniform. It can be observed for all types
of nozzles. Very similar values of the Nusselt number occur especially for the non-uniform heat flux
5000-2500W/m2. For constant values of the heat flux q(x) = 5000W/m2, the line of the average
Nusselt number has a trend to increase slightly in the direction of the flow. Numerical analysis
of different mesh density results in good convergence of the GCI index, what excludes mesh size
dependency. The presented study is an extension of the paper (Marzec and Kucaba-Piętal, 2016)
and aims at answering the question how the Nusselt number distribution on the cooled surface is
affected by various geometries of nozzles for a non-uniform surface heat flux qw(x).

Keywords: impinging jet, heat transfer, Nusselt number, nozzle shape

1. Introduction

An impingement cooling system is an array of jets with a high velocity fluid which is made to
strike a target surface. It is an effective method to generate a high cooling rate on a surface of
a hot object. Impingement jets are widely used in many engineering applications for cooling,
drying or heating. Many of cooling systems are installed, in particular, in electronic devices, aero-
nautical and heavy industry equipment and many others. Technological processes are supported
by impinging jets. Cooling nozzles are used in various geometrical configurations implementing
either a single injector or several parallel jets. Wide application of cooling systems is due to the
fact that modern devices and machines operate at very high temperatures. Therefore, usage of
impingement cooling systems is mandatory to provide a high rate of heat and mass transfer. In
gas turbine engines, impinging jets are applied for cooling turbine blades and casings (Active
Clearance Control) (Ahmed et al., 2010; Andreini et al., 2013; Ruiz et al., 2006), which operate at
very high temperatures. Besides the high heat transfer, cooling systems reduce fuel consumption
of engines. A number of experimental and numerical studies have dealt with the investigation of
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the heat transfer between an air jet and a flat surface (Al-Hadhrami et al., 2007, 2010; Mubarak
et al., 2011). Many of them are focused on the high Nusselt number delivery (Goordo et al.,
2007). Heat transfer rates in the case of impinging jets are affected by various parameters like
the Reynolds number, jet to plate spacing, radial distance from a stagnation point, target plate
inclination, nozzle geometry, roughness of the target plate and turbulence intensity at the nozzle
exit. The majority of studies are experimental ones (Goordo et al., 2007; Nirmalkumar et al.,
2011). However, many simulations of impingement cooling systems are numerical (Ee-Mahghany
et al., 2012; Żukowski, 2013). It is remarkable that only few are addressed to the problem of
cooling a surface with an inhomogeneous distribution of temperature (Tarabsheh et al., 2013;
Xu et al., 2014). Such a situation occurs in many technical applications such as photovoltaic
cells (Royne et al., 2005). Tarabsheh et al. (2013) presented research on the performance of
photovoltaic (PV) modules with respect to the non-uniform temperature and proposed various
pipe layouts. The operating temperatures of the PV cells are not equal since the temperature
of the flowing fluid is different at the inlet and outlet of the cooling pipes. Different geometries
of cooling pipes were introduced in order to maximize the PV module efficiency. The results
show that implementation of various cooling pipes improved the efficiency of the PV cells. Xu
et al. (2014) presented a multi-channel cooling experiment which was developed for studying
heat removal inside an electronic device. The results showed that the designed multi-channel
heat sink structure could control the temperature distribution of the device with multiple he-
at sources by altering the coolant flow rate and different design of the cooling multi-channel
structure. Marzec and Kucaba-Piętal (2014) presented the influence of different geometries of
nozzles of an impingement cooling array directed to the flat surface on a flow mechanism and
heat transfer at constant temperature on the cooled surface. The obtained results indicate that
the usage of various types of nozzles results in different values of the heat transfer coefficient
and the Nusselt number along the cooled surface. In turn, Marzec and Kucaba-Piętal (2016)
focused on heat transfer characteristics of a cooling system with a non-uniform temperature on
the cooled surface. Three decreasing linear functions of a heat flux qw(x) were reviewed. The
most uniform Nusselt number distribution was observed along the cooled surface for the heat
flux qw(x) = 5000-2500W/m2. Additionally, Marzec and Kucaba-Piętal (2016) investigated heat
transfer characteristics for a constant surface heat flux qw(x) = 5000W/m2. It is worth to note
that research work by Marzec and Kucaba-Piętal (2016) was addressed only to the usage of
cylindrical nozzles.
This paper presents numerical analysis of the effect of nozzle shape on the heat transfer

performance. The cooling surface posses both decreasing and increasing linear temperature di-
stributions. Cylindrical, convergent and divergent geometry of the nozzles are taken into consi-
deration like in the work by Marzec and Kucaba-Piętal (2014). Calculations are performed using
Computational Fluid Dynamics (CFD) code Ansys CFX. The k-ω shear stress transport (SST)
turbulence model is used in the calculations.
The results show that the line of the averaged Nusselt number has a trend to increase in the

direction of the flow for the cooling system with increasing values of the surface heat flux qw(x).
This tendency occurs for all presented shapes of the jets. For the decreasing functions of the
heat flux qw(x), the Nusselt number distribution is more homogenous. It can be observed for
all geometries of the nozzles. Very similar values of the Nusselt number occur especially for the
non-uniform heat flux 5000-2500W/m2.

2. Problem formulation

The geometry of the numerical setup is presented in Fig. 1. Geometry, fluid, thermal and flow
data used for the calculations are the same as in the work by Marzec and Kucaba-Piętal (2016)
and are equal to the values presented in Table 1.
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Fig. 1. Investigated computational 3D domain

Table 1. Geometry, fluid data, thermal and flow parameters used for calculations

Symbol Value Unit Description

D 0.8 mm nozzle diameter
α 30 ◦ taper angle
z/D 8 – nozzles exit-plate distance
S/D 8 – nozzle pitch-diameter ratio
DT 5 mm distribution tube inlet diameter
L 88 mm length of target plate
W 56 mm width of target plate
Tjet 20 ◦ fluid temperature in jet area
u 14 m/s inlet air velocity
Re 4800 – Reynolds number in jet area
ρ 1.17 kg/m3 air density
k 0.025 W/(mK) thermal conductivity
µ 1.8 · 10−5 Pas dynamic viscosity

The presented cooling system consists of an array of ten impingement nozzles directed nor-
mally to the flat surface. Three different geometries of the nozzles are taken into consideration:
cylindrical, convergent and divergent. Geometry of all the jets is based on the study by Royne
and Dey (2006). Consequently, for the convergent and divergent nozzles, a taper angle α = 30◦

is introduced.

Both the left and the right hand side of the system are open to allow the fluid to flow. The
fluid is free to expand after impinging the target surface.

Impingement cooling systems (especially gas turbines) have to operate with temperature
differences on the cooled casing up to 250◦C. Considering this and based on formula from Vinze
et al. (2016) a heat flux range qw(x) = 0-5000W/m2 has been established. To define the influence
of the non-uniform heat flux on the results of calculations, four different functions qw(x) have
been defined including the pointed range qw(x) = 0-5000W/m2. Both increasing and decreasing
values have been taken into account. They are presented in Tables 2 and 3.
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Fig. 2. 2D diagram of the considered problem (Marzec and Kucaba-Piętal, 2016)

Table 2. Cooled surface heat flux qw(x) representation by increasing linear functions

No.
Heat flux function qw(0) qw(88) Graph of function

qw(x) [W/m2] [W/m2] qw(x)

1 56.82x 0 5000

2 45.45x + 1000 1000 5000

3 28.41x + 2500 2500 5000

Table 3. Cooled surface heat flux qw(x) representation by decreasing linear functions

No.
Heat flux function qw(0) qw(88) Graph of function

qw(x) [W/m2] [W/m2] qw(x)

1 −56.82x + 5000 5000 0

2 −45.45x + 5000 5000 1000

3 −28.41x + 5000 5000 2500

3. Governing correlations

The heat transfer rate measurements along the impingement surface are presented in terms of
the Nusselt number as

Nu =
hD

k
(3.1)

where h is the heat transfer coefficient, D is nozzle diameter, and k is conductivity of the fluid.
The heat transfer coefficient is defined as

h =
qw

Tw − Tjet
h = −k 1

Tjet − Tw
∂T

∂z
(3.2)
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where qw is the wall heat flux, Tw is the wall adiabatic temperature, Tjet is the jet temperature,
∂T/∂z gives the temperature gradient component normal to the wall.
In this study, the line averaged Nusselt Number is defined as below

Nu =
1
L

∫

L

Nu(x) dx (3.3)

where L is the line of the plate parallel to the distribution tube axis.

4. Numerical methods

4.1. Numerical approach

The 3D analysis of the heat transfer characteristics is carried out using Computational Fluid
Dynamics (CFD) software Ansys CFX that solves equations of continuity, momentum end energy
using the Reynolds-Averaged Navier-Stokes approach (RANS). In the RANS treatment, velocity
vectors and other functions (in this case pressure) are split into average values and fluctuations,
what can be written as follows (Błoński, 2009)

ui(x, y, z, t) = ui(x, y, z) + u′i(x, y, z, t)

p(x, y, z, t) = p(x, y, z) + p′(x, y, z, t)
(4.1)

where i = 1, 2, 3, ui are velocity vector components, p – pressure.
Based on this approach, the Navier-Stokes equations of continuity and momentum can be

written as follows

∂uj
∂xj
= 0

∂

∂xj
(ρuiuj) = −

∂p

∂xi
+

∂

∂xj

[(∂ui
∂xj
+
∂uj
∂xi

)]
+

∂

∂xj
(−ρu′iu′j) i, j = 1, 2, 3

(4.2)

The correlations between the velocity fluctuations appearing in the momentum equations act as
stresses and are called Reynolds stresses. They are defined as below

(−ρu′iu′j) = µt
(∂ui
∂xj
+
∂uj
∂xi

)
− 2
3
ρδijk (4.3)

where µt is turbulent viscosity, k – turbulence kinetic energy

k =
1
2
(u′iu

′
j) (4.4)

Finally, the Navier-Stokes equations for the stationary and viscous flow of the fluid can be
written as follows

∂

∂xj
(ρuiuj) = −

∂p

∂xi
+

∂

∂xj

[
(µ+ µt)

( ∂ui
∂xj
+
∂uj
∂xi

)]
− 2
3
∂

∂xj
(ρk)

∂uj
∂xj
= 0

(4.5)

In the present investigation, the k-ω shear stress transport (SST) turbulence model is used. It
combines the k-ω model near the wall and the k-ε model further from the wall. This approach
utilizes strengths of each model. SST model is recommended as the best method for the impinging
jet heat transfer predictions (Zuckerman and Lior, 2006).
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The investigation is limited to the steady state assumption, and dynamic features of the
impinging jets are ignored. However, the steady state assumption is able to provide average
flow and temperature fields. To validate the numerical technique and the solution procedure,
the comparison of numerical results of an impingement cooling system of the surface with a
uniform temperature distribution with experimental have been performed and showed satisfying
agreement (Marzec and Kucaba-Piętal, 2013).

4.2. Initial and boundary conditions

The velocity of the flow u = (Vx, Vz) at the inlet of the supply tube Vx = 14m/s is constant
for the whole analysis and is prescribed to obtain the Reynolds number Re = 4800 in the area
of the cylindrical nozzle. Thereby, the Reynolds number is based on the mean velocity at the
nozzle and jet diameter D. The outlet boundaries of the calculated domain are represented
by opening pressure boundary conditions which permit the fluid to both enter or leave the
domain. The ambient pressure is constant at p = 1bar. The fluid entering the plenum has total
temperature of Tjet = 20◦C which corresponds to temperature of the ambient air. The wall and
the jet impinged onto have various heat fluxes qw(x). The walls of the cylindrical plenum are
unheated and are modeled as an adiabatic no-slip wall. To simplify the analysis, the steady-state
incompressible viscous fluid flow is considered. Moreover, it is assumed that the fluid physical
properties are constant and the effect of the gravity and radiation is neglected. The flow field is
three-dimensional. The roughness of the tube which contains the flowing fluid is 30µm.

4.3. Numerical grids and numerical accuracy

The geometry of the nozzles supporting the tube and the cooled surface, which were described
previously, are taken into account in the grid definition which consists of 1.79mln elements
and 323119 nodes of unstructured tetrahedral grids generated by the Ansys CFX mesher. The
influence of the numerical grid density on the results of the heat transfer coefficient and the
Nusselt number in the stagnation region is taken into consideration. Four analyses with different
cell sizes in the area of the interface (between the air flow and the surface) were performed.
To investigate the sensitivity of the numerical results analysis, the Grid Convergence Index
GCI (Eq. (4.1)) is calculated (Xu et al., 2014). This is the most frequently used method for
estimation of numerical uncertainty, endorsed by ASME Journal of Fluid Engineering (ASME,
2008). The safety factor Fs = 3, has been set for two grids comparison. Temperature is the
chosen parameter. It is measured in the cooled surface for each grid. The order of convergence is
p = 2, rp is the density factor. In the third analysis, GCI = 1.3% has been obtained. Therefore,
it might be concluded that numerical results for the fine grid are grid independent

GCI = Fs
1

rp − 1
∣∣∣
Th2 − Th1

Th1

∣∣∣ · 100% (4.6)

5. Results and discussion

This Section presents the analysis of heat transfer characteristics of an array of ten impinge-
ment jets directed normally to the flat surface with various ways of the surface heat flux qw(x)
distribution. Beside cylindrical nozzles, the usage of convergent and divergent jets are taken into
consideration in terms of heat transfer characteristics with an inhomogeneous distribution of
the surface heat flux qw(x). Flow field characteristics of the impingement cooling system with
ten cylindrical nozzles is presented in the work Marzec and Kucaba-Piętal (2016). The optimal
system configuration for a given surface heat flux qw(x) will be determined by the constant mass
flow rate, the uniform Nusselt number distribution on the cooled surface and a high rate of
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heat transfer. The uniform Nusselt number Nu distribution plays a significant role as it might
reduce thermal stresses on the cooled surface. In Fig. 3, the Nusselt number Nu corresponding
to the usage of ten cylindrical, convergent and divergent nozzles with the constant heat flux
qw(x) = 5000W/m2 is presented. For the cylindrical nozzles, the usage of a constant heat flux
qw = 5000W/m2 results in the highest averaged Nusselt number Nu = 4.59. The usage of co-
nvergent and divergent nozzles results in a very similar value of the averaged Nusselt number
Nu = 3.59 and Nu = 3.52, respectively. The lowest values of the heat transfer rate are achieved
for divergent nozzles in the area of the first jet. This is caused because of the flow deflection angle.
In addition, it can be seen that for all nozzle geometries, the line of the averaged Nusselt num-
ber increases slightly in the x direction (along the flow of the distribution tube). The maximum
difference between cylindrical, convergent and divergent nozzles, in the Nusselt Number Nuo is
respectively 31.5%, 36% and 42%.

Fig. 3. Area of the averaged Nusselt number Nu for cylindrical, convergent, divergent jets and a
constant surface heat flux qw = 5000W/m2

Fig. 4. Area of the averaged Nusselt number Nu for the increasing heat flux qw(x), cylindrical nozzles

In Fig. 4, the Nusselt number corresponding to the application of ten cylindrical nozzles with
the increasing heat flux qw(x) is presented. The wall, the jet impinged onto, is heated with a
heat flux represented by three different linear functions (Table 2). The first one represents the
heat flux qw = 0W/m2 at the beginning of the cooled surface and qw = 5000W/m2 at the end
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of the cooled surface. The second one represents the heat flux qw = 1000-5000W/m2. The third
one represents the heat flux qw = 2500-5000W/m2. It can be seen that the line of the averaged
Nusselt number increases in the direction of the flow in the distribution tube for all three heat
flux functions. The heat flux distribution qw = 2500-5000W/m2 represents the most uniform
values of the Nusselt number Nuo in the stagnation region across all of the jets. The average
difference of the Nusselt number Nuo is 19.8%.
In Fig. 5, the Nusselt number corresponding to making use of ten convergent nozzles with

a variable heat flux qw(x) increasing in the direction of the flow is presented. The wall, the
jet impinged onto, is heated with the heat flux represented by three different linear functions
(Table 2). The first one represents the heat flux qw = 0W/m2 at the beginning of the cooled
surface and qw = 5000W/m2 at the end of the cooled surface. The second one represents the
heat flux qw = 1000-5000W/m2. The third one represents the heat flux qw = 2500-5000W/m2.
It can be seen that the line of the averaged Nusselt number increases in the direction of the flow
in the distribution tube for all three heat flux functions. The heat flux distribution qw = 2500-
5000W/m2 represents the most uniform values of the Nusselt number Nuo in the stagnation
region across all of the jets. The average difference of the Nusselt number Nuo is 27.1%.

Fig. 5. Area of the averaged Nusselt number Nu for the increasing heat flux qw(x), convergent nozzles

Figure 6 presents the Nusselt number corresponding to the usage of ten convergent nozzles
with a variable heat flux qw(x) decreasing in the direction of the flow. The wall, the jet impinged
onto, is heated with the heat flux represented by three different linear functions (Table 3). The
first one represents the heat flux qw = 5000W/m2 at the beginning of the cooled surface and
qw = 0W/m2 at the end of the cooled surface. The second one represents the heat flux qw = 5000-
-1000W/m2. The third one represents the heat flux qw = 5000-2500W/m2. It can be seen that
the line of the averaged Nusselt number decreases in the direction of the flow in the distribution
tube for the first and the second heat flux function. The heat flux qw = 5000-2500W/m2

represents similar values of the Nusselt number Nuo in the stagnation region for all of the jets.
The average difference of the Nusselt number Nuo is 13%.
In Fig. 7, the Nusselt number corresponding to incorporation of ten divergent nozzles with

a variable heat flux qw(x) increasing in the direction of the flow is presented. The wall, the
jet impinged onto, is heated with the heat flux represented by three different linear functions
(Table 2). The first one represents the heat flux qw = 0W/m2 at the beginning of the cooled
surface and qw = 5000W/m2 at the end of the cooled surface. The second one represents the heat
flux qw = 1000-5000W/m2. The third one represents the heat flux qw = 2500-5000W/m2. It can
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Fig. 6. Area of the averaged Nusselt number Nu for the decreasing heat flux qw(x), convergent nozzles

Fig. 7. Area of the averaged Nusselt number Nu for the increasing heat flux qw(x), divergent nozzles

Fig. 8. Area of the averaged Nusselt number Nu for the decreasing heat flux qw(x), divergent nozzles
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be seen that the line of the averaged Nusselt number has a trend to increases in the direction
of the flow in the distribution tube for all three heat flux functions. For qw = 2500-5000W/m2,
the average difference of the Nusselt number Nuo is 34.3%.
Figure 8 presents the Nusselt number corresponding to application of ten divergent nozzles

with a variable heat flux qw(x) decreasing in the direction of the flow. The wall, the jet impinged
onto, is heated with the heat flux represented by three different linear functions (Table 3). The
first one represents the heat flux qw = 5000W/m2 at the beginning of the cooled surface and
qw = 0W/m2 at the end of the cooled surface. The second one represents the heat flux qw = 5000-
-1000W/m2. The third one represents the heat flux qw = 5000-2500W/m2. It can be seen that
the line of the averaged Nusselt number decreases in the direction of the flow in the distribution
tube for the first and the second heat flux functions. The heat flux qw = 5000-2500W/m2

represents similar values of the Nusselt number Nuo in the stagnation region for all of the jets.
The average difference of the Nusselt number Nuo is 9.1%.

6. Conclusions

The aim of the work is numerical analysis of the Nusselt number distribution of an array of
ten impingement jets when the cooling surface posses both decreasing and increasing linear
temperature distributions (see Tables 2 and 3). Cylindrical, convergent and divergent geometry
of the nozzles are taken into consideration. The making use of an array of cooling jets resulted in
a uniform distribution of the mass flow among the nozzles. The results indicate that cylindrical
geometry of the nozzles results in the highest Nusselt numbers along the cooled surface. The
results are convergent with a situation when temperature of the cooled surface is constant
(Marzec and Kucaba-Piętal, 2014).
Taking into consideration the heat flux functions qw(x), the line of the averaged Nusselt

number has a trend to increase in the direction of the flow for the cooling system with increasing
values of the surface heat flux. This tendency can be observed for all presented shapes of the
jets. On the other hand, for the decreasing functions of the heat flux qw(x), the Nusselt number
distribution is more uniform. It can be observed for all types of the nozzles. For the non-uniform
heat flux 5000-2500W/m2, very similar values of the Nusselt number Nuo along the cooled
surface can be noticed. For constant values of the heat flux qw(x)=5000W/m2, the line of
the averaged Nusselt number has a trend to increase slightly in the direction of the flow. The
presented results prove that the shape of the nozzles as well as an the inlet of the system have
an impact on the Nusselt number distribution on the cooled plate. It can be interesting for
designers of cooling systems who have to handle with the considered problem.
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Damage detection in structural elements like beams is one of important research areas for
health monitoring. Initiation of a fault in the form of a crack or any damage puts a limitation
on the service life of a structural member. So, in this paper, a method is proposed which
uses the advantages of soft computing techniques like Fuzzy Inference Systems (Mamdani
and Sugeno) and Adaptive Genetic Algorithm for three stage refinement of the data base
generated using dynamic responses from a cracked fixed-free aluminum alloy beam element.
For the crack element reference, a finite element model of a single transverse crack has been
considered. The proposed method describes both Mamdani and Sugeno Fuzzy Inference
Systems for training of damage parameters. In the Adaptive Genetic Algorithm, a statistics
based method has been incorporated to limit the randomness of the search process. Finally,
the results from the Mamdani-Adaptive Genetic-Sugeno model (MAS) are validated with
the results from the experimental analysis.

Keywords: damage, Mamdani FIS, Sugeno FIS, Adaptive Genetic Algorithm, vibration,
natural frequencies

1. Introduction

Cracks in structural and machine members indicate the amount of serviceability of the structures.
Crack initiation is obvious in most of engineering structures due to environmental and working
conditions. Usually, a hairline crack is visible and can be inspected using a crack gauge, fiber
optical sensor or laser sensor. But, it becomes very difficult to detect a very small crack whose
location is very dangerous for the structural element (Jaiswal and Pande, 2015). Cracks change
dynamic responses of structures like natural frequencies and mode shapes (Pawar et al., 2007).
These changes in the dynamic properties can be used to detect the presence of the crack (Fegade
et al., 2014). So, the vibration based methods are gently getting popularized for crack detection.
These methods have the ability of convenience measurement by collecting the variation in modal
properties (Waghulde and Kumar, 2014). The analytical methods used for damage detection cost
time and are subjected to human error. With the invention and development of finite element
analysis, many of the researchers are using this method for the analysis of dynamics of cracked
beams (Ranjbaran and Ranjbaran, 2013). Though finite element analysis is an approximation
method, it can give great data with less time consumption. So, this paper uses finite element
analysis for modeling of the crack. Yuan et al. (2014) have recently proposed one of the methods
to make re-meshing easier for analyzing crack propagation area by incorporating a radial point
interpolation method. The artificial intelligence techniques with vibration based methods can
make a powerful tool for online detection of the damage. These techniques can learn offline
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vibration signatures to evaluate the condition monitoring status of large complex structures
both in static and dynamic conditions.
In this research work, a knowledge based computational method and an evolutionary working

on the “Natural Selection” is addressed for vibration analysis of the cracked structural element.
From the invention of this logic, it has been successfully applied to different research fields. Many
researchers have also used Fuzzy Logic and its advance versions in the field of damage detection
and localization (Verma et al., 2013). From the vast literature available, it can be observed
that most of the researchers have used Mamdani fuzzy inference system for their analyses.
Chandrashekhar and Ganguli (2009) proposed one of the analytical methods for modal analysis
using Modal Curvature and Fuzzy Logic. Zhu and Wu (2014) depicted a method for rapid
structural damage detection using ANFIS and interval modeling technique, in which the ANFIS
model has been designed using Sugeno FIS.
In the first Section of the paper, both Mamdani and Sugeno FIS are described for crack

detection. Here, Fuzzy Logic has been used to learn the dynamics of the cracked structure for
damage detection. Two types of membership functions have been proposed to design variables
of the current problem. In the second part of the paper, an Adaptive Genetic Algorithm method
has been narrated. The main notion of this adaptive search algorithm is to simulate the process
necessary for evolution (Shahidi et al., 2015). This stochastic search algorithm provides an
intelligent exploitation of search space to solve a problem. Khaji and Mehrjoo (2014) proposed a
new method using Genetic Algorithm for the determination of the crack locations of an arbitrary
number of transverse cracks. The Search Space in GA plays an important role in finding the
absolute solution as; Genetic Algorithms (GAs) are random search algorithms. These algorithms
can be applied to many real world problems of complex and intricate nature which are tough to be
solved by traditional or conventional methods. Various statistical methods are also incorporated
in damage detection problems to control the randomness and nonlinearity of the damage indices
which are trained in different techniques (Niezrecki, 2015). Therefore, in this paper, Regression
Analysis has been incorporated for the data analysis of the problem, which makes the problem
more adaptive (Dervilis et al., 2015). Finally, in the third part, the data base generated from
the finite element analysis and experimental analysis is trained in the proposed method using
the 3-stage Mamdani-Adaptive Genetic-Sugeno model.
The first three natural frequencies are extracted from FEA and converted into relative values.

The relative values of the natural frequencies (rff , rsf , rtf ) are found out by comparing the
natural frequencies of the uncracked beam and the cracked beam. Relative values of the crack
depth and crack location (rcd, rcl) are also found out using the similar method. This work
considers only the natural frequencies because they are less prone to error while calculating.
The relative first natural frequency (rff ), relative second natural frequency (rsf ) and relative
third natural frequency (rtf ) are treated as the input variables in the proposed method. The
outputs from the system are the relative values of the crack depth (rcd) and crack location (rcl)
which, in turn, contains the information of damage severity. The reason behind the idea to take
the relative values of the input and output variables is to lessen the coding error and running
time of the algorithm when fed to it. The proposed method is a type of inverse analysis problem.
Here, by giving the crack depths and crack locations, the natural frequencies are found out using
theoretical, finite element and experimental analyses. These set of crack locations and first three
natural frequencies are used as the data set.

2. Finite element analysis approach for cracked beam element

The Euler-Bernoulli beam model is assumed for the finite element formulation. The crack in this
particular case is assumed to be an open crack, and the damping is not being considered in this
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theory. The geometry of the cracked beam is described in Fig. 1 (P1 – axial load, P2 – bending
moment, L1 – distance of the crack from the free end of the beam, L – length of the cantilever
beam, B – breadth of the cantilever beam, W – width of the cantilever beam, a1 – crack depth.

Fig. 1. Geometry of the cracked cantilever beam

The free bending vibration of a Euler-Bernoulli beam of a constant rectangular cross section
is given by the following differential equation

EI
d4y

dx4
−mω2i y = 0 (2.1)

where m is the mass of the beam per unit length [kg/m], ωi – natural frequency of the i-th
mode [rad/s], E – modulus of elasticity [N/m2] and I is the moment of inertia [m4]. By defining
λ4 = mω2i /(EI), the equation is rearranged as a fourth-order differential equation as follows

d4y

dx4
− λ4y = 0 (2.2)

A general solution to the equation is

y = A cos λix+B sinλix+ C coshλix+D sinhλix (2.3)

where A, B, C, D are constants and λi is a frequency parameter.
The governing differential equation for the system is given as

Mẍ+Cẋ+Kx = F sin(ωt) (2.4)

whereM, K, C is the mass, stiffness and damping matrix, respectively, F is the external force.
But, it is assumed that there is no damping and there is no external force applied to the

system. So, the governing equation becomes

Mẍ+Kx = 0 (2.5)

The equation of motion for natural frequencies for undamped free vibration is given in equation
(2.5). To solve equation (2.5), it is assumed that

x = φ sin(ωt) (2.6)

where φ is the eigenvector or mode shape, ω – circular natural frequency.
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Substituting the differential equation of the assumed solution into Eq. (2.5), the equation of
motion will be changed to

ω2Mφ sin(ωt) +Kφ sin(ωt) = 0 (2.7)

After simplification, it becomes

(K− ω2M)φ = 0 (2.8)

The equation is called the eigenequation. The basic form of the eigenvalue problem is

(A− λI)x = 0 (2.9)

where A is the square matrix, λ – eigenvalues, I – identity matrix, x – eigenvector.
In structural analysis, the eigenequation is written in terms of K,M, and ω with ω2 = λ.
There are two possible solutions to equation (2.8)
1. If |(K− ω2M)φ| 6= 0 is a trivial solution where φ = 0
2. If (K− ω2M)φ = 0 is a non-trivial solution where φ 6= 0

|(K− ω2M)| = 0 |(K− λM)| = 0 (2.10)

The determinant is zero only for discrete eigenvalues

|(K− ω2M)|φi = 0 i = 1, 2, 3, . . . (2.11)

Adopting Hermitian shape functions, the stiffness matrix of the two-noded beam element without
a crack is obtained using the standard integration based on the variation in flexural rigidity

Kec = K
e −Kc (2.12)

Here, Kec is the stiffness matrix of the cracked element, K
e – element stiffness matrix, Kc –

reduction in the stiffness matrix due to the crack.
According to (Peng et al., 2007), the matrix Kc is

Kc =




K11 K12 −K11 K14
K12 K22 −K12 K24
−K11 −K12 K11 −K14
K14 K24 −K14 K44


 (2.13)

It is assumed that the crack does not affect the mass distribution of the beam. The consistent
mass matrix of the beam element is given as

Me =
1∫

0

ρAHT(x)H(x) dx Me =
ρ

20
AI




156 221 54 −131
221 412 131 −312
54 131 156 −221
−131 −312 −221 412


 (2.14)

The natural frequency then can be calculated from relation (2.11).

3. Fuzzy logic approach for structural damage detection

Fuzzy logic can operate on imprecise, noisy inputs, but the output is a very smooth unit.
It incorporates a simple rule based approach to solve control problems rather than solving it
mathematically. The fuzzy logic controller model is empirically based on the designer’s experience
rather than the technical understanding of the system. In this work, the natural frequencies from
the damaged beam element are used as the input to the fuzzy controller as shown in Fig. 2, and
the outputs from the fuzzy controller are the crack depth and crack location.
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3.1. Fuzzy inference systems

Fuzzy Inference Systems (FIS) are of two types, i.e., Mamdani FIS and Takagi-Sugeno FIS. In
this work, the Mamdani FIS consists of the following steps. Figure 2 describes a fuzzy controller
using shuffled membership functions.

1. Fuzzification (use of the membership function for graphical presentation of the database)

2. Rule evaluation (implementation of the rules)

3. Defuzzification (obtaining the crisp values of the results)

Fig. 2. Fuzzy logic controller using input and output membership functions

3.1.1. Mamdani fuzzy inference system for crack detection

The fuzzy logic system consisting of the Mamdani fuzzy inference model is implemented
through the following steps.

1) Fuzzification: First, the crisp input and output variables are fuzzified using fuzzy sets. The
degrees of membership of these variables are defined.

2) Rule aggregation and evaluation: The fuzzified variables are used to form fuzzy rules. If a
fuzzy rule consists of many antecedent parts, they are joined by fuzzy operators (AND or
NOT). For the Mamdani fuzzy inference, the i-th rule can be mathematically expressed
as

Ri : Ω x1 = Ai1 ∧ x2 = Ai2 ∧ . . . ∧ xn = Ain ⇒ y1 = Bi1 ∧ y2 = Bi2 (3.1)

where Ai1, Ai2, . . . , Ain and Bi1, Bi2 are the fuzzy sets.

The membership values of all rule consequents are combined into a single fuzzy set.

3) Defuzzification: The most common type of the defuzzification method is the centroid me-
thod. This defuzzifier method has been used in all the fuzzy logic system of this research
work. This method finds a point representing the COG (centre of gravity) of the aggrega-
ted fuzzy set A in the interval [a, b]. The following figure shows the Mamdani FIS applied
in this work.

The other types of defuzzification methods are the mean of maximum, weighted average method,
height method, etc.

3.1.2. Sugeno fuzzy inference system for crack detection

Steps used in the Takagi-Sugeno fuzzy inference modeling for damage detection are as follows.

1. General structure of the Sugeno fuzzy inference begins with fuzzification of the input (rff ,
rsf , rtf ) and output variables (rcd, rcl) within the defined range using different types of
membership functions (triangular, trapezoidal, Gaussian, etc.) the like Mamdani FIS.

For the current problem, let x1, x2, x3 be input variables defined on the reference sets
X1,X2,X3 and let y1 and y2 be output variable defined on the reference sets Y1 and Y2.
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Then FIS has three input variables and two output variables. Further, each set Xj ,
j = 1, 2, 3, can be divided into i = 1, 2, . . . , n fuzzy sets

µj,1(x), µj,2(x), . . . , µj,i(x), . . . , µj,n(x) (3.2)

where µ is the membership function value.

2. The next step comprises of the formation of the fuzzy base rules. The l-th if-then rule Rk
in Sugeno FIS can be written in the following form

Rl : Ω x1 = L1,i(1,l) ∧ x2 = L2,i(1,l) ∧ x3 = L3,i(1,l)
(3.3)

⇒ y1 = f1(x1, x2, x3) ∧ y2 = f2(x1, x2, x3)

where L1,i(1,l), L2,i(1,l), L3,i(1,l) are the linguistic variables.

y1 = f1(x1, x2, x3), y2 = f2(x1, x2, x3) are linear polynomial functions, l = 1, 2, . . . , N

Rl : Ω x1 = L1,i(1,l) ∧ x2 = L2,i(1,l) ∧ x3 = L3,i(1,l) ⇒ y1 = k1 ∧ y2 = k2 (3.4)

where k1, k2 are constants. Equation (3.4) describes the zero order Sugeno FIS rule.

3. The third step describes the defuzzification procedure in the Sugeno FIS. The output
weight of yl of each of the l-th if-then rule Rl is aggregated by

wl = µ(x1) ∧ µ(x2) ∧ µ(x3) (3.5)

The final output after aggregation of N rules is computed as

y =

N∑
l=1

ylwl

N∑
l=1

wl

(3.6)

4. Adaptive genetic algorithm for damage detection

Genetic Algorithms (GAs) are based on the evolution of natural selection and genetics. This
algorithm was first developed by Holland (1992). This is a heuristic search algorithm. The main
notion of this adaptive search algorithm is to simulate the process necessary for evolution.
This stochastic search algorithm provides an intelligent exploitation of search space to solve
a problem. The search space in GA plays an important role in finding the absolute solution
as; genetic algorithms (GAs) are random search algorithms. Although GAs can be used to
find solutions to very complicated real world problems, they are very much simple to use and
understand. It is able to search through a variety and huge combination of parameters to find
the best match. But, sometimes, the GA becomes unidirectional without expediting the entire
search space. The accessibility to the better solution in the search space becomes easier if there
exists a relationship between the independent and dependent variables in a problem. Therefore,
in this work, regression analysis has been incorporated for the data analysis of the problem,
which makes the problem more adaptive.
The operators and procedure or the natural evolution process is similar to the simple genetic

algorithm. The domain containing viable solutions is called the search space. Each individual
point in the search space is a feasible solution. These solutions are ranked by their fitness values
for selection. The important features of the algorithm are the genetic operators. These operators
try to imitate the process of natural selection of the evolution process. The genetic operators,
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crossover and mutation perform two different roles. Crossover tries to direct the population
towards a local solution which leads to premature convergence of the algorithm. But, mutation
is a divergence operation that tries to introduce diversity in the population, so that there will be
more exploitation of the search space. This paves the way towards achieving a better solution.
But the mutation amount in every generation is kept small and should affect a few members of a
population. Otherwise, the entire solution space will be changed, and the algorithm will become
directionless.

4.1. Regression analysis for the generation of the data pool for GA

Regression analysis comes under the category of supervised learning based on the statistical
modeling of the problem. Regression analysis is used to find the relationship between two varia-
bles. This method is mainly a statistics based method. It can be described in the form of cause
(independent variable) and effect (dependent variable). Several researchers have used regression
analysis for the data base analysis of damage detection problems, but no one has combined it
with genetic algorithms.
This analysis mainly related to dynamic responses of a cracked structural element with a

damage extent. It is often realized that damage parameters are often scalar values, so univariate
statistical tests can be utilized to find out possible changes among parameter vectors associated
with a definite location. It is also expected that the computational cost of such statistical testing
is less than that of the parameter extraction. The present problem is a case of multiple regression
analysis due to the presence of multiple input and output variables.
For the present analysis, Y = rff , rsf , rtf and X = rcd, rcl.
The linear equations for the current problem relating the dependent and independent varia-

bles are as in the following

Y1 = p1 + q1(X1) + q2(X2) + q3(X3)

Y2 = p1 + q4(X1) + q5(X2) + q6(X3)
(4.1)

For the data extraction using the regression analysis method, direct values of the variables are
used. After analysis, the values of the data are converted to the relative values.

4.2. Implementation of adaptive genetic algorithm for fault detection in cracked structures

As we know Genetic Algorithm (GA) is a search algorithm, it can be well applied to the
current problem. In this problem, it is required to find the relative crack depth and relative crack
location to a corresponding set of relative natural frequencies from the field signals. For this, first,
a database is prepared from the results of theoretical, finite element and experimental analyses.
Then rest of the steps are done according to the genetic algorithm. For all types of evolutionary
algorithms, the encoding is a must. The advancement of the algorithm and the application of
the operators mainly depend on the representation scheme adapted for the algorithm.
The encoding of chromosomes used in the current problem is the bit string/binary encoding.

Each gene of the chromosome may be either 0 or 1. The gene/bit strings contain the information
about the solution. In this approach, each chromosome contains five genes (rff , rsf , rtf , rcd
and rcl). Each gene contains four bits, so each chromosome contains twenty bits. After the
assignment of the representation scheme to the chromosomes, the problem proceeds towards the
algorithm.
Following are the steps used in the genetic algorithm.
1) First of all, the variables and fitness functions are selected.

The GA begins by defining input variables whose values are to be optimized using the
fitness function and output variables whose values are to be anticipated using genetic
operators.
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The fitness function to be minimized is defined as

Fitness Function =
√
(rff fd − rff x1,i)2 + (rsf fd − rsf x1,i)2 + (rtf fd − rtf x1,i)2 (4.2)

where rff fd is the first natural frequency of the field, rff x – relative first natural frequency,
rsf fd – second natural frequency of the field, rsf x – relative second natural frequency, rtf fd
– third natural frequency of the field, rtf x – relative third natural frequency, i – number
of iterations.

The less the difference between the field and random frequency, the higher rank will be
acquired by chromosome.

2) A data pool (initial population) containing ten numbers of data sets (individuals) is cre-
ated. This data pool is acquired from FEA and theoretical analysis.

3) Two parents (i.e., two data set) from data pool (i.e., from ten data sets) using the fitness
function are selected.

4) The selected parents undergo crossover. Here, two-point crossovers are used. As the chro-
mosomes contain five parameters, and each parameter contains four bits, so the chromoso-
me contains twenty bits. The crossover points are chosen four bits left of the chromosome
and four bits right of the chromosome. Figure 3 shows the presentation of the parent with
crossover points.

Fig. 3. Parent chromosomes with crossover points

5) The children (two numbers) from the parents are found out. Figure 4 describes the appli-
cation of two-point crossover points in the genetic algorithm for damage detection.

6) After crossover, mutation is performed. In the proposed paper, as we have used binary
encoding, the mutation rate used is 0.1% of the string. As the chromosome consists of
20 bits, only two bits at a time are flipped or altered. Figure 5 describes the application
of the tossing type of mutation in the genetic algorithm for damage detection.

7) Again, fitness evaluation of the parents and the offspring is done. Then, the fitness values
of the parents and children are compared to find out the best fit member.

8) If the child comes as the best fit, then it is added to the data pool, and a new set of the
data pool is created. If a parent comes as the best fit, then the desired output (rcd, rcl),
is the output belonging to that set.

9) Steps from 2-8 are repeated in each iteration till the algorithm meets the threshold values.

The algorithm terminates when it meets the threshold values. The threshold values for
GA to stop are as below. The algorithm stops when it meets any of the criteria first.

i. 50 generations

ii. Maximum time elapsed (running time of the algorithm, i.e., two minutes)
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Fig. 4. Two-point crossover used for producing the off-springs

Fig. 5. Description of the mutation process implemented in damage detection

5. Analysis of 3-stage determination of damage location using
Mamdani-Adaptive Genetic-Sugeno model

From the vast literature available in the structural damage detection using Fuzzy Logic and
Genetic Algorithm for following conclusions have been drawn.
Several authors have used fuzzy logic for damage detection using the Mamdani FIS. The

membership functions used in the Mamdani FIS are also different. Some have used simple mem-
bership functions (Saridakis et al., 2008) while others have used combinations of membership
functions (Parhi et al., 2011; Thatoi et al., 2014). It has been noticed by the researchers that the
Mamdani FIS using a combination of membership functions gives better results than the simple
membership functions. Fewer researchers have used the Sugeno model for damage detection.
Most of the researchers have used Sugeno model with an artificial neural network for damage
detection. When the results of the Mamdani FIS and Sugeno FIS are compared, it has been
observed that the Sugeno FIS gives better results than the Mamdani FIS. Likewise, many rese-
archers have used genetic algorithms (Vakil-Baghmisheh et al., 2008) for damage detection. A
simple Genetic Algorithm is very easy to understand and simple to apply, once the designer has
understood the dynamics of the problem. Though it is very widely used in many of engineering
fields, it has some shortcomings like attainment of global solution (optimization). This occurs
mainly due to the random search of the solution space which is also time consuming. So, in the
proposed adaptive genetic algorithm, regression analysis has been incorporated to the statistical
modeling of the variable relationship, so that the genetic algorithm will take less time to cover
the entire solution space.
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After analyzing all the above stated factors, the current method is proposed. In the proposed
method, 3-stage treatment of the data generated is done.

5.1. Design and development of 3-stage determination of damage location using
the Mamdani-Adaptive Genetic-Sugeno (MAS) model

The previous Sections of this paper have discussed the benefits of the Mamdani FIS, Sugeno
FIS and the adaptive genetic algorithm. So, in this Section, a method comprising 3-stage tre-
atment of the data is used for damage detection in beams with two end conditions (fixed-free,
fixed-fixed). The data pool which is to be treated in multiple stages, finally to give the crack
location (rcd, rcl), is generated from the theoretical, finite element analysis and experimental
analysis.

Fig. 6. Presentation of 3-stage determination of damage location using the Mamdani-Adaptive
Genetic-Sugeno (MAS) model

In the first stage, the data pool is treated in the fuzzy Mamdani FIS. Here, the Mamdani FIS
has been designed using shuffled membership functions comprising of triangular and Gaussian
MFs. The efficiency of the Mamdani FIS using shuffled membership functions has already been
noticed in Section 3 of this paper. Also from the works of other researchers, it has been observed
that a combination of membership functions gives better results than the simple membership
functions. In the Mamdani FIS, by changing the input values, the output values are obtained
for at least hundred runs. After the training of the data pool in the Mamdani segment, the
transit data is generated with the crack location as rcd m and rcl m. After obtaining the first
set of data from the Mamdani FIS; it is treated in the adaptive genetic algorithm segment as
described in Section 4 of this paper.
During the treatment of the data in this segment, the results get closer towards the global

solution due to the treatment of the data in regression analysis. After applying regression analysis
to the hundred data sets, half of the data sets are taken to be trained in the genetic algorithm.
The crack locations from the genetic algorithm are named as rcd ga and rcl ga. The GA is then
run for hundred times. Out of the hundred runs, fifty different data sets are taken to make the
second data pool.
The second data pool is then trained in the Sugeno FIS after the second stage treatment

of the data pool; the data gets more refined. After the training of the second data pool in the
Sugeno FIS, the final results of the 3-stage training of the data are obtained with better crack
location parameters. Due to the achievement of better results from the Sugeno FIS, it has been
kept in the last segment of the training procedure after the adaptive genetic algorithm segment.
Figure 6 depicts a pictorial presentation of the stages of the 3-stage determination of damage
location using the Mamdani-Adaptive Genetic-Sugeno model.
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6. Experimental set-up used in the fault detection of a cracked beam

The instruments used in the free vibration analysis of the fixed-free beam are an impact hammer,
vibration pick-up, vibration analyzer and vibration indicator (Fig. 7). Using the impact hammer,
the cracked fixed-free beam is excited in the free vibration mode. The vibration analyzer is
PULSE LAB Prolite 3560. The excitation parameters are picked up by the vibration pick-up or
an accelerometer. Then, these parameters are fed to the vibration analyzer, where the parameters
are analysed and the results are shown in the vibration indicator.

Fig. 7. Experimental set-up with the cracked beam; 1 – cracked fixed-fixed beam with a single crack,
2 – vibration pick-up, 3 – vibration analyzer, 4 – vibration indicator, 5 – impact hammer,

6 – power distribution

Several tests have been conducted using the experimental setup on aluminium alloy beam
specimens (800mm×38mm×8mm) with a transverse crack for determining the natural frequen-
cies at different crack locations and crack depths. These specimens are given vibration by impact
hammer, and the 1st, 2nd and 3rd natural frequencies are recorded in the vibration indicator.

7. Result and discussions

The percentage error is calculated using the following formula

[(FEA result – result from the proposed technique)/(FEA result)] · 100
[(Exp. result – result from the proposed technique)/(Exp. result)] · 100
Total error in % = (% error in rcd+% error in rcl)/2

(7.1)

The present work describes the damage detection method for cracked structural elements. First,
the transverse hairline crack has been modeled using the finite element method. In the finite
element analysis, the cracked structure has been modeled assuming the Euler-Bernoulli beam
model. Then, the vibration parameters which are the indices of damage are extracted from the
finite element analysis. Then, a data base consisting of the cause (crack depth, crack location)
and effect (change in first three natural frequencies) of initiation of the crack is made. Then,
the data base is trained in different computational techniques (fuzzy logic (Mamdani FIS and
Sugeno FIS), adaptive genetic algorithm and Mamdani-Adaptive Genetic-Sugeno model) to find
the crack location.
Though with the invention of soft computing methods have made it easier to find good results

at the fingertip by just running a program, finding a global optimization method remains a major
challenge in engineering. Performances of these methods are hampered by some limitations
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which include huge computational time consumption. So in this work, a 3-stage determination
of damage location using the Mamdani-Adaptive Genetic-Sugeno model has been proposed. The
work also tries to compare the performances of individual methods, and the results are described
in tables.

From Tables 1-3 the results of the individual methods are given respectively. These tables
compare the results from these methods with those from the finite element analysis. Tables 4
and 5 give the comparison of the results from the 3-stage Mamdani-Adaptive Genetic-Sugeno
model with finite element analysis and experimental analysis respectively. For the validation
of the results from the Mamdani-Adaptive Genetic-Sugeno model, they are compared with the
results from the experimental analysis. Two sets of data are used for two different comparisons
due to the availability of different data sets from the two analyses. The performance comparison is
done in terms of the percentage error. The percentage error has been determined using equations
(7.1).

The following table shows the results of the proposed technique (3-stage Mamdani-Adaptive
Genetic-Sugeno model).

Table 1. Comparison of the results of FLS (Mamdani FIS) with FEA for a cantilever beam

rff rsf rtf rcd rcl rcd using rcl using percent. percent
Total
error

No. from from from from from the FLS the FLS error error
FEA FEA FEA FEA FEA techique technique rcd rcl

1 0.9923 0.9912 0.9966 0.325 0.21875 0.307148 0.206701 5.493 5.508 5.5005
2 0.9931 0.9926 0.9978 0.300 0.20625 0.283536 0.194884 5.488 5.511 5.4995
3 0.9946 0.9942 0.9972 0.2875 0.23125 0.271607 0.218550 5.528 5.492 5.5100
4 0.9959 0.99772 0.9990 0.125 0.21875 0.118106 0.206728 5.515 5.496 5.5055
5 0.9974 0.9977 0.9965 0.275 0.36250 0.259867 0.342505 5.503 5.516 5.5095

Table 2. Comparison of the results of FLS (Sugeno FIS) with FEA for a cantilever beam

rff from rsf from rtf from rcd from rcl from rcd using rcl using percent. percent,
Total
error

No. exp. exp. exp. exp. exp. the FLS the FLS error error
analysis analysis analysis analysis analysis techique technique rcd rcl

1 0.9923 0.9912 0.9966 0.325 0.21875 0.307795 0.207152 5.294 5.302 5.2980
2 0.9931 0.9926 0.9978 0.300 0.20625 0.284136 0.195321 5.288 5.299 5.2935
3 0.9946 0.9942 0.9972 0.2875 0.23125 0.272211 0.219008 5.318 5.294 5.3060
4 0.9959 0.99772 0.9990 0.125 0.21875 0.118373 0.207123 5.302 5.315 5.3085
5 0.9974 0.9977 0.9965 0.275 0.36250 0.260403 0.343284 5.308 5.301 5.3045

Table 3. Comparison of the results of Adaptive Genetic Algorithm (AGA) with FEA for a
cantilever beam

rff rsf rtf rcd rcl rcd using rcl using percent. percent.
Total
error

No. from from from from from the AGA the AGA error error
FEA FEA FEA FEA FEA techique technique rcd rcl

1 0.9923 0.9912 0.9966 0.325 0.21875 0.308016 0.207342 5.226 5.215 5.2205
2 0.9931 0.9926 0.9978 0.300 0.20625 0.284406 0.195535 5.198 5.195 5.1965
3 0.9946 0.9942 0.9972 0.2875 0.23125 0.272585 0.219207 5.188 5.208 5.1980
4 0.9959 0.99772 0.9990 0.125 0.21875 0.118520 0.207351 5.184 5.211 5.1975
5 0.9974 0.9977 0.9965 0.275 0.36250 0.260678 0.343690 5.208 5.189 5.1985
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Table 4. Comparison of the results of MAS with FEA for a cantilever beam

rff rsf rtf rcd rcl rcd using rcl using percent. percent.
Total
error

No. from from from from from the MAS the MAS error error
FEA FEA FEA FEA FEA techique technique rcd rcl

1 0.9923 0.9912 0.9966 0.325 0.21875 0.309969 0.208659 4.625 4.613 4.619
2 0.9931 0.9926 0.9978 0.300 0.20625 0.286233 0.196756 4.589 4.603 4.596
3 0.9946 0.9942 0.9972 0.2875 0.23125 0.274261 0.220643 4.605 4.587 4.596
4 0.9959 0.9977 0.9990 0.125 0.21875 0.119255 0.208655 4.596 4.615 4.6055
5 0.9974 0.9977 0.9965 0.275 0.36250 0.262259 0.345865 4.633 4.589 4.611

Table 5. Comparison of the results of MAS with experimental analysis for a cantilever beam

rff from rsf from rtf from rcd from rcl from rcd using rcl using percent. percent
Total
error

No. exp. exp. exp. exp. exp. the MAS the MAS error error
analysis analysis analysis analysis analysis techique technique rcd rcl

1 0.9973 0.9914 0.9995 0.34375 0.46875 0.327862 0.447131 4.622 4.612 4.617
2 0.9974 0.9890 0.9999 0.375 0.5 0.357795 0.47691 4.588 4.618 4.603
3 0.99816 0.9982 0.9979 0.25 0.375 0.238495 0.35778 4.602 4.592 4.597
4 0.9988 0.9981 0.9989 0.21875 0.40625 0.208659 0.387502 4.613 4.615 4.614
5 0.9892 0.9996 0.9981 0.35 0.1875 0.333862 0.178879 4.611 4.598 4.6045

8. Conclusions

The conclusions drawn from the proposed work can be depicted as follows.
From Tables 1-4, we can get results of the individual methods as well as results from the

proposed Mamdani-Adaptive Genetic-Sugeno model. From the comparison of the results of the
three individual methods, it can be observed that the adaptive genetic algorithm gives better
results as compared to the other two methods (Mamdani FIS and Sugeno FIS). The average total
error for the Mamdani FIS is 5.5031%, for the Sugeno FIS is 5.30175%, for the adaptive genetic
algorithm is 5.2022%. After analyzing the average total error values of these three methods, it can
be said that the adaptive genetic algorithm performs better than the other two methods. From
the two of the methods (Mamdani FIS and Sugeno FIS), the Sugeno FIS performs better than
the Mamdani FIS. The Sugeno type FIS was designed in order to achieve higher computational
effectiveness as compared to the Mamdani FIS. This is possible as the defuzzification of outputs
is avoided. Its advantage also lies in involving the functional dependencies of output variables
on input variables.
Tables 4 and 5 give the comparison of the results from the 3-stage Mamdani-Adaptive

Genetic-Sugeno model with finite element analysis and experimental analysis respectively. The
results from the 3-stage analysis are compared with the results from the experimental analysis,
for validation of the results from the proposed method. The average total error is found to be
4.6055% and 4.6071% when compared with the results from the finite element analysis and expe-
rimental analysis respectively. It is also noticed that the proposed method gives better results as
compared to the individual methods. From the analysis of the results and the method, it can be
said that the proposed method and all the individual methods can be treated as a robust tool for
structural damage detection. The proposed method can be analyzed using different compatible
commercial software packages as a future work so that the best method can be found out, which
can handle the time consumption and the human error during calculation.
After a thorough literature survey on damage detection, it has been observed that the Ar-

tificial Intelligence (AI) techniques are emerging as a powerful tool for damage detection. Lots
of work have been done using standalone methods. From different research works, it has been
noticed that hybridized methods give better results as compared to standalone methods. This
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happens because the hybridized methods retain the goodness of their elementary algorithms.
The hybridized algorithms are so designed and developed that each component of the algorithm
tries to overcome shortcomings of other components.
In the current research work, Fuzzy Logic (FL) and Genetic Algorithm (GA) have been

considered. Lots of research work have been carried away using fundamental FL and GA. Many
researchers have also provided shortcomings of these methods. So, this work tries to overcome
the shortcomings of the fundamental methods. Fuzzy Logic consists of two types of inference
engines, and both of them are good but when the results and procedures are compared, T-S
FIS gives better results. Genetic Algorithm is one of the unique evolutionary algorithms based
on Darwin’s theory of natural selection and evolution. One of the foremost shortcoming of the
algorithm is that it could not provide a global solution. The algorithm sometimes gets stuck in
the local solution. So to get rid of the above stated problem, regression analysis has been added.
This data analysis process generates a relation between the input and output variables. Out of
the three steps, the T-S FIS gives best results, so it has been put in the final step. The other
two methods are also organized according to their efficiency.
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In this paper, the upper bound method has been used in analysis of the flat rolling process
and prediction of internal defects for a strain-hardening material. The arc of contact has been
replaced by a chord. The inlet shear boundary of the deformation zone has been assumed
as an exponential curve and the boundary at the exit has been assumed as a cylindrical
surface. A kinematically admissible velocity field has been proposed and internal, shear and
frictional power terms have been derived. By minimizing the total power with respect to
the neutral point position and the shape of the inlet shear boundary, the rolling torque has
been determined. A criterion has been presented to predict the occurrence of the internal
defects for given rolling conditions. Comparison of the analytically developed approach for
rolling torque and internal defects with published theoretical and experimental data shows
generally good agreement.

Keywords: upper bound, flat rolling, internal defects, strain-hardening exponent

1. Introduction

Flat rolling is the process of reducing thickness of a long sheet by torques applied through a set of
rolls. The rolling process widely is used in production of industrial components, so concentrating
on the final quality of the parts produced by this process is very important. Internal central
bursts are common rolling processing defects. Ignoring their prediction causes both losses of
physical injury and property damage or reducing quality of the final products. Usually, it is
very difficult to detect central bursting defects by surface inspection. The investigations on
flat rolling have been conducted for decades and various aspects of these processes have been
studied. Dyja and Pietrzyk (1983) analyzed an asymmetric dual hot-rolled sheet using minimum
energy, and replaced the arc of contact by a chord. Avitzur et al. (1988) modeled the flat
rolling process by using upper bound analysis for rigid perfectly plastic materials to predict
internal defects. Takuda et al. (1989) analyzed the strip rolling process by assuming a simple
velocity field by considering free deformation zones in front and behind the roll gap. Turczyn
and Pietrzyk (1992) analyzed the effect of deformation zone geometry on the internal defect
in the flat rolling process. They used the upper bound method and took into consideration
velocity boundaries. Discontinuity circular arcs were present and uniform velocity fields for
internal defects assumed. Prakash and Dixit (1995) proposed a model for steady state plane
strain cold rolling of a strain-hardening material which could predict the roll force and torque
with reasonable engineering accuracy over the usual range of process variables. Turczyn (1996)
analyzed the effect of deformation zone geometry on the internal defects in rolling process using
the upper bound method. Martins and Barata (1999) presented an approach for analyzing plane
strain rolling. They used the upper bound method to estimate the rolling torque and to model the
material flow within the region of deformation between the rolls. Dogruoglu (2001) introduced a
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systematic method for constructing kinematically admissible velocity fields, which was necessary
in the analysis of the plastic forming process by the upper bound method. Gosh and Gardiner
(2004) identified various modeling issues that were necessary for successful simulation of the cold
rolling process by comparing it with experiments on aluminum alloys. Rajak and Reddy (2005)
analyzed internal defects in the plane strain rolling process with the finite element method. They
used critical damage criteria. Serajzadeh and Mahmoodkhani (2008) presented a combined upper
bound and finite element model for prediction of velocity and temperature fields during the hot
rolling process. The closing behavior of internal defects in the central part of a continuous casting
steel slab during rough transverse rolling was investigated by using FE-code, ANSYS/LS-DYNA
by Deng et al. (2009). Misicko et al. (2009) observed and analyzed by computer simulation
behavior of artificial surface defects inside flat steel samples during the hot rolling process by
selected parameters. Cao et al. (2015) investigated the prediction of damage for the ultimate
wire flat rolling process of high carbon steel using three different approaches of ductile damage.
Haghighat and Saadati (2015) presented the kinematically admissible velocity field for the rolling
of sandwich sheets, non-bonded before rolling, and discussed some mathematical aspects by
the upper bound method. Haghighat and Pargzadeh (2017) investigated the effect of strain
hardening on the central bursting defects in rod extrusion process. In this paper, analyses of
plastic deformation and prediction of internal defects in flat rolling process of a strain-hardening
material using the upper bound method is considered. The arc of contact between the roll and
the sheet is replaced by a chord. Based on the FEM, it is observed that the inlet and outlet
shear boundaries are not circular and in any condition such as inlet thickness and reduction in
area are deferent, then we present arbitrary exponential shear boundaries and velocity field that
can predict rolling torque and internal defects. Then a kinematically admissible velocity field is
proposed and internal, shear and frictional power terms are derived. By minimizing the total
power with respect to the neutral point position and the shape of the inlet shear boundary, the
rolling torque and the occurrence of internal defects is investigated. The effect of the friction
factor, strain-hardening exponent and reduction in the area on the rolling torque and safe and
unsafe domains are investigated.

2. Upper bound analysis

Figure 1 shows flat rolling process parameters in a schematic diagram. Because of symmetry of
the process, only half of the section is considered. An important subject in the upper bound
analysis is the assumption of shear boundaries and a kinematically admissible velocity field satis-
fying volume constancy in the deformation zone and boundary conditions. In order to determine
the velocity field, the arc of contact is replaced by a chord. The material starts as a sheet of
thickness ti and then is deformed into a sheet of thickness 2tf , vi is the initial velocity of the
sheet and vf is the velocity of the product, α is the angle of the line connecting the initial point
to the final point of the contact arc with the axis of symmetry. R is radius, and ω is angular
velocity of the roll.

2.1. Velocity zones

To analyze the process, the material under deformation is divided into three deformation
zones, as shown in Fig. 1. In zones I and III, the material moves rigidly with the velocity vi
and vf , respectively. Zone II is the deformation zone and is surrounded by two shear surfaces
S1 and S2 and the contact surface S3. The shear boundary S2 at the exit from the deformation
zone is assumed to be a cylindrical surface with its center at the apex O. The shear boundary S1
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Fig. 1. Geometry of the sheet, roll, deformation zone and the shear boundaries

is assumed to be an arbitrarily curved surface. Using this description, mathematical equations
of the shear boundaries S1 and S2 are defined in the cylindrical coordinates by

ri(θ, ρi) = ρi exp
[b(θ − α)

α

]
rf (θ, ρf ) = ρf (2.1)

where ri and rf are the radial position of inlet and outlet shear boundary, respectively, and the
radial position in the deformation zone is

r(θ, ρ) = ρ exp
[b(θ − α)

α

ρ− ρf
ρi − ρf

]
= ρg(θ, ρ) (2.2)

where ρi and ρf are the radial distances from the virtual apex to inlet and outlet shear boundaries
on the roll surface shown in Fig. 1, b is the shape factor of the shear boundary at the inlet of
deformation zone II, θ is the peripheral position and ρ is the radial position on the contact
surface, and g is an arbitrary shape function

g(θ, ρ) = exp
[b(θ − α)

α

ρ− ρf
ρi − ρf

]
(2.3)

b can be negative, zero or positive. When b is negative, the shear boundary moves away from the
origin O, when b is positive the shear boundary moves towards the apex O, when b is zero, the
inlet shear boundary is a cylindrical surface (i.e. g = 1). In zone I and III, the material moves
as a rigid body in the axial direction. In zone III, the velocity vf from the volume flow balance
is

vf = vi
ρi
ρf

(2.4)

With regard to the equilibrium of volume flow, the admissible velocity filed in deformation
zone II can be obtained as

vx(dy) = −U̇r(rdθ) (2.5)

vx is the horizontal velocity component in the deformation zone, U̇r is the radial component of
velocity and y is the vertical position.
So, the radial velocity component of the velocity field is

U̇r = −
vx
r

dy

dθ
= −vi

ρi
ρ

(
cos θ +

1
g

∂g

∂θ
sin θ

)
(2.6)

The volume constancy in the cylindrical coordinates system is defined as

dotεrr + ε̇θθ + ε̇zz = 0 (2.7)

where ε̇rr, ε̇θθ, ε̇zz are normal strain rate components.
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According to the cylindrical coordinates strain rates components and the assumption of the
plane strain process, U̇z = 0 (lateral velocity component), the peripheral velocity component
(U̇θ) is

U̇θ = viρi
∂g

∂r
sin θ (2.8)

where

∂g

∂r
=
∂g

∂ρ

∂ρ

∂r
=
b(θ − α)

α

1
ρi − ρf

1

1 + b(θ−α)α
ρ

ρi−ρf

(2.9)

The velocity components in deformation zone II are given as

U̇r = −vi
ρi
ρ

(
cos θ +

1
g

∂g

∂θ
sin θ

)
U̇θ = viρi

∂g

∂r
sin θ U̇z = 0 (2.10)

As it is clear from Eqs. (2.10), on the axis of symmetry U̇θ = 0, and on the contact surface
between the roll and sheet U̇θ = 0, so the incompressibility condition is satisfied. Nonzero strain
rate components in the deformation zone are

ε̇rr = vi
ρi
ρ2
1
g

[(
1− ρ∂g

∂r

)
cos θ +

(1
g

∂g

∂θ
− ρ ∂

2g

∂r∂θ

)
sin θ

]

ε̇θθ = −vi
ρi
ρ2
1
g

[(
1− ρ∂g

∂r

)
cos θ +

(1
g

∂g

∂θ
− ρ ∂

2g

∂r∂θ

)
sin θ

]

ε̇rθ =
1
2
vi
ρi
ρ2
1
g

{[
ρ2
∂2g

∂r2
+
1
g2

(∂g
∂θ

)2
− 1
g

∂2g

∂θ2
+ 1

]
sin θ +

1
g

∂g

∂θ
cos θ

}

(2.11)

2.2. Determinations of power terms

The internal power in the upper bound analysis for a perfectly elasic von Mises material in
the deformation zone is

Ẇi =
2√
3
σ0

∫

V

√
1
2
ε̇ij ε̇ij dV (2.12)

where Ẇi is internal power of deformation, σ0 is the average flow stress and dV is a differential
volume of the deformation zone.
After substitution and simplification, the internal power of region II is given by

Ẇi =
2σ0√
3

α∫

0

ρi∫

ρf

√
ε̇2rr + ε̇

2
rθρg

(
g + ρ

∂g

∂ρ

)
dρ dθ (2.13)

The shear power loss at the shear boundary is

ẆS =
σ0√
3

∫

S1,S2

|∆v| dS (2.14)

where ẆS is the shear power loss along the shear boundary, ∆v is the velocity difference and
dS1, dS2 are differential areas of shear surfaces. For calculation of the power consumption on
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each surface of velocity discontinuity, the area of discontinuity and the amount of velocity di-
scontinuity must be determined. With attention to Fig. 1

dS1 = ρig(θ, ρi)

√

1 +
( b
α

)2
dθ

|∆v1| =
∣∣∣∣vi
(
1− ρi

∂g

∂r

1
1 + (b/α)2

)
√

1 +
( b
α

)
sin θ

∣∣∣∣

(2.15)

thus the shear power loss on the shear surface S1 is obtained as

ẆS1 =
σ0√
3
viρi

[
1 +

( b
α

)2] α∫

0

g(θ, ρi)
∣∣∣1− ρi

∂g

∂r

1
1 + (b/α)2

∣∣∣ sin θ dθ (2.16)

also for the shear surface S2, the differential area and the amount of velocity discontinuity can
be obtained respectively by

dS2 = ρfdθ |∆v2| = |vf sin θ| (2.17)

the shear power loss on the shear surface S2 is obtained as

ẆS2 =
σ0√
3
vfρf

α∫

0

sin θ dθ (2.18)

The friction power loss at the interface of the sheet and the roll in S3 and its general relation is

Ẇf =
mσ0√
3

∫

S3

|∆v| dS dS3 = dρ

∆v =
∣∣∣U̇r|θ=α +Rω

∣∣∣ =
∣∣∣− vi

ρi
ρ

(
cosα+

b

α

ρ− ρf
ρi − ρf

sinα
)
+Rω

∣∣∣
(2.19)

where Ẇf is the friction power loss, dS3 is a differential area of the frictional surface and m is
the friction factor after simplification

Ẇf = m
σ0√
3
viρi

ρi∫

ρf

1
ρ

∣∣∣ cosα+
b

α

ρ− ρf
ρi − ρf

sinα− Rωρ

viρi

∣∣∣ dρ (2.20)

In the rolling process, there is only one point along the surface of contact between the roll and
the sheet at which the surface velocity of the roll equals to the velocity of the sheet. This point
is called the neutral point. Between the inlet shear surface and the neutral point the sheet is
moving slower than the roll surface and on the exit side of the neutral point, the sheet moves
faster than the roll surface. The position of the neutral point is where the relative velocity is
zero, then

vi
ρi
ρN

(
cosα+

b

α

ρN − ρf
ρi − ρf

sinα
)
−Rω = 0 (2.21)

where ρN is the radial position of the neutral point on the contact surface.
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2.3. Effective flow stress

Since actual metals exhibit strain-hardening behavior and the upper bound method is based
on the assumption of perfectly elastic material, amendments must be made to match the the-
oretical and actual behavior. For a plastic material, the mean flow stress of the material σ0 is
given by

σ0 =
1
ε

ε∫

0

σ dε ε =
2√
3
ln
ti
tf

(2.22)

In this paper, a modified upper bound method is used and behavior of the material is considered
as

σ = K(ε)n (2.23)

where K is the strength coefficient, n is the strain-hardening exponent, σ is the effective flow
stress and ε is effective strain. Inserting Eqs. (2.23) into Eq. (2.22), the mean flow stress of the
material is given by

σ0 =
1

n+ 1
K
( 2√
3
ln
ti
tf

)n
(2.24)

According to Fig. 1, in all three zones each particle of the material undergoes different strains.
The material in zone I has no strain-hardening, at the inlet shear boundary it has a strain due
to discontinuity of velocity, in zone II the material undergoes strain due to deformation, after it,
at the outlet shear boundary the material undergoes strain due to discontinuity of velocity and,
finally, it exits from zone III with no deformation. By integrating the incremental strain along
a stream line, the equivalent strain in the product is calculated. It has an angle of inclination θ
to the axis in the deformation zone. At the shear surface, the engineering shear strain γS is

γS =
|∆v|
U̇r

(2.25)

and the effective strain on the shear boundary is

εS =
1√
3
γS (2.26)

At the inlet and outlet shear boundaries, the effective strains are, respectively

εS1 =
1√
3
γS1 =

1√
3

∣∣∣∣
(
1− ρi ∂g∂r 1

1+(b/α)2

)√
1 +

(
b
α

)2
sin θ

∣∣∣∣

cos θ + 1g
∂g
∂θ sin θ

εS2 =
1√
3
γS2 =

1√
3
tan θ

(2.27)

In the deformation zone, the effective strain is expressed by

εd =

ri∫

rf

dε =

ri∫

rf

dε

dt

dt

dL
dL (2.28)

where

dε

dt
= ε̇ =

√
2
3
(ε̇2rr + ε̇

2
θθ + 2ε̇

2
rθ) =

2√
3

√
ε̇2rr + ε̇

2
rθ

dt

dL
=

1√
U̇2r + U̇

2
θ

(2.29)
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where

dL = dr

√

1 + r2
(dθ
dr

)2
(2.30)

then

εd =
2√
3

ri∫

rf

√√√√ ε̇2rr + ε̇
2
rθ

U̇2r + U̇
2
θ

[
1 + r2

(dθ
dr

)2]
dr (2.31)

Along the stream line, the equivalent strain in the deformed material is

ε(θ) = εS1(θ) + εd(θ) + εS2(θ) (2.32)

After obtaining the total strain from Eq. (2.32) and substituting in the power law, one can
rewrite the power terms in order to modify the upper bound method with considering the strain-
hardening. So the internal power, shear loss powers on S1 and S2 surfaces and the frictional
power, respectively, are

Ẇi =
∫

V

σε̇ dV =
2√
3

∫

V

K(ε)n
√
1
2
ε̇ij ε̇ij dV

ẆS =
∫

Sv

τ |∆v| dS = 1√
3

∫

V

K(ε)n|∆v| dS

Ẇf =
∫

Sf

τ |∆v| dS = m√
3

∫

V

K(ε)n|∆v| dS

(2.33)

2.4. The required rolling torque

By make use of the upper bound method, the externally supplied power is less than or equal
to the sum of the powers described in the previous Sections. The total power J∗ is

J∗ = Ẇi + ẆS1 + ẆS2 + Ẇf (2.34)

The rolling torque T is given by

T =
J∗

ω
(2.35)

where T is the required rolling torque per unit width of the sheet. The rolling torque is a function
of b (shape factor) and ρN (position of the neutral point). The shape factor b determines the
inlet shear boundary shape. The minimum value of rolling torque with respect to b is the
required torque for the rolling process in the upper bound analysis. Integrals appearing in the
above equations do not have analytical solutions and they have been solved numerically with
MATLAB software.

3. Internal defects prediction criteria

The external torque is a function of several parameters including roll radius, area reduction,
friction factor and shape factor b. In the upper bound analysis, the minimum value of the
external power with respect to b is the required power for the rolling process. According to the
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Fig. 2. Geometrical condition to initiate the internal defect

geometrical condition, for the critical value of shape factor b (bcr), the inlet shear boundary
intersects the outlet shear boundary in the centerline, see Fig. 2.
In this study, it can be taken that

ri(θ = 0, ρi) = rf (θ = 0, ρf ) (3.1)

thus

ρi exp(−b) = ρf (3.2)

so, the critical value of b can be obtained as

bcr = ln
ρi
ρf
= ln

ti
tf

(3.3)

So, if the shape parameter obtained from the optimization of the external power is equal or
greater than the bcr, the internal defects initiate.

4. Results and discussion

The flat rolling process has been analyzed using the proposed approach. In order to obtain
numerical boundaries that can be applied to the prediction and prevention of the occurrence of
internal defects in industry, finite element simulations using the proposed approach have been
carried out for many combinations of reduction in the area and relative thickness. This means
that no internal defects occur under this combination of process parameters. FEM simulations are
conducted on the available commercial explicit/FEM software, ABAQUS, to verify the analytical
model and study the effects of the upper bound method assumptions on the obtained results.
Due to symmetry of the process, finite element meshes are generated on the upper half cross
section of the sheet. The sheet is meshed by 2D plane strain, linear, four-noded CPE4R elements.
The sheet model contains 460 elements. In this model, the rolls are modeled as rigid bodies.
The rolls are rotated by a constant angular velocity about their axes. For verification of the
theoretical study, the results of rolling torque are extracted from FEM simulations. In order
to verify the validity of the upper bound approach for the flat rolling process presented in
the previous Sections, the results obtained from the theoretical model are compared with the
available experimental of data of Martins and Barata (1999) as well as with the results of finite
element simulations. The calculation has been carried out under various rolling conditions and
geometrical data utilized in the rolling analysis summarized in Table 1. During theoretical
analysis and numerical simulations, m is set at 0.3 for the contact surface between the roll
and sheet, radius of the rolls is R = 79.375mm, and the flow stress for aluminum at room
temperature is σ = 50.3(1 + ε/0.05)0.26MPa. The comparisons between the computed results,
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Table 1. Geometrical data used for computations (Martins and Barata, 1999)

Case
2t0 2tf Reduction
[mm] [mm] [%]

1 6.274 5.385 14.17
2 6.274 4.902 21.86
3 6.274 4.445 29.40
4 6.274 4.115 34.41

Fig. 3. (a) Comparison of analytical, FEM and Martins experimental data (Martins and Barata, 1999)
of rolling torque (per unit of width) as a function of the percentage of reduction. (b) Variation of rolling

torque per unit width versus parameter b

FEM simulation and the experimental values of Martins and Barata (1999) for the rolling torque
as a function of the rolling reduction are shown in Fig. 3a. It is observed that the proposed
velocity field leads to a computationally efficient procedure which gives a good agreement with
the experimental data. From Fig. 3a, it can be seen that the calculated torques are basically in
agreement with the measured ones. As expected, the predicted rolling torques are always greater
than the experimental and FEM results, because the present theoretical values are the upper
bound solutions. The reason for such discrepancies may be attributed to the assumption of rigid
rolls as well as to difficulties in the modeling of friction in the contact surface between the rolls
and the deforming sheet. It can be checked from Fig. 3a that the rolling torque increases with an
increase in reduction. Figure 3b shows variation of the rolling load versus the shape parameter b
for several reductions of the area according to Table 1. The internal defects criterion is achieved
after obtaining the shape parameter from both geometrical and analytical conditions and by
comparing them. In Fig. 4, the velocity components obtained from the upper bound solution are
compared with the FEM simulation results in θ = α/2 in the deformation zone. The results show
a good agreement between the upper bound data and the FEM results. It can be seen that the
peripheral velocity components are very small with respect to the radial velocity components.
To compare the numerical results with the experimental results of Ghos and Gardiner (2004),
the analysis performed on Aluminum 6061-T6 whose mechanical and physical properties are
shown in Table 2.
The flow stress for aluminum at room temperature is σ = 410(ε)0.05MPa (Turczyn, 1996).

The initial thickness is ti = 10mm, roll radius R = 100mm, angular velocity ω = 0.167 s−1 and
friction factor m = 0.3. Figure 5 shows the conditions of area reduction and relative thickness
for preventing internal defects in Aluminum 6061-T6 for both conditions of strain-hardening
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Fig. 4. Comparison of the upper bound and FEM of velocity components (a) radial and (b) peripheral
velocity components for 30% reduction in the area

Table 2. Mechanical properties of Aluminum 6061-T6 (Turczyn, 1996)

Young’s Poisson’s Yield
Density
[kg/m3]

Strength Strain-
modulus ratio stress coefficient -hardening
[GPa] (ν) [MPa] [MPa] exponent

68.9 0.33 276 2700 410 0.05

Fig. 5. Comparison of safe and unsafe zones predicted by the present model and the model
by Turczyn (1996)

and perfectly plastic materials. Also, these results are compared with the experimental data by
Turczyn (1996). It is observed that the safe domain is decreased by including the strain-hardening
behavior of the material in the analysis.
Figure 6a shows the velocity field in the flat rolling process with relative thickness 2ti/R = 0.2

and 40% reduction in area. The velocity field shows that in this case the internal defects do not
occurr. In another model, see Fig. 6b, the reduction of the area is changed to 20% and the
relative thickness is 2ti/R = 0.4, so that it locates in the unsafe zone. Also, Fig. 6b shows that
the internal defects occurr.
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Fig. 6. Deformation zone, (a) for 2ti/R = 0.2 and 40% reduction in the area, (b) for 2ti/R = 0.4 and
20% reduction in the area

Figure 8 shows the effect of friction factor on internal defects initiation situations for Alu-
minum 6061-T6. It can be seen that with an increase in the friction factor, the safe zone size
decreases. The effect of the strain-hardening exponent on the inlet shear boundary is shown in
Fig. 8. From this figure, it can be noticed that with an increase in the strain-hardening exponent,
the intersection point of the inlet shear boundary with the axis of symmetry moves towards the
outside of the rolls, and the tendency of central bursting defects is decreased. Also, the criterion
applied for different strain-hardening exponents is illustrated in Fig. 9a. This figure shows that
with an increase in the strain-hardening exponent value, the safe domain increases. Figure 9b
shows the effect of strain-hardening exponent on the rolling torque for the upper bound appro-
ach and the FEM. This figure illustrates that by increasing the strain-hardening exponent, the
rolling torque decreases. Figure 9b also shows that the theoretically predicted rolling torque is
higher than that from the FEM results, which is due to the nature of the upper bound theory.

Fig. 7. Effect of the friction factor on size of the safe and unsafe zones

Fig. 8. Effect of the strain-hardening exponent on the inlet shear boundary
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Fig. 9. Effect of the strain-hardening exponent (a) on size of the safe and unsafe zones and (b) on the
rolling torque for 30% reduction in the area

5. Conclusions

In this paper, an analytical approach based on the upper bound method, is presented for predic-
tion of rolling torque and occurrence of internal defects in the flat rolling process. The advantages
of the presented criterion are the generality of the proposed inlet shear boundary and a new
kinematically admissible velocity field. In addition, the presented criterion predicts central bur-
sting defects in simpler mathematical equations than in other criteria, and the effect of the
strain hardening exponent of the sheet material on the rolling torque and prediction of internal
defects are investigated. It has been concluded that internal defects are affected primarily by the
strain-hardening exponent. By increasing the strain-hardening exponent, the rolling torque and
the possibility of internal defects decreases. By increasing the strain-hardening exponent, the
safe zone size is increased and the internal defects occur in thick sheets with a small reduction.
Criteria curves for the safe domains are presented for a wide range of process variables. By
using these criteria in the rolling practice, it has become possible to predict necessary rolling
conditions in order to avoid internal defects.
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In the present study, a shape memory alloy (SMA) phenomenological constitutive model is
proposed that is capable of describing SMA superelastic behavior and the plasticity effect.
The phase transformation constitutive model, by using strain and temperature as control
variables to judge the phase transformation points in order to avoid the complexity of trans-
formation correction, incorporates plasticity described by the von Mises isotropic hardening
model. Further, the proposed model is implemented into the finite element package ANSYS
by the user subroutine USERMAT. The results produced by the proposed model of simu-
lated superelastic and plasticity behavior are compared with experimental data taken from
the literature.

Keywords: SMAs, superelasticity, plasticity, constitutive law, finite element analysis

1. Introduction

SMA is a kind of functional material which has the function of sensing and driving. It has been
applied to many fields because of its shape memory, super elasticity and so on. Until recently,
there are very few constitutive models suitable to consider both of stress-induced martensite
transformation and plastic deformation of martensite. McKelvey and Ritchie (2001) found that
plastic strain of the stress-induced martensite phase occurred if the applied stress was high
enough. Lazghab (2001) carried out a theoretical study to SMAs with plastic deformation of
martensite, although it was not available to implement into a commercial finite element softwa-
re. Yan et al. (2003) developed a constitutive model to quantify the effect of plasticity on the
reverse transformation and examined the influence of hydrostatic stress on the transformation.
Bo and Lagoudas (1999) proposed several constitutive models considering the evolution of pla-
stic strain under cyclic thermal induced transformation cycles with micromechanical analyses
by a representative volume element. However, those models cannot be utilized to analyze the
combination of super-elastic and plastic behavior due to their limitations in the description of
martensite plasticity.
Some works have been carried out to implement the super-elastic constitutive model into

the finite element model (Auricchio and Taylor, 1997). The super-elastic constitutive model
proposed by Auricchio and Taylor (1997) has been successfully implemented into finite ele-
ment codes such as ABAQUS and ANSYS. However, that model cannot describe plasticity of
the martensite. In a more recent work, Kan et al. (2010) and Yan et al. (2003) developed a
temperature-dependent three-dimensional phenomenological constitutive model considering the
local plastic yield of martensite under a high stress, and successfully implemented into the finite
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element package ABAQUS. Moreover, the nonlinear problem was solved within a framework of
the updated Lagrangian formulation using a return mapping algorithm (Lagoudas et al., 1996;
Cisse et al., 2016) to update the stress value according to the current strain. However, the phase
transformation starting conditions in that model using the phase diagram (σ, T ) to determine
the SMA phase state (Bouvet et al., 2004; Saint et al., 2009) is complex and not suitable for
identifying.
In the present work, a modified constitutive model having temperature and the strain tensor

as control variables, is developed. It analyzes thermomechanical behavior of 3D SMA structures
with a feature of combination of superelasticity and plasticity, which is particularly suitable for
finite element implementation. Moreover, the finite element analysis of a SMA structure considers
nonlinearities associated with phase transformation and plasticity. The modified constitutive
model is particularly suitable for identifying the starting conditions of phase transformation and
plasticity, and for finite element implementation. However, some other phenomena observed in
SMAs including re-orientation of the martensite phase and a non-linear transformation hardening
function are not taken into account in the construction of the constitutive model.

2. Constitutive model

2.1. Thermodynamic state equation and internal variable

The constitutive model in this work will be constructed under the generalized plasticity the-
ory. Lubliner and Auricchio applied this theory to study SMAs, and proposed a three-dimensional
thermo-dynamic constitutive model which can be used to simulate the effect of super elastici-
ty and shape memory effect of SMA (Lubliner and Auricchio, 1996). The following is a brief
description of the generalized plastic theory.
On the infinitesimal strain assumption, the additively decomposition of the total strain ε

into an elastic strain εe and an inelastic strain εin yields

ε = εe + εin (2.1)

It is assumed that the Helmholtz free energy can also be additively contributed to elastic
and inelastic parts as follows

ψ = ψe(ε− εin, ξ, T ) +ψin(ξ, η, T ) (2.2)

in which ξ and η depict phase transformation and plastic yield behavior, respectively.
The elastic free energy ψe is different from that of the classical elastic, plastic or visco-elastic

theory, which is related to the internal variable ξ, and is shown as follows

ψe =
1
2
(ε− εin) : D(ξ) : (ε− εin) (2.3)

in which D(ξ) is the elastic stiffness matrix.
The stress can be derived from the thermodynamic state equation

σ =
∂ψe
∂εe
= D(ξ) : (ε− εin) (2.4)

The above process can be directly extended into construction of the constitutive model of
the SMA.
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2.2. Main equations of the constitutive model

Based on the assumption of small deformation, the total inelastic strain εin can be divided
into two parts: stress-induced martensitic transformation εt and irreversible plastic strain εp,
in which εp includes austenite plastic strain εAp in a high temperature and martensite plastic
strain εMp under a high stress. As a result, the total strain is

ε = εe + εin = εe + εt + εp (2.5)

in which εp = εAp + ε
M
p .

After discretizing the equations, the expressions are as follows

∆εin = ∆εt +∆εp ∆εp = ∆εAp +∆εMp ∆εe = ∆ε−∆εt −∆εp (2.6)

For the super-elastic NiTi alloy, the stress-induced martensitic transformation and its reverse
transformation can be expressed by the volume fraction of martensite, which can be defined by
the internal variable ξ, so the elastic stress-strain relation can be expressed as

σ = σ∗ −De(ξ) : ∆εin (2.7)

in which σ∗ = De(ξ) : ∆ε is the trial stress, and De(ξ) is the equivalent elastic tensor. It can
be changed with a change of the phase transformation, which is different than in general metal
materials, from the initial austenite to the final martensite.
The simple form for the equivalent elastic tensor as D = DA = DM has been used in some

researches because of its close proximity to the real elastic modulus of austenite and martensite
(Tanaka, 1986; Liang and Rogers, 1990). In this paper, a scheme describing the equivalent elastic
tensor is proposed to simplify the calculation as

De(ξ) =
1
2
(DA +DM ) (2.8)

in which DA and DM are the elastic tensors of austenite and martensite, respectively. The expe-
riment demonstrated that the effect of the difference between the elastic modulus of austenite
and martensite could be ignored.
Metal materials are generally irrecoverably plastic. Their characteristics are independent of

hydrostatic pressure. Therefore, the plastic yield surface can only consider the stress tensor.
Considering the deviatoric stress of the above equation, we get De : ∆εin = 2G∆εin, and

s = s∗ − 2G∆εin (2.9)

in which s∗ is the deviatoric stress of σ∗, G = E/(1 + ν) is the shear elastic modulus in which
ν is the Poisson ratio, and E is the equivalent elastic modulus expressed as E = (EA + EM )/2.
Therefore, the shear elastic modulus G is independent of the volume fraction of martensite.

2.3. Evolution rule of phase transformation strain

The isotropic behavior of metal materials can be described by the von Mises yield surface.
The expression of the yield behavior is as follows

F (σ, q) = σeq − σy(q) = 0 (2.10)

in which σeq = [32s : s]
1/2 is the von Mises equivalent stress, σy is the monotonic tensile plastic

yield stress of the metal material, q is the cumulative plastic strain.
Similarly to the plastic yield surface of a metal material, the phase transformation function

to describe the forward transformation and the reverse transformation are introduced as follows:
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— forward phase transformation

FAM (σ, ξ) = σeq − σAMs,T (ξ) = 0 (2.11)

— reverse phase transformation

FMA(σ, ξ) = σeq − σMAs,T (ξ) = 0 (2.12)

where σAMs,T = σ
AM
s0,T
+hAMεLξ and σMAs,T = σ

MA
s0,T
+hMAεLξ are the initial stresses of the forward

phase transformation and the reverse phase transformation, respectively. σAMs0,T and σ
MA
s0,T
are

the initial stress of the forward phase transformation and the reverse phase transformation,
respectively. hAM and hMA are the hardening modulus of the martensitic transformation and
the reverse transformation, respectively.
In this paper, the volume fraction of martensite is

ξ =
εt
εL

(2.13)

in which εL is the maximum phase transformation strain under uniaxial tension, which can be
determined by experimental results under monotonic loading and unloading. εt = [23εt : εt]

1/2 is
the equivalent phase transformation strain. When the phase transformation does not occur, the
equivalent transformation strain is zero. This means that the volume fraction of martensite is
ξ = 0. With an increase in the equivalent transformation strain, the martensite volume fraction
increases linearly and eventually the maximum value ξ = 1 is achieved.
Equation (2.13) shows that the phase transformation strain is proportional to the volume

fraction of martensite. As a result, the phase transformation strain rate can be given in the form
similar to the plastic theory:
— forward phase transformation

ε̇t = ε̇AMt = λ̇AM
∂FAM (σ, ξ)

∂σ
=

√
3
2
εLξ̇nAM ξ̇ > 0 (2.14)

— reverse martensitic transformation

ε̇t = ε̇MAt = λ̇MA
∂FMA(σ, ξ)

∂σ
=

√
3
2
εLξ̇nMA ξ̇ < 0 (2.15)

λAM and λMA are the transformation multipliers of the martensitic transformation and the rever-
se transformation, respectively (similar to the plastic multiplier in the plastic theory). nAM and
nMA are the direction vectors of the forward and reverse phase transformation, respectively

nAM =
∂FAM (σ, ξ)

∂σ
=

√
3
2
s

σeq
nMA =

∂FMA(σ, ξ)
∂σ

=

√
3
2
s

σeq
(2.16)

In this paper, the phase transformation, austenite and martensite yield behavior under dif-
ferent temperature are considered in the process of implicit solution of the stress integral. In
general, the plastic strain produced during the phase transformation ratcheting under cyclic
loadings should not be ignored regarding the experiments by Kang et al. (2009). However, it is
assumed that there is no interaction between them in a single cycle of loading and unloading. The
stress-induced martensitic transformation and the plastic behavior of austenite and martensite
are independent of each other. The plastic behavior is not considered in the course of impli-
cit stress integration of the phase transformation in our research. The isotropic elastic-plastic
constitutive model with the implicit stress integration method is extended to that method of
the constitutive modeling of SMA. The transformation strain increment and the plastic strain
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increment are calculated by the backward Euler difference method respectively, and the trans-
formation strain and the plastic strain are updated further.
According to the above assumptions, Eq. (2.9) can be further expressed as follows for the

implicit stress integration process of the phase change behavior

s = s∗ − 2G∆εt (2.17)

By Eqs. (2.16), it can be obtained:
— forward phase transformation

∆εAMt =

√
3
2
εL∆ξnAM ∆ξ > 0 (2.18)

— reverse phase transformation

∆εMAt =

√
3
2
εL∆ξnMA ∆ξ < 0 (2.19)

in which

nAM = nMA = nt =

√
3
2
s

σeq
(2.20)

Substituting Eqs. (2.18) and (2.19) into Eq. (2.17), we obtain

s = s∗ − 3GεL∆ξ
s

σeq
(2.21)

It is further converted to

s
(
1 + 3G

εL∆ξ

σeq

)
= s∗ (2.22)

If we take the contracted tensor product of each side of this with itself, we obtain

(
1 + 3G

εL∆ξ

σeq

)2
s : s = s∗ : s∗ (2.23)

Defining σ∗eq = [
3
2s
∗ : s∗]1/2 as the equivalent stress, Eq. (2.23) can be further transformed into

(
1 + 3G

εL∆ξ

σeq

)
σeq = σ∗eq or σeq + 3GεL∆ξ = σ∗eq (2.24)

This is a non-linear equation in ∆ξ which may be solved by the Newton-Raphson iterative
method. Therefore, the martensite volume fraction increment is given as

d∆ξ =
σ∗eq − 3GεL∆ξ − r − σy

3GεL + hεL
(2.25)

in which σy is the initial stress of the forward phase transformation σAMs,T0 or the reverse phase
transformation σMAs,T0 . h indicates the hardening modulus, and r is the isotropic hardening func-
tion. The experimental results show that the stress increase caused by the phase transformation
strain can be considered as linear hardening, and the gradient value h is a constant parameter
which can be expressed as follows:
— forward phase transformation

h = hAM =
σAMf,T − σAMs,T

εL
∆ξ > 0 (2.26)
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— reverse phase transformation

h = hMA =
σMAs,T − σMAf,T

εL
∆ξ < 0 (2.27)

For linear hardening r = hεLξ. Therefore, ∂r/∂ξ = hεL. From the experimental results, it is
found that the start stress of phase transformation with temperature is basically linear, which
dose not consider the influence of plasticity on the final stress of the austenite reverse transfor-
mation for simplicity. Therefore, the evolution of transformation stress with temperature can be
described with the use of the following equation

σMAs,T = σ
MA
s,T0
+ (T − T0)CAM σMAf,T = σ

MA
f,T0
+ (T − T0)CAM

σAMs,T = σ
AM
s,T0
+ (T − T0)CMA σAMf,T = σ

AM
f,T0
+ (T − T0)CMA

(2.28)

in which CAM and CMA are material parameters which depict the slope of the phase transfor-
mation stress with temperature.

2.4. Plastic strain evolution rule

After finishing the stress-induced phase transformation, if the loading is continued up to
exceed the martensite plastic yield stress, the plastic deformation of martensite will occur. As
temperature is increased, the initial stress of the forward phase transformation increases. As the
martensitic start stress is higher than the austenite plastic yield stress, the SMA will begin to
undergo the austenite plastic deformation firstly. In this paper, it is assumed that the plastic
yield behavior of austenite and martensite is subject to the von Mises yield criterion, and the
plastic yield condition can be expressed as:
— austenitic plastic yield

FAp(σ, p) = σeq − σAy (p) = 0 (2.29)

— martensite plastic yield

FMp(σ, p) = σeq − σMy (p) = 0 (2.30)

in which the internal variable p is the cumulative plastic strain

ṗ =
[2
3
ε̇p : ε̇p

] 1
2

and σAy = σAy0 + h
p
Ap and σ

M
y = σMy0 + h

p
Mp are the plastic yield stress of austenite and mar-

tensite, respectively. σAy0 and σ
M
y0 are the initial plastic yield stress of austenite and martensite,

respectively, and hpM are the plastic yield modulus of austenite and martensite, respectively.
The plastic strain rate can be expressed as

ε̇p =





ε̇Ap = λ̇A
∂FAp(σ, ξ)

∂σ
=
√
3
2
ṗnA austenitic plastic yield

ε̇Mp = λ̇M
∂FMp(σ, ξ)

∂σ
=
√
3
2
ṗnM martensite plastic yield

(2.31)

where λA and λM are plastic multipliers of the austenitic and martensite plastic yield, re-
spectively. nA and nM are the direction vectors of the austenitic and martensite plastic yield,
respectively

nA = nM =

√
3
2
s

σeq
(2.32)
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The solutions for a plastic strain increment and the renewal of plastic strain are considered in
the following. The plastic strain includes plastic strain of austenite and martensite. The course
of the implicit stress integration is similar for both of them.
The implicit stress integral of plastic yield behavior can be solved by the method discussed

in Section 2.3 for the phase transformation, which is similar to the equation of the deviatoric
stress increment in Eq. (2.17)

s = s∗ − 3G∆εp
s

σeq
(2.33)

in which εp is the equivalent phase transformation strain. We take the contracted tensor product
of each side of Eq. (2.33) with itself

σeq + 3G∆p = σ∗eq (2.34)

The expression form of the current equivalent plastic strain increment can be obtained by
using the Newton-Raphson iteration method

d∆p =
σ∗eq − 3G∆p − r − σy

3G+ h
(2.35)

In the above equations, σy is the plastic yield stress of austenite σAy or martensite σ
M
y . h is the

plastic hardening modulus, which is the stress increment for the unit equivalent plastic strain
increment. This modulus is also expressed as a linear hardening function. It means that the
gradient value h is constant, the expression for it is as follows

h =

{
hpA austenitic plastic hardening modulus

hpM martensitic plastic modulus of hardening
(2.36)

2.5. Transformation initial conditions

In many constitutive laws, researchers use stress tensors and temperature data as control
variables. In this work, an effective criterion proposed in (Ben Jaber et al., 2008) using strain
and temperature as control variables is used to judge the phase transformation points in order
to avoid the complexity of transformation correction. To start the transformation, the following
conditions should be satisfied.
The conditions for A-M transformation are

εAMs < εAMt < εAMf ε̇AMt > 0 0 < ξ < 1 σeq > σAMs,T

The M -A transformation conditions are expressed as follows

εMAs < εMAt < εMAf ε̇MAt < 0 0 < ξ < 1 σeq < σMAs,T

in which εAMt and εMAt are the equivalent phase transformation strain in A-M stage and M -A
stage, respectively.
The parameters of the initial and final strain for this transformation criterion are deduced

from those of the stress phase transformation as follows.
The strain εAMs marking the beginning of the transformation band A-M

εAMs =

{
εAMscr + C

∗
AM (T − TAMs ) if T0 > TAMs

εAMscr if T0 < TAMs
(2.37)
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The strain εAMf marking the end of the transformation band A-M

εAMf =




εAMfcr + C

∗
AM (T − TAMs ) if T0 > TAMs

εAMfcr if T0 < TAMs
(2.38)

in which C∗AM = CAM/EM , εAMscr = σAMs,T0/EA, ε
AM
fcr = σAMf,T0/EM + εL, and T0 denotes the

specified temperatures, i.e., room temperature.
It should be noted that EA and EM are temperature-dependent elastic moduli of austenite

and martensite, which can be expressed by the following equation at a certain temperature

EA = E
T0
A + kE

T0
A ln(T − T0 + 1)

EM = E
T0
M + kE

T0
M ln(T − T0 + 1)

(2.39)

where ET0A and E
T0
M are the elastic moduli of austenite and martensite at specified temperatures,

i.e., room temperature. k is a material parameter which depicts the increasing rate of the elastic
modulus with temperature and is obtained from experimental results.
The state functions of the beginning strain εMAs and the end strain εMAf of the transformation

band M -A are

εMAs = C∗MA(T − TMAs ) + εL εMAf = C∗MA(T − TMAf ) (2.40)

in which C∗MA = CMA/EA.

3. Finite element implementation

3.1. Consistent tangent modulus of phase transformation

After differentiation of Eqs. (2.24), it can be derived

(
1 + 3G

εL∆ξ

σeq

)
δs− 3GεL

σeq
δ∆ξs− 3GεL∆ξ

σ2eq
δσeqs = δs∗

δσeq + 3GεLδ∆ξ = δσ∗eq

(3.1)

To differentiate Eq. (2.10), we put δF = δσeq − δr = 0. Therefore, it can be obtained
δσeq = δr = hεLδξ = hεLδ∆ξ. So, we may write Eq. (3.1)2 as

hεLδ∆ξ + 3GεLδ∆ξ = δσ∗eq or δ∆ξ =
δσ∗eq

(h+ 3G)εL
(3.2)

Combining with (3.1)2 it gives

δσeq = δσ∗eq
(
1− 3G

h+ 3G

)
(3.3)

We now use Eqs. (3.2)2 in Eq. (3.1)1 to eliminate δσeq, δ∆ξ and ∆ξ, respectively, to give

σ∗eq
σeq

δs +
δσ∗eq
σeqσeq

(
σeq −

3Gσ∗eq
h+ 3G

)
s = δs∗ (3.4)

Consider the term

δσ∗eq =
3
2
1
σ∗eq
s∗ : δs∗ (3.5)
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Substituting this together with the expression for s in Eq. (2.22) into Eq. (3.4) gives

δs =
3
2

( s∗

σ∗eq
⊗ s

∗

σ∗eq

)( 3G
h+ 3G

− σeq
σ∗eq

)
: δs∗ +

σeq
σ∗eq

δs∗ (3.6)

If we write

Q =
3
2

( 3G
h+ 3G

− σeq
σ∗eq

)
R =

σeq
σ∗eq

then Eq. (3.6) becomes

δs =
[
Q
( s∗

σ∗eq
⊗ s

∗

σ∗eq

)
+RI

]
: δs∗ (3.7)

in which I is the fourth-order identity tensor.
We are trying to relate δs and δε to derive the Jacobian. The deviatoric trial stress in terms

of the deviatoric strain may be written as follows with applying the differential operator

δs∗ = 2G
(
δε − 1

3
I⊗ I : δε

)
(3.8)

Substituting into Eq. (3.7) gives

δs∗ = 2G
[
Q
( s∗

σ∗eq
⊗ s

∗

σ∗eq

)
+RI

]
:
[
δε− 1

3

(
I⊗ I

)
: δε

]
= 2GQ

( s∗

σ∗eq
⊗ s

∗

σ∗eq

)
: δε

+ 2GRδε − 1
3
Q
( s∗

σ∗eq
⊗ s

∗

σ∗eq

)
: [(I ⊗ I) : δε]− 2

3
GRI : [(I⊗ I) : δε]

(3.9)

The stress can be given in terms of its deviatoric tensor as

δσ = δs+
1
3
(I⊗ I) : δσ = δs+K(I⊗ I) : δε (3.10)

in which K = E/[3(1 − 2ν)] is the bulk modulus.
Substituting into (3.9) gives

δσ

δε
= 2GQ

( s∗

σ∗eq
⊗ s

∗

σ∗eq

)
+ 2GRI +

(
K − 2
3
GR

)
(I ⊗ I) (3.11)

This is the consistent tangential modulus for the forward and reverse phase transformation.

3.2. Consistent tangent modulus of plastic deformation

The solving process for the consistent tangent modulus of the plastic strain behavior of the
NiTi alloy is similar to that of the previous phase transformation behavior. By differentiating
Eq. (2.33), we obtain

(
1 + 3G

∆p

σeq

)
δs− 3Gδ∆p

σeq
s− 3G∆p

σ2eq
δσeqs = δs∗

δσeq + 3Gδ∆p = δσ∗eq

(3.12)

and δσeq = δr = hδp = hδ∆p.
The consistent tangent modulus expression of the plastic strain behavior is the same as Eq.

(3.12)2. The difference from the phase transformation strain behavior is the expression of the
plastic hardening modulus h. A reverse mapping algorithm is described in Algorithm 1.
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Algorithm 1: Iteration procedure

Begin
Step1 Initialize variables

Step2 Calculate ε̇AMt , ε
AM
t , ε̇eq, εeq, σeq and ξ

if ξ= 1, goto Step5
elseif ε̇AMt > 0, εsHAM < εAMt < εAMf and σeq > σAMs,T goto Step3

elseif σeq > σMy and ε̇eq > 0, goto Step7
else goto Step10

endif
Step3 Calculate d∆ξ

if |d∆ξ/∆ξ| < toler
obtaining ∆ξ, and calculating ∆εtr =

√
3/2εL∆ξnAM, updating elastic

strain εe, transformation strain εtr, martensite volume fraction ξ and stress
tensor σ goto Step4

endif
Step4 Calculate consistent tangent modulus of martensite phase transformation,

goto Step5

Step5 Calculate ε̇MAt , ε
MA
t , ε̇eq, εeq, σeq and ξ

if ξ= 0, goto Step10
elseif ε̇MAt < 0, εMAs < εMAt < εMAf and σeq < σMAs,T goto Step6

else goto Step10
endif

Step6 Calculate d∆ξ
if |d∆ξ/∆ξ| < toler
obtaining ∆ξ, and calculating ∆εtr =

√
3/2εL∆ξnMA, updating elastic

strain εe, transformation strain εtr, martensite volume fraction ξ and stress
tensor σ

endif
Step7 Calculate ε̇eq, εeq, σeq

if σeqσ
M
y and ε̇eq > 0, goto Step8
else goto Step10

endif
Step8 Calculate d∆p

if |d∆p/∆p| < toler
obtaining ∆p, and calculating ∆εp =

√
3/2∆pnM, updating elastic strain εe,

martensite plastic strain εp, cumulated plastic strain p and stress tensor σ
endif

Step9 Calculate consistent tangent modulus of martensite plasticity, goto Step10
Step10 Updating status variables
End

4. Verification of the proposed model

The constitutive model outlined in Section 2 has been implemented as a user subroutine for the
finite element code ANSYS (2004) to analyze the phase transformation and plastic deformation
under the uniaxial tension and unloading condition. In the following, the results of simulations
by the proposed model are compared with the experimental data by Kang et al. (2009). From
the experimental stress-strain curve under different temperatures, the following material para-
meters can be used. A SMA phase transformation and plasticity behavior diagram is presented
in Fig. 1 to identify the parameters: ET0A = 41.0GPa, E

T0
M = 37.0GPa; vA = vM = 0.33;

CAM = 8.0MPa/K, CMA = 8.8MPa/K; k = 0.16; σAMs,T0 = 53.0MPa, σ
AM
f,T0 = 381.0MPa,

σMAs,T0 = 141.0MPa, σ
MA
f,T0 = 122.0MPa; εL = 0.035; T0 = 295K; hAM = 0.8GPa;

hMA = 1.3GPa; h
p
M = 6.7GPa; σ

M
y = 1.7GPa.
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Fig. 1. SMA phase transformation and plasticity behavior diagram

Fig. 2. Stress-strain curves during tension and unloading at various temperatures under strain
controlled loading: (a) 309K, (b) 323K, (c) 295K, peak strains at 6.6%, (d) 295K, peak strains at 10%

The uniaxial tension and unloading case of the material has been calculated using ANSYS
based on the proposed model and employed a 3D 8-node iso-parametric brick element. The
simulation results are shown in Fig. 2. It can be seen that the stress-induced martensitic trans-
formation occurs at low temperatures, such as 295K, when the stress is applied to the forward
phase transformation stress σAMs,T . When the stress reaches the end of the forward phase trans-
formation σAMf,T , the phase transformation strain can reach the maximum phase transformation
strain εL, and the martensitic transformation is over. During unloading, once the stress reaches
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the initial stress σMAs,T of martensite to austenite, the martensite gradually transforms to auste-
nite. As the load is lower than the phase transformation final stress σMAf,T , the elastic unloading
of austenite takes place in the aftermath. It can be seen in Fig. 2 that the phase transformation
stress is increased with an increase in temperature. The elastic modulus also increases with the
increase in temperature.

Figures 2c,d show the stress-strain curves obtained in the tension-unloading with high peak
strains at 295K. It can be seen in Fig. 2c that the response peak stress is about 1000MPa, and
the martensite can still be completely transformed into austenite when undergoing unloading.
However, with a higher applied peak strain, an apparent residual strain can be observed which is
caused by the plastic deformation of martensite, as shown in Fig. 2d. The simulated results show
a good agreement with the experimental ones. The results show that the proposed constitutive
model can predict the thermodynamic behavior in the super-elastic NiTi alloy. It can be predicted
that the model can also give reasonable prediction results for other working conditions and other
experimental results in the temperature range.

Figure 3 shows a finite element model of an SMA rod with multiple elements, with length
of 10mm and radius of 0.5mm. The fixed boundary conditions are applied at one end, at the
other side ∆l = 0.1mm, 0.3mm, 0.5mm and 0.7mm (direction along the Z axis), and then a
total torque load TM = 25Nm is applied to the peripheral node of this side at T0 = 295K.
The stress-strain curves in the tension-torque loading is calculated based on the data at the
Gauss point of the picked element. It can be seen in Fig. 3a that the tension stress exhibits three
inflection points. One is the phase transformation starting point A, another one is the phase
transformation ending point B, and last one is the yield point C. It can be concluded that the
phase transformation and plasticity lead to a decrease in the tension stress for the exact tension
strain value. From Fig. 3b it can be found that as the tension strain is small, the tension rod dose
not go enough through the phase transformation in the tension stage, such as in the TM = 25Nm
and ∆l = 0.1mm or ε = 0.01 case. As the total torque load continues to be applied, the tension
rod would go through the phase transformation and martensite plasticity stages, which implies
the non-homogeneous stress status including both tensile and shear stresses. When the tension
strain is high enough, such as in the TM = 25Nm and ∆l = 0.7mm or ε = 0.07 case, the tension
rod finishes phase transformation in this stage. Then, as the total torque load is applied enough
high, the tension rod would just go through the martensite plasticity stage. In this case, the
plastic transform point mapped by the shear stress shown in Fig. 3b presents a decrease as the
tension strain increases.

Fig. 3. Finite element analysis of the SMA rod with multiple elements: (a) tension stress, (b) shear stress
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5. Conclusions

A shape memory alloy (SMA) phenomenological constitutive model is proposed in the general
inelastic framework. Transformation hardening, reverse transformation, temperature dependence
of transformation strain for each phase and plasticity hardening are considered in the proposed
model. The model is implemented into the finite element code ANSYS by USERMAT user
subroutine. The numerical results show that good simulation results can be obtained for uniaxial
tensile-unloading stress-strain curves. The simulation results of the proposed model show a good
agreement with the experimental ones at different temperatures for the super-elastic behavior of
NiTi alloy. Finally, the accuracy of the implementation is verified by numerical tests considering
non-homogeneous deformation of the structure.
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In this paper, closed form analytical expressions for thermoelastic strain and stress compo-
nents due to a spherical inclusion in an elastic half-space are obtained. These expressions
are derived in the context of steady-state uncoupled thermoelasticity using thermoelastic
displacement potential functions. The thermal strain and stress fields are generated due
to differences in the coefficients of linear thermal expansion between a subregion and the
surrounding material. The strain and stress components for exterior points of the spheri-
cal inclusion are same as those of the center of dilatation. Variations of strain and stress
components for exterior and interior points of the spherical inclusion are shown graphically.

Keywords: uncoupled thermoelasticity, strain and stress fields, potential functions, spherical
inclusion

1. Introduction

Thermoelasticity is an extension of theory of elasticity to include thermal effects. Theory of
thermoelasticity is concerned with the interaction between the thermal field and elastic bodies.
Comprehensive treatises on the topics of thermoelasticity have been covered in the classical texts
(Nowinski, 1978; Truesdell, 1984; Nowacki, 1986; Boley and Weiner, 1997; Boresi et al., 2011;
etc.). The study of thermoelasticity has begun with Duhamel (1837) and Neumann (1885), who
postulated equations of linear thermoelasticity for isotropic bodies. Goodier (1937) studied the
static problem of uncoupled thermoelasticity by employing the method of superposition using
displacement potential functions. With the help of Goodier’s method, Mindlin and Cheng (1950)
obtained the thermal stress in a semi-infinite elastic solid with the traction free surface for the
centre of dilatation using Galerkin’s vector stress function. The result was then applied to the
case of a spherical inclusion in a semi-infinite medium. Nowacki (1957) considered the problem
of an instantaneous source of heat in an infinite isotropic elastic space and determined the state
of stress using the potential of thermoelastic strain. Also, stress components in a semi-infinite
elastic space due to an instantaneous source of heat was obtained using the method of Galerkin’s
displacement function and the Fourier integral under stress free surface boundary conditions.
Sen (1957) presented a direct method for solving problems of circular holes in an isotropic
elastic plate having prescribed displacements on the edge. The problem of deformation in an
infinite isotropic plate due to the centre of dilatation in the form of a nucleus of thermoelastic
strain at a finite distance from the hole was also discussed. Sharma (1957) obtained deformation
and stress fields due to a nucleus of thermoelastic strain in an infinite solid having a spherical
cavity using interior and exterior spherical harmonics. Another problem of a solid sphere at zero
temperature having a heated nucleus inside was also discussed. Biharmonic solutions to steady
state thermoelastic problems in three dimensions were derived by Nowinski (1961). Nowinski
(1963) proved a mean value theorem for an arbitrary steady-state thermoelastic problem for an
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isotropic elastic solid sphere. The stress components at the center of the sphere were expressed
in terms of temperature on the surface of the sphere.
Guell and Dundurs (1967) obtained elastic fields due to a subregion between two joined half-

-spaces by differentiation from the corresponding fields for the whole space using the solutions
for the center of dilatation. The Papkovich-Neuber displacement potentials were used when the
interface between two joined half-spaces was a smooth interface and perfectly bonded. Those
results were then applied to a spherical inclusion. The case of the force on the center of dilatation
was also discussed. Hu (1989) considered the problem of a parallelepipedic thermal inclusion in
a three-dimensional half-space and derived analytical solution using Goodier’s method of the
nucleus of thermal strain or the center of dilatation. Wang and Huang (1991) studied some
thermoelastic problems in the half-space by using Goodier’s thermoelastic potential functions
and general solutions of elasticity based on the Boussinesq solutions (consisting of different har-
monic functions). Yu et al. (1992) and Yu and Sanday (1992), respectively, derived analytical
solutions for thermoelastic displacements and stresses due to an inclusion in a dissimilar medium
consisting of two joined semi-infinite elastic solids and for the centre of dilatation in a plate.
The stress-deformation state of an elastic half-space due to an inhomogeneous spheroidal ther-
mal inclusion in the form of a prolate or oblate ellipsoid of revolution under stress-free surface
boundary conditions was discussed by Kolesov et al. (1992) using thermoelastic displacement
potential functions and the Teredzave method. Yu et al. (2002) calculated thermal stresses indu-
ced by an ellipsoidal inclusion with uniform dilatational eigenstrains in one of the two perfectly
bonded semi-infinite solids using the method of dilatation centres and potential functions. Da-
vies (2003) derived the elastic field due to a non-uniform temperature or a coherently misfitting
inclusion in a semi-infinite region from the corresponding field in an infinite region.
Using Green’s function method and series expansion techniques, closed form solutions for

displacement and stress fields due to a hemispherical inclusion with a uniform eigenstrain in
a semi-infinite isotropic elastic medium were obtained by Linzhi (2003). Liu and Wang (2005)
obtained the elastic field caused by eigenstrains in a half-space using two types of numerical
techniques – discrete correlation and fast Fourier transform as well as discrete convolution and
fast Fourier transform. To obtain that field, analytical solutions for influence coefficients were
expressed in terms of derivatives of four key integrals. Zhou et al. (2009) introduced a fast me-
thod for solving the problem of three-dimensional arbitrarily shaped inclusions in an isotropic
half-space using a combination of 2D and 3D fast Fourier transform. A fast method for solving
contact problems for a half-space containing multiple inhomogeneities such as voids, cavities,
inclusions and fibers was presented by Leroux et al. (2010). The displacement and stress fields
due to eigenstrains of all spherical inclusion were obtained using Eshelby’s equivalent inclusion
method along with 2D and 3D fast Fourier transforms. Itou (2014) derived basic equations for
thermoelastic plane stress conditions and thermoelastic plane strain conditions. Two problems
were solved using thermoelastic displacement potential functions: (i) axisymmetric thermal stres-
ses for a hollow thin disk, (ii) thermal stresses for an infinite thin plate with a circular hole under
uniform heat flow. Kumagai et al. (2014) presented different representations of a seismic sphe-
rical source. Those different representations consisted of a spherical source (S1), spherical crack
source (S2), isotropic source of three mutually perpendicular vector dipoles (S3) or three mutu-
ally perpendicular tensile cracks (S4), Eshelby’s spherical source with stress-free strain (S5) and
Eshelby’s spherical source with strain-free stress (S6). Static displacement fields due to those
sources in an infinite medium and in a half-space were also derived.
In the present paper, we obtain thermoelastic strain and stress fields due to a spherical inclu-

sion in an elastic half-space in the context of steady-state uncoupled thermoelasticity. Following
the method opted by Davies (2003), we derive thermoelastic strain and stress components for
an infinite region from which corresponding fields can be derived in the semi-infinite region. The
expressions for these fields are obtained for the axisymmetric problem in cylindrical coordinates
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using thermoelastic displacement potential functions. These results are in good agreement with
the results found by Mindlin and Cheng (1950).

2. Theory

In the linear theory of thermoelasticity, the total strain can be written as the sum of mechanical
and thermal strains (Goodier, 1937; and Nowinski, 1978)

eij = e
(M)
ij + e

(T )
ij (2.1)

in which for an isotropic material, the thermal strain takes the form e
(T )
ij = αTδij , where α is the

coefficient of linear thermal expansion, T is temperature difference, δij is Kronecker delta. Then
in the context of uncoupled linear thermoelasticity, the displacement-temperature equation of
equilibrium in the absence of body forces can be written as

∇2u+ 1
1− 2ν∇(∇ · u) =

2(1 + ν)
1− 2ν α∇T (2.2)

where eij are components of the strain tensor; u is the displacement vector and ν is Poisson’s
ratio.
The uncoupled heat conduction equation for a steady state temperature field T with Q as

the heat supply and λ0 as the thermal conductivity can be written as

∇2T = −Q
λ0

(2.3)

The solution to inhomogeneous equation (2.2) can be expressed as

u = uc + up (2.4)

where uc is the complementary function satisfying the homogeneous equation of (2.2) and up re-
presents the particular solution to the displacement field generated by the temperature field T .
According to Goodier’s method (Timoshenko and Goodier, 1951), the displacement u(∞)(r)

for an infinite solid is given by u(∞) = ∇ϕ, where the potential function ϕ satisfies Poisson’s
equation

∇2ϕ = 1 + ν
1− ναT (r) (2.5)

Then the function ϕ is obtained as

ϕ(r) =
−1
4π
1 + ν
1− ν α

∫
T (r′)
|r− r′|d

3(r′) (2.6)

where |r − r′| = |(x, y, z) − (ξ, η, ς)| =
√
(x− ξ)2 + (y − η)2 + (z − ς)2 is the distance between

the points (x, y, z) and (ξ, η, ς).
Then the displacement, strain and stress components in the cylindrical polar coordinates

(r, θ, z) are expressed in terms of the potential function ϕ as (Barber, 2002; Sadd, 2005)

ur =
∂ϕ

∂r
uθ =

1
r

∂ϕ

∂θ
uz =

∂ϕ

∂z
(2.7)

and

err =
∂ur
∂r

eθθ =
1
r

(
ur +

∂uθ
∂θ

)
erθ =

1
2

(1
r

∂ur
∂θ
+
∂uθ
∂r
− uθ

r

)

ezz =
∂uz
∂z

eθz =
1
2

(∂uθ
∂z
+
1
r

∂uz
∂θ

)
ezr =

1
2

(∂ur
∂z
+
∂uz
∂r

) (2.8)
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and

1
2µ
σrr =

∂2ϕ

∂r2
−∇2ϕ 1

2µ
σθθ =

1
r

∂ϕ

∂r
+
1
r2
∂2ϕ

∂θ2
−∇2ϕ 1

2µ
σzz =

∂2ϕ

∂z2
−∇2ϕ

1
2µ
σrθ =

∂

∂r

(1
r

∂ϕ

∂θ

) 1
2µ
σθz =

1
r

∂2ϕ

∂θ∂z

1
2µ
σzr =

∂2ϕ

∂z∂r

(2.9)

where the Laplacian operator in the cylindrical polar coordinates (r, θ, z) is given by

∇2ϕ =
( ∂2

∂r2
+
1
r

∂

∂r
+
1
r2

∂2

∂θ2
+

∂2

∂z2

)
ϕ (2.10)

3. Formulation and solution of the problem

We consider an axisymmetric problem of a spherical inclusion in the upper half-space (z  0)
having a different coefficient of thermal expansion to that of the half-space but the same elastic
constants as in Wang and Huang (1991). Due to this difference in the coefficients of thermal
expansion between the sub region and its surrounding material, say η0, a thermoelastic stress
field is generated. Let radius of the spherical inclusion be a and center of it be located at the
point r = 0 and z = h, where h > a, as shown in Fig. 1. The surface z = 0 is taken as traction
free surface. We take the axis of symmetry as the z axis, then for the axisymmetric problem
in the cylindrical coordinates (r, θ, z), all quantities are independent of θ. Then using Eq. (2.7),
the displacement vector u has the form u = (ur, 0, uz). Therefore, the components of the strain
and stress tensor can be written in the following form, see equations (2.8) and (2.9)

err =
∂ur
∂r

eθθ =
u

r
ezz =

∂uz
∂z

ezr =
1
2

(∂ur
∂z
+
∂uz
∂r

)
erθ = 0 eθz = 0

(3.1)

and

1
2µ
σrr =

∂2ϕ

∂r2
−∇2ϕ 1

2µ
σθθ =

1
r

∂ϕ

∂r
−∇2ϕ 1

2µ
σzz =

∂2ϕ

∂z2
−∇2ϕ

1
2µ
σzr =

∂2ϕ

∂z∂r
σrθ = 0 σθz = 0

(3.2)

where

∇2ϕ =
( ∂2

∂r2
+
1
r

∂

∂r
+

∂2

∂z2

)
ϕ (3.3)

Fig. 1. A spherical inclusion in a thermoelastic half-space
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Then according to Wang and Huang (1991), the thermoelastic potential function ϕ satisfies
the following Poisson’s equations, when temperature of the semi-infinite region increases up to T0

∇2ϕ =





1 + ν
1− ν αT =

1 + ν
1− ν η0T0 for R1 ¬ a

0 for R1 > a
(3.4)

where R21 = r
2+ (z − h)2 is the distance of the point (r, z) from (0, h). Then, the function ϕ for

this problem is taken as (Wang and Huang 1991)

ϕ =





1
6
KR21 for R1 ¬ a
1
6
K
(
3a2 − 2 a3R1

)
for R1 > a

(3.5)

where

K =
1 + ν
1− ν η0T0 (3.6)

Considering the boundary conditions, we assume that the boundary z = 0 of the half-space
is traction free surface i.e.

σzz = σrz = 0 at z = 0 (3.7)

Now according to Davies (2003), the strain and stress components within the semi-infinite
region z  0 with the traction free surface in terms of strain and stress components for an
infinite region for the axisymmetric problem in the rz-plane can be reduced to the form

err = e(∞)rr + (3− 4ν)e(∞)rr + 2z
∂

∂z
e(∞)rr eθθ = e

(∞)
θθ + (3− 4ν)e

(∞)
θθ + 2z

∂

∂z
e
(∞)
θθ

ezz = e(∞)zz − (1− 4ν)e(∞)zz + 2z
∂

∂z
e(∞)zz erz = e(∞)rz − e(∞)rz − 2z

∂

∂z
e(∞)rz

erθ = 0 = eθz

(3.8)

and

σrr = σ(∞)rr + (3− 4ν)σ(∞)rr − 4νσ(∞)zz + 2z
∂

∂z
σ(∞)rr

σθθ = σ
(∞)
θθ + (3− 4ν)σ

(∞)
θθ − 4νσ(∞)zz + 2z

∂

∂z
σ
(∞)
θθ σrθ = 0 = σθz

σzz = σ(∞)zz − σ(∞)zz + 2z
∂

∂z
σ(∞)zz σrz = σ(∞)rz − σ(∞)rz − 2z

∂

∂z
σ(∞)rz

(3.9)

Then the displacement, strain and stress fields in the infinite region and those at the image
point for exterior points (R1 > a) of the spherical inclusion (where ∇2ϕ = 0) are obtained using
u(∞) = ∇ϕ and equations (3.1)-(3.3)

u(∞)r =
∂ϕ

∂r
=
1
3
Ka3

( r

R31

)
u
(∞)
θ =

1
r

∂ϕ

∂θ
= 0 u(∞)z =

∂ϕ

∂z
=
1
3
Ka3

(z − h
R31

)

(3.10)

e(∞)rr =
∂2ϕ

∂r2
=
1
3
Ka3

( 1
R31
− 3r

2

R51

)
e
(∞)
θθ =

ur
r
=
1
3
Ka3

( 1
R31

)
e
(∞)
rθ = e

(∞)
θz = 0

e(∞)zz =
∂2ϕ

∂z2
=
1
3
Ka3

( 1
R31
− 3(z − h)

2

R51

)
e(∞)rz = e

(∞)
zr =

∂2ϕ

∂r∂z
= −Ka3 r(z − h)

R51

(3.11)
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1
2µ
σ(∞)rr =

1
3
Ka3

( 1
R31
− 3r

2

R51

) 1
2µ
σ
(∞)
θθ =

1
3
Ka3

( 1
R31

)
σ
(∞)
rθ = 0 = σ

(∞)
θz

1
2µ
σ(∞)zz =

1
3
Ka3

( 1
R31
− 3(z − h)

2

R51

) 1
2µ
σ(∞)rz = −Ka3

r(z − h)
R51

(3.12)

u(∞)r =
1
3
Ka3

( r

R32

)
u
(∞)
θ = 0 u(∞)z =

−1
3
Ka3

(z + h
R32

)
(3.13)

e(∞)rr =
1
3
Ka3

( 1
R32
− 3r

2

R52

)
e
(∞)
θθ =

1
3
Ka3

( 1
R32

)
e
(∞)
rθ = e

(∞)
θz = 0

e(∞)zz =
1
3
Ka3

( 1
R32
− 3(z + h)

2

R52

)
e(∞)rz = Ka

3 r(z + h)
R52

(3.14)

1
2µ
σ(∞)rr =

1
3
Ka3

( 1
R32
− 3r

2

R52

) 1
2µ
σ
(∞)
θθ =

1
3
Ka3

( 1
R32

)
σ
(∞)
rθ = 0 = σ

(∞)
θz

1
2µ
σ(∞)zz =

1
3
Ka3

( 1
R32
− 3(z + h)

2

R52

) 1
2µ
σ(∞)rz = Ka

3 r(z + h)
R52

(3.15)

where (0,−h) is the image of point (0, h) and R22 = r2 + (z + h)2 is the distance of the point
(r, z) from (0,−h).
Substituting equations (3.11), (3.14) and (3.12), (3.15) into (3.8) and (3.9), respectively, the

strain and stress components in the thermoelastic half-space for exterior points (R1 > a) of the
spherical inclusion can be expressed as

err =
1
3
Ka3

[ 1
R31
+
3− 4ν
R32

− 6z(z + h)
R52

− 3r2
( 1
R51
+
3− 4ν
R52

− 10z(z + h)
R72

)]

eθθ =
1
3
Ka3

( 1
R31
+
3− 4ν
R32

− 6z(z + h)
R52

)

ezz =
1
3
Ka3

( 1
R31
− 1− 4ν

R32
− 18z(z + h)

R52
− 3(z − h)

2

R51
+
3(1− 4ν)(z + h)2

R52
+
30z(z + h)3

R72

)

erz = −Ka3r
(z − h
R51
+
3z + h
R52

− 10z(z + h)
2

R72

)

(3.16)

and

σrr = 2µ
Ka3

3

[ 1
R31
+
3− 8ν
R32

− 6z(z + h)
R52

+
12ν(z + h)2

R52
− 3r2

( 1
R51
+
3− 4ν
R52

− 10z(z + h)
R72

)]

σθθ = 2µ
Ka3

3

( 1
R31
+
3− 8ν
R32

− 6z(z + h)
R52

+
12ν(z + h)2

R52

)

σzz = 2µ
Ka3

3

( 1
R31
− 1
R32
− 18z(z + h)

R52
− 3(z − h)

2

R51
+
3(z + h)2

R52
+
30z(z + h)3

R72

)

σrz = −2µKa3r
(z − h
R51
+
3z + h
R52

− 10z(z + h)
2

R72

)

(3.17)

Further, from equation (3.17), we can see that σzz = σrz = 0 at the boundary z = 0 of the
half-space, which is in accordance with the boundary conditions as in equation (3.7).
Also, for the interior points (R1 ¬ a) of the spherical inclusion, as in Mindlin and Cheng

(1950)

uint = uext +
a3KR1
3

( 1
a3
− 1
R31

)
(3.18)
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Using this, the following relations between the strain components of the exterior points
(R1 > a) and the interior points (R1 ¬ a) of the spherical inclusion are given by

eintrr = e
ext
rr +

Ka3

3

( 1
a3
− 1
R31

)
+Ka3

r2

R51
eintθθ = e

ext
θθ +

Ka3

3

( 1
a3
− 1
R31

)

eintzz = e
ext
zz +

Ka3

3

( 1
a3
− 1
R31

)
+Ka3

(z − h)2
R51

eintrz = e
ext
rz +Ka

3 r(z − h)
R51

(3.19)

Also, the relations between the stress components of the exterior points (R1 > a) and the
interior points (R1 ¬ a) of the spherical inclusion are given below, see Guell and Dundurs (1967)

σintrr = σ
ext
rr − 2µK

( 2
a3
+
1
R31
− 3r

2

R51

)
σintθθ = σ

ext
θθ − 2µK

( 2
a3
+
1
R31

)

σintzz = σ
ext
zz − 2µK

( 2
a3
+
1
R31
− 3(z − h)

2

R51

)
σintrz = σ

ext
rz + 6µK

r(z − h)
R51

(3.20)

Substituting equations (3.16) and (3.17) into (3.19) and (3.20), respectively, the strain and
stress components in the thermoelastic half-space for the interior points (R1 ¬ a) of the spherical
inclusion can be expressed as

err =
1
3
Ka3

[ 1
a3
+
3− 4ν
R32

− 6z(z + h)
R52

− 3r2
(3− 4ν

R52
− 10z(z + h)

R72

)]

eθθ =
1
3
Ka3

( 1
a3
+
3− 4ν
R32

− 6z(z + h)
R52

)

ezz =
1
3
Ka3

( 1
a3
− 1− 4ν

R32
− 18z(z + h)

R52
+
3(1 − 4ν)(z + h)2

R52
+
30z(z + h)3

R72

)

erz = −Ka3r
(3z + h

R52
− 10z(z + h)

2

R72

)

(3.21)

and

σrr = 2µ
Ka3

3

[−2
a3
+
3− 8ν
R32

− 6z(z + h)
R52

+
12ν(z + h)2

R52
− 3r2

(3− 4ν
R52

− 10z(z + h)
R72

)]

σθθ = 2µ
Ka3

3

(−2
a3
+
3− 8ν
R32

− 6z(z + h)
R52

+
12ν(z + h)2

R52

)

σzz = 2µ
Ka3

3

(−2
a3
− 1
R32
− 18z(z + h)

R52
+
3(z + h)2

R52
+
30z(z + h)3

R72

)

σrz = −2µKa3r
(3z + h

R52
− 10z(z + h)

2

R72

)

(3.22)

The results obtained above are in good agreement to those of Mindlin and Cheng (1950)
for the spherical inclusion in the interior of a thermoelastic semi-infinite solid using the usual
thermoelastic relation.

4. Numerical results and discussion

In this Section, graphical representations of the strain and stress components at the points
(0, 0) and (0, h − a) just outside the spherical inclusion in the thermoelastic half-space are
obtained using MATLAB software programming. The numerical computations are carried out
for Poisson’s ratios ν = 0.1 to 0.5. Figures 2a and 2b respectively show the variation of strain
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components err(= eθθ) and ezz at the point (0, 0) for exterior points of the spherical inclusion
along the distance and varying Poisson’s ratio from 0.1 to 0.5. From Fig. 2a, we observe that the
strain err(= eθθ) decreases smoothly with increasing values of the distance h/a, and it vanishes
at infinitely large values of h/a. Also, as Poisson’s ratio ν increases from 0.1 to 0.5, this strain
increases quantitatively. From Fig. 2b, we observe that the strain ezz assumes negative values
for all the values of Poisson’s ratio ν ranging from 0.1 to 0.5. Further, it continuously increases
with the increasing distance h/a assuming the value of zero at infinitely large values of h/a. In
Figs. 3a and 3b, respectively, the variation of strain components err(= eθθ) and ezz at the point
(0, h − a) just outside the spherical inclusion are presented for exterior points. From Fig. 3b, it
can be seen that the strain ezz first increases and then decreases continuously as the distance h/a
increases. Further, this strain approaches a finite negative value (depending on Poisson’s ratio)
at infinitely large values of the distance h/a.

Fig. 2. (a) Strain component err(= eθθ) at the point (0, 0) for exterior points of the spherical inclusion,
(b) strain component ezz atthe point (0, 0) for exterior points of the spherical inclusion

Fig. 3. (a) Strain component err(= eθθ) at the point (0, h− a) just outside the spherical inclusion for
exterior points, (b) strain component ezz at the point (0, h− a) just outside the spherical inclusion for

exterior points

Figure 4 shows the variation of the stress component σrr(= σθθ) at the point (0, 0) for exterior
points of the spherical inclusion in the thermoelastic half-space. From Fig. 4, we observe that the
stress component σrr(= σθθ) decreases gradually as the distance h/a increases and it vanishes
at infinitely large of h/a. Also, as Poisson’s ratio ν increases from 0.1 to 0.5, this stress increases
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quantitatively as shown in the figure. Figures 5a and 5b, respectively, show the variation of the
stress component σrr(= σθθ) and σzz at the point (0, h − a) just outside the spherical inclusion
in the thermoelastic half-space. From Fig. 5a, we observe that the stress component σrr(= σθθ)
also decreases gradually with the increasing distance h/a but it assumes finite positive values
(depending on Poisson’s ratio) at infinitely large values of the distance h/a. From Fig. 5b, we
observe that as Poisson’s ratio increases from 0.1 to 0.5, the stress decreases more rapidly with
increasing values of the distance h/a and tends to finite negative values (depending on Poisson’s
ratio) at infinitely large values of the distance h/a.

Fig. 4. Stress component σrr(= σθθ) at the point (0, 0) for exterior points of the spherical inclusion

Fig. 5. (a) Stress component σrr(= σθθ) at the point (0, h− a) just outside the spherical inclusion for
exterior points, (b) stress component σzz at the point (0, h− a) just outside a spherical inclusion for

exterior points

Figures 6a and 6b, respectively, show the variation of strain components err(= eθθ) and ezz
at the point (0, h) for interior points of the spherical inclusion. As observed from Fig. 6a, the
strain err(= eθθ) increases continuously with the increasing distance h/a and with increasing
values of Poisson’s ratio ν from 0.1 to 0.5. From Fig. 6b, we observe that the strain ezz decreases
gradually for all values of Poisson’s ratio ν = 0.1 to 0.5 as the distance h/a increases. It is noticed
from Figs. 6a and 6b that these strains assume finite positive values (depending on Poisson’s
ratio) at infinitely large values of the distance h/a. Figures 7a and 7b, respectively, show the
variation of stress components σrr(= σθθ) and σzz at the point (0, h) for interior points of the
spherical inclusion. It is noticed from Figs. 7a and 7b that the stresses decrease continuously
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as the distance h/a increases and these assume finite negative values (depending on Poisson’s
ratio) at infinitely large values of distance h/a.

Fig. 6. (a) Strain component err(= eθθ) at the point (0, h) for interior points of the spherical inclusion,
(b) strain component ezz at the point (0, h) for interior points of the spherical inclusion

Fig. 7. (a) Stress component σrr(= σθθ) at the point (0, h) for interior points of the spherical inclusion,
(b) stress component σzz at the point (0, h) for interior points of the spherical inclusion

5. Conclusion

In this paper, closed form analytical expressions for thermoelastic strain and stress components
due to a spherical inclusion in a thermoelastic half-space are obtained. These expressions are
derived in axisymmetric cylindrical coordinates in the context of steady-state uncoupled ther-
moelasticity using thermoelastic displacement potential functions. The thermoelastic strain and
stress components for the exterior points of the spherical inclusion are the same as those of the
center of dilatation. The variations of the thermoelastic strain and stress components for the
exterior and interior points of the spherical inclusion are also shown graphically for different
values of Poisson’s ratios. It is observed that the strain and stress components at the points
(0, h−a) and (0, h) approach finite values depending on Poisson’s ratio at infinitely large values
of the distance h/a, whereas at the point (0, 0) these quantities tend to zero as h/a tends to
infinity. Thus, Poisson’s ratio has a significant effect on the strain and stress components due to
the spherical inclusion in the thermoelastic half-space.
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In this paper, we define a resolution method to study the effect of a porous material on
vibro-acoustic behavior of a geared transmission. A porous plate is coupled with the gear-
box housing cover. The developed model depends on the gearbox characteristic and poro-
elastic parameters of the porous material. To study the acoustic effect of the housing cover,
the acoustic transmission loss is computed by simulating numerically the elastic-porous co-
upled plate model, and the numerical implementation is performed by directly programming
the mixed displacement-pressure formulation. To study the vibration effect, the bearing di-
splacement is computed using a two-stage gear system dynamical model and used as the
gearbox cover excitation. Numerical implementation is performed by direct programming of
the Leclaire formulation.

Keywords: porous material, gearbox, vibro-acoustic behavior

1. Introduction

Controlling the vibro-acoustic behavior of rotating machinery has become a quality factor to
improve the comfort by reducing noise and vibration levels. One of the major noise and vibration
sources are geared transmissions (gears, shafts, roller bearings and the housing). The generalized
forces which generate the vibration response of the gearbox housing are multiple, as expressed
by Remond et al. (1993). Sources of vibration excitations generated by geared transmissions can
be divided into two categories, first the internal excitation sources like the static transmission
error under load, elastic deformations of teeth, fluctuation in the frictional force developed by
Houser (1991), Aziz and Seirg (1994), schock phenomenon and the projection or flows of the
lubricant on walls of the housing according to Houser (1991) and Houjoh and Umezawa (1992).
External sources of excitation can be associated with the fluctuations in engine torque and load
inertia.
Regardless of directivity of the source, larger walls of the housing are more flexible and

contribute most to noise radiation. A parametric study performed by Sibe (1997) shows that
the more walls are heavy, stiff and thick, the higher is the acoustic transmission loss of the
housing. An increase in the thickness of the housing is unfortunately contrary to the desire of
manufacturers who always want to increase the specific power of their transmissions. Note that
in the majority of gearboxes, their housings covers are more flexible than other parts body of
the housing and have the largest surface of acoustic radiation while looking for a method how
to decrease their acoustic emission, some research work as that carried out by Guezzen (2004),
confirmed effects of structure of the gearbox cover on noise radiation. In this context, we study
a housing cover of a gearbox coupled with a porous material plate to isolate sources of noise
radiation.
Various models have been developed to describe the acoustic propagation in porous media.

One of the best known and the easiest to implement is the model of Delany and Bazley (1970).
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However, this model is limited because it represents only tested materials and does not express
the phenomenon related to skeleton vibrations. To model more accurately the dissipative effects,
unlike in the model developed by Johnson et al. (1987), one may introduce a function of viscous
form which is not limited by the geometric nature of the skeleton. Modeling of the variation of the
viscous dissipation modulus may require introduction of the viscous characteristic length which
is an intrinsic parameter of the material that can be obtained through experience. Similarly,
Champoux and Allard (1991) defined the thermal characteristic length as an intrinsic parameter
expressing thermal effects. Lafarge et al. (1997) introduced thermal permeability to improve
thermal effects at low frequencies. However, the model with a rigid structure is not suitable
when the skeleton of the material is deformed or mobile: this is the case in many applications
where a porous material is directly subjected to a mechanical or acoustic wave excitation which is
the subject of our paper. Allard (1993) adapted a model for acoustic applications by integrating
various contributions previously cited, see Johnson et al. (1987), Champoux and Allard (1991)
and Lafarge et al. (1997). This model, commonly called the Biot-Allard model is used in our
study since porous materials are subjected to the imposed displacement or acoustic pressure.
In Section 2, we describe equations of motion for the dynamic model of gearbox and the

housing cover (elastic and porous coupled plate) implementing porous models. In Section 3, we
present the resolution method (input and output, geometry, implemented porous and boundary
conditions). In Section 4, we describe the porous plate effect on vibration and the acoustic
transmission loss of our gearbox housing cover by a study case.

2. Gearbox modelling

In most gearboxes, especially those having reduced sizes, the wheel axis is in the same plane
between the two parts of the gearbox (Fig. 1) that enables easy assembling of the wheels.

Fig. 1. Plane configuration of a two-stage gear system and the porous housing cover

We defined a fixed reference frame (O,X0, Y0) in the model. αi are pressure angles of two
gearmesh contact. In this paper, these angles are equal to 20◦ in the case of the gearings with
right teeth.

2.1. Dynamic model of a two-stage gear system

A two-stage gear system is composed of two trains of gearings. Every train links two blocks.
So, the gear system has in total three blocks (j = 1, 2, 3). Every block is supported by a flexible
bearing whose bending stiffness is kxj and the traction compression stiffness is kyj . The dynamic
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model developed has twelve degrees of freedom: six angular movements γji and six linear move-
ments xj and yj (Fig. 2). The motor and receiving wheels are introduced by inertias Im and Ir
as expressed by Miller (1999) with the assumption that we use short shafts. The other spur gears
constitute the gearbox. The gearmeshes are modeled by a linear spring ks(t) (s = 1, 2) along
the lines of action represented in Fig. 2. αi are pressure angles of two gearmesh contact. The
angular displacements of every wheel are noticed by γji with the indices j = 1 to 3 designating
the number of the block, and i = 1, 2 designating the two wheels of each block. Besides, the
linear displacements of the bearing denoted by xj and yj are measured in the plane which is
orthogonal to the axis of wheel rotation.

Fig. 2. Model of the two-stage gear system developed by Walha et al. (2009)

2.2. Modeling of the mesh stiffness

Generally, we can model variation of the gearmesh stiffness ki(t) by a square wave which was
developed by Velex (1988). The variation in stiffness comes from the fact that during meshing
there is a change in the number of contacting pairs. For spur gears, there is a change for two pairs
of teeth in contact for a period of meshing. The square wave variation is the best representative
of the real phenomenon, and is represented in Fig. 3.

Fig. 3. Modeling of the mesh stiffness variation

The gearmesh stiffness variation can be decomposed into two components: an average com-
ponent denoted by kci , and a time-dependent one denoted by kvi(t).
The extreme values of the mesh stiffness are defined by

kmini = −
kc
2εαi

kmaxi = −kmini
2− εαi
εαi − 1

(2.1)

The terms εαi are the contact ratio corresponding to the two gearmesh contacts.



1384 M.R. Letaief et al.

2.3. Equations of motion

Applying the Lagrange equations, we obtain a system of differential equations governing the
dynamic behavior. It can be written in the following usual matrix form

Mq̈+ [Ks +K(t)]q = F0 (2.2)

where q is the generalized coordinate vector, M is the mass matrix expressed by

M = diag (m1,m1,m2,m2,m3,m3, Im, I12, I21, I22, I31, Ir)

mj is mass of the block j, Im is the polar inertia of the motor wheel, Ir is the polar inertia of
the receiving wheel.
The matrix of average stiffness of the structure is defined by

Ks =

[
Kp 0
0 Kθ

]

Kp =




kx1 0 0 0 0 0
0 ky1 0 0 0 0
0 0 kx2 0 0 0
0 0 0 ky2 0 0
0 0 0 0 kx3 0
0 0 0 0 0 ky3




Kθ =




kθ1 −kθ1 0 0 0 0
−kθ1 kθ1 0 0 0 0
0 0 kθ2 −kθ2 0 0
0 0 −kθ2 kθ2 0 0
0 0 0 0 kθ3 −kθ3
0 0 0 0 −kθ3 kθ3




where Kp is the bearing stiffness matrix and Kθ is the shaft torsional stiffness matrix.
K(t) is the stiffness matrix of the engagement which is variable over time

K(t) =

[
K1(t) K12(t)
KT12(t) K2(t)

]

where

K1(t) =




k1s
2
1 −k1sc1 −k1s21 k1sc1 0 0

−k1sc1 k1c
2
1 k1sc1 −k1c21 0 0

−k1s21 k1sc1 k1s
2
1 + k2s

2
2 −k1sc1 − k2sc2 −k2s22 k2sc2

k1sc1 −k1c21 −k1sc1 − k2sc2 k1c
2
1 + k2c

2
2 k2sc2 −k2c22

0 0 −k2s22 k2sc2 k2s
2
2 −k2sc2

0 0 k2sc2 −k2c22 −k2sc2 k2c
2
2




K12(t) =




0 −k1rb12s1 −k1rb21s1 k1sc1 0 0
0 k1rb12c1 k1rb21c1 −k1c21 0 0
0 k1rb12s1 k1rb12s1 −k1sc1 − k2sc2 −k2s22 k2sc2
0 −k1rb12c1 −k1sc1 − k2sc2 k1c

2
1 + k2c

2
2 k2sc2 −k2c22

0 0 −k2s22 k2sc2 k2s
2
2 −k2sc2

0 0 k2sc2 −k2c22 −k2sc2 k2c
2
2
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K2(t) =




0 0 0 0 0 0
0 k1r

2
b12 k1rb12rb21 0 0 0

0 k1rb12rb21 k1r
2
b21 0 −k2s22 0

0 0 0 k2r
2
b22 k2rb22rb31 0

0 0 0 k2rb22rb31 k2r
2
b31 0

0 0 0 0 0 0




where rb is the base radius; si, sci and c2i are simplifications of the functions: si = sin
2 φi,

sci = sinφi cosφi and c2i = cos
2 φi, respectively. F0 is the vector of external static forces and

can be expressed as

F0 = [0, 0, 0, 0, 0, 0, Cm , 0, 0, 0, 0,−Cr ]T

Cm and Cr are the motor and receiving wheel torques, respectively.

3. Modelling of the housing cover

In our study, the housing cover is modeled as an elastic and porous coupled plate. In fact, two
porous models are implemented.

3.1. Leclaire’s formulation

Leclaire’s formulation is based on the classical theory of homogeneous plates and on the Biot
stress-strain relations in an isotropic porous medium with a uniform porosity. The vibrations of
a rectangular porous plate can be described by two coupled dynamic equations of equilibrium
relating the plate deflection ws and the fluid/solid relative displacement w.
In the case of a plate with thickness h and subjected to a load q, these two equations can be

expressed as

(
D +

φ2λ̃fh3

12φ2
)
∇4ws + h(ρ1ẅs + ρ0ẅ) = q

λ̃fh

φ
∇2ws − h(ρ0ẅs +mẅ) = 0

(3.1)

where D is the flexural rigidity, ρ0 – density of the fluid, ρ1 – density of the frame, φ – porosity,
λ̃f – material expansion coefficient andm is the mass parameter introduced by Biot (1962) given
by

m(ω) =
τ(ω)
φ

ρ0 (3.2)

where ω is the pulsation, τ(ω) is the dynamic tortuosity expressed as folows

τ(ω) = τ∞ − j
σφ

ρ0
F (ω)

√
1 +
4ηα2∞ρ0
σ2Λ2φ2

jω F (ω) =

√
1− i4τ

2
∞κ
2ρ0ω

ηΛ2φ2
(3.3)

where F (ω) is the viscosity correction function introduced by Johnson et al. (1987), α∞ is the
tortuosity of pores, η is the damping coefficient, Λ is the characteristic dimension of pores, σ is
the flow resistivity.
The space derivatives are written with the help of the operators ∇4 = ∇2(∇2) and

∇2 = ∂2/prtx2 + ∂2/∂y2 of the system of co-ordinates (x, y) while the double dots denote
the second time derivative.
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In the first equation of equilibrium (or plate equation) [D+ φ2λ̃fh3/(12φ2)]∇4ws represents
the internal potential force (per unit surface) within the fluid-saturated plate, while the inertia
terms hρ1ẅs and hρ0ẅ and the load q are considered as external forces. Similarly, the inter-
nal force associated with the fluid-solid relative displacement may be defined, and is given by
(λ̃fh/φ)∇2ws while the external forces can be taken as hmẅ and hρ0ẅs.
We note that the Leclaire formulation is a 2D one and the unknown variables are ws and w.

All terms used in this formulation are based on poroelastic material characteristics.

3.2. The mixed formulation

In order to reduce the computation time enlarged by complexity of the problem, mixed
formulations (u, p) have been implemented. This formulation was developed by Atalla et al.
(1998) using the classical equations of Biot where u represents displacement field of the solid
phase and p is the pore pressure. Replacing the displacement of the fluid phase by its pressure
allows us to reduce degrees of freedom from 6 to 4 per node, valid only for harmonic motion. It
is also accurate in the classical formulation (u,U). The modified equations of equilibrium (for
small harmonic oscillations) are expressed as follows

σ̂sij/jS + ω
2ρ̃ui + γ̃p/i = 0 − ω2 ρ̃22γ̃

φ2
ui/i + ω

2 ρ̃22

λ̃f
p+ p/ii = 0 (3.4)

where σ̂sij is the stress tensor of the material “in vacuo” (does not depend on the fluid phase).
It is written by

σ̂sij =
ˆ̃
λsεskkδij + 2µ

sεsij εsij =
1
2
(ui/j + uj/i) (3.5)

where εsij is the strain tensor of the skeleton, µ
s is the shear modulus of the porous material.

The above equations depend on certain factors: ˆ̃λs, ρ̃, γ̃ and λ̃f . These are based on intrin-
sic poroelastic characteristics introduced by Horoshenkov and Swift (2001) and Umnova et al.
(2001).

4. Resolution method

Fig. 4. SADT diagram

For the two cases of study (acoustic and vibration behavior), the implemented porous models
are analysed by the finite element software COMSOL and MATLAB. The equations of motion
are introduced by the EDP module of COMSOL software.
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4.1. Porous models

In COMSOL, the general form of PDE (for a temporal analysis) must be expressed in the
following matrix form

Γ · ∇ = F (4.1)

where Γ is the matrix of the flux vectors and F is the right part of the vector. In Cartesian
coordinates, the gradient/divergence operator vector ∇ is defined as follows

∇ =




∂

∂x
∂

∂y


 (4.2)

4.1.1. Leclaire’s formulation

If we adapt Leclaire’s formulation, Eqs. (3.1), to the EDP form in COMSOL, we obtain the
following equations

Γ =




∂z

∂x

∂z

∂y
∂ws
∂x

∂ws
∂y

∂w

∂x

∂w

∂y




F =




1
D + α2Mh3/12

(
q + hω2(ρws + ρfw)

)

1
αMh

(
∆P − hω2(ρfws +mw)

)

z




(4.3)

4.1.2. The mixed formulation

If we adapt „the mixed formulation”, equations (3.4),to the EDP form of COMSOL, we
obtain the following equations

Γ =

[
Γij
Γ4i

]
=

[
µS(ui/j + uj/i) + λ̃Suk/kδij

p/i

]
F =

[
Fi
F4

]
=



−ω2ρeui − γp/i

−ω2 ρ̃22
λ̃f

p+ ω2
ρ̃22γ̃

φ2
ui/i




(4.4)

4.2. Geometry

The geometry of the structure used in the numerical simulation is represented by a coupled
porous plate (Fig. 5) with dimensions a = b. Thickness of the porous plate is hp, of the elastic
plate hs. The system is loaded by the imposed displacement.

4.3. Input parameters

The input parameters are the gear system parameters: motor torque Cm and speed Nm,
bearing and shaft stiffnesses kxs, kys, kθs, teeth number, width and module Z, b, m, average
mesh stiffness kc1, contact ratio εα1, pressure angle α and 9 poroelastic parameters: porosity φ,
tortuosity α∞, flow resistivity σ, thermal and viscous characteristic dimensions of pores, modulus
of elasticity Λ and Λ′, density of the skeleton ρ1, skeleton Poisson’s coefficient ν, damping
coefficient η and the skeleton elasticity modulus E.
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Fig. 5. System of co-ordinates in the plate

4.4. Output parameters

The first output is the normal incidence transmission loss TL, as introduced by Rossing
(2007)

TL = 10 log
1
|Ta|2

(4.5)

where |Ta|2 is the normal incidence power transmission coefficient for an anechoically-terminated
sample, that is the ratio of the sound power transmitted by the sample to the sound power
incident on the sample. In the case of perfectly anechoic termination Ta = C/A

A =
j(P1ejkx2 − P2ejkx1)
2 sin[k(x1 − x2)]

C =
j(P3ejkx4 − P4ejkx3)
2 sin[k(x3 − x4)]

(4.6)

with P1 to P4 are complex sound pressures at x1 to x4, and k is the wave number.
The second output is the bearing block load

Fb = Kx3x3 +Ky3y3 (4.7)

x and y are bearing displacements, K is the bearing stiffness and Fb is the bearing block load.

4.5. Boundary conditions

The boundary conditions for EDP in COMSOL in their general form are as follows

0 = R − Γn = G+
[∂R
∂u

]T
µ (4.8)

The vector R and matrix Γ may be functions of the spatial co-ordinates with n being the normal
unit vector leaving the boundary surface. These are the boundary conditions of Dirichlet and
Neumann, respectively. The term µ in the Neumann boundary conditions is synonymous with
the Lagrange multiplier.
There are several boundary conditions to be respected since there are two clamped coupled

plates with four sides and poroelastic/acoustic as well as poroelastic/elastic coupling zones.
Using the Biot-Allard formulation, the boundary conditions are discussed below.
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• Imposed pressure field

The imposed pressure field p on the boundary of the porous medium allows us to write the
following relations

σtijnj = −pni p = p (4.9)

which express the continuity of the total normal stress and continuity of pressure across the
interface of the border. The total stress is equal to

σtij = σ
S
ij + σ

f
ij = σ

S
ij − φpδij = σ̂Sij − φ

(
1 +

λ̃fS

λ̃f

)
pδij

= µS(ui/j + uj/i) + λ̃
Suk/kδij − φ

(
1 +

λ̃fS

λ̃f

)
pδij

(4.10)

Using the second boundary condition of Eq. (4.9), the first one can be expressed as follows

−[µS(ui/j + uj/i) + λ̃Suk/kδij ]nj =
[
1− φ

(
1 +

λ̃fS

λ̃f

)]
pni (4.11)

After identification, the terms R and G are as follows

R =

[
Ri
R4

]
=

[
0

p− p

]
G =

[
Gi
G4

]
=



[
1− φ

(
1 +

λ̃fS

λ̃f

)]
pni

0


 (4.12)

When a portion of the surface of the porous medium is coupled to an infinite acoustic medium,
the condition of a free edge can be applied. This is assuming that p = 0.

• Imposed displacement field

In the case of the imposed displacement field ui, the boundary conditions can be expressed by

ui = ui vini − uini = 0 (4.13)

The first term in Eq. (4.13) expresses the continuity between the imposed displacements and
the solid phase displacements, while the second term describes the continuity of the normal
displacement between the fluid and solid phase. In this second condition, it is necessary to
replace the displacement of the fluid phase by the fluid pressure

vi =
φ

ω2ρ̃22
p/i −

ρ̃12
ρ̃22

ui (4.14)

which yields

p/ini =
ω2

φ
(ρ̃12 + ρ̃22)uini (4.15)

such as

ω2

φ
(ρ̃12 + ρ̃22) =

ω2

φ
(ρ12 + ρ22) = ω2ρ0 (4.16)

After identification, the terms R and G are as follows

Ri = ui − ui R4 = 0

Gi = 0 G4 = −
ω2

φ
(ρ̃12 + ρ̃22)uini

(4.17)

Applying that ui = 0 implies the fact that our porous domain is embedded to a rigid wall.
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• Acoustic – poroelastic coupling

In this case, the equations for continuity of the total normal stresses, acoustic pressure and fluid
flow are as follows

σtijnj = −panj p = pa

(1− φ)uini + φvini =
1

ρ0ω2
∇pani

(4.18)

where pa is pressure in the acoustic medium, ρ0 its density and σt the total stress tensor in the
poroelastic material. The vectors G and R will have the following components

Ri = 0 R4 = p− pa

Gi =
[
1− φ

(
1 +

λ̃fS

λ̃f

)]
pani G4 = 0

(4.19)

In addition, the continuity of the fluid flow at the coupling interface can be expressed as an
imposed acceleration on the fluid in the acoustic environment. Replacing vi by its expression,
the normal acceleration can be obtained by

1
ρ0
∇pani = ω2

[
uini

(
1− φ

(
1 +

ρ̃12
ρ̃22

))]
+ ω2

[
∇pni

( φ2

ω2ρ̃22

)]
(4.20)

For the Leclaire formulaion, a boundary condition can be considered. It is discussed below

• Clamped plate

At the boundary conditions, an embedding condition is introcuced

ws = 0 Uf = 0 (4.21)

The relative solid-fluid displacement is defined as follows

w = φ
(
Uf − ws) Uf =

1
φ
w + ws (4.22)

where ws is the solid displacement and Uf is the fluid displacement.
Subsequently, R and G are expressed by

R =




ws
1
φ
w + ws

0


 G =



0
0
0


 (4.23)

The loading conditions q and ∆P are fixed according to the type of solicitation (pressure,
force,...). For the surface pressure, a value of 0.1 is assumed

∆P = q = 0.1 bars (4.24)

5. Study case

The numerical parameters of the two-stage gear system are summarized in Table 1.
Table 3 describes numerical values of parameters of the poroelastic materials.
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Table 1. Geared transmission parameters

External inputs Motor torque and speed Cm = 1000Nm, Nm = 3000 tr/mn
Structure

Bearing and shaft stiffness
xs = kys = 109N/m,

characteristics kθs = 105 Nm/rad

Gear characteristics material: 42CrMo4, ρ = 7860 kg/m3

First stage Second stage
Teeth width and module [mm] b = 20, m = 4 b = 20, m = 4
Teeth number Z(12) = 26, Z(21) = 39 Z(12) = 26, Z(21) = 39
Average mesh stiffness kc1 = 1.4 · 108 N/m kc2 = 1.4 · 108 N/m
Contact ratio and pressure angle εα1 = 1.57, α = 20◦ εα2 = 1.53, α = 20◦

Table 2. First eigenfrequency of the geared transmission

ωi [rad] 1823 4095 6016 16063 17353 27365
fi [Hz] 290 652 957 2557 2763 4357

Table 3. Poroelastic parameters for validation of the models

Parameter Unity Porous material

ρ1 kg/m3 90
φ – 0.7
σ Ns/m4 22250
α∞ – 1.3
ν – 0.05
Λ µm 75
Λ′ µm 87
E N/m2 2980000
η – 0.12

5.1. Porous plate effect on vibration level

Figure 6 shows the displacement along the axis x of the output bearing at the housing cover.
The displacement amplitude is about 2 ·10−6. The periodicity of the bearing displacement comes
from domination of the gearmesh frequency.

Figure 7 shows that the RMS bearing displacement increases with the meshing frequency as
it is shown in Fig. 8. The results show that the gearmesh frequency and its harmonics dominate
the RMS bearing displacement with higher amplitudes when the gearmesh frequency or one of
its harmonics is close to the eigenfrequency. The first peak is close to the first eigenfrequency
(290Hz) the second one is close to the third eigenfrequency (957Hz). The third peak is close to
the sum of the first and the third eigenfrequency (1608 Hz).

Figure 9 shows that the gearmesh frequency and its harmonics dominate the point plate
displacement. The absence of a negative displacement is due to the elastic effect of the plate
at the measurement point. Due to the same reason, there are no positive displacements in the
other half of the plate.

As it is shown in Fig. 10, the gearmesh frequency dominates the point plate displacement.
The absence of a negative displacement is due to the elastic effect of the plate at the measurement
point. Due to the same cause, there are no positive displacements in the other half of the plate.
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Fig. 6. Output bearing displacement in the x direction

Fig. 7. Output bearing displacement in the x direction for three gearmesh frequencies

Fig. 8. RMS bearing displacement
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Fig. 9. Displacement along the axis x at a point with coordinates (0.15, 0.24) on the elastic plate

Fig. 10. Point displacements (solid line: elastic plate, dashed: elastic and porous coupled plate)

5.2. Acoustic effect of the porous plate

Figure 11 shows the transmission loss TL of the elastic-porous coupled plate. The calculation
is conducted for the porous plate with a characteristic defined in Table 3 and thickness 10mm.
TL increases along the frequency axis and is dominated by the resonance frequency of the plate
where TL decreases with the frequency converging to 67 dB, 54 dB and 83 dB at, respectively,
natural frequencies 620Hz, 1240Hz and 1900Hz. Figure 11 shows the dependence of the sound
transmission loss on the flow resistivity which is one of the characteristic of the porous material
but is still dominated by the natural frequencies.

6. Conclusion

A resolution method to determine the porous plate effect on a gearbox hosing cover is discusseg
in the paper. The developed model depends on several parameters: gearbox and porous plates
parameters. It is found that coupling of the porous plate to the housing cover reduces the
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Fig. 11. Sound transmission loss TL for different flow resistivity σ

vibration level and is dominated by the gearmesh frequency. For the acoustic effect, poroelastic
materials have major capacity to mitigate the noise level caused by the geared transmission.
The vibration and the acoustic behavior are heavily dependent on poroelastic characteristics.
These results were validated by Tewes (2005), who computed the transmission loss of an infinite
double wall partition for various angles of incidence and for various mass ratios. The developed
method helps one to make decisions in the robust design and lessens the enormous computing
time.
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In this study, the effects of entrainment of a fluid through a perforated surface on suppression
of the vortex street behind a perforated square cylinder have been studied experimentally.
The wake region has been investigated in terms of coherent flow structure, time averaged pro-
perties and effectiveness of different perforations. The quantitative measurements revealed
that the perforated surfaces are only effective within a width interval of y/D = ±1.0. It has
been observed that in the near wake region up to approximately 1.5D downstream the wake,
the shedding phenomenon has been suppressed significantly. It has been also demonstrated
that velocity profiles and flow structure have been affected by different perforated surfaces
and, as a result, coherent structures have been diminished considerably.

Keywords: vortex shedding, flow control, coherent flow structure, perforated square cylinder

Nomenclature

u, v – streamwise and transverse velocity component
U∞ – free stream velocity
D – square cylinder width
f – shedding frequency
〈u〉, 〈v〉 – phase averaged streamwise and transverse velocity
〈u〉, 〈v〉 – phase averaged time-mean streamwise and transverse velocity
〈u′2〉, 〈v′2〉 – incoherent streamwise and transverse Reynolds normal stress
〈ũ〉, 〈ṽ〉 – coherent phase averaged streamwise and transverse velocity
TKE – Turbulent Kinetic Energy
T – vortex shedding period
x/D, y/D – normalized streamwise and transverse coordinate
t/T – normalized time
ν – kinematic viscosity

1. Introduction

The vortex shedding phenomenon from bluff bodies has been investigated on geometries and
arrangements having different applications in civil engineering, wind engineering and aerospace
engineering. The unsteady loading behavior which is induced by vortex shedding in the wake
region requires great consideration and, as a result, has attracted many researchers. Such fluc-
tuating forces are the main concern during design stages of industrial systems where the vortex-
induced vibration can have an undesirable effect on the structure. In the context of a square
cylinder, Okajima (1982), Saha et al. (2000), Saha (2013), Hacışevki and Teimourian (2015),
Sohankar et al. (2015b) and many other researchers conducted extensive studies on the vortex
shedding phenomenon. They investigated different features of vortex shedding behind square
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cylinders and reported wake flow structures, Strouhal number variation and other aerodynamic
parameters.

The fluctuating forces are derived from the wake structure and, therefore, any endeavor for
suppression of the vortex street to reduce such a destructive feature is valuable. For this purpose,
various passive and active flow-control methods have been employed by engineers to protect the
structures against the damaging fluid forces acting on the bluff bodies. Sakamoto et al. (1997),
Alam et al. (2002), Malekzadeh and Sohankar (2012) and Igarashi (1997) investigated passive
flow control by employing a control plate or a rod upstream a square cylinder as a means of
controlling the vortex shedding. They all reported a considerable reduction on the mean and
the fluctuating forces acting on the square cylinder. It was observed that while the drag force
on the square cylinder was significantly reduced, the fluctuating lift was also suppressed.

On the other hand, Çuhadaroǧlu et al. (2007), Çuhadaroǧlu and Turan (2009), Çuhadaroglu
(2009), Turhal and Çuhadaroǧlu (2010) and Sohankar et al. (2015a) employed an active control
method with injection of a fluid through the surface of the square cylinder to reduce the damaging
effect of the vortex shedding phenomenon. Çuhadaroǧlu et al. (2007) conducted an experimental
study to investigate the injection effects on the pressure coefficient and drag coefficient of a
perforated square cylinder at high Reynolds numbers between Re = 10 000 and 24 000. Different
configurations of injection through the front, top and rear surfaces of the cylinder have been
employed. The results revealed that injection through the rear face decreased the drag force.
However, injection of the fluid through the front face demonstrated opposite results and caused
an increase in drag force. Moreover, injection through other faces demonstrated negligible effects.
Turhal and Çuhadaroǧlu (2010) experimentally studied variation of the pressure coefficient, drag
coefficient and Strouhal number of a perforated square cylinder (horizontal and diagonal) with
having the fluid injected through various surfaces at high Reynolds numbers. The result revealed
that in the case of a diagonal square cylinder, the surface injection through the top-rear, rear
and all surfaces reduced the drag coefficient. However, only the injection through all surfaces of a
horizontal square cylinder could result in a reduction of the drag coefficient. Numerical study on
control of fluid flow of by injection through surfaces of a square cylinder, which were reported by
Sohankar et al. (2015a), is one of the latest studies in this context. The simulation demonstrated
that in the case of fluid injection through the front surface, the Strouhal number decreased
by increasing the injection parameter, while aerodynamic force fluctuations were increased. On
the other hand, the injection of fluid through the rear face caused a reduction in the Strouhal
number and drag coefficient.

To sum up, the review shows that even though various passive and active flow control over a
square cylinder have been investigated, there is still a gap in the literature. The previous studies
tackled the problem of the perforated square cylinder together with active control theory. Altho-
ugh, the ultimate aim of these studies was the suppression of vortex shedding in the wake region
of the square cylinder, most of the investigations reported variation of aerodynamic parameters
such as the drag and pressure coefficient, and very limited results are available in terms of the
wake flow structure and vortex street. Therefore, the objective of this study is to investigate
the effects of perforating a square cylinder on the flow structure and suppression of vortex shed-
ding. The suppression of vortex shedding has been studied by employing a triple decomposition
technique rather than classical Reynolds decomposition to distinguish the incoherent turbulent
flow fluctuation from the coherent vortex shedding structure for a better understanding of this
phenomenon. The downstream wake behind the perforated square cylinder has been measured
quantitatively by employing hotwire anemometry, and phase averaged properties have been pre-
sented. Moreover, coherent and incoherent structures of the downstream wake behind perforated
square cylinders have been identified. The effectiveness of suppression of the vortex street in the
wake region have been probed.
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2. Experimental set-up and methodology

The investigations have been conducted in an open-return subsonic wind tunnel with a
0.5m×0.5m test section and 1.0m length available at Aerodynamic Laboratory of Eastern Me-
diterranean University. The wind tunnel speed was controlled by a Danfoss frequency controller
with the maximum speed of 30m/s. The experiment was conducted at a free stream velocity
U∞ = 10.5 ± 2%m/s with a measured turbulence intensity of 0.6% at this speed. A perforated
hollow square cylinder with a cross section of 25mm×25mm with the corresponding blockage
ratio of 5% was selected for the experiment.
The square cylinder model was constructed from aluminum, and four different perforations

have been drilled with a CNC machine with accuracy ±0.001mm. The experimental setup
and schematic of the perforated square cylinders are illustrated in Figs. 1 and 2, respectively.
Each face of the square cylinder was perforated with holes φ = 2mm in diameter uniformly
distributed on the perforated surface. The Reynolds number of the experiment was Re = 18500
(Re = (U∞D)/ν) based on the side-length of the square cross-section of the cylinder, which
resulted in turbulent vortex shedding behind the square cylinder in the domain of interest
(0.5 < x/D < 4.0).

Fig. 1. Experimental setup and coordinates (top view)

Fig. 2. Schematic of perforated square cylinders

Velocity field measurements have been acquired by employing TSI FlowPoint 1500 constant
temperature anemometry hotwire system by means of two S types (1210-T1.5) and one X type
(1240-T1.5) hotwires. Two velocity components (u and v) were acquired by means of an X ho-
twire probe, while free stream velocity and reference signal of periodic shedding were acquired
by means of S hotwire probes. The X probe was mounted on a three-axis traverse mechanism to
traverse in the xy domain during data acquisition with an accuracy of ±0.25mm. The velocity
components for a given streamwise location x/D, were acquired at various lateral locations y/D
within ±2.6. All the measurements were carried out at the midpoint of the test section in the
z-direction. The acquired data was filtered by considering the frequency of shedding with the
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reference waveform by implementing MATLAB/Simulink to produce the characteristic vortex
shedding waveform. Finally, the filtered data was analyzed by implementing the triple decompo-
sition and ensemble averaging method (Hussain, 1986; Reynolds and Hussain, 1972) to produce
the phase averaged properties. This technique provides a better understanding to distinguish
the coherent structure and incoherent turbulent fluctuations. The instantaneous velocity u, can
be decomposed into time-mean averaged component u, coherent component ũ and incoherent
component (turbulent fluctuations) u′

u = u+ ũ+ u′ v = v + ṽ + v′ (2.1)

The purpose is to obtain the dependence of these components on time (normalized with respect to
total period T ) during one complete cycle of vortex shed. A reference signal (the periodic vortex
shedding velocity fluctuation in the present study) has been selected and the velocity signals
(u and v component) at the selected domain point have been acquired. The phase averages
are then computed by sorting the instantaneous velocity components into 60 different bins of
different phases obtained by equally subdividing the intervals between peaks of the output of
the phase detector probe. Then, corresponding to same t/T of consecutive reference cycles, the
acquired velocity components at the same instant are summed and averaged. This process is
repeated for different times during one cycle to construct the variation of properties 〈u〉, 〈v〉,
〈u〉, 〈v〉, 〈u′2〉, 〈v′2〉, 〈ũ〉, 〈ṽ〉 and TKE (〈ũ2〉+〈ṽ2〉) across one complete cycle of vortex shedding.
A modified Navier-Stokes equation was obtained by substituting the triple decomposition of the
u and v components of velocity and by applying phase averaging techniques as shown below

〈u〉 = 1
n

n∑

1

u 〈ũ〉 = 1
n

n∑

1

ũ 〈u′〉 = 1
n

n∑

1

u′i (2.2)

where n is the number of cycles used for phase averaging and ũ is the value of coherent component
and u′ is the value of incoherent component at the same normalized time successive cycles

〈u〉 = 1
m

m∑

1

〈u〉 〈ũ〉 = 1
m

m∑

1

〈ũ〉 〈u′〉 = 1
m

m∑

1

〈u′〉 (2.3)

where m is the number of phase averages used in one cycle to construct phase averages of
the successive cycles. Such a definition can be applied for any velocity components or product
of velocity components. Consequently, applying the phase averaging concept to the Navier-
-Stokes momentum equation will result in the modified Navier-Stokes equation. Furthermore,
the coherent Turbulence Kinetic Energy (TKE) can be defined as the following equation

TKE =
1
2
ũiũi =

1
2
(ũ1ũ1 + ũ2ũ2) =

1
2
(ũũ+ ṽṽ) (2.4)

3. Spectral analysis

In order to identify the vortex shedding frequency and quantitative comparison between diffe-
rent perforated square cylinders, Fast Fourier Transform (FFT) has been implemented on the
acquired velocity data. Therefore, the dominant shedding frequency f can be observed as a
single peak corresponding to the Strouhal number, St = fD/U∞, in the wake behind the cy-
linder. The instantaneous velocity has been acquired at various x/D downstream the wake and
various transverse directions have been used for frequency spectra determination. The dominant
shedding frequency has been found as f = 43.9Hz that gives the Strouhal number St = 0.104,
identical to the corresponding Strouhal number of the non-perforated square cylinder. These do-
minant shedding frequencies have been acquired at positions outside the effective wake width of
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the perforated surface. Similarly, the shedding frequencies obtained by Turhal and Çuhadaroǧlu
(2010) at a similar position for the perforated square cylinder with injection demonstrated an in-
significant alternation in the shedding frequency. However, the measurement inside the effective
width of perforation were influenced by entrainment of the fluid through the perforated surfaces.
It would be impossible to present all the power spectra due to space limitation. Therefore, for
the sake of brevity, only a comparison between different perforated square cylinders and detailed
investigation on perforated square cylinder P3 have been presented in Figs. 3 and 4, respectively.

Fig. 3. Comparison of PSD of total transverse velocity fluctuations at x/D = 0.5 and y/D = 0 for
perforated square cylinders P0, P1, P2, P3 and non-perforated square cylinders (SC)

Fig. 4. PSD of perforated square cylinder P3 at x/D = 0.5 for various transverse locations

Power Spectrum Density (PSD) analysis of total (i.e. random and coherent) transverse velo-
city fluctuations for different perforated square cylinders (P0, P1, P2 and P3) and non-perforated
square cylinder (SC) measured at x/D = 0.5 and y/D = 0 (along centerline) in the downstream
wake has been demonstrated in Fig. 3. As it can be seen from the figure, the frequency spectrum
is clearly evident as a single strong peak in the wake of the non-perforated square cylinder.
By contrast, in the wake region behind the perforated square cylinder, no dominant shedding
frequency along the centerline is evident. Such an observation implied that the vortex shedding
has been partially suppressed by fluid entrainment through the perforated surfaces.
Further investigations of PSD of total transvers velocity fluctuations acquired within the

transverse direction interval y/D = ±1.5 for perforated square cylinder P3 have been illustrated
in Fig. 4. It can be seen that the dominant shedding frequency is clearly evident for the wake
region outside the interval y/D = ±0.5. However, inside this interval, where the perforated
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surfaces are effective, the power spectrum demonstrated evidence of no-single dominant peak
with multiple peaks in the spectra. These multiple peaks indicated formation of the secondary
vortex and suppression of the primary shedding due to entrainment of the fluid through the
perforated surfaces.

4. Phase averaged properties

The objective of this study is to investigate the formation of the vortex shedding phenomenon in
the wake region behind the perforated square cylinders. Development of the vortex street in the
wake region behind perforated square cylinder P0 has been demonstrated in Fig. 5. The figure
illustrates the variation of phase averaged streamwise velocity contours 〈u〉 versus normalized
time t/T during one complete cycle of oscillation for various x/D downstream the wake region.

Fig. 5. Comparison of phase averaged streamwise velocity 〈u〉 for perforated square cylinder P0
acquired at: (a) x/D = 0.5, (b) x/D = 1.0, (c) x/D = 1.5, (d) x/D = 4.0

It can be seen from the figure that the vortex shedding has been completely suppressed by
the entrainment of the fluid into the wake region through the perforated surfaces in the wake
region up to approximately x/D = 1.5. In the near wake region of the perforated square cylinder,
i.e. x/D = 0.5, while within the interval y/D = ±1 there is no evidence of vortex shedding,
some vortices are being rolled beyond the edges of the square cylinder. As the probe moves
downstream the wake, the vortex shedding process is being developed and at x/D = 1.5, the 〈u〉
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contours exhibit patterns corresponding to vortices being shed periodically. In addition to two
peaks beyond the edges of the perforated square cylinder, two low level zone phase drifted by half
the period corresponding to edges of the perforated square cylinder are also evident. Eventually,
the streamwise phase average velocity contours at x/D = 4.0, where the perforated surfaces
are no more effective, demonstrate classical vortex shedding. Through such development, the
peaks drift away from the centerline. In contrast, the two low level zones are shifted towards
the centerline behind the perforated square cylinder. Such a flow pattern is comparable to the
streamwise velocity in the wake region of the square cylinder as reported by Hacışevki and
Teimourian (2015).
Figure 6 illustrates the phase averaged transverse velocity component contours at two dif-

ferent distances downstream the wake region. Similarly to the streamwise velocity component,
the peaks occur during a half of the period phase (t/T = 0.5). However, comparison between
streamwise and transverse velocity component measured at x/D = 4.0 reveals that the trans-
verse velocity peaks (point α as illustrated in Fig. 6) lag behind the streamwise velocity peaks
with a phase shift equal to 1/4 of the cycle. Therefore, the point α as illustrated in Fig. 5, cor-
responds to normalized time at which the transverse velocity reaches the peak value in Fig. 6.
The contours around this peak region imply a remarkable lateral momentum transfer towards
the growing vortex on the other edge of the square cylinder. However, such a phenomenon has
been suppressed by the perforated surface near the wake, i.e. x/D = 1.0, where the perforated
surfaces are effective.

Fig. 6. Comparison of the phase averaged transverse velocity 〈v〉 for perforated square cylinder P0
acquired at (a) x/D = 1.0 and (b) x/D = 4.0

Furthermore, a comparison between the phase averaged streamwise velocities in the wake
region of the non-perforated square cylinder and four different perforated square cylinders me-
asured at x/D = 1.5 have been presented in Fig. 7. From this figure it can be observed that while
in the wake region of the non-perforated square cylinder the rolling vortices are clearly apparent
with periodic flow patterns, the development of the vortex shedding phenomenon in the wake
region behind perforated square cylinders have been delayed. Moreover, it can be observed that
perforated square cylinders P0 and P3 delayed such development more effectively as a result of
entraining the fluid particle directly into the wake region by employing the perforated rear face.
As discussed previously, triple decomposition would provide a better illustration of the vortex

shedding phenomenon. Therefore, to investigate the development of a coherent structure of the
shedding phenomenon, coherent Turbulent Kinetic Energy production in the wake region behind
perforated square cylinder P1 has been depicted in Fig. 8.
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Fig. 7. Comparison of phase averaged streamwise velocity 〈u〉 acquired at x/D = 1.5 for perforated
square cylinder: (a) P1, (b) P2, (c) P3 and (d) non-perforated square cylinder (SC)

Fig. 8. Coherent Turbulent Kinetic Energy production in the wake region of perforated square
cylinder P1 acquired at: (a) x/D = 0.5, (b) x/D = 1.0, (c) x/D = 1.5
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It can be seen from the figure that near the wake region while coherent structures have
been formed beyond the right edge, the wake of the left edge shows no evidence of the coherent
structure. As the probe moved downstream, the perforated surface is losing its effectiveness and,
as a result, the first evidence of the coherent structure on the left edge has been also developed.
Farther downstream the wake (i.e. x/D = 4.0), the two coherent structures are combined and
form a larger structure as wide as the wake.
The relative reduction in coherent TKE production with respect to the non-perforated cy-

linder can be a measure of effectiveness of such perforation. As a result, the relative reduction
in coherent TKE peak production for P1 (compared with the non-perforated square cylinder)
varies form 66% to 27% between x/D = 0.5 to 1.5 downstream the wake, and beyond x/D = 1.5
the effectiveness drops significantly to approximately 7% at x/D = 3.0. The effectiveness of
other perforated surfaces for coherent streamwise and transverse velocities and coherent TKE
have been illustrated in Table 1.

Table 1. Relative reduction in the coherent structure peak value and TKE with respect to the
non-perforated cylinder

x/D = 0.5 x/D = 1.0 x/D = 1.5
〈ũ〉 〈ṽ〉 TKE 〈ũ〉 〈ṽ〉 TKE 〈ũ〉 〈ṽ〉 TKE

P0 65 86 90 52 73 88 36 56 64
P1 42 64 67 24 54 38 7 16 27
P2 69 86 92 52 73 88 21 50 55
P3 81 86 96 64 77 88 39 63 73

5. Time averaged properties

Better understanding of the flow structure also requires knowledge how to quantify development
and decay of flow properties such as streamwise velocity, transverse velocity and turbulent
stresses downstream the wake region. In this Section, a quantitative comparison of the phase
averaged time-mean streamwise velocity and the phase averaged time-mean turbulent stresses
measured at various x/D in the wake region have been presented. Phase averaged time-mean
properties such as streamwise and transverse velocities are normalized with the free stream
velocity U∞, and the turbulent normal and shear stress are normalized with U2∞.
The variation of phase averaged streamwise velocity contours 〈u〉 versus normalized time t

during one complete cycle of oscillation have been presented in the previous Section. At a given
y/D, averaging with respect to t/T in one cycle yields the phase averaged time-mean 〈u〉 or,
traditionally known, the time mean u of the streamwise velocity. For the streamwise velocity, this
two averaging techniques result in the same values as both imply the same averaging. The phase
averaged time-mean can be obtained by averaging across one cycle with the values obtained
across all acquired cycles, while the time mean is computed across all cycles in the direct time
averaging process. Variation of the phase averaged time-mean streamwise velocity 〈u〉 against the
lateral position y/D for different perforated square cylinders is demonstrated in Fig. 9. In thise
figure, symmetrical variation of 〈u〉 profile with respect to the wake axis is clearly apparent. It
can be observed that for the case of perforated square cylinder P1 with no perforated surface in
the rear face, the u profile measured near the wake (x/D = 0.5) decreases up to the centerline and
then increases gradually. However, in case of P0 with a perforated rear face, the u profile remains
approximately constant with some fluctuation corresponding to the measurement exactly behind
the perforations. Moreover, it can be also observed that further downstream the wake, the effect
of perforated surfaces decays considerably.
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Fig. 9. Comparison of variation of 〈u〉 for different perforated square cylinders acquired at:
(a) x/D = 0.5, (b) x/D = 1.5, (c) x/D = 4.0

The phase averaged time-mean incoherent streamwise and transverse stresses downstream
the wake for different perforated square cylinders measured at x/D = 1.0 and 4.0 are illustrated
in Fig. 10. In the figure, it can be observed that both streamwise and transverse normal stresses
significantly decay compared with the non-perforated square cylinder (SC) in the interval of
y/D = ±1.0 near the wake. However, further downstream the wake at x/D = 4.0, incoherent
stresses reach a value close to the non-perforated square cylinder. It can be observed that P0
exhibits the lowest streamwise and transverse normal stress. Such an observation is as a result
of direct entrainment of the fluid through the perforated rear side into the wake region together
with having the highest entrainment flow rate. Moreover, in the near wake region (x/D = 1.0)
both streamwise and transverse stresses exhibit double peaks corresponding to the vortex shed
from the edges. However, such a profile transforms gradually to a single peak profile as the
vortices migrate toward the centerline.

Fig. 10. Comparison of the phase averaged time mean incoherent normal Reynolds stress for different
perforations acquired at: (a) x/D = 1.0, (b) x/D = 4.0

Clearly, an insufficient number of phases during one cycle resulted in discrete variation for
phase averaging rather than a continuous variation of the properties. However, in this study
with employing 60 phases during one cycle, the time mean phase averaged properties over one
cycle are zero within an accuracy of ±1%. Such an observation has been illustrated in Fig. 11
for coherent streamwise and transverse velocity components.
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Fig. 11. Phase averaged coherent velocity components profile measured at x/D = 4.0 at various
normalized times

6. Conclusion

In this study, the effect of entrainment of a fluid through perforated surfaces on suppression of
the vortex street behind a perforated square cylinder has been studied experimentally. To probe
the vortex formation process, different characteristics and coherent structures in the downstream
wake have been analyzed. It has been observed that the perforated surfaces are effective only
within the effective width y/D = ±1.0, and up to 1.5D in the downstream wake. Although
previous studies reported that high injection through the rear surface is required to decrease
the vortex shedding frequency. It has been found that even for a low entrainment flow rate,
the shedding phenomenon has been affected significantly. Thus, observation of multiple peaks in
the spectra indicates the secondary vortex formation and suppression of the primary shedding
due to entrainment of the fluid through the perforated surfaces. The result shows that different
perforated surface front-rear, front-one face, front-two faces and all faces have some effects on the
velocity profiles, flow structure and vortex street. Asymmetric coherent flow structures behind
the perforated square cylinder have been observed and the effectiveness of this perforation has
been presented in terms of reduction in the coherent structure peak value. It has been revealed
that the square cylinder with all faces perforated, has given the most significant relative reduction
in the coherent TKE production compared with other perforations.
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Taking into account differences between a drill pipe (DP) and a drill collar (DC), the dril-
lstring in a vertical well is modeled as a stepped pipe conveying a drilling fluid downwards
to the bottom inside the string and then upwards to the ground from the annulus. An ana-
lytical model that describes lateral vibration of the drillstring and involves the drillstring
gravity, weight on bit (WOB), hydrodynamic force and damping force of the drilling fluid
is established. By analysis of complex frequencies, the influences of WOB, borehole diame-
ter, DP length, velocity and density of the drilling fluid on the stability of the system are
discussed.

Keywords: drillstring, stepped fluid-conveying pipe, complex frequency, stability, FEM

Nomenclature

Ach – cross-sectional flow area of annulus, m2

Ai – cross-sectional flow area inside drillstring, m2

Ao – external cross-sectional area of drillstring, m2

Cf – frictional damping coefficient of drilling fluid
Dch – borehole diameter, m
Dh – hydraulic diameter of annular flow, m
Di,Do – inner and outer diameter of drillstring, m
EI – flexural rigidity, N·m2
k – viscous damping coefficient of drilling fluid
L – drillstring length, m
Mt – mass per unit length of drillstring, kg/m
Mf – mass per unit length of fluid inside drillstring, kg/m
pi – fluid pressure inside drillstring, Pa
po – fluid pressure in annulus, Pa
Stot – wetted area per unit length, m2

T – axial force, N
Ui, Uo – flow velocity inside and outside drillstring, m/s
ρf – drilling fluid density, kg/m3

χ – added mass coefficient
ω – complex frequency

Subscripts
1 – DP segment, 2 – DC segment, L – at the borehole bottom
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1. Introduction

The drillstring is the most widely used and important part of the drilling rig system of petroleum
and natural gas. Working under complex conditions, the drillstring is apt to lose stability and
collides with the borehole wall seriously. It would lead to reduction in both the quality of wellbore
and the service life of drilling tools, and result in the raise of drilling costs ultimately (Hakimi
and Moradi, 2010; Zamani et al., 2016; Navarro-López et al., 2007).

In the recent years, many researches on transverse vibration of the drillstring have been
conducted. But most of these works ignored the interaction between the drillstring and drilling
mud. The conventional exploitation mode of oil and gas reservoir is through the vertical well,
and the studies on dynamic characteristics of the drillstring in the vertical well are the most. The
influence of installation sites of stabilizers on lateral vibration of the drillstring was discussed by
Zhao et al. (2014) and Mongkolcheep et al. (2015). Considering the damping effect of the drilling
fluid, Ghasemloonia et al. (2013, 2014) analyzed the coupled axial-transverse vibration of the
drillstring in vibration-assisted rotary drilling, however the flow effect was not included. With the
widespread implementation of extended reach wells in offshore and onshore oilfields, the dynamic
characteristics of drillstrings in the horizontal and inclined wells also attract attention of the
researchers. Considering the drillstring in an inclined well as a simply supported axially moving
rotor, Sahebkar et al. (2011) derived the kinetic equation of the string by means of Hamilton’s
principle. Zhu and Di (2011) and Zhu et al. (2012) studied the effect of pre-bent deflection
on lateral vibration of drill collars in horizontal and inclined wells respectively. Tikhonov and
Safronov (2011) and Samuel and Yao (2013) developed a two-dimensional transverse vibration
model of the drillstring to three-dimensional circumstances. Because of the complexity of the
drillstring system, the influence of drilling fluid flow on the dynamic response of the drillstring
was not considered in these studies.

With the whole process of drilling operation, both the hollow drillstring and the annular
space between the drillstring and borehole wall are filled with a drilling fluid flowing axially.
The drillstring could be regarded as a flexible and slender pipe conveying fluid in the wellbore.
Fluid-solid coupling vibration of the fluid-conveying pipe has attracted considerable attention for
its extensive engineering applications and rich dynamic responses (Jin and Song, 2005; Xu and
Yang, 2006; Panda and Kar, 2007; Wang, 2009; Ni et al., 2015). As early as 1978, Hannoyer and
Paidoussis (1978) established a dynamic model of tubular beams simultaneously subjected to
internal and external axial flows based on dynamics of cylindrical structures subjected to axial
flow (Paidoussis, 1973). Later, Zhang and Miska (2005) reduced the drillstring to a uniform
tubular beam, and used the model of fluid-conveying pipe to simulate the dynamic stability
of the drillstring system in response to its own weight, WOB and drilling fluid flowing inside
and outside the string. In 2008, Paidoussis et al. (2008) revised the expression of the frictional
viscous force in the normal direction due to the external flow used in the previous studies (Luu,
1983), and discussed the effect of flow velocity on the stability of the drillstring-like system with
a floating drill bit by using Galerkin-Fourier method. Meanwhile, Qian et al. (2008) studied
dynamics of the drill-string-like system in the counterflush drilling process where the drilling
fluid flowed downwards to the bottom through the annular region and returned upwards to the
ground in the drillstring. The model of the fluid-conveying pipe could reflect the characteristics
of fluid-structure interaction of the string system well, which was validated by an experiment
(Rinaldi and Paidoussis, 2012). In these analytical models, however, the drillstring was reduced
to a uniform pipe that was very different from the actual drillstring. The drillstring is mainly
composed of DP and DC. Compared with DP, DC has larger outer diameter and smaller inner
diameter which makes both the line density and stiffness of DC much larger than those of DP.
Under a given drilling pressure, the dynamic prediction of the uniform string model, whose
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neutral point (the point where the axial force is zero) is much higher than that of the actual
drillstring, may be inaccurate.
In view of the complexity and diversity of make-up of the string, well path, drilling fluid

properties and drilling parameters, it is still impossible to describe the dynamic response of the
drillstring system quantitatively. At present, it remains the main way to explore the effect of a
single factor on the system and coupling interaction among several factors. The present study
is concerned with the dynamics of the drillstring that is in a vertical well and simplified to be a
stepped fluid-conveying pipe composed of DP and DC. Considering the drillstring gravity, WOB
and drilling fluid flowing inside and outside the string, an analytical model of lateral vibration
of drillstring is proposed. The effect of the fluid-pipe interaction and the drillstring structure on
the stability of the drillstring system is discussed.

2. Dynamic model

The drillstring that is composed of DP, DC, connector and a variety of accessories plays an
important role in conveying drilling fluid, exerting WOB and transmitting power on the bit. In
the drilling process using a PDC bit or an impregnated diamond bit, the bottom hole rock is
broken by cutting or grinding. So, WOB fluctuates weakly and could be reduced to a constant
value. Under the action of drilling pressure and floating weight, the upper part of the drillstring
is subjected to tensile stress and the lower part is compressed. To avoid the DP from buckling,
the neutral point is generally located at the section of DC. Generally, the drilling fluid is pumped
downwards through the inner channel of the drillstring from the well head, flows through the drill
bit and returns to the ground along the annular space between the drillstring and borehole wall.
Ignoring the influence of tool joints and flexibility of the drilling rig, the drillstring is simplified
to be a stepped fluid-conveying pipe composed of DP and DC, which is constrained by a fixed
hinge at the well head and a movable hinge at the bottom hole (Fig. 1). The origin of the

Fig. 1. Sketh of drillstring

coordinate o is located at the well head, x-axis is directed vertically downwards, and the lateral
displacement of the drillstring is w(x, t). Considering the drillstring gravity, WOB, constraint of
the wellbore and drilling fluid flowing inside and outside the drillstring, the equation of lateral
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vibration of the stepped drillstring could be established by doing similar element analysis as the
model of Paidoussis et al. (2008)

EI
∂4w

∂x4
+Mt

∂2w

∂t2
+Mf

(∂2w
∂t2
+ 2Ui

∂2w

∂t∂x
+ U2i

∂2w

∂x2

)

+ χρfAo
(∂2w
∂t2
− 2Uo

∂2w

∂t∂x
+ U2o

∂2w

∂x2

)
− ∂

∂x
(Aopo −Aipi − T )

∂w

∂x

− (Aopo −Aipi − T )
∂2w

∂x2
+
1
2
CfρfDoUo

∂w

∂t
+ k

∂w

∂t
= 0

(2.1)

where

χ =
D2ch +D

2
o

D2ch −D2o
Dh =

4Ach
Stot

Stot = π(Dch +Do)

k =
√
2νωπρfDo

(
1 +

(Dch/Do)3

[1− (Dch/Do)2]2

)

(symbolic meaning are listed in nomenclature), and

∂

∂x
(Aopo −Aipi − T ) = −[Mt − ρf (Ao −Ai) +Mf − ρfAo]g +

1
2
CfρfDoU

2
o

(
1 +

Do
Dh

)
(2.2)

The differences between Eq. (2.1) and the model of the drillstring-like system of Paidoussis et
al. (2008) are mainly in two aspects: 1) except for the friction damping Cf and density ρf , all
the physical parameters are different between the DP part and DC part; 2) WOB that is an
important factor in the stability of the drillstring is included and the drill bit is constrained
by a movable hinge. So, the present model and parameters are more closely related to a real
system. In the following equations, subscripts 1 and 2 would be used to indicate the parameters
associated with DP and DC, respectively. The term (Aopo − Aipi − T ) in Eq. (2.1) could be
obtained by integrating Eq. (2.2) as follows.
For the DP segment

Aopo −Aipi − T = Ao2poL −Ai2piL − TL

+
{
[Mt2 − ρf (Ao2 −Ai2) +Mf2 − ρfAo2]g −

1
2
CfρfDo2U

2
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(
1 +

Do2
Dh2
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+
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1
2
CfρfDo1U

2
o1

(
1 +

Do1
Dh1

)}
(L1 − x)

(2.3)

And for the DC segment

Aopo −Aipi − T = Ao2poL −Ai2piL − TL

+
{
[Mt2 − ρf (Ao2 −Ai2) +Mf2 −Ao2ρf ]g −

1
2
CfρfDo2U

2
o2

(
1 +

Do2
Dh2

)}
(L− x)

(2.4)

where piL and poL are fluid pressures of the bottom hole inside and outside the drillstring,
respectively. They could be calculated based on the following assumptions: fluid pressure in the
annulus is zero at the well head, namely, po

∣∣
x=0
= 0; the local loss near the joint of DP and

DC is ignored, and the variation of pressure po with x is approximated as a piecewise linear
function. Considering the pressure drop of the drilling fluid flowing through the bit jet (Zhang
et al., 2005), one obtains

poL = ρfgL+
1
2Ao2

CfDo2U
2
o2(L− L1)

Do2
Dh2
+
1
2Ao1

CfDo1U
2
o1L1

Do1
Dh1

piL = poL + ρfUo2(Uo2 − Ui2)
(2.5)
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Substituting Eqs. (2.2)-(2.5) into Eq. (2.1), the equations of lateral vibration of DP and DC
could be obtained. The boundary conditions at the well head and bottom are

w(0, t) =
∂2w

∂x2
(0, t) = 0 w(L, t) =

∂2w

∂x2
(L, t) = 0 (2.6)

For convenience of the analysis, the following dimensionless quantities could be defined based
on the parameters of DC
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By substituting the quantities above into Eq. (2.1), the dimensionless governing equations for
DP and DC are obtained, respectively. For the DP segment
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and for the DC segment

∂4η

∂ξ4
+ [1 + βo2(χ2 − 1)]

∂2η

∂τ2
+ 2

(√
βi2ui2 − χ2

√
βo2uo2

) ∂2η
∂ξ∂τ

+ (u2i2 + χ2u
2
o2)
∂2η

∂ξ2

−
{
−Γ −ΠiL +ΠoL +

[
γ2 −

1
2
cfε2u

2
o2(1 + h2)

]
(1− ξ)

}∂2η
∂ξ2

+
[
γ2 −

1
2
cfε2u

2
o2(1 + h2)

]∂η
∂ξ
+
1
2
cfε2uo2

√
βo2

∂η

∂τ
+ κ2

∂η

τ
= 0

(2.8)



1414 G.-H. Zhao et al.

where

ΠoL =
Ao2ρfgL

3

E2I2
+
1
2
cfε2u

2
o2(1− δ)h2 +

1
2
cfε1u

2
o1δλh1

ΠiL = α2ΠoL + αuo2(αuo2 − ui2)
(2.9)

The dimensionless boundary conditions are

η(0, τ) =
∂2η

∂ξ2
(0, τ) = 0 η(1, τ) =

∂2η

∂ξ2
(1, τ) = 0 (2.10)

3. Method of solution

It is difficult to solve Eqs. (2.7)-(2.10) of the stepped fluid-conveying pipe by means of the co-
nventional Galerkin method, the multiple scales method and the differential quadrature method.
Here, the finite element method that takes the Hermite polynomial as shape function is used.

3.1. The finite element method

The drillstring is divided into n elements by (n + 1) nodes. The length of the j-th element
is Lj = ξj+1 − ξj, and the lateral displacement η(ξ) is represented by means of cubic Hermite
interpolation

η(ξ) = Nej · ηej ξj ¬ ξ ¬ ξj+1 (3.1)

where Nej and ηej are primary functions and nodal displacements of the j-th element, respec-
tively, and denoted as

Nej =




λ2j(λj + 3λj+1)
Ljλ

2
jλj+1

λ2j+1(λj+1 + 3λj)
−Ljλ2j+1λj




T

ηej =




ηj
ϕj
ηj+1
ϕj+1




where λj = (ξj+1−ξ)/Lj , λj+1 = (ξ−ξj)/Lj . ηj and ϕj are deflection and rotation angles of the
j-th node, respectively. Substituting Eq. (3.1) into Eqs. (2.7)-(2.8) and using the virtual work
principle, we obtain the equation of motion of the j-th element as follows

Mejη̈ej +Cejη̇ej +Kejηej = 0 (3.2)

whereMej, Cej, and Kej are the mass matrix, damping matrix and stiffness matrix of the j-th
element, respectively. It should be noted that the element matrices of DP are different from
those of DC.
Assembling the element matrices in the global coordinate system and using boundary con-

ditions (2.10), the finite element equation of the whole drillstring system could be obtained

Mη̈ +Cη̇ +Kη = 0 (3.3)

whereM, C and K are all global matrices of the order 2n corresponding to mass, damping and
stiffness, respectively.
The solutions to Eq. (3.3) could be expressed as

η = ηeωτ (3.4)
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Substituting it into Eq. (3.3), gives

(ω2M+ ωC+K)η = 0 (3.5)

Equation (3.5) is a generalized eigenvalue problem, and the stability of the drillstring system
could be determined by calculating the complex eigenvalues ω of the matrix E

E =

[
0 I

−M−1K −M−1C

]
(3.6)

Re(ω) and Im(ω) are the real and imaginary parts of ω, respectively. Re(ω) is related to modal
damping of the system, and Im(ω) is the natural frequency. In the case of Re(ω)  0 and
Im(ω) 6= 0 flutter instability occurs, and the fluid velocity at which Re(ω) increases to zero
from negative values is called the critical flutter velocity ucf . Buckling instability happens when
Im(ω) = 0, and the corresponding flow rate is the critical buckling velocity ucd. In this paper,
ucf and ucd are all defined based on the internal flow of the DP segment.

3.2. Model validation

The correctness of the finite element method and the numerical model is verified by compa-
ring the present results with those given by Dai et al. (2013) and Paidoussis et al. (2008).
Firstly, the present model is reduced into a fluid-conveying cantilevered pipe that consists of

an aluminum segment and a steel segment according to Dai et al. (2013). These two segments
have the same cross section and length, and the end of the aluminum segment is fixed. For
the cantilever beam, the rows and columns that are associated with the fixed end in the global
matrices of the present model are set to zero. The evolution of the first four complex frequencies
with the flow velocity is illustrated in Fig. 2. The dimensionless critical flutter velocity of the
second mode is ucf = 7.8, which is completely consistent with literature (Dai et al., 2013), and
shows correctness of the finite element method.

Fig. 2. The present result of the first four dimensionless complex frequencies as functions of ui

Secondly, in accordance with Paidoussis et al. (2008), the stepped pipe is reduced to a uniform
tubular column and the parameters are: L1 = 0m, L2 = 1000m, Di2 = 0.45m, Do2 = 0.5m,
Dch = 10m, ρf = 998 kg/m3, ρt = 7830 kg/m3, Cf = 0.0125, and ν = 10−6m2/s. By using
the finite element method, we obtain the first three complex frequencies varying with the flow
rate ui (Fig. 3). This result can be compared to that given by Paidoussis et al. (2008) through
the hybrid Galerkin-Fourier method. It needs to be pointed out that the definition of ω in this
literature is different from that in the present paper. Denoting ω in Paidoussis et al. (2008) as ω∗,
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the relationships between ω∗ and ω in this paper are: Re(ω∗) = Im(ω) and Im(ω∗) = −Re(ω).
As shown in Fig. 3, the present results agree with those of Paidoussis et al. (2008) very well,
and the dimensionless critical flutter velocity of the second and third modes are ucf = 2.2 and
ucf = 2.56, respectively. Compared with the result of Paidoussis et al. (2008), the relative errors
are only 3.8% and 0.4%. It demonstrates correctness of the present model. So, the present model
and algorithm would be used to analyze the stability of the stepped drillstring system composed
of DP and DC.

Fig. 3. The first three complex frequencies as functions of the velocity of fluid ui

4. Dynamic stability of drillstring system

The drillstring system in the vertical well with well depth L = 1000m is studied. The parameters
are, for DP: L1 = 948m, Di1 = 0.127m, Do1 = 0.1016m, mt1 = 43.75 kg/m; and for DC:
L2 = 52m, Di2 = 0.203m, Do2 = 0.07144m, mt2 = 228.28 kg/m; in addition, T = 50 kN,
Dch = 0.314m, ρf = 1200 kg/m3, ν = 10−6m2/s. The viscosity damping coefficient Cf of the
drilling fluid is a semi-empirical value of 0.0125, and k could be calculated iteratively for each
natural frequency.
Figure 4 illustrates the first four complex frequencies of this DP-DC system varying with

the flow rate Ui1, and indicates that the system is in the stable state for Ui1 ¬ 110m/s. With
an increase in Ui1, Re(ω) and Im(ω) all decrease gradually, and stability of the DP-DC system
deteriorates.
In order to show the difference between the present stepped model and the uniform column

model (Zhang and Miska, 2005), the drillstring is also simplified as a uniform DP model, i.e.
L1 = 1000m, L2 = 0, the other parameters are chosen as the DP-DC model above. For this DP
model, the first four complex frequencies ω that are functions of Ui1 are obtained and shown
in Fig. 5. The system loses stability by buckling in its first mode at Ui1 = 43.7m/s, namely,
ucd = 43.7m/s.
By comparing Fig. 5 to Fig. 4, one could find that the stability characteristics of these two

models are very different. Both natural frequency and critical buckling velocity of the stepped
DP-DC model are all much higher than those given by the uniform DP model. Compared with
DP model, DP-DC model has a lower neutral point and a higher stiffness of the compression
section because the linear density and stiffness of DC are all larger than those of DP. This is
consistent with the realistic well condition. As a result, DC could improve the stability of the
drillstring system significantly, and the stepped DP-DC model could describe the stability of
the drillstring system better.
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Fig. 4. The first four complex frequencies as functions of Ui1 by the stepped DP-DC model
(Dch = 0.314m)

Fig. 5. The first four complex frequencies as functions of Ui1 by the uniform DP model

5. The effect of parameters on stability

In addition to the internal flow rate Ui, the parameters such as WOB TL, borehole size Dch, well
depth L and drilling fluid density ρf also have effects on the stability of the drillstring system.

5.1. WOB

WOB is an important drilling parameter which influences drilling speed greatly and could
be controlled by adjusting the hook load. With an increase in WOB, the neutral point gradually
moves up. In order to avoid the DP from compression, the neutral point should be located in
the drill collar. As a result, WOB should not exceed 98kN for the drillstring system at hand.
Figure 6 shows the variation of the first four dimensionless complex frequencies with WOB (TL)
for Ui1 = 5m/s. It means that the drillstring system is stable under the normal drilling condition
(TL ¬ 98 kN). Along with TL increasing, Re(ω) increases and Im(ω) decreases. It means that
WOB is the instability drive of the drillstring system. As the WOB increases further, the buckling
instability will occur eventually.
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Fig. 6. The first four dimensionless complex frequencies as functions of TL at Ui1 = 5m/s

5.2. Borehole size

Borehole diameter Dch can be approximated to the bit diameter. In order to ensure imple-
ment of wash over fishing operation, 8-in (0.203m) DC should be equipped with the bit not
smaller than 91/2-in (0.2413m) (NDRC, 2007). The borehole size affects the annular flow velo-
city. Under the conditions of Dch = 0.2669m, 0.2413m and 0.314m, the variation of complex
frequencies of the drillstring with fluid velocity of Ui1 are obtained and shown in Fig. 4, Fig. 7
and Fig. 8, respectively. It could be concluded by comparative analysis of these three cases
that: Im(ω) of the first four modes decreases along with increasing Ui1; the critical buckling
velocity (ucd) exceeds 110m/s for Dch = 0.314m (as shown in Fig. 4), ucd = 102.2m/s for
Dch = 0.2669m (Fig. 7) and ucd = 70.9m/s for Dch = 0.2413m (Fig. 8), respectively. It is
shown that the drillstring system is more stable for the wellbore with larger size. Therefore, an
increase in the fluid velocity, both inside and outside the drillstring, will drive the drillstring
system buckling instability.

Fig. 7. The first four complex frequencies as functions of Ui for Dch = 0.2669m
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Fig. 8. The first four complex frequencies as functions of Ui for Dch = 0.2413m

5.3. Drillstring length

In the actual drilling operation, the structure and length of DC are determined according
to the design WOB and remain constant, while length of DP increases in the drilling process.
Keeping L2 = 52m, Im(ω) of the first four modes that varies along with length of the drillstring
is illustrated in Fig. 9. It shows that the relationship between Im(ω) and L is similar to a
parabola. As the well depth increases, the stability of the drillstring system becomes worse, but
the effect of the drillstring length on the stability is smaller and smaller.

Fig. 9. The effect of the drillstring length on natural frequencies

5.4. Drilling fluid density

In addition to carrying cuttings, cooling and lubricating bit, the drilling fluid plays impor-
tant roles in stabilizing the borehole wall and balancing the formation pressure. The formation
pressure is changing with the drilling depth and needs to be balanced by adjusting the dril-
ling fluid density. The density ρf exerts influence on its hydrodynamic characteristic and the
buoyant weight of drillstring. Varying ρf from 800 kg/m3 to 1800 kg/m3, the first four natural
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frequencies are shown in Fig. 10. With an increase in ρf , the natural frequencies of the system
increase slightly, and the stability improves in a minor way.

Fig. 10. The effect of drilling fluid density on natural frequencies

6. Conclusion

The drillstring in a vertical well is reduced to a stepped fluid-conveying pipe composed of DP
segment and DC segment. Considering the interaction among drillstring gravity, WOB, and
drilling fluid that flows inside and outside the drillstring, we propose an analytical model of
lateral vibration of the drillstring, discuss the dynamic stability by means of complex frequencies
and come to the following conclusions:
• The DC segment whose linear density and stiffness are much larger than that of the DP,
could improve the drillstring stability significantly and has a great effect on the dynamics
of the whole system. Compared with the uniform string model, the stepped DP-DC model
could reflect the dynamic characteristics of the drillstring system better.

• Both WOB and delivery capacity are sources of instability in the drillstring system, and
they have a significant effect on the stability of the drillstring system. Buckling instability
occurs eventually as these two parameters increase further.

• Along with the increasing well depth, natural frequencies decrease parabolically and the
drillstring stability becomes worse. But this influence is smaller and smaller with an in-
crease in the drilling depth.

• Drilling fluid density has a positive effect on the drillstring stability, yet in a minor way.
In the course of drilling operation, one could improve the dynamic stability of the drillstring

system by taking actions such as increasing the DC length properly, optimizing the structure
of BHA, reducing flow rate under the condition of ensuring cuttings carrying, adopting un-
derbalanced drilling technology, and so on. With the development of logging-while-drilling and
controlling technology, the dynamics of drillstring systems with feedback control may be the
focus of research in the future.
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The paper presents a two-dimensional model of a belt transmission for dynamic analysis.
It is assumed that the belt is modelled by links joined by spring-damping elements with its
rotational and translational stiffness. Normal forces in the contact between the belt and the
pulleys are implemented by assuming its stiffness and damping, whereas friction is modelled
by the Dahl friction model. The calculation results are also presented in two specific cases
of load of the belt transmission.

Keywords: belt transmission, dynamic analysis, Dahl friction model

1. Introduction

In the author’s earlier papers, two-dimensional models of belt transmissions using the Threlfall
friction model (Kubas, 2015) and a model including microslip were developed (Kubas, 2014).
In the paper (Kubas, 2014), assumptions and requirements made during the process of model
development were presented. In the present paper, the Dahl friction model (Dahl, 1968) is
assumed as one in the group of dynamic friction models that allows one to include stiffness of
contact areas.
Papers should be mentioned here in which friction was modelled between rubber and other

materials. The most well known are works related to automotive engineering, especially those
dealing with the modelling of friction between the tyre and the road, see e.g. often cited work by
Canudas de Wit et al. (2003). Among the proposed friction models, also presented in the paper
above was the Dahl friction model. The paper (Canudas de Wit et al., 2003) introduced another
dynamic friction model – the LuGre model, which allows one to include the Stribeck effect.
Leamy and Wasfy (2002a,b) presented belt transmission models with a piecewise linear

friction model with the possibility of predicting belt creep. It is called the Coulomb-like tri-
linear creep-rate-dependent friction model. Another sample model was presented in (Kim et al.,
2011) and was called the elastic/perfectly-plastic friction law (EPP).
A group of papers should also be mentioned in which the Dahl friction model is applied as

a way of modelling friction in the revolute joint of a belt tensioner, see e.g. Bastien et al. (2007)
and Chatlet et al. (2008).
The changing belt and chain transmissions research objectives over the centuries and more

important works were presented by Fawcett (1981).

2. Mathematical model

The model presented in an earlier paper (Kubas, 2014) of a belt transmission was modified by
changing it into a friction model. As presented in the above-mentioned work, it was assumed
that the belt would be divided into nb bodies. Each neighbouring pair of bodies was joined by
the SDE with proper translational and bending stiffness and damping parameters (Fig. 1).
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Fig. 1. Assumed belt model with translational and torsion SDEs

For each body i (i = 1, . . . , nb), it was assumed that there were three generalised coordinates
(Fig. 2): translations xi and yi and rotation by an angle ϕi relative to the mass centre. The
generalised coordinates in the body i are presented in Fig. 2.

Fig. 2. Generalised coordinates of the belt body i

It was also assumed that there were np pulleys in the transmission “lying” in the xy plane
and rotating around the axis parallel to z with a rotation angle θj (j = 1, . . . , np). Therefore,
the vector of the generalised coordinates takes the form

qT =
[
qb1
T
, . . . ,qbi

T
, . . . ,qbnb

T
, θ1, . . . , θj, . . . , θnp

]
(2.1)

where qbi is the vector of generalised coordinates of the body i (presented in Fig. 2).

2.1. Spring-damping elements

The values of forces and torques in the translational and torsion SDE connecting the body i−1
with the body i are described by the Kelvin-Voigt (Voigt, 1892) relations

FLtrai = FRtrai−1 = ctra∆l
L
i + btra∆l̇

L
i

MLtori =MRtori−1 = ctor(ϕi − ϕi−1)
(2.2)

where FLtrai , FRtrai are values of translational forces in the left SDE (connecting the body i with
the body i − 1) and the right SDE (connecting the body i with the body i + 1), respectively;
MLtori , MRtori – bending torques in the left SDE and right SDE, respectively; ctra, btra – trans-
lational stiffness and damping coefficients in SDE; ctor – torsional stiffness coefficient in SDE;
∆lLi , ∆l̇

L
i – translational deformation and deformation speed of SDE.

2.2. Model of the belt-pulley contact

A vector notation of the forces is used to take into account the contact between the belt
bodies and pulleys in the transmission. A diagram of the assumed distribution of forces acting
on the belt body i at the period of contact with the pulley j is presented in Fig. 3.
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Fig. 3. Assumed configuration of the velocity components of the belt body i and forces acting on this
body from the pulley j

It is assumed that the force components, i.e. normal force Nij and friction force Tij, would
be applied to the mass centre of each body which has contact with one of the pulleys.
As is shown in Fig. 3, the vector rij is orientated from the centre of the pulley j to the mass

centre of the body i. If there is contact between the body and the pulley but the value of the
normal force Nij is still zero, the length of this vector equals an arbitrary value rpj . Thus, at
the time of a non-zero normal force, there is an inequality: rij < rpj. The position of the pulley
centre in the global coordinate system is specified via the vector Ppj.
The vector rij can be determined from the following formula

rij = qbi − qpj (2.3)

A versor (unit vector) according to the direction and sense of the vector rij equals

rij =
rij
|rij |

(2.4)

The penetration depth of the belt body i with the pulley j can be determined from the
formula

pij = rpj − |rij | (2.5)

Assuming that the linear velocity of the centre of the pulley is zero, then the value of
penetration velocity ṗij is equal to the value of the normal velocity component vni (Fig. 3). This
value is determined on the basis of the following scalar product

ṗij = |vni | = −vTi · rij (2.6)

where vi is the velocity of the mass centre of the body i.
Since the contact force Nij formed during contact between the body i and the pulley j has

a consistent direction with the direction of the versor rij, then

Nij = Nijrij (2.7)

The value of this force is determined in a similar form as given in the paper (Čepon et al.,
2010), in which the authors proved a nonlinear relation between the penetration depth and the
normal force

Nij(pij, ṗij) = c1p2ij + c2pij + bṗij (2.8)

where c1, c2 are belt-pulley contact stiffness coefficients, b – belt-pulley contact damping coeffi-
cient.
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2.3. Dahl friction model

The value of the relative velocity vT ij between the body i and the pulley j is needed to
calculate the friction force (shown in Fig. 3). The way of calculating this velocity was presented
in an earlier work (Kubas, 2014).
As was mentioned before, the Dahl model is assumed as presented in (Dahl, 1968)

µij =





(µ0ij − µk) exp
(
− σµk (xij − x0ij)

)
+ µk for vT ij  0

(µ0ij + µk) exp
(
− σµk (xij − x0ij)

)
− µk for vT ij < 0

(2.9)

where vT ij is the relative velocity between two moving parts, x0ij – starting value of displacement
at the moment of change of sense of the relative velocity, µ0ij – starting value of the friction
coefficient (according to x0ij displacement), xij – displacement, µk – dynamic friction coefficient,
σ – stiffness coefficient of the friction joint.
The shape of an exemplary displacement-dependent friction characteristic is presented in

Fig. 4.

Fig. 4. Exemplary shape of a Dahl friction characteristic as a function of displacement

First, the starting value of displacement is x0ij and the starting value of friction coeffi-
cient µ0ij is equal to 0. When the two corresponding layers start to move and the relative
velocity ẋ is positive (in relation to the assumed local coordinate system), the friction coefficient
increases (1st phase shown in Fig. 4) according to equation (2.9)1. Sometimes, as shown in Fig. 4,
the relative velocity can reach the value of µk (especially when its direction does not change
in a relatively long period of time). When the direction of the velocity changes to the opposite
(negative values), the starting value of the displacement and the starting value of the friction
coefficient should change to the values: x0ij = x′, µ0ij = µk. The friction coefficient starts to
decrease (2nd phase) according to equation (2.9)2 and can reach an arbitry value of −µk (this
situation is shown in Fig. 4). When the velocity changes again into positive values, the friction
coefficient increases again (3rd phase), and x0ij = x′′, µ0ij = −µk.
The value of the friction force can be, therefore, described as

Tij = µijNij (2.10)

The direction of the friction force vector is opposite to the relative velocity vT ij .
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2.4. Equations of motion

Equations of motion of the body i take the form

miẍi = X
T ·
[
FLtrai +FRtrai +

np−1∑

j=0

(Nij +Tij) +mig
]

miÿi = Y
T ·
[
FLtrai + FRtrai +

np−1∑

j=0

(Nij +Tij) +mig
]

Iziϕ̈i = Z
T ·
(
MLtrai +MRtrai +MLtori +MRtori

)

(2.11)

where X
T
= [1, 0, 0], Y

T
= [0, 1, 0], Z

T
= [0, 0, 1] – versors consistent with the axes x, y, z,

respectively, of the global coordinate system, MLtrai = −l′i × FLtrai , MRtrai = l′i × FRtrai ,
g – vector of gravitational acceleration.
It is assumed that the pulleys motion will take place from the set torques. The equation of

motion of the pulley j has the form

Izj θ̈j =Mdj −
nb−1∑

i=0

Z
T ·MT ij (2.12)

where Izj is the mass moment of inertia of the pulley j, Mdj – the set torque,MT ij = rij ×Tij
– friction torque acting from the belt body i.
The resistance torque acting on the pulley can be included in the assumed model. A negative

value of Mdj (e.g. constant or dependent on velocity θ̇j) should be taken in this case.

Case 1: Analysis with a driving torque of 100Nm

A two-pulley belt transmission with the same radius rp = 0.1m is taken into analysis. The
scheme of the assumed transmission is presented in Fig. 5. The distance between the pulleys
is lp = 0.290m. The analysed belt is 1.2m in length. The friction coefficient, translational and
rotational stiffness and damping coefficients are assumed based on own related works and (Čepon
and Boltežar, 2009; Čepon et al., 2009, 2010). The number of belt elements is assumed as nb = 60
and the coefficient as σ = 10000m−1. One belt element and the neighbouring spring-damping
element (on the left side of the belt element) are chosen to show some example calculation
results. The selected belt element is also presented in Fig. 5 as case 1.

Fig. 5. Assumed belt transmission with a selected belt element

The torque applied in the driving pulley is also assumed as a partially-linear time-depended
function. From 0 to 0.3 s, the value of the torque decreased from 0 to −50Nm. After that moment,
it remained constant.
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The resistance torque applied in the driven pulley is described as a function of its angular
velocity

Md2 =
100
2π

θ̇2 (2.13)

All of the presented calculation results omit the stabilisation phase of the analysed model.
The calculated driving and resistance torques are presented in Fig. 6.

Fig. 6. Driving and driven torques applied to the pulleys in case 1

The achieved angular velocities of the driving and driven pulleys are presented in Fig. 7. As
can be observed, after 0.3 s the angular velocities remain constant with a value almost equal to
2π rad/s. Some disturbances can also be observed as a result of the assumed discrete model of
the belt. It is worth mentioning that this effect can be reduced even more by assuming more
belt elements; this will of course cause an increase in the number of equations of motion.

Fig. 7. Calculated values of angular velocities of the pulleys

In the next two figures (Figs. 8a and 8b), the longitudinal deformation and resulting force
in a chosen spring-damping element is presented. As has been mentioned, it is located next to
the chosen rigid element shown in Fig. 5. As can be observed, this element is located in the
passive part of the belt at the moment that the transmission starts. The values of deformation
and force decrease. Some disturbances and an increase in the values can be observed just over
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0.3 s. From this moment, the rigid element is located on the driven pulley. This situation lasts
to about 0.82 s. After this time period, it moves in the active part of the belt.

Fig. 8. Longitudinal deformation and reaction force in the selected SDE: (a) longitudinal deformation,
(b) reaction force

As can be observed from the shapes in the figures, the reaction force in the spring-damping
element mainly depends on the deformation. The dependence on the deformation velocity is
negligible.
Figure 9 shows the reaction forces on each element at a chosen time of 0.4 s. Elements with

numbers 1-9 and 53-60 are located in the passive top part of the belt. The values of the force in
this part are about 120N. Elements 23-39 are in the active bottom part of the belt. The values
of the force in this part are about 1120N. Elements located in the driven pulley correspond
to numbers 10-22 (growing force), whereas those located on the driving pulley correspond to
numbers 40-52 (decreasing force).

Fig. 9. Reaction forces in all SDEs at a selected time

In Figs. 10a and 10b, the calculated values of normal and friction forces acting on a selected
rigid element from the driven pulley are presented. As can be observed, up to about 0.6 s,
the friction forces are smaller than the normal forces and do not correspond to the developed
friction or slip (which is consistent with the results of the angular velocities shown in Fig. 7).
From about 0.6 s, the values start to be equal or almost equal.
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Fig. 10. Normal and friction forces acting on a selected belt element from the driven pulley:
(a) normal force, (b) friction force

In Fig. 11a, the calculated values of the friction coefficient of the selected belt element are
shown. The values are negative because of the opposite direction of the friction force to the
assumed positive direction of the pulley rotation (Fig. 3). As can be observed, when contact
between the element and the driven pulley starts, the values of the friction coefficient increase
rapidly to a value of about 0.59 and return to zero (from about 0.31 s to 0.38 s). At this moment,
the element loses contact with the pulley (this can also be observed in Fig. 10a). At about 0.39 s,
the belt element returns to the area of the pulley. Up to about 0.68 s, the values increase to the
assumed value µk. The values remain constant from this time to about 0.82 s. At about 0.82 s,
the element loses contact with the driven pulley and starts moving in the active part of the belt.

Fig. 11. Change of the friction coefficient: (a) in a selected belt element, (b) presented as a function of
displacement

In Fig. 11b, the calculated values of the friction coefficient are shown as a function of di-
splacement. As can be observed, the values asymptotically grow to the assumed value µk. Two
moments of changing the values to zero, as identified earlier, can be observed.
The disturbances of the changing values of the friction coefficient result from the changing

direction of the relative velocity, which is presented in Fig. 12.



A model for the dynamic analysis of a belt transmission... 1431

Fig. 12. Calculated relative velocity between a chosen rigid element and the driven pulley

The presented case of load causes a relatively large acceleration of the transmission. After
velocity stabilisation, only friction in one direction can be analysed. Calculations with another
drive and resistance torques are repeated.

Case 2: Oscillating torque

Next, the torque applied to the driving pulley as shown in Fig. 13 is assumed. As can be
observed, first the torque is linear-changing from 0 (at the start) to −50Nm (at time 0.25 s).
Next, the values increase to 50Nm (at 0.75 s). At the end of analysis, the torque decreases to 0.
Simultaneously, the resistance torque of the passive pulley has opposite values.
This kind of torque loads the transmission in two opposite directions with a relatively small

movement. The belt is slightly rotated clockwise. The chosen belt element (whose initial position
is shown in Fig. 5 as case 2) moves toward the right side of the driven pulley.
The rest of the conditions (initial preload of the belt, dimensions of the transmission, etc.)

are the same.

Fig. 13. Driving and driven torques applied to the pulleys in case 2

As shown in Fig. 14, the angular velocities of the driving and driven pulleys differ significantly.
It can also be observed that the transmission oscillates in moments of the changing direction of
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these velocities (at time 0.25 s and 0.75 s). Just before the oscillations, the velocities differ about
0.1 rad/s.

Fig. 14. Calculated angular velocities of the pulleys in case 2

Figure 15 shows the resulting reaction force in the selected spring-damping element. At the
beginning, the force is about 420N and decreases to about 100N. After changing the direction
of the load torques, the force increases to about 1110N. At the end of the simulation the force
achieves a value of about 580N.

Fig. 15. Calculated values of the reaction force in a selected spring-damping element in case 2

Figure 16 shows the calculated normal and friction forces between the chosen belt element
and the pulley. Because the selected belt element moves slowly to the right side of the driven
pulley, where the normal force is larger, the absolute friction force also increases to about 190N.
After 0.75 s, the selected belt element moves back and the absolute values of normal and

friction forces start to decrease.
Figure 17a shows the calculated values of the friction coefficient. In this case, the friction

between the selected belt element and the pulley achieves values of −µk and µk, which means
that in particular moments it is fully developed. It corresponds to intervals 0.16 s-0.25 s and
0.66 s-0.76 s, respectively.
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Fig. 16. Normal and friction forces of a selected belt element in case 2

Fig. 17. Change of the friction coefficient: (a) in a selected belt element in case 2, (b) presented as a
function of displacement in case 2

Figure 17b shows values of the friction coefficient as a function of displacement acting on
a chosen element from the pulley. As can be observed, at the beginning the friction coefficient
decreases to an arbitrary value −µk and the displacement is achieved at about 0.83mm. Then
the direction of the relative velocity changes. After this moment, the values increase to a po-
sitive value of µk. The relative displacement achieves in this phase about 0.45mm (absolute
displacement is about 0.38mm).

It has been decided to check how much the change in the σ coefficient affected the calculation
results. Figure 18 shows the friction coefficient courses as a function of the displacement in two
cases: σ = 10000 and σ = 5000 as assumed earlier. As can be observed, the slope of the curve
has changed.

Figure 19 shows the calculated angular velocities of the pulleys. A comparison of these
courses with the courses from Fig. 14 shows slightly larger amplitudes of the vibrations. Because
of the assumed smaller value of σ, the system became ‘more flexible’. The contact and friction
parameters will be investigated on a research stand in the future.
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Fig. 18. Change of the friction coefficient presented as a function of displacement in case 2, for two
different values of the coefficient σ

Fig. 19. Calculated angular velocities of pulleys in case 2 with the assumed coefficient σ = 5000

3. Conclusions

As has been mentioned before, the proposed Dahl model does not include the Stribeck effect. This
assumption is possible because the static and dynamic friction coefficients are approximately the
same. It would be necessary to assume another friction model if they were different. The LuGre
friction model is especially interesting and very popular (Canudas de Wit et al., 1995). In future
works, it will be the main subject of investigation in belt transmission applications. It is also
important to compare the prepared models with early mentioned models, especially with the
EPP friction model, which also includes elasticity of the joint.
Of course, the most important is to compare them with real measurements made on a research

stand. As mentioned before, a series of experiments on a specially built research stand is planned.
The main subject of these experiments will be to measure the friction parameters between the
belt and the pulley. The measurements will be done for a clean belt and with some impurities
(oil, water, etc.). It has been noticed from first experiments made on a clean belt that friction
between the belt and the pulley cannot be described with a relatively simple Euler formula. Its
dependence on the belt preload or wrap angle can be more complicated. The friction can also
depend on the rest time between movements of the transmission or belt slip, on the relative
velocity between the belt and the pulley surfaces or even on the acceleration.
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7. Čepon G., Manin L., Boltežar M., 2010, Experimental identification of the contact parameters
between a V-ribbed belt and a pulley, Mechanism and Machine Theory, 45, 1424-1433

8. Dahl P.R., 1968, A Solid Friction Model, Report No. TOR-0158(3107-18)-1, Aerospace Corpora-
tion Report

9. Fawcett J.N., 1981, Chain and belt drives – a review, Shock Vibrations Digest, 13, 5, 5-12

10. Kim D., Leamy M.J., Ferri A.A., 2011, Dynamic modeling and stability analysis of flat belt
drives using an elastic/perfectly plastic friction law, ASME Journal of Dynamic Systems, Measu-
rement, and Control, 133, 1-10

11. Kubas K., 2014, A two-dimensional discrete model for dynamic analysis of belt transmission with
dry friction, The Archive of Mechanical Engineering, 61, 4, 571-593

12. Kubas K., 2015, A model for analysing the dynamics of a belt transmissions with a 5pk belt, The
Archives of Automotive Engineering, 16, 1

13. Leamy M.J., Wasfy T.M., 2002, Analysis of belt-drive mechanics using a creep-rate-dependent
friction law, Journal of Applied Mechanics, Transaction of ASME, 69, 6, 763-771

14. Leamy M.J., Wasfy T.M., 2002, Transient and steady-state dynamic finite element modeling of
belt-drives, ASME Journal of Dynamic Systems, Measurement, and Control, 124, 4, 575-581

15. Voigt W., 1892, Ueber innere Reibung fester Körper, insbesondere der Metalle, Annalen der
Phisik, 283, 671-693

Manuscript received September 28, 2016; accepted for print July 18, 2017





JOURNAL OF THEORETICAL SHORT RESEARCH COMMUNICATION

AND APPLIED MECHANICS

55, 4, pp. 1437-1441, Warsaw 2017
DOI: 10.15632/jtam-pl.55.4.1437

JERK BY AXES IN MOTION ALONG A SPACE CURVE

Michael Tsirlin
ELMO Motion Control, Petah Tiqva, Israel

e-mail: mz695444@gmail.com

In the paper, a formula for calculation of the jerk of a point moving along a space curve is
derived. Such a formula is needed for control of motion to calculate jerks (second derivatives
of the velocity) by axes of motion. On the basis of this formula, an expression for the
maximum admissible velocity on the space curve to satisfy limitation by the jerk is given as
well. Such a requirement also arises in the motion control.

Keywords: jerk, motion control, profiler

1. Introduction

In the multi axis motion control, a motion command may contain four kinematics parameters:
position, velocity, acceleration and jerk. Such a command must be issued for each axis x, y and
z controlled by a servo on each control cycle. While calculation of the velocity and acceleration
is trivial, calculation of jerk (that is mainly used for analysis of motion) is a new demand. In
a number of papers devoted to the motion control, a tangential jerk along the trajectory is
considered while the problem of jerk caused by a high curvature on the transition curve between
two line segments is a new one. For a particular case of planar motion, the jerk vector was
considered by Shot (1978). In this special case, the jerk can be resolved into tangential and
normal components. As will be shown below, in the case of 3D space motion, the jerk vector has
three components although the acceleration vector still can be decomposed into tangential and
normal.
Consider a space curve in the 3D space defined by a vector function γ(σ) =

{ϕx(σ), ϕy(σ), ϕz(σ)}. In further considerations, any special nature of the parameter σ
(σ – is not time or arc length s) and any special limit of the parameter variation are not
supposed. We suppose here that γ(σ) is a continuous mapping σ → R3, σ ∈ [a, b] with three
times differentiable coordinate functions ϕx(σ), ϕy(σ), ϕz(σ) that define geometrical properties
of the curve.
As γ′(σ) = {ϕ′x(σ), ϕ′y(σ), ϕ′z(σ)} then the unit tangent vector can be defined as τ (σ) =

{ϕ′x(σ)/‖γ ′(σ)‖, ϕ′y(σ)/‖γ ′(σ)‖, ϕ′z(σ)/‖γ ′(σ)‖}.
The second derivative a(σ) = γ ′′(σ) = {ϕ′′x(σ), ϕ′′y(σ), ϕ′′z (σ)} with a normal compo-

nent an(σ) = a(σ) − [a(σ) · τ (σ)]τ (σ). Then, the unit normal vector can be defined as
n = an(σ)/‖an(σ)‖.
The binormal unit vector b(σ) can be defined as τ (σ) × n(σ). Thus, we know the Frenet-

-Serret frame τ (σ), n(σ) and b(σ) for each parameter value σ.
Consider a point moving along a curve defined by its radius-vector r(t). For each control cycle

(at time t) from the profiler calculations we know the position increment along the curve s(t),
velocity along the curve ds/dt = v(t), acceleration along the curve d2s/dt2 = a(t) and jerk
along the curve d3s/dt3 = J(t), where s is a distance along the curve. The value of the curve
parameter σ is not known but with the use of numerical methods, the mapping s → σ can be
done with any required precision.



1438 M. Tsirlin

2. Vector of jerks for the position increment s(t)

The velocity and acceleration vectors of the point moving along the space curve are defined by

v(t) =
dr

dt
= τ

(ds
dt

)

a(t) =
dv

dt
= τ

(d2s
dt2

)
+ n

(ds
dt

)2 1
ρ(s)
= τ

(d2s
dt2

)
+ n

(ds
dt

)2
K1(s)

(2.1)

where K1(s) and ρ(s) are the curvature and radius of the curvature at point s.
The vector of the third derivative (jerk) can be calculated as da(t)/dt

J(t) =
da

dt
=
dτ

ds

ds

dt

d2s

dt2
+ τ

(d3s
dt3

)
+
dn

ds

(ds
dt

)3
K1(s) + n

d
[(
ds
dt

)2
K1(s)

]

dt
(2.2)

At first, we consider

n
d
[(
ds
dt

)2
K1(s)

]

dt
= n

[
2
ds

dt

d2s

dt2
K1(s) +

(ds
dt

)2dK1(s)
ds

ds

dt

]
(2.3)

By the Frenet-Serret formulas

dτ

ds
= K1n

dn

ds
= −K1τ +K2b (2.4)

The curvatureK1 and torsion K2 for an arbitrary curve parameter σ (which is not necessarily
the arc length s) at the parameter point σ are calculated by

K1(σ) =
‖γ′(σ)× γ′′(σ)‖
‖γ ′(σ)‖3

K2(σ) =
[γ′(σ),γ ′′(σ),γ ′′′(σ)]
‖γ ′(σ)× γ ′′(σ)‖2 =

[γ ′(σ)× γ ′′(σ)] · γ ′′′(σ)
‖γ ′(σ)× γ′′(σ)‖2

(2.5)

where γ′(σ), γ′′(σ), γ′′′(σ) are known curve derivatives, and the curve parameter σ can be found
from the numerical mapping s→ σ (if σ 6= s) that must be done for each point s. We calculate
curvature and torsion at the parameter point σ that corresponds to the increment s along the
curve. Point s is a point where the profiler calculations have just determined ds/dt, d2s/dt2,
d3s/dt3. So, at the point s, we can use K1(σ) and K2(σ) instead of K1(s) and K2(s). Below we
use designations K1 and K2.
From (2.2)-(2.4), we get

J(t) = K1n
ds

dt

d2s

dt2
+ τ

(d3s
dt3

)
+ (−K1τ +K2b)

(ds
dt

)3
K1

+ n
[
2
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dt

d2s

dt2
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(ds
dt

)2dK1(s)
ds
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dt

]
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dt3
−K21

(ds
dt
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+ n
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dt2
+ 2
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dt2
K1 +

(ds
dt

)2 dK1(s)
ds
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dt

]
+ b

K2
ρ

(ds
dt

)3

= τ
[d3s
dt3
−
(ds
dt

)3
K21

]
+ n

[
3
ds

dt

d2s

dt2
K1 +

(ds
dt

)3 dK1(s)
ds

]
+ b

[
K2
(ds
dt

)3
K1
]

(2.6)

Since we do not know the function K1(s) then calculation of its derivative at the point s
requires special consideration. K1(s) = K1[s(σ)] = K1σ(σ), and by differentiating both sides we
get

dK1(s)
ds

=
dK1σ(σ)

ds
=
dK1σ(σ)
dσ

dσ

ds
=
dK1σ(σ)
dσ

/ ds
dσ
=
dK1σ(σ)
dσ

1
‖γ ′(σ)‖ (2.7)
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where instead of the unknown dσ/ds we used the derivative ds/dσ = ‖γ ′(σ)‖ of the inverse
function s(σ), that is a curve length function

dK1σ(σ)
dσ

=
d‖γ

′(σ)×γ ′′(σ)‖
‖γ′(σ)‖3

dσ

=
(d‖γ ′(σ)× γ ′′(σ)‖

dσ
‖γ ′(σ)‖3 − ‖γ ′(σ)× γ′′(σ)‖d‖γ

′(σ)‖3
dσ

) 1
‖γ ′(σ)‖6

=
d‖γ ′(σ)× γ′′(σ)‖

dσ

1
‖γ ′(σ)‖3 −K1(σ)

d‖γ ′(σ)‖3
dσ

1
‖γ′(σ)‖3

(2.8)

Below we assume that for any vector p the derivative of its Euclidean norm can be calculated
as

‖p‖′ = 1
2
(p′p+ pp′)

1√
pp
=
pp′

‖p‖
d‖γ ′(σ)× γ′′(σ)‖

dσ
=
[γ ′(σ)× γ ′′(σ)] [γ ′′(σ)× γ′′(σ) + γ ′(σ)× γ ′′′(σ)]

‖γ ′(σ)× γ ′′(σ)‖

=
[γ ′(σ)× γ′′(σ)] [γ ′(σ)× γ ′′′(σ)]

‖γ ′(σ)× γ ′′(σ)‖
d‖γ ′(σ)‖3

dσ
= 3‖γ ′(σ)‖2 d‖γ

′(σ)‖
dσ

= 3‖γ ′(σ)‖2γ
′(σ)γ ′′(σ)
‖γ ′(σ)‖ = 3‖γ

′(σ)‖[γ ′(σ)γ ′′(σ)]

(2.9)

So, finally we get

dK1σ(σ)
dσ

=
[γ ′(σ)× γ′′(σ)] [γ ′(σ)× γ ′′′(σ)]
‖γ ′(σ)‖3‖γ ′(σ)× γ′′(σ)‖ − 3K1(σ)

γ ′(σ)γ ′′(σ)
‖γ ′(σ)‖2 (2.10)

Another derivation of (2.10) was given by Angeles (2003, pp. 371-372).
In some cases (cubic spline with iterative adaptation of the parameter σ or PH-curve proposed

by Farouki (2010)) we can use the curve parameter close or equal to natural σ = s. In such cases,
the curvature K1 and its derivative dK1/ds are defined as

K1 = ‖γ ′′(s)‖ =
√
[ϕ′′x(σ)]2 + [ϕ′′y(σ)]2 + [ϕ′′z(σ)]2

dK1
ds
=
1
K1
[ϕ′′x(σ)ϕ

′′′
x (σ) + ϕ

′′
y(σ)ϕ

′′′
y (σ) + ϕ

′′
z(σ)ϕ

′′′
z (σ)] =

γ′′(σ)γ ′′′(σ)
‖γ ′′(s)‖

(2.11)

In (2.6), we have come to the vector

J(t) = τ (σ)C1 + n(σ)C2 + b(σ)C3 (2.12)

The vectors τ (σ), n(σ) and b(σ) are defined above, and the scalar coefficients C1, C2, C3 are
also known from (2.6)

C1 =
d3s

dt3
− K1

ρ

(ds
dt

)3
= J(t)−K21v3(t)

C2 = 3
ds

dt

d2s

dt2
K1 +

(ds
dt

)3 dK1(s)
ds

= 3v(t)a(t)K1 + v3(t)
dK1(σ)
dσ

1
‖γ ′(σ)‖

C3 =
K2
ρ

(ds
dt

)3
= K1K2v3(t)

(2.13)
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3. Applications of the formula

In the case of uniform motion with ds/dt = V , d2s/dt2 = 0 and d3s/dt3 = 0 we get

C1 = −
K1
ρ

(ds
dt

)3
= −K21V 3 C2 =

(ds
dt

)3dK1(s)
ds

= V 3
dK1(σ)
dσ

1
‖γ ′(σ)‖

C3 =
K2
ρ

(ds
dt

)3
= K1K2V 3

(3.1)

In the case of plane 2D motion with K2 = 0

C1 =
d3s

dt3
− K1

ρ

(ds
dt

)3
= J(t)−K21v3(t)

C2 = 3v(t)a(t)K1 + v3(t)
dK1(σ)
dσ

1
‖γ ′(σ)‖ C3 = 0

(3.2)

Formulas (3.1) can be used for the estimation of the maximum velocity V admissible on the
curve to satisfy condition ‖J‖ ¬ Jmax. While generating the trajectory, instead of K1(s) and
K2(s) we know K1(σ) and K2(σ) for any parameter value σ. So, in the case of uniform motion
with ds/dt = V and designation K̃1 = [dK1(σ)/dσ]/‖γ ′(σ)‖ we get

‖J(σ)‖ =
√
K41 (σ)V 6 + V 6K̃

2
1 +K

2
1 (σ)K

2
2 (σ)V 6

= V 3
√
K41 (σ) + K̃

2
1 +K

2
1 (σ)K

2
2 (σ) = V

3
√
Ψ(σ)

(3.3)

and the maximum velocity admissible at all trajectory points must satisfy

V ¬
3
√
Jmax

6
√
maxΨ(σ)

(3.4)

In most applications, the point σ∗ that produces Ψ(σ∗) = maxΨ(σ) belongs to a small neigh-
borhood of the point σp such that γ(σp) can be called the peak of the curve.
In the case of 2D uniform motion, ds/dt = V , K2(σ) = 0, and we get

‖J(σ)‖ = V 3
√
K41 (σ) + K̃

2
1 (3.5)

Fig. 1. (a) Velocity vector modulus. (b) Jerk vector modulus

In Fig. 1a, we can see a velocity decrease from 5 · 105 down to 218560.65 to satisfy the
condition ‖J(σ)‖ ¬ 109. It happens on the transition curve between two lines constructed as a
3D septic polynomial. In Fig. 1b, we can see that the jerk comes exactly to the limiting value
(time is measured in seconds, velocity in count/s, jerk in count/s3). The calculations have been
performed by (3.3) and (3.4).
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The present work is devoted to simulation of fatigue crack initiation for cyclic loading within
the nominal elastic regime. It is assumed that damage growth occurs due to action of mean
stress and its fluctuations induced by crystalline grain inhomogeneity and the free boundary
effect. The macrocrack initiation corresponds to a critical value of accumulated damage.
The modelling of damage growth is supported by Electronic Speckle Pattern Interferometry
(ESPI) apparatus using coherent laser light.

Keywords: fatigue crack initiation, damage evolution, optical methods

1. Introduction

The process of fatigue damage development and structural degradation is of local nature. The
mechanism responsible for damage accumulation during cyclic loading below the yield point
remains elusive. The present paper concerns the fatigue crack initiation and evolution in metals
subjected to loading at the stress level below the conventional yield strength. During the process
of cyclic loading due to an inhomogeneous grain structure, the micro plastic effects develop
and can be observed on the macro-scale. Sangid (2013) proposed a physically-based model for
prediction of fatigue crack initiation based on the material microstructure. Using the potential
offered by the novel experimental techniques, it is possible to identify physical phenomena and
to describe mechanisms of degradation and fatigue damage development in modern structural
materials. Their identification involves usage of damage detection methods, both destructive and
non-destructive to evaluate material behaviour under different loads (Kowalewski et al., 2008).
Electronic Speckle Pattern Interferometry (ESPI) is a widely used technique to measure full-field
deformation on surfaces of many kinds of objects. The shielding effect on fatigue crack growth at
constant amplitude loading and during application of overloads was investigated using ESPI by
Vasco-Olmo et al., (2016). The analysis of the plastic processes that governs crack propagation
was analysed using ESPI method by Ferretti et al., (2011). However, its application to the study
of fatigue damage mechanisms has not been yet explored extensively. Therefore, in this study,
ESPI is applied to investigate the distribution of strain fluctuations.

2. Applications of ESPI method

Nowadays, the ESPI method seems to be very attractive in capturing damage growth. Primarily,
optical methods are used to analyze strain fields and strain localization on the surface of a
specimen. For instance, strain distribution map using ESPI for nickel alloys (C – 0.09%, Cr –
8.8%, Mn – 0.1%, Si – 0.25%, W – 9.7%, Co – 9.5%, Al – 5.7%, Ta+Ti+HF – 5.5%) is presented
for an increasing number of load cycles in Fig. 1.
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Fig. 1. Strain distribution maps on the plane specimen surface using ESPI for different stages of the
fatigue process

During the process of pulsating cyclic loading the material deforms heterogeneously and
numerous strain concentration spots are visible. It is expected that the microstructure of the
materials plays an important role in strain localization. The strain concentration occurs especial-
ly at grain boundaries. It can be expected that cracks start to nucleate in the zones containing
large strain accumulation during cyclic loading. Apart from the density and distribution of de-
fects in the volume of tested specimen, the specimen size and location of individual defects are
important factors of fatigue damage initiation and its further evolution. The lateral profiles of
maximal cross-sectional strain distribution for the increasing number of cycles are presented in
Fig. 2. The results are shown for the nickel alloy.

Fig. 2. The lateral profiles of maximal cross-sectional strain evolution

The distribution of strain across the sample at the place of crack initiation and its evolution
during the cyclic loading process is shown in Fig. 2. Using ESPI, the strain distributions for the
first and last cycle (at the moment of rupture) are included. The strain values evolve faster at
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the edge of the sample. Results will serve to verify and calibrate the mathematical description.
The results of fatigue tests in the form of stress-strain diagrams exhibiting the permanent strain,
stiffness modulus variation and hysteresis loops during selected cycles of fatigue are presented
in Fig. 3.

Fig. 3. Development of the fatigue hysteresis loop during selected cycles

The fatigue hysteresis loops are not measurable during the cyclic process indicating that the
material globally deforms in the elastic state, and the macroplastic strain developed in the final
phase of process is of order 0.1%. The microdamage can evolve within the local zones of strain
concentration. The understanding of mechanical properties of materials plays an important role
during the fatigue process.

3. Mathematical modelling of fatigue damage evolution, numerical
implementation and comparison with ESPI results

In the present paper, the mathematical description of fatigue crack initiation and evolution is
formulated. The problem of damage evolution for metals under cyclic loading inducing fatigue
crack initiation and propagation within the elastic regime is discussed. The condition of damage
accumulation is formulated after Mróz et al., (2004). It is assumed that when the critical stress
condition is reached on the material plane, the damage zone Ω is generated. Afterwards, the
growth of the damage zone can be described. The mathematical model is applied to study damage
evolution under cyclic tension and the predictions are compared with experimental data. The
profile of normal strain ε(x) and stress σ(x) along the damage zone Ω is expressed as a sum of
the mean (ε, σ) and fluctuation (ε̃(x), σ̃(x)) components

ε(x) = ε+ ε̃(x) σ(x) = σ + σ̃(x) (3.1)

The material is assumed to be linearly elastic, but exhibiting a damage process at the strain
concentration zones. In order to illustrate the problem (Fig. 4), the potential damage zone Ω is
selected with the largest strain and stress fluctuations.
Damage evolution rule (3.2) was originally formulated by Mróz et al. (2004) for brittle

materials

dD = A
( σ − σ∗0
σc − σ0

)n dσ

σ∗c − σ∗0
(3.2)

where A, n and p denote material parameters, σ0 is the damage initiation threshold, σc denotes
the failure stress in tension for the damaged material, σ∗0 and σ

∗
c are the threshold values for the

undamaged material and D denotes the scalar measure of damage (0 ¬ D ¬ 1).
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Fig. 4. Damage zone Ω with the major stress fluctuation

The stress value σ increases but the values of σ0 and σc decrease. Both σ0 and σc depend on
the damage state according to the formula

σc − σ0 = (σ∗c − σ∗0)(1−D)p (3.3)

The process of cyclic loading is described by the time variation of stress in the following form

σ(t) =
1
2
σa[1 + sin(ωt)] ω =

2π
T

(3.4)

where σa is the stress amplitude. Substituting σ from Eq. (3.4) into Eq. (3.2) and integrating,
the equation for the damage increase in one cycle ∆Ds = Ds+1 −Ds is expressed as follows

Ds+∆Ds∫

Ds

(1−D)np dD = Aωσa
2(σ∗c − σ∗0)n+1

T∫

0

(1
2
σa(1 + sin(ωt))− σ∗0

)n
cos(ωt) dt (3.5)

Finally, the damage evolution law for one cycle reads

∆Ds =
1

(1−Ds)np
A

(σ∗c − σ0)n+1
1

n+ 1

[(1
2
σa(1+sin(ωT ))−σ∗0

)n+1
−
(1
2
σa−σ∗0

)n+1
]
(3.6)

The free edges of the sample due to surface irregularities act as a kind of stress concentrators.
The influence of edge defects on the damage evolution and crack propagation is significant (see
Fig. 2).
In order to account for the edge effect, the stress fluctuation function (see Fig. 4) is introduced

and the total stress expressed as follows

σ(x) = σ + σ̃(x) = σ + σy(x) = σ
(
1 + α+ β

∣∣∣
x

a

∣∣∣
m)

y(x) = α+ β
∣∣∣
x

a

∣∣∣
m

(3.7)

where y(x) denotes the fluctuation function, a is width of the sample, β and m are material
parameters. The integration of stress fluctuation on [0, a] makes it possible to establish the
parameter α

a∫

0

σ̃(x) dx = 0 →
a∫

0

(
α+ β

∣∣∣
x

a

∣∣∣
m)

dx = 0 → α = − β

m+ 1
(3.8)
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The boundary condition at the external edge allows one to specify parameter β, thus

σ̃(x = a) = σb → β =
σb

σ

m+ 1
m

(3.9)

The value of σb is assumed to correspond to the measured boundary fluctuation, here σb = 1.1σ.
Finally, the stress distribution is expressed in the following form

σ(x, t) = σ
(
1 + α+ β

∣∣∣
x

a

∣∣∣
m)(1
2
+
1
2
sin(ωt)

)
(3.10)

According to the mathematical description, numerical analysis of damage evolution (3.2) under
mechanical loads (3.10) in elastic-plastic solids has been made. The evolution of damage during
the growing number of cycles is shown in Fig. 5. The macro-crack initiation is assumed to occur
at the critical value of damage Dc = 0.3.

Fig. 5. Damage evolution related to the number of cycles for different values of the parameter n

4. Conclusions

The present paper concerns the damage evolution in elastic-plastic materials subjected to cyclic
loading. The mathematical description of crack initiation and propagation under cyclic loading
is presented. This model is supported by optical methods of stress and strain monitoring (ESPI)
for early detection, localization and monitoring of damage in materials under fatigue loading.
The numerical prediction and the experimental results indicate a good correlation.
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