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Monitoring of rotating machines is a very important task in most industrial sectors, which
requires a chosen number of performance indicators during the exploitation of such kind
of equipments. Indeed, for understanding the undesirable phenomena complexity of the
industrial systems under operation, a reliable and an accurate mathematical modeling is
required to ensure the diagnosis and the control of these phenomena. This work proposes
development of a fault monitoring system of a gas turbine type GE MS 3002 based on
vibration analysis technique using spectral analysis tools. The obtained results prove the
effectiveness of the presented monitoring tool approach which is applied on the gas turbine,
for avoiding the operation under vibration mode and for generating optimal performance
during the exploitation of the gas turbine.

Keywords: default bearings, dynamic behavior, faults detection, gas turbine, monitoring
system

1. Introduction

Vibration analysis of rotating machines in industrial plants is widely used to ensure premature
faults diagnosis before these machines may break down. Gas turbines are the most important
pivotal rotating machines belonging to the family of internal combustion engines that are used
intensively in oil and gas industrial plants. Indeed, it is used to achieve the main function of
generating mechanical energy in form of shaft rotation from kinetic energy of gases produced
in the combustion chamber (Djaidir et al., 2015, 2016; Djeddi et al., 2015, 2016; Eshati et al.,
2013; Jurado and Carpio, 2006; Kim et al., 2011). However, these machines are subject to some
phenomena inducing important vibrations that can be very critical to their mechanical state.

The work presented in this paper proposes a supervision approach based on vibration ana-
lysis, to ensure a permanent fault diagnosis of the studied gas turbine, where the main aim is
to prevent failures that may cause malfunctions and to fulfill an optimal operation availability
of such a machine. Indeed, there are several methods that have been used for characterization
and modeling of the gas turbine parameters. However, these methods are less exploitable for the
control of such systems due to its complexity. The proposed approach in this work is based on
the analysis of the magnitude and the harmonics spectrum of signals resulting from measured
vibrations on the gas turbine under different failures that may affect this kind of machine during
its normal operation.

Gas turbines are widely used in many industrial applications such as oil industry where
they are mainly used for wells re-injection and gas transportation along the pipelines. These
machines are subject to various instability factors that are influencing directly their operating
performances. Therefore, in order to improve the performances of these systems, many resear-
ches previously built mathematical models that represent the real time operation state more
accurately and instantaneously. Madhavan et al. (2014) developed a vibration model based on
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damage detection of rotor blades in a gas turbine engine. They showed that the developed model
can be used to carry out the analysis of mechanical components failures detection of the system
under study. Liu et al. (2015) studied the influence of large scale wind turbine blade vibration
based on the influence of the aerodynamic effects. Usman et al. (2015) presented the impact of
operating conditions and exhaust gas recirculation on the performance of rotors dynamics of
a gas turbine system. However, the current development of new technologies has allowed rese-
archers and industrial practices to improve the performance of gas turbines and to contribute
effectively to developing new methods and algorithms for controlling of such systems. In this
context, many industrial monitoring systems are being developed by several researchers to en-
sure fault detection, as well as for the diagnosis of defects (Ali et al., 2015; Djaidir et al., 2015,
2016; Djeddi et al., 2015, 2016; Günyaz, 2013; Krzyzynski et al., 2000; Liu et al., 2015; Sanaye
and Tahani, 2010; Simani and Patton, 2008).
The present paper deals with the modeling of gas turbine defects based on vibration analysis

using mathematical techniques, where a number of assumptions representing different operating
parameters of the studied gas turbines have been taken into account. In this paper, the analysis
of dynamic behavior of rotor vibration of the gas turbine type GE MS 3002 is proposed. This
gas turbine rotates at high speed up to 7100 tr/min and it is supported by bearings that may be
subject to faults during normal operation, which may contribute directly to the deterioration of
the gas turbine in a rapid manner.
The obtained in this paper results show clearly the effectiveness of the presented modeling

of the defects in a gas turbine. The presented approach allows one to build a diagnostic strategy
based on the vibration behavior analysis. On the other side, the experimental procedure for
tracking the anomalies in the gas turbine is presented. It is based on the use of the obtained
vibration signal spectrum and the associated analysis.

2. Dynamic vibration behavior in gas turbine

Gas turbines are heavily utilized in industry, where they are used mainly for producing and
ensuring important mechanical energy (Ford et al., 2013; Guasch, 2013; Lee et al., 2013; Rah-
moune et al., 2015). They are used for driving of fixed appliances where important output power
is required such as in electrical power generator, in powerful compressors, in powerful pumps,
etc. Therefore, the analysis of dynamic behavior of the gas turbine is attracting much attention
from the researcher and industrialists. It is based on the study of vibration behavior of the
main element of the gas turbine which is the high pressure rotor (HP) (Madhavan et al., 2014;
Rahmoune et al., 2015).
The vibration signal is presented by the following expression

x(t) = A sin(wt+ φ) (2.1)

where w is the frequency of vibration, φ is the phase and A the amplitude of vibration in
micrometers [µm].
The vibration speed ν(t) and the vibration acceleration a(t) are obtained by differentialing

vibration expression (2.1) as follows

ν(t) =
dx(t)

dt
= Aw cos(wt+ φ) a(t) =

dν(t)

dt
= −Aw2 sin(wt+ φ) (2.2)

Practically, all units are based on millimeters and seconds.
Based on equations (2.1) and (2.2), the following expressions can be deduced

|x| = |ν|
w
=
|a|
w2

|ν| = |x|w = |a|
w

|a| = |ν|w = |x|w2 (2.3)
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where x is the displacement, ν is the vibration speed, a is the vibration acceleration and w is
the frequency of vibration.
Equation (2.3) highlights the importance of the choice of physical variables for data measu-

rement and monitoring of the gas turbine. Compared to the model based on speed measurement,
the displacement measurements are used to reduce the high and the medium frequency vibration
effects, which can amplify the low frequency vibration components. In this case, radial vibrations
in the gas turbine are studied in the simple case of a circular cross-section of the rotor in the
transverse position.
The dominant torsional displacement is the rotation of the cross sections given by the angular

displacement α. The simplified displacement is used as follows

u1(x1, x2, x3, t) ≈ 0 u2(x1, x2, x3, t) ≈ −x3α(x1, t)
u3(x1, x2, x3, t) ≈ x2α(x1, t)

(2.4)

For the deformation calculations, the Hamilton functional is used

ε11 = ε22 = ε33 = ε23 ε12 = −
1

2
x3
∂α

∂x1
ε13 =

1

2
x2
∂α

∂x1
(2.5)

The Hamilton functional construction is given by the following equation

H(α) =

t1∫

t0

l∫

0

[1
2
ρI1
(∂α
∂t

)2
− 1
2
GI1

( ∂α
∂x2

)2
+M1α

]
dx1 dt

I1 =

∫

S

(x22 + x
2
3) dx2 dx3

(2.6)

The rotor motion is given by

ρI1
∂2α

∂2t2
− ∂

∂x1

(
GI1

∂α

∂x1

)
=M1 ∀x1 ∈ [0, l], ∀t ∈ ℜ (2.7)

where G = E/[2(1 + ν)] is the shear modulus of the rotor in the limitat conditions x1 = 0 and
x1 = l

α(0, t) = 0 GI1
∂α

∂x1
(0, t) = 0

α(l, t) = 0 GI1
∂α

∂x1
(l, t) = 0

(2.8)

The conditions in the initial state are given by α = 0 and the condition GI1 = ∂α/∂x1 = 0
when no torsion at the free end is provided. The stress on the rotor surface is determined by
using the following equation




σ11
σ22
σ33
σ23
σ13
σ12



=




E νE νE 0 0 0
νE E νE 0 0 0
νE νE E 0 0 0

0 0 E
2(1+ν) 0 0 0

0 0 0 E
2(1+ν) 0 0

0 0 0 0 0 E
2(1+ν)







0
0
0

−x3αx1
−x2αx1
0




(2.9)

In practice, gas turbines systems are complex and are generally non-stationary. Consequently,
their non-linear behavior makes the modeling step of the vibrations very difficult. Hence, im-
plementation of a reliable predictive tool is required to ensure the control and the diagnosis of
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such systems. For this purpose, vibration analysis techniques are used, tested and validated in
this paper.
The vibration analysis used is based on the real vibration data collected on the studied gas

turbine at different phases of operation. For the present application, the points of measurements
are shown in Fig. 1, where a moving accelerometer is used for these measurements for both
levels. Indeed, there are three sensors that are used with accelerometers on different positions
(horizontal, vertical and axial) at each level, as shown in Fig. 1.

Fig. 1. Experimental installation of the gas turbine system

The recorded vibrations of the studied gas turbine can be quantified by three fundamental
quantities. The displacement, the speed and the acceleration. The model considered comprises
two entrances, the room temperature and the fuel mass flow rate which is expressed as follows

ṁc =
√
∆P
1

2
ρµ2 =

√
∆P

k
⇒ ṁc =

1

k

√
∆P (2.10)

The air mass flow ṁa is given by

ṁa = k
′(P2 − P1)

ṁa = k
′(PCD − Patm)

(2.11)

It is necessary to control the combustion of the gas turbine by regulating the ratio of the
efficiency F given by

F =
T3 − T2

ηbCV + T3
(2.12)

The sensors are installed on the gas turbine to provide dynamic behavior measurements of the
high pressure (HP) turbine shaft speed, the low pressure (BP) turbine shaft speed and the
temperature of the blades.

3. Gas turbine parameters modelling and analysis

All the rotating machines used in different industries applications are subject to more or less
vibrations. These vibrations are due basically to poor distribution of mobile masses, especially
in the rotor, which is essentially caused by imperfect machining during their fabrication or a
lack of homogeneity of the metal constituting the rotor. Indeed, the origin of vibrations observed
in a gas turbine can be caused by different phenomena such as (Galindo et al., 2013; Günyaz,
2013; Krzyzynski et al., 2000):
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• Unbalance of the rotor,
• Rapid braking of the shaft,
• A mechanical failure; such as a broken blade,
• Permanent deformation of the rotor.

The rotating part of the gas turbine consists of two shafts on which several wheels holding the
blades are mounted, where the line connection between the bodies of the two shafts is ensured
by bearings. Therefore, vibration behavior of such machines extremely depends on these compo-
nents. It is obvious that each such rotating machine is exposed to dynamic excitations extremely
diverse and specific to its mode of operation. At the same time, the fixed and moving parts are
vibrating structures, depending on their modal characteristics and their vibration damping ca-
pacities. Each part of the system (fixed or mobile) generates dynamic vibration constraints that
cause fatigue of the rotating machine parts. It is impossible for a rotating machine which is desi-
gned, even with more and more advanced materials, not to vibrate. However, the manufacturers
of such machines try to improve the quality of materials and design to built rotating machines
that can support more severe vibration constraints.
The research work presented in this paper allows modeling and analysis of dynamic vibration

based on the spectral analysis by considering various defects that may occur in this type of
machines.

3.1. Spectral analysis

The Fourier Transform (FT) can convert a periodical signal into a series sum (which may be
infinite) of sine and cosine functions. Suppose a real signal x(t) is defined with a finite energy.
The Fourier Transform of the signal x(t) is defined by the following equation

FTf{x(t)} = X(f) = 〈x(t), e2πift〉 =
+∞∫

−∞

x(t)e−2πift dt (3.1)

A discrete signal x(k) of length N presenting the number of values during a fixed interval, can
be presented as follows

X(m) =
N−1∑

k=0

x(k)e−
2πimk
N (3.2)

On the other side, the spectrum of an aperiodic signal is given by its FT

X(ω) = FT [x(t)] (3.3)

where FT [x(t)] is spectrum of x(t).
The spectral energy density (SED) in the case of a discrete signal is defined through the

discrete Fourier transform as follows

Px(m) = |x(m)|2 Sx(m) = |X(m)| (3.4)

It can be shown that the energy of the signal, which is defined as the integral energy transferred
at each instant x(t), which can also be expressed as the integral of energy contributions carried
by each frequency given by

E =

+∞∫

−∞

|x(t)|2 dt =
+∞∫

−∞

|x(ω)|2 dω
2π
=

+∞∫

−∞

|x(f)|2 df (3.5)
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The energy spectrum of the signal is replaced by the square module of the FT of the squ-
are module of cn by the spectrum of energy |x(ω)|2 = |x(f)|2 of x(t) with limT→∞ Tcn =∣∣∣
∫+∞
−∞

x(t)e−iωt dt
∣∣∣.

In this paper, the estimation method of the spectral density is proposed for the vibration
faults detection and isolation in gas turbine. This method presents a good spectral analysis tool
from the point of view of calculation and allows obtaining good results for a large class of signals
in the studied gas turbine.

3.2. Vibration analysis

As mentioned previously, the gas turbines are subject to unstable phenomena, because the shaft
cannot be perfectly balanced. The presence of residual unbalance on the shaft line is counted
by adding point masses. The addition of a large unbalance to the shaft is explained by the loss
of a blade on one of the disks. The imbalance is characterized by its kinetic energy when the
mass mb is located at the point B in the plane of the disk at a distance d from its geometric
centre C, Fig. 2.

Fig. 2. Centrifugal forces due to unbalance

The coordinates of the unbalance in the fixed coordinate system are given by

x(t) = uB + d cosΩt ⇒
x(t)

dt
= ub − dΩ sinΩt

z(t) = wB + d sinΩt ⇒
z(t)

dt
= wb + dΩ cosΩt

(3.6)

Its kinetic energy is given by

TBal =
1

2
mb[(u̇

2
B + ẇ

2
B) +Ω

2d2 + 2Ωdu̇B sinΩt− 2ΩdẇB cosΩt] (3.7)

The term Ω2d2/2 is constant and will not intervene in the equations. The mass of the imba-
lance is negligible in comparison to the rotor mass; the expression of the kinetic energy can be
approximated by

TBal ≈ mbdΩ(u̇B sinΩt− ẇB cosΩt) (3.8)

By introducing the generalized coordinates, it can be rewritten as follows

TBal ≈ mbdΩ(ȦuẎ
3
B+ḂuY

2
B+ĊuY

2
B+Ḋu) sinΩt−(ȦwẎ 3B+ḂwY 2B+ĊwY 2B+Ḋw) cosΩt (3.9)

The unbalance generates strong vibrations at the operational rotation speed of the turbine. They
appear when the gravity axis of the rotor (equilibrium mass axis) does not correspond to its axis



Faults detection in gas turbine rotor using vibration analysis... 399

of rotation. This unbalance is caused by an inhomogeneous distribution of mass around the axis
of rotation. In the case of turbocharger stationary motion, where the bearing part is used to
guide the rotating shaft and the radial load is small and comprised primarily of the unbalance,
which may be reduced if necessary. On the other side, the ball bearing damage causes several
major factors; such as surface material fatigue as a result of constraints that produce flaking
and cracking. Furthermore, the superficial fatigue can be aggravated by some effects such as
insufficient lubrication, surface conditions, shock. Also for the elements in contact, the wear can
aggravate the unstable phenomena during the operation of the machine.

For a ball bearing, Fig. 3, it comprises nb number of balls, and rotates at the frequency fr
(shaft rotation frequency). The presence of a vibration defect creates shocks between the rotating
elements of the channel whose frequencies are defined by the expressions in equations (3.9) and
(3.14).

Fig. 3. Geometric characteristics of the bearing

The frequencies relative to the defects on each rotating elements are functions of the passage
frequency of the rotating element in the outer ring. It is given by the following equation

fbe =
frnb
2

(
1− d

D
cosφ

)
(3.10)

The passage frequency of the rotating element in the defected inner ring, is given by the following
equation

fbi =
frnb
2

(
1 +

d

D
cosφ

)
(3.11)

The defects frequency on the ball are given by

fB =
frnb
2

[
1−

( d
D
cosφ

)2]
(3.12)

The passage frequency of the defected ball in the outer ring or in the inner ring is presented as
follows

fc =
fr
2

[
1−

( d
D
cosφ

)]
(3.13)

Taking into account the modulation of the signal by the frequency fc, the above equations are
modified, so the defects in the inner ring become

fbi =
frnb
2

(
1 +

d

D
cosφ

)
± fc (3.14)
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And the defects on the ball are expressed as

fB =
frnb
2

[
1−

( d
D
cosφ

)2]
± fc (3.15)

This signal modulation leads to functional modeling imperfections of the examined gas turbine.
In the following Section, the proposed approach based on spectral analysis at a low range fre-
quency will be applied to a practical case which is considered in a real machine in the presence
of an unbalance anomaly.

4. Industrial investigations

In this study of the vibration behavior based on the analysis of measured signals on a gas turbine
installed in the gas center of TIMZHERT, at Hassi R-Mel, south of Algeria, has been examined.
Figure 4 shows the studied gas turbine with the specifications given in Table 1. This machine
undergoes vibration effects observed during its operation. The measurements were carried out
on this turbine via a mobile accelerometer for ensuring diagnosis of various vibration phenomena
occuring at bearing No. 1 of the studied gas turbine. While guaranteeing the maintenance policy,
vibrations are measured, processed and used for diagnosis to assess mechanical conditions of the
examined turbine.

Fig. 4. Studied GE 3002 gas turbine

Table 1. Specifications of the examined turbine

Parameter Value or symbol

Designer: General Electric GE

Type MS 3002

Serial No. 226293

HP speed axial compressor 7100 tr/min

No. floor wheel (s) HP 01

No. axial compressor stage 15

BP speed 6500 tr/min

No. BP wheel 01

Turbine power 80% 9400 CV

Fuel consumption rate (100%H 27◦C) 3.84m3/h

Pressure of exhaust gas 1009.3 bars

global peas 63000 k
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4.1. Applications results

In this Section, the obtained experimental results using the measurements performed on
the studied gas turbine are presented. The results were performed on each bearing (bearing 1
and 4) in the vertical direction and with a rotation speed of the shaft ω = 7100 tr/min. The
characteristic frequencies of the bearing defects are listed in Table 2. The values given in Table
were drawn on the basis of dimensions of the bearing and on the basis of rotation frequency
of the shaft, using the frequency fr = V (tr/min)/60 s = 7100/60 = 118.33Hz (where V is the
shaft rotation speed and nb = 15 is the number of beads).

Table 2. Characteristic frequencies of bearing defects

fr [Hz] fbe [Hz] fbi [Hz]

118.33 748 1029

According to the obtained results of measurements, it is found that the measured values on
the turbine at bearing 1 indicate the presence of vibrations in the vertical direction over a range
of frequencies (0-10000 Hz). In order to diagnose this vibration failure, a spectral analysis has
been carried out. The obtained experimental results using the experimental conditions show the
amplitude of the signal versus the frequency, see Figs. 5 and 5b. It is important to clarify that
the bearing life depends on the load acting on the shaft, on the rotational speed and on the
point of application of the force.

Fig. 5. Vibration signal: (a) of a defected bearing, (b) of a bearing with a fault located in the inner ring

The gas turbine is operated by a set of commands that support the machine during starting
and accelerating till the loading phase. This automatic control helps to maintain the system to be
stable. The measurements of variables such as pressure, velocity and acceleration are performed
using an instrumentation device, as shown in Fig. 6.
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Fig. 6. Position of installed sensors in the studied gas turbine

Analysis of various elements of the studied gas turbine was carried out on this installation,
starting from the study of rotation speed and its frequency, which must define the parameters
useful for the proposed monitoring system. This is based on the knowledge of variations of
the expected unstable phenomena, given by characteristic frequencies of possible defects such
as unbalance, the alignment and the attachment. Also, the resulting vibrations due to forces
developed or transmitted by the bearings caused by the unbalance have been analyzed. To
analyze these phenomena, Movilog 2 with FFT mono channel and the accelerometer with speed
of 100mV/g type (HS-AM004) are used, see Figs. 7a and 7b.

Fig. 7. (a) Used accelerometer; (b) Movilog 2 with FFT mono channel

This is done with the input of balancing data for the selected rotation speed (V = 118 rpm),
rotor mass (M = 3400 kg) and rotor radius (R = 75mm). At the rotational speed of 7100 rpm,
where fr = 118.33Hz in the frequency range of 0-10000 Hz, the large amplitude peaks are
observed, where fr is the rotation frequency of the shaft as shown in Fig. 8. This figure is the
continuous display of the spectral density of the measured vibration signal within frequency
regions corresponding to proper modes of the inner ring.

The appearance of such components as the shaft of the turbine (HP rotor) runs with the
defected bearing is explained by the presence of oscillations in the torque load. These fluctuations
have the feature to occur at the same characteristic frequency of the defect. In the present
diagnostic method, the appearance of these components is used as a reference for diagnosing the
presence of the anomalies in the studied gas turbine.

The levels shown in Tables 3 present the overall levels from the accelerometers within the
frequency ranges (1000Hz - 10000 Hz).
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Fig. 8. Vibration signal of the bearing with a fault located in the outer ring

Table 3. Overall levels from accelerometers of the studied gas turbine

SC1 Kurtosis
Crete Acc. [mg] Speed [mm/s]
factor 10000Hz 1000Hz Pic

3.0 4.6 208.8 2.9
RV 6.9 7.0 89.8 1.3

2.9 4.5 61.8 2.6

3.0 5.0 32.0 0.2
HP RH 7.0 7.0 13.3 0.1

2.9 5.2 7.0 0.2

2.7 4.5 160.6 0.7
AX 6.3 7.1 69.9 0.2

2.6 4.4 45.6 0.7

Fig. 9. Amplitude of the unbalance response: (a) test 1, (b) test 2

For unbalance defects, the operator can compensate for this misalignment by adding or
removing known masses at specific locations on the rotor. These imbalance defects are mainly
due to the manufacturing errors. They can explained by the presence of poor homogeneity of the
materials used in the rotor structure. In order to verify the capacity of the system to balancing
strong unbalances, additional balancing tests were carried out. Figures 9a,b and 10a,b show
results of tests with two balancing speeds, the main goal is to reduce the overall vibration levels
at all speeds and to kept the amplitude of vibration to be stable.
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Fig. 10. Amplitude of the unbalance response: (a) test 3, (b) test 4

A misalignment is occurred when the peak amplitude is captured, generally up to 2 or
3 times the rotation frequency. The vibration measurements are in function of choice of the
measurement points. In the studied case, the bearings are chosen as the points of measurement
and data collecting on the examined gas turbine. Figures 11a and 11b successively present the
evolution of the spectral structure (time signal) when a fault alignment is occurred.

Fig. 11. (a) Time measurement signal of the acceleration in the presence of alignment defects;
(b) temporal signal without defects

At a speed of 7100 rpm, for a frequency range of 0-5000 Hz, a peak is observed (the shaft rota-
tion frequency) which characterizes the misalignment fault. In Fig. 11b, the fault is directional,
which is the case of the detected and identified misalignment on the gas turbine rotor. The re-
sults obtained were used to analyze the signature of an axial vibration fault. Unlike unbalanced,
this defect is often seen in the axial direction.

5. Conclusion

The understanding of the dynamic vibration behavior in gas turbines allows identification and
localization of the source of the vibration anomaly as well as quantification of the defect. In this
paper, the rotor dynamics is studied to ensure the improvement of security and performance
of the studied system. The developed model allows one to analyze the dynamic behavior of a
HP turbine rotor type MS 3002 rotating at a high speed and supported by bearings having
defects that are presenting instabilities areas varying with the rotation frequency and creating
furthermore new critical frequencies. On the other side, it is shown that some important effects
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can occur. Firstly, the wear of components regarding the rotor elements or mass distribution
which can generate new critical speeds. Secondly, the defect in the inner ring of a bearing can
generate the passing frequency which varies with the speed of rotation. Thirdly, the alignment
effect manifests itself as a large amplitude component of the rotation frequency of the rotor in
the radial direction, sometimes in the axial direction in the case of a rotor cantilever.
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This paper presents parameter estimation of a mathematical model regarding natural vibra-
tions of a reinforced concrete slab. Parameter estimation is based on experiments conducted
on a real reinforced concrete slab. Estimated parameters include: substitute longitudinal
modulus of elasticity of the reinforced concrete slab, which takes into account longitudinal
reinforcement, effective thickness of the reinforced concrete slab and coefficient of damping.
Using appropriate criteria during, the process of parameter estimation of the reinforcement
concrete slab models has a great impact on obtaining precise results. The estimation criteria
are selected in order to achieve consistency of natural vibration frequencies along with the
Frequency Response Function measured during experiments with those calculated with the
mathematical model. The model and all the calculations have been made using MATLAB
programming environment.

Keywords: rigid finite element (RFE) model, reinforced concrete slab, estimation criteria,
modal parameters, vibrations

1. Introduction

Steel-concrete composite beams are the main focus of our previous papers (Berczyński and
Gutowski, 2006; Wróblewski et al., 2013). A composite beam is a connection of two or more
structural elements made of materials with various properties. An example of such a structure
is a steel-concrete composite beam which consists of a steel I-beam and a concrete slab which
rests on it. The present paper focuses on the reinforced concrete slab element.

The main topic of the paper is the modelling of vibration of a concrete slab. A 3D RFE
(Rigid Finite Element Method) model is presented. Originally developed algorithms of parameter
estimation of the reinforced concrete slab model are presented. The estimations were based
on experimental results, including beam natural vibration frequencies and FRF (Frequency
Response Function) determined empirically (Berczyński and Gutowski, 2006).

As there is no commercially available rigid finite element-based software, an original computer
program has been developed in MATLAB environment. The created program can be used to
solve the problem of free vibration and to control parameters which can be introduced to describe
selected structural elements.

The estimation process is performed in two parallel stages. In the first stage experimental
tests are conducted. In the second stage, the computational model of the concrete slab is defined.
Solving the eigenproblem gives natural frequencies and FRF runs. Then, using optimisation
methods for frequency criteria and FRF runs consistency, parameters of the concrete slab model
are chosen to obtain models whose dynamic properties are close to those observed during the
experiment.
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2. Experimental research of vibrations of a reinforced concrete slab

The experimental stand consisted of two steel bearers at the beam axle spacing of 2m. The be-
arers were braced with angle sections. During dynamic tests the beam was suspended on frames
with four steel wire ropes 3mm in diameter and, in this way, a free beam scheme was implemen-
ted. Bearer deformability and its effect of obtained results were considered to be negligible in
the scheme. Rope deformability was selected so that frequency vibration typical for solid body
in motion was beyond the range of the investigated slab free vibration. A diagram of the test
stand as well as the suspended beam are presented in Fig. 1.

Fig. 1. Test stand: (a) overview, (b) view from the side, (c) head-on view

The aim of the conducted tests was to determine fundamental dynamic characteristics. An
impulse excitation was used. Vibration acceleration was a measured value which was considered
as the response of the system (Ewins, 2000; Wilde, 2008). Acceleration was measured using
triaxial piezoelectric sensors. The sensors were attached with wax to circular steel washers, 25mm
in diameter, placed on the reinforced concrete slab. The washers were fixed with a modified epoxy
resin.

The impulse excitation was performed using a modal hammer KISLER 9726A20000 (500 g).
LMS SCADAS III analyser connected to the work station fitted with a computer aided system.
Test.Lab package manufactured by LMS was used to record signals. Impact Testing module of
the Test.Lab package was used for impulse tests. During each cycle of measurements, acceleration
in nine measurement points was recorded. Ten excitation cycles were performed in a predefined
spot of the beam. Signal averaging was conducted automatically according to the algorithm
implemented in Impact Testing module.

The obtained characteristics of frequency response functions were determined as the ratio of
vibration acceleration to the force. The frequency response functions were used to determine the
so-called modal model using Modal Analysis module of the Test.Lab system (He and Fu, 2001).
A stability analysis method using PolyMAX algorithms was used for parameter estimation of
the modal model. This method is based on the frequency response functions.

3. The analysed reinforced concrete slab

The reinforced concrete slab (dimensions: 60mm thick, 600mm wide and 2200mm long) was
made of C25/30 concrete. The concrete mix was purchased from a local concrete producer. It
was made of cement-based class 42.5 with addition of a BV plasticiser. The ratio was W/C of
0.64 with the consistency of S3. The maximum size of aggregate was reduced to 8mm owing to
a relatively small size of the investigated elements.



Parameter estimation of a discrete model... 409

Ribbed steel bars, 6mm in diameter made from A-I steel, were used as concrete reinforce-
ment. The longitudinal reinforcement was placed every 75mm while transverse reinforcement
every 150mm. A reinforcing fabric from top and bottom was used.

The impulse excitation was applied to the slab at three points (see Fig. 2a): 2−Z – vertical
impact at the slab axis performed with the modal hammer, 1−Z – vertical impact at the edge of
slab performed with the modal hammer, 2+Z – horizontal impact at the face of slab performed
with the modal hammer.

Excitations points in Fig. 2 a are designated with the symbol •. Various excitation points
aimed at producing different vibration forms of the slab are presented in Table 1.

Table 1. Excitation points and directions

Symbol
Excitation

Excited vibration forms
Point Direction

1− Z 1 Z flexural and torsional

2− Z 2 Z flexural

2 +X 2 X axial

Measurement points were defined at the upper area of the slab, spaced in three rows (9 points
in each row) which gave a total of 27 measurement points (see Fig. 2b).

Fig. 2. Investigated slab: (a) excitation points, (b) measurement point grid

In Fig. 3, some mode shapes of the concrete slab obtained during the dynamic research are
presented.

Dynamic characteristics of the frequency response functions were obtained and used to iden-
tify the coefficient of damping and other parameters. Peak amplitude values of FRF runs were
determined. The peak amplitude values were corresponding to the next resonance vibrations of
the reinforced concrete slab. Two types of vibrations were analysed: flexural vibrations (impulse
excitation 2−Z) and torsional vibrations (impulse excitation 1−Z). For flexural and torsional
vibrations, the peak amplitude values were determined for five resonances.

The authors developed their own software in MATLAB, which automatically defines the
peak amplitude of FRF runs corresponding to the resonance vibration of the reinforced concrete
slab. The software enabled determination of the values in tabular and graphical forms. For
the analysis of FRF runs, eight representative measurement points were selected. For flexual
vibration (impulse excitation 2−Z) points 2, 5, 23 and 26 were selected, which were located on
the axis of the reinforced concrete slab (see Fig. 2b). For torsional vibration (impulse excitation
1− Z) points 1, 3, 25 and 27 were selected, which were located on the corners of the reinforced
concrete slab (see Fig. 2b). Peak amplitudes of the run of FRF corresponding resonances are
summarised in Table 2.
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Fig. 3. Flexural and torsional experimental mode shapes for the reinforced concrete slab,
excitation 1− Z: (a) 1flex = 50.04Hz, (b) 1tors = 113.34Hz, (c) 2tors = 232.75Hz

Table 2. Amplitude of frequency response functions for the reinforced concrete slab determined
during measurement, impulse excitation 1− Z, direction Z

Points 1 3 25 27

FRF
FRF f expi FRF f expi FRF f expi FRF f expi

[m·s−2/N] [Hz] [m·s−2/N] [Hz] [m·s−2/N] [Hz] [m·s−2/N] [Hz]
1tors 1.915 113 2.000 113 1.968 113 1.966 113

2tors 3.117 233 3.162 233 3.152 233 3.165 233

3tors 2.63 368 2.599 368 2.676 367 2.598 367

4tors 2.077 526 2.051 526 2.022 526 1.992 526

5tors 2.632 708 0.51 707 2.321 708 0.553 709

In Fig. 4, frequency response functions with marked peak amplitude values (from torsional
vibrations) for point 27 for direction Z, impulsive excitation 1− Z are presented.

Fig. 4. Amplitude of the frequency response functions for the reinforced concrete slab, excitation 1− Z,
point 27, direction Z
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4. The spatial computational model of the reinforced concrete slab

A discrete computational model of the slab has been developed in the convention of the Rigid
Finite Element Method. The method consists in dividing a real system into rigid finite elements
which are represented by spring-damping elements (SDEs). While rigid finite elements (RFEs)
are characterised by masses and mass moments of inertia, spring-damping elements are defined
by stiffness and damping coefficients. The RFE method was developed by Kruszewski et al.
(1999) and Wittbrodt et al. (2006).

Modelling of continuous elements in the finite element method starts from primary segmen-
tation. For a slab, the segmentation must be conducted in two directions, i.e. in the longitudinal
direction along ∆L and in transverse direction along ∆B. The model is divided into segments of
equal or comparable length. The primary segmentation of the present study is shown in Fig. 5a.
Then, at the center of gravity of each element, an SDE is placed which focuses spring and dam-
ping properties of that element. Each SDE is broken down into four smaller SDEs, so that it is
possible to connect the corners of four adjacent finite elements – this is secondary segmentation.
In every set of four SDEs, two of them are parallel to the main axis X and the other two are
parallel to the main axis Y . In the classic approach (Kruszewski et al., 1999) spring properties
of respective elements are reflected by SDEs spaced as shown in Fig. 5b.

Fig. 5. 3D finite element method: (a) primary segmentation, (b) secondary segmentation – classic
positioning of SDEs, (c) secondary segmentation – modified positioning of SDEs

In the classic approach, the elements have 5 degrees of freedom. By placing an SDE at the
corners, it is possible to neglect rotation in the axes perpendicular to the area of a primary
element. The proposed model attempts to define the slab with 6 degrees of freedom (three
translational and three rotational displacements). In order to limit element rotation in the axis
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perpendicular to the area of the primary element, SDEs must be moved from the corners to the
centers of finite elements as shown in Fig. 5c. A similar approach was used in (Adamiec-Wójcik
and Wojciech, 2012).

Each rigid finite element has its own independent coordinate system X
(i)
RFE , Y

(i)
RFE , Z

(i)
RFE

which is selected so that it overlaps the principal central axes of inertia of a given RFE. Given
this assumption, mass and moments of inertia are the only parameters necessary to describe any
RFE. These quantities can be given in form of a diagonal mass matrix

M(i) = diag
[
m(i),m(i),m(i), J

(i)
X , J

(i)
Y , J

(i)
Z

]
(4.1)

The first three terms of the matrix are equal to the mass of the RFE, while the other three

are RFE mass moments of inertia relative to the axes X
(i)
RFE , Y

(i)
RFE, Z

(i)
RFE . The values of the

diagonal element of the mass matrixM(i) for modelling of RFEs inside the slab are determined
in the following way

m(i) = hc∆L∆Bρc (4.2)

where hc is thickness of the reinforced concrete slab, ρc – mass density of RFE material

J
(i)
X =

m(i)

12
(∆L2 + h2c) J

(i)
Y =

m(i)

12
(∆B2 + h2c)

J
(i)
Z =

m(i)

12
(∆L2 +∆B2)

(4.3)

Every SDE of k number has its own independent coordinate system with the main axesX
(k)
SDE ,

Y
(k)
SDE, Z

(k)
SDE . The main axes of the SDE have such property that forces acting on the SDE in a

direction compatible with these axes result in its translational deformations which occur only in
the direction along which these forces are applied. The main parameters which describe an SDE
of k number are coefficients defining its spring and damping properties. The spring properties

are described by means of two matrices: a matrix of translational stiffness coefficients K
(k)
T and

a matrix of rotational stiffness coefficients K
(k)
R . Both matrices are diagonal and they are 3× 3

in size

K
(k)
T = diag

[
k
(k)
T,X , k

(k)
T,Y , k

(k)
T,Z

]
K
(k)
R = diag

[
k
(k)
R,X , k

(k)
R,Y , k

(k)
R,Z

]
(4.4)

The values of translational and rotational stiffness coefficients are determined according to the
following rules:
— for SDEs parallel to the main axis X

k
(k)
T,X−X =

Echc,eff∆B

∆L
k
(k)
T,Y−X =

Gchc,eff∆B

∆Lχ

k
(k)
T,Z−X =

Gchc,eff∆B

∆Lχ
k
(k)
R,X−X =

Gch
3
c,eff∆B

6∆L

k
(k)
R,Y−X =

Ech
3
c,eff∆B

12(1 − ν2c )∆L
k
(k)
T,Z−X =

Echc,eff∆B
3

12∆L

(4.5)

— for SDEs parallel to the main axis Y

k
(k)
T,X−Y =

Gchc,eff∆L

∆Bχ
k
(k)
T,Y−Y =

Echc,eff∆L

∆B

k
(k)
T,Z−Y =

Gchc,eff∆L

∆Bχ
k
(k)
R,X−Y =

Ech
3
c,eff∆L

12(1 − ν2c )∆B

k
(k)
R,Y−Y =

Gch
3
c,eff∆L

6∆B
k
(k)
T,Z−Y =

Echc,eff∆L
3

12∆B

(4.6)
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where Ec is the substitute dynamic longitudinal modulus of elasticity of the reinforced concrete
slab (which takes into account the effect of reinforcement used), Gc – substitute dynamic trans-
verse modulus of elasticity of the reinforced concrete slab (which takes into account the effect
of reinforcement used), hc,eff – effective thickness of the reinforced concrete slab, νc – Poisson’s
ratio of concrete, χ – coefficient of cross-section shape (Timoshenko shear coefficient), which
takes into account the nonuniform tangential stress pattern. The method of calculating the co-
efficient was described by Berczyński and Wróblewski (2010). The Timoshenko shear coefficient
of cross-section of a rectangle shape is 1.2.

Dumping properties are described by means of two matrices of damping coefficients: C
(k)
T

and C
(k)
R . Both matrices are diagonal and they are 3×3 in size. The relation between equivalent

stiffness k
(k)
i,j and damping coefficients c

(k)
i,j can be given by

c
(k)
i,j =

η

ω
k
(k)
i,j i = T,R j = X,Y,Z (4.7)

where η is the loss ratio, ω – vibration frequency.
Results obtained with the modified RFE method model were compared with the analytical

solution, the TM (Theoretical Model), and with the FEM model with flexible and deforma-
ble rigid bodies implemented in the Finite Element Method. The FEM model was developed
in Abaqus environment and it was used for calculations. The slab was modelled with 50 × 50
second-order cubic elements with reduced integration for second-order functions (C3D20R). The
solution was developed and reported by Liew et al. (1993), Leissa (1973). Leiss (1973) provi-
ded a solution for thin slabs, whereas Liew et al. (1993) found a solution of eigenmodes for
medium-thick rectangular slabs. The authors presented their findings for various boundary con-
ditions (21 cases) for different side length/width ratios (a/b) and different slab thickness/width
ratios (h/b). Their approach was based on the energy function defined using the Mindlin theory
of plates with the Rayleigh-Ritz minimisation procedure, providing a solution to the eigenvalue
problem (Szcześniak, 2000). According to the theory of plates of medium thickness, it is typically
assumed that a plate has thickness greater or equal 1/10 of the smaller of the remaining two
dimensions. The reinforced concrete slab used in our tests had the thickness to width ratio of
60/600, i.e. 1/10 precisely. Therefore, the theory of medium-thick plates could be applied for the
modelling of both the former and the latter. The results were compared for a free-ends slab (the
same scheme was used in empirical investigations). Liew et al. (1993) conducted analytical cal-
culations for a slab with various length/width ratios for comparison purposes. Here, a 1500mm
long, 600mm wide and 60mm thick slab was used in the tests. Therefore, the length to width
ratio of 2.5 and the thickness to width ratio of 0.1 was obtained. The Poisson ratio µc was 0.3,
Young’s modulus Ec was 3.0 · 1010 N/m2 and the mass density ρc was 2400 kg/m3. In an earlier
work (Liew et al., 1993), the results were presented in a dimensionless form

λ =
ωB2

π2

√
ρchc
D

(4.8)

where ω is the angular frequency, B – length of the shorter side of the slab width, D – bending
flexural stiffness of the slab.

D =
Ech

3
c

12(1 − ν2c )
(4.9)

The results are presented in Table 3. The calculations for the RFE model were conducted for
the initial mesh of 30 × 12 elements, the slab dimensions were the same as those given above.
Table 3 presents a comparison of solutions for the three models: the theoretical model (TM)
based on the precise solution, the Rigid Finite Element (RFE) model and the Finite Element
Method (FEM) model.



414 M. Abramowicz et al.

Table 3. A comparison of dimensionless vibration frequencies of the slab for the TM, RFE and
FEM models

Reinforced concrete slab 60mm×600mm×1500mm

i Vibration forms of the slab
TM RFE FEM
λi TM λi RFE ∆i TM λi FEM ∆i TM

1 0.3455 0.3605 4.3% 0.3457 0%

2 0.5137 0.5144 0.1% 0.5154 0%

3 0.9486 0.9826 3.6% 0.9502 0%

4 1.0952 1.0939 −0.1% 1.0994 0%

5 1.8109 1.8080 −0.2% 1.8199 0%

6 1.8220 1.8952 4.0% 1.8282 0%

7 2.1919 2.1860 −0.3% 2.1981 0%

8 2.3566 2.3884 1.4% 2.3654 0%

9 2.7173 2.7164 0% 2.7332 0.6%

The terms ∆i RFE and ∆i FEM defined by (4.10) are used to show the percentage differences
for dimensionless values of slab frequency vibrations obtained for the TM, RFEM and FEM
models.

∆i RFE =
λi RFE − λi TM

λi TM
∆i FEM =

λi FEM − λi TM
λi TM

(4.10)

The first column shows the obtained vibration forms of the slab for the dimensionless values of
the slab frequencies.

A very good convergence of the results was obtained for the RFE and TM models. The
largest difference was 4.3%. The largest discrepancy between the FEM and TM models was
observed for higher eigenmodes (0.6% for 9th eigenmode). However, the results obtained for the
torsional (2, 4, 5 and 9) and flexural vibrations (1, 3 and 6), which are significant for parameter
estimation of composite beams, were quite convergent for both the former and the latter.

During the analysis of various values of the parameter ∆ for various mesh densities in the
X axis, a constant mesh density of 12 was used for the Y axis. In the second case, with various
mesh densities in the Y axis, a constant mesh density of 30 was used for the X axis. It was
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examined that for other constants for X and Y axes the same results were obtained. It was
found that with an increase in mesh density, the eigenmode frequencies were asymptotically
approaching the solution for the sufficient mesh density which provided a good convergence with
the analytical solution. Nevertheless, the problem of mesh density selection was also affected by
the fact that larger densities significantly increased calculation time.

5. Parameter estimation – algorithm I

The estimated parameters included the substitute longitudinal modulus of elasticity of the rein-
forced concrete slab Ec which took into account longitudinal reinforcement and effective thick-
ness of the reinforced concrete slab hc,eff . Other parameters used for the identification of the
computational model were taken from the literature or from the design of the analysed slab.

The differential equation of free vibration obtained from the general differential equation
of motion, while neglecting outside interaction acting on the slab and damping effects, can be
presented as

Mq̈+Kq = 0 (5.1)

where q is the vector of generalised coordinates.

Methods of solving equation (5.1) to determine free vibration frequencies and corresponding
vibration modes are described in detail in literature (Wilde, 2008).
The quantities Sflex and Stors (5.2) are sums of squares of the relative deviations of the

first n numerical frequencies of flexural and torsional vibrations with their analogous frequencies
determined during the experiment

Sflex =
n∑

i=1

(
fnumi flex − f

exp
i flex

f expi flex

)2
Stors =

n∑

i=1

(
fnumi tors − f expi tors

f expi tors

)2
(5.2)

where n is the number of selected frequencies, f
exp/num
i flex – experimental/numerical frequencies

of flexural vibrations, f
exp/num
i tors – experimental/numerical frequencies of torsional vibrations.

The quantity S is a sum of flexural and torsional vibrations in the process of estimation
in which an appropriate weight function wflex was attributed to flexural and wtors to torsional
frequencies

S = wflexSflex + wtorsStors (5.3)

An additional criterion imposed was the condition of compatibility of the experimental and
mathematical fundamental frequency of longitudinal vibrations:

f exp1 long = f
num
1 long (5.4)

The algorithm assumes a limit (5.4) that has the greatest impact on the identified slab modulus
of elasticity Ec.

In order to determine model parameters that allow the best mapping of frequencies with
those obtained experimentally, the paramter S index was minimised. To solve the problem,
an optimisation procedure implemented in Optimization Toolbox package, which is a part of
MATLAB, was used.

For adopted criterion (5.3), the following numerical experiments was performed. In the 1st
stage of parameter estimation criterion (5.3) was minimised assumingwflex = 1.0 andwtors = 0.0.
This means comparison of only flexural frequencies of natural vibration during the estimation
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process. The estimation resulted in a good compatibility of frequencies of natural vibration
observed in the experiments and in numerical calculations (see Table 4 – Analysis I). Differences
in compatibility for flexure frequencies for the reinforced concrete slab were under 1.4% and
for torsional frequencies under 3.1%. The iteration algorithm was tested for convergence by
introducing various starting points to determine parameters of the the model. Each time, after
the iteration was complete, the values of estimated variables were similar.

Table 4. Comparison of natural vibration frequencies measured during dynamic tests with
numerical results algorithm I of the estimation, Analysis I-III

Analysis I II III

FRF
f expi fnumi ∆ f expi fnumi ∆ f expi fnumi ∆
[Hz] [Hz] [%] [Hz] [Hz] [%] [Hz] [Hz] [%]

1tors 113.34 110.2 −2.8 113.34 113.4 0.1 113.34 111.33 −1.8
2tors 232.75 227.4 −2.3 232.75 233.97 0.5 232.75 229.7 1.3

3tors 367.33 358.33 −2.5 367.33 368.61 0.3 367.33 361.94 −1.5
4tors 525.61 509.55 −3.1 525.61 524.03 −0.3 525.61 514.64 −2.1
5tors 707.99 686.87 −3.0 707.99 706.18 −0.3 707.99 693.65 −2.0
1flex 50.00 50.64 1.3 50.00 52.13 4.3 50.00 51.16 2.3

2flex 138.34 138.94 0.4 138.34 143.00 3.4 138.34 140.36 1.5

3flex 266.76 270.53 1.4 266.76 278.36 4.3 266.76 273.28 2.4

4flex 441.54 443.22 0.4 441.54 455.9 3.3 441.54 447.67 1.4

5flex 649.34 654.85 0.8 649.34 673.31 3.7 649.34 661.34 1.8

1long 933.12 933.12 0.0 933.12 933.12 0.0 933.12 933.12 0.0

Ec [N/m
2] 4.248E+10 4.127E+10 4.205E+10

hc,ff [m] 0.057 0.059 0.058

Stors 3.718E-03 5.500E-05 1.548E-03

wtors 0.0 1.0 1.0

Sflex 4.711E-04 7.262E-03 1.890E-03

wflex 1.0 0.0 1.0

S 4.711E-04 5.500E-05 3.438E-03

The following Section presents results of the 2nd stage of estimation for weight functions
wflex = 0.0 and wtors = 1.0. This means comparison of only torsional frequencies of natural
vibration during the estimation process. The estimation results are presented in Table 4 – Ana-
lysis II. Differences in compatibility for torsional frequencies for the reinforced concrete slab
were under 0.5% and for flexural frequencies under 4.3%.
The following part of the paper presents results of the 3rd stage of estimation for weight

functions wflex = 1.0 and wtors = 1.0. This means comparison of flexual and torsional frequencies
of natural vibration during the estimation process. The estimation results are presented in
Table 4 – Analysis III. Differences in compatibility for torsional frequencies for the reinforced
concrete slab were under 2.1% and for flexural frequencies under 2.4%.

6. Parameter estimation for the model – algorithm II

While working on the finite element method model of the slab, an assumption was made that
the substitute dynamic longitudinal modulus of elasticity of the reinforced concrete slab Ec,
effective thickness of the reinforced concrete slab hc,eff , and the loss ratio of concrete ηc would
be determined based on identification. The value of the loss ratio is dependent on frequency,
temperature and other factors.
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The loss ratio of concrete varies in the range (2-6)·10−4 according to (Silva, 2000). High
diversity of concrete types results in a very different range of concrete damping values. Damping
depends on concrete density, amount of cement slurry, load history, intensity of stress, etc.
Parameter estimation was conducted by fitting the frequency response functions calculated

with the finite element method model to the characteristics obtained in experimental research.
A system of differential equations defining the oscillating motion with damping can be given by

Mq̈(t) +Cq̇(t) +Kq(t) = f(t) (6.1)

where q is the vector of generalised displacement, M, C, K – inertia, dumping and stiffness
matrices, f – vector of generalised forces. The vectors q and the system response f are functions
of time t. The above system of differential equations can be solved, depending on the form of
the excitation signal, using either Fourier or Laplace integral transform (Marchelek, 1991). By
using the Laplace transform, it is possible to move from time domain over to the domain of the
complex frequency s. Given zero initial conditions, while performing the Laplace transform, the
system of equations (6.1) takes the following form

(Ms2 +Cs+K)q(s) = f(s) (6.2)

A consequence of using the Laplace transform is algebraisation of the system of equ-
ations (6.1). While solving a system of linear algebraic equations, we assume that the matrix
(Ms2 +Cs +K) is not singular, i.e. that there is a matrix inverse to it. As a result, Equation
(6.2) takes the form

q(s) = (Ms2 +Cs+K)−1f(s) (6.3)

To find a solution in the frequency form, if the excitation applied to the system is periodic
(solution for a steady state), the Fourier transform can be used. A solution is found directly in
the Laplace solution by substituting it to Equation (6.3) s = jω, where j =

√
−1

q(jω) = (K− ω2M+ jωC)−1f(jω) (6.4)

where

A(jω) = K− ω2M+ jωC (6.5)

is referred to as the dynamic stiffness matrix, while

W(jω) = A−1(jω) = (K− ω2M+ jωC)−1 (6.6)

is the dynamic flexibility matrix.
Dynamic flexibility is a characteristic obtained on the premise that the system input is a

force and its output is a displacement. During experimental research, acceleration was measured.
A characteristic found given the condition that the system input is the force and its output is
the displacement is called inertance G(jω). Both dynamic flexibility and inertance are frequency
characteristics defined for steady motion and they are therefore closely interrelated (Uhl, 1997).

|G(jω)| = ω2|W(jω)| (6.7)

To find the inertance of a system based on a finite element model, it is necessary to know
the stiffness matrix K, inertia matrix M and damping matrix C. The methods were described
in-depth elsewhere in the literature (Kruszewski et al., 1999; Wróblewski et al., 2013).
Our identification criterion was minimization of the coefficient JFRF (6.7) which is a double

sum for m-th measurement points, a sum of relative quadratic deviation of the first n-th me-
asurement points for a given FRF amplitude to the same amplitude determined in experimental
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research. While determining loss ratios, an attempt was made to fit the calculated amplitudes
with those determined experimentally

JFRF =
m∑

i=1

n∑

i=1

(
FRFnumi,amp − FRF

exp
i,amp

FRF expi,amp

)2
(6.8)

The above algorithm allowed one to select an analysed point and, as a result, it was possible
to choose vibration forms (flexural and torsional vibration) and vibration modes (1, 2, . . . , n).
Both flexural and torsional vibration forms were taken into account in the estimation procedure.
An optimization procedure implemented in Optimization Toolbox package, which is a part of
MATLAB, was used.

The results of analysis are presented in Table 5. First analysis was conducted for torsional
vibration for point 1 (vibration modes from 2 to 4) and for flexural vibration for point 2 (vibration
modes from 2 to 4). In the identification, 5 points from each amplitude of every FRF were taken
into consideration.

Table 5. Results of estimated parameters during optimisation – algorithm II of the estimation,
Analysis I-III

Analysis I II III

Ec [n/m
2] 4.230E+10 4.300E+10 4.224E+10

hc,eff [m] 0.0570 0.0577 0.0570

ηc [–] 0.0090 0.0112 0.0091

J 9.4703 4.7114 3.7924

Second analysis was conducted for torsional vibration for point 1 (vibration modes from 2
to 4) and for flexural vibration for point 2 (vibration mode 3). In the identification, 5 points from
each amplitude of every FRF were taken into consideration. Third analysis was performed for
torsional vibration for point 1 (vibration mode 2) and for flexural vibration for point 2 (vibration
modes from 2 to 4). In the identification, 5 points from each amplitude of every FRF were taken
into consideration.

Fig. 6. A comparison of the frequency response functions for the reinforced concrete slab – Analysis III
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A comparison of FRFs determined using the above estimated parameters with those deter-
mined experimentally is presented in Fig. 6. As the consistency of the FRFs was high, it was
fair to state that the identified parameters were determined correctly.

7. Conclusions

The numerical tests show a very good convergence of the algorithms developed for estimating
the parameters of a mathematical model of the reinforced concrete slab. They enable creation of
a model representing the actual reinforced concrete slab and allowed one to determine dynamic
characteristics very similar to those measured during the experiments.

Following the identification, it can be observed that the identified parameters for algorithms
I and II are very similar. Both algorithms provide convergent results of identification, which
indicates the appropriateness of the model and algorithms.

A very good fit of FRFs calculated using the model with those obtained in the experimental
research is achieved. The originally developed spatial finite element model allows one to take
into account both flexural and torsional vibration forms. The goal was to achieve consistency of
frequencies and FRFs observed during tests with those calculated using the analytical model.

This well-developed 3D model of the reinforced concrete slab has allowed the authors to
develop a model of a steel-concrete composite beam which has been the focus of their research
attempts.
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The paper suggests application of an experimental method for the assessment of the dynamic
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1. Introductions

A railway track is a subsystem of the railway transport infrastructure, including track super
structure, roadbed; drainage, anti-deformation, protective and strengthening structures of the
roadbed located in the right-of-way, as well as other engineering structures (Kaewunruen and
Remennikov, 2007). The state of the track depends on the continuity and safety of the rolling
stock movement as well as the effective use of technical facilities of the railways (Knothe and
Grassie, 1993; Liang and Zhu, 2001). Under conditions of constant exposure to natural and
anthropogenic factors, the track takes heavy loads from the passing trains. In this case, all the
track elements in terms of reliability, durability and stability must ensure a safe and smooth
movement of trains with the greatest loads from sets of wheels of the rolling stock on rails and
with maximum movement speeds, and have sufficient reserves (Smutny, 2004). During opera-
tion of the railway structures, it is necessary to consider their ability to maintain the initial
parameters after exposure to natural and man-induced impacts. The nature of these effects is
determined by the impact of various factors, including the level of vibrations occurring during
rolling stock motion. Vibration actions have a significant impact on the railway track state (Wu
and Thompson, 2004). The causes of their occurrence are as follows:

• Moving loads (quasi-static excitation), i.e. deflection of the track and supporting system
along with movement of the train. On a fixed point on the rail-track, the fluctuating loads
cause the occurrence of flexural waves both in the rails and in the surrounding soil. The
mechanism of this excitation is not yet known in details (including the influence of boun-
dary conditions, dissimilarity of the track and ground on wave propagation) (Abdelkrim
et al., 2003). If a high-speed train is moving along the track laid on a soft ground, the
speed of its movement can exceed the speed of propagation of the surface (Rayleigh) wave
in the ground. This creates high level vibrations just like flight of a supersonic aircraft is
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accompanied by sonic boom. Above all, such vibration has an effect not only on the state
of the track as a whole, but on its components individually (Alves Costa et al., 2010).
To solve this problem, the ballast layer of the rail-track is placed on a compacted soil or
concrete slabs with pile foundation, which reaches more dense soil layers (Berggren et al.,
2010). If the rail-track is laid in a tunnel, its lining and arch invert provides a rigid base
reducing the vibration level propagating in the surrounding soil.

• Roughness of the surface of wheels and rails. Random roughness in the area of the rail con-
tact with the wheel causes excitation of the entire rolling stock-rail-track system (Bodare,
2009). Such roughness occurs primarily in the manufacturing process, so during inspection,
it is necessary to control and test the state of the track and wheels. However, it cannot
prevent the occurrence of roughness in the process of operation.

• Parametric excitation. If the rail support has a discrete structure of cross-sleepers, the
elastic supports above the concrete basis (as opposed to the rails embedded in concrete)
and the wheel while running on the rail “feel” the change in the support stiffness. Variable
elastic forces create vibrations of the wheel and rail at a frequency that depends on the
speed of the rolling stock and spatial discreteness of the support. Other discreteness (and
excitation frequencies corresponding to it) is characterized by the distance between the
wheelsets and bogies (Choi, 2013a,b). If the excitation frequencies coincide with the natural
frequencies of the railway track, the vibrations of the track and surrounding soil can
be quite considerable. The frequency of the impact fk [Hz], corresponding to the n-th
characteristic distance lv [m] (see Fig. 1) is determined via the rolling stock speed V [m/s],
according to the formula.

Fig. 1. Characteristic parameters of the vibration source; 1 – distance between supporting elements of
the track, 2 – distance between wheelsets of the bogie carriage, 3 – distance between the adjacent bogie
carriages of the adjacent railcars, 4 – distance between bogie carriages of one railcar, 5 – distance

between railcars

• Wheel (rail) defects. In addition to the roughness on the surface of wheels and rails, there
can be also observed rough defects occurring during rail-track operation. The major defects
are associated with the presence of wheel flats and corrugations of the rails. Moreover, the
wheels are subjected to such defects as out-of-roundness, out-of-balance and eccentricity
(Choi et al., 2011a,b). In the course of time, the defects accumulate, especially if the track
is not provided with a timely and proper technical care and maintenance.

• Discontinuities in the running surface of rails (in track switches, rail joints, etc.) causing
the occurrence of bumps. If length of the joint or welded rails is equal to the distance
between the carriage bogies, the vibration level may be increased significantly.

• Suspension of the rolling stock.
• Random or periodic changes in hardness of the rail running surface due to defects in
workmanship or (more likely) resulting from the ageing process of the rail-track.

• Loads in the transverse direction, particularly during motion of the rolling stock along a
curved track of small radius, or when passing turnouts.
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• Changing the mode of motion. Acceleration or deceleration of the rolling stock is accom-
panied by the occurrence of variable forces and oscillations.

• External factors. For example, temperature and humidity of the rail head influence its wear
and tear and, consequently, result in vibration occurrence (Kaewunruen and Remennikov,
2006a,b, 2007a,b).

The vibration level due to the above reasons depends on the input impedances (resistance
of the medium to spread mechanical vibrations) of the rail head and wheel rim in the area of
their contact. The value of the input impedance of the rail head is determined by the track
superstructure, its basis as well as characteristics of the surrounding soil (Li et al., 2009; Li and
Berggren, 2010).

2. Materials and methods

The wheel output impedance essentially depends on the unsprung mass of the locomotive un-
derframe. However, total mass of the locomotive underframe together with the load is also very
important for the rigid suspension (due to structural features of the damper and its behavior at
high frequencies).
Given the above, to increase the level of safety of railway operation, it is necessary to apply

progressive methods of diagnostics and monitoring aimed at the assessment of the vibration level
occurring during operation and of the current status of all elements of the railway track. The
need and urgency of implementing innovative systems and means of diagnostics and monitoring
of the railway facility are reflected in Programs for the development of railway system until 2020
in the Republic of Kazakhstan.
Based on the study of dynamic processes occurring in strategic facilities (Clark, 2004), in

particular in the railway track superstructure, it is suggested to carry out a comprehensive
monitoring of the railway track system.
The monitoring system allows establishing a permanent instrumental control over the rail-

way track state for a long period. In addition, it is possible to carry out an objective assessment
of the impact of structural features of the track elements (rails, fasteners, cross-sleepers, etc.) on
the level of vibrations occurring during notion of the rolling stock and take the best optimum
decisions in the design of new and improvement of the existing track systems (Hall, 2002). The
monitoring system includes standards (requirements for the arrangement and maintenance of
the track superstructure by taking into account the operating conditions), controlled parame-
ters, means of monitoring and measurement modes, assessment of the maximum permissible
thresholds and tolerances.
The monitoring system has been developed using a mobile vibration-measuring equipment.

The system consists of vibration sensors MV-25D-B which convert mechanical vibrations into
electric signal. Transformation of an analog signal into a digital form is carried out within
the electronic unit of the analog-to-digital converter (ADC manufactured by “L-CARD” Co.,
model E-14-440). Collection of digital data from ADC and common measurements control is
implemented by means of a special software for PC. A general view to the mobile vibration-
measuring system is shown in Fig. 2. All the measurement tools included in the mobile vibration-
measuring facility are certified and calibrated. The operation of the system is powered by a
rechargeable battery (Hamet, 1999).
The following may be referred to the main advantages of the mobile vibration-measuring

system:
(i) the modular principle of the system configuration with universal power supply;

(ii) application of vibration sensors with high sensitivity in a wide range of frequencies and
impact amplitudes;
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Fig. 2. General view of the mobile vibration-measuring system; 1 – vibration sensors, 2 – patch cable,
3 – multichannel ADC, 4 – laptop

(iii) application of multichannel ADC providing transfer of digitized data with high pin-point
accuracy to the parallel port of a personal computer;

(iv) data acquisition in a digital format with possibility of software processing of the acquired
information, its storage and systematization for the purpose of correlation detection;

(v) high reliability and working capacity in a wide range of climatic conditions;

(vi) insignificant dimensions and mass of all components.

Processing of the signals registered by vibration sensors is carried out by means of a special
software installed on a laptop. Direct recording of a signal is carried out by means of application
of the software LGraph2. This software provides possibility for setting the signals recording
parameters and signals visualization in real time. Functionally, LGraph2 software represents
a digital oscilloscope. Then the results of measurements are stored on the hard disk drive of
the computer in “txt” format. As a result of primary data translation in the text format, they
represent a dependence of electrical voltage generated by the sensor on time. The vibration
sensors are calibrated before determination of the transformation coefficients.
There is a relationship for Un depending on time tn, n = 0, . . . , N − 1, where N is the

number of counts, T = tN−1 is the time length of signal realization. The actual vibration speed
is calculated per voltage values

vn =
Un
Kn

(2.1)

where Kn is the sensor transformation coefficient.
The vibration sensors are preliminarily calibrated on vibration table ESE 201 to determine

the transformation coefficients. The transition from the time to frequency domain is carried out
using the direct Fourier transformation

Vk =
N−1∑

n=0

vn exp
(−2πikn

N

)
(2.2)

In order to obtain the amplitude-time dependence of the vibrational displacement (oscillo-
grams), it is necessary to integrate the function vn (Fig. 3). For this, let us use the property of
the direct Fourier transformation (DFT)

F̂ ′ = 2πifF̂ (2.3)

where F̂ is DFT of the function F with respect to Vk (Fig. 4). Then, by the inverse of Fourier
transformation (IFT), we obtain (Fig. 5)

Sk =
Vk

2πifk + πV0∆f
(2.4)
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Fig. 3. Amplitude-time dependence of vibrational speed obtained on the rail base during passage of
locomotive VL80

Fig. 4. Spectrum of vibrational speed obtained on the rail base during passage of locomotive VL80

Fig. 5. Spectrum of displacement obtained on the rail base during passage of locomotive VL80

Fig. 6. Amplitude-time dependence of the vibrational displacement obtained on the rail base during
passage of locomotive VL80

where ∆f = 1/T (signal sampling by frequency), fk = ∆fk. Figure 6 shows the oscillogram
spectrum obtained on the rail base during passage of locomotive VL80.

Let us make IFT to return to the time domain

Sn =
1

N

N−1∑

k=0

Sk exp
(2πikn

N

)
(2.5)
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Fig. 7. Spectrum of vibrational acceleration obtained on the rail base during passage of locomotive VL80

Hence, we obtain the amplitude-time dependence of the vibrational displacement on time
(Fig. 7). For obtaining of amplitude-time dependence of vibrational accelerations (accelero-
grams), it is necessary to differentiate vn and consider elimniation of distortion of the sensor
transformation coefficient in the frequency domain over 1000Hz. For differentiation, let us again
make use of DFT property represented by expression (2.3), and use Butterworth filter for the
elimination of distortion in the low frequencies domain

Ak = VkHk(2πifk) (2.6)

where Hk is Butterworth filter

Hk =
1√

1 +
(
fk
fB

)2p
1√

1 +
(

fH
fk+1

)2p (2.7)

where (fH , fB) is the range of frequencies passing through the filter; p is the filter order. But-
terworth filter characteristics are given in Fig. 8.

Fig. 8. Butterworth filter characteristics in the low frequency domain at fH = 0.1Hz, fB = 1000Hz,
p = 50

For the obtained amplitude Ak (Fig. 7) let us make IFT. As a result, Eq. (2.7), we obtain
the amplitude-time dependence of vibrational accelerations filtered in the low frequency domain
in the following form

an =
1

N

N−1∑

k=0

Ak exp
(2πikn

N

)
(2.8)

For the assessment of data acquired during diagnostics and monitoring, the author of this
paper has developed a package of application software for data processing and visualization
based on Mathsoft Engineering & Education Inc. “MATHCAD” products.

The procedure is developed for diagnostics of the track superstructure and then given are the
results of its testing and adaptation to track sections with intermediate rail fastenings FOSSLOH,
ZHBR-65SHD, ZHBR-65, KZF-07.
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The diagnostic technique is based on spectrum analysis of the track superstructure elements
to the impact force. Excitation of free vibrations is carried out by a mechanical shock to the rail
using a hammer. The use of rubber in the impact device is explained by impermissibility of the
rail running surface damage (Kumaran et al., 2003).

The modulus of spectrum density of the response to the impact force is determined by

|N(f)| = |S(f)| |M(f)| (2.9)

where |S(f)| is the modulus of spectrum of the impact force impulse F (t), |M(f)| is the modulus
of the amplitude-frequency characteristic of the track superstructure element under investigation.

During selection of the optimal parameter of the impact system, the following function is
taken as the impact force impulse according to Hertz theory

F (t) =

{
S0 sin

πt
τ ; at 0 ¬ t ¬ τ

0 at t > τ
(2.10)

The modulus of spectrum density has the following form

|S(f)| = 2S0τ
π

cos(πfτ)

1− (2πfτ)2 (2.11)

where S0 is the initial amplitude of vibrations of the track superstructure under the impact force
(2.10), τ is the impulse length of collision of the impact system with the object, which in the
first approximation is determined according to Hertz impact theory, i.e.:

τ =
4.531
5
√
V0



M
(
1−µ21
E1
+
1−µ22
E2

)

π
√
R




2
5

(2.12)

where E1, E2 and µ1, µ2 are Young’s moduli and Poisson’s ratios of the hammer and rail steel
material, respectively, R is radius of the contact surface of the impact system, V0 is linear velocity
of the hammer, M is reduced mass of the colliding bodies equal to

M =
m1m2
m1 +m2

(2.13)

where m1 and m2 are masses of the hammer and railway track structure, respectively.

In addition to the optimal choice of value τ , the external energy delivered to the monitored
object must be sufficient for excitation of normal bending vibrations in the track superstructure
on the fundamental mode. The initial amplitude of these vibrations S0 must be such as to give
possibility to carry out qualitative spectrum analysis of recordable responses of the impact force
(S0 > 10ζ) at a prescribed sensitivity of the receiving vibratory sensor ζ. The initial amplitude
of vibrations is determined by the formula

S0 =
F

2πmf0
(2.14)

where F is the initial force impulse, f0 is the frequency of the first bending mode of the railway
track, m = m1 +m2.

The sensors layout depends on the priority task of research and may vary during diagnostics
in very wide ranges. Figure 9 gives an example of the sensors positioning during diagnostics of
the track superstructure.
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Fig. 9. General view of the sensors positioning during diagnostic of the track superstructure; 1, 2 on the
rail base, 3 on resilient clamp, 4 on cross-sleeper outside the rail, 5 on cross-sleeper inside the rail,

6 at cross-sleeper end, 7, 8 in center of the cross-sleeper

The following parameters are measured and analyzed during execution of diagnostics:

(i) frequencies corresponding to the modes of bending vibrations of the track superstructure fi
(determined by spectra of responses obtained on different elements of the railway track);

(ii) logarithmic decrement to be determined on the basis of connection between the logarithmic
decrement and width of the spectrum line

di = π
∆fi
fi

(2.15)

where di, ∆fi, fi is the logarithmic decrement, width of the spectrum line, frequency of
vibration modes of interest;

(iii) dynamic response factor βi is determined on the basis of the formula

βi =
1√(

1− f2v
f2
i

)2
+
(
di
π
fv
fi

)2 (2.16)

where fv is the impact frequency;

(iv) Q factor of the track superstructure on the vibration modes of interest is determined by
the formula

Qi =
π

di
(2.17)

(v) speed of the rolling stock at which resonance phenomena occur, and which are determined
based on the dependence of the impact frequency fv on the rolling stock speed v and the
parameters of vibration excitation lv

fv =
V

lv
(2.18)

3. Experimental results and discussion

In the paper, the topical issues of an experimental method for the assessment of dynamic impact
of the locomotive body on the track is studied. The proposed method is based on spectral analysis
of the railway track structural element responses to the impact impulse and monitoring of train
motion with the use of digital measuring equipment.

To increase the level of safety of railway operation, the authors elaborated progressive me-
thods of diagnostics and monitoring and introduced special engineering and technical measures
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to examine the impact of vibrations occurring during motion of the train on the current state
of all railway track elements.
Figure 7 presents a structural diagram of data visualization of the railway track monitoring

and the processing program.
The monitoring of trains movement along the studied track structure has been conducted

for 6-15 days (depending on the loading level). It included the following ((Liang and Zhu, 2001):

• recording of dynamic processes in the railway track elements at different characters of the
rolling load;

• determination of contact conditions between the track superstructure elements (rail-rail
fastening, rail fastening-cross sleeper, cross sleeper-ballast section) using the vibroacoustic
method (Fig. 10);

Fig. 10. Amplitude-time dependence of vibrational acceleration obtained on the rail base during during
passage of locomotive VL80

• determination of normal (resonance) frequencies and damping properties of elements of
the railway track (Fig. 11);

Fig. 11. Diagrams of the spectral density of vibration acceleration of free vibrations of the reinforced
concrete cross-sleeper center: curve 1 – good contact of the cross-sleeper with the crushed stone

underlayer, 2 – poor contact of the cross-sleeper with the crushed stone underlayer, 3 – the absence of
contact of the cross-sleeper with the crushed stone underlayer

• forecasting of the rolling stock speed at which resonance phenomena occurred (Fig. 12);
• determination of impact conditions of the locomotive underframe on the track (Figs. 13
and 14).

4. Conclusions

Conducting a complex monitoring of the railway track allows one to carry out an objective
assessment of the condition of track elements (different types of rail fastenings Table 1, various
ballast fineness) on the level of vibrations occurring during motion of the rolling stock. It enables
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Fig. 12. Diagrams of the spectral density of vibration acceleration of free vibrations for different designs
of the track superstructure: curve 1 – fastening of FOSSLOH type, 2 – fastening of KZF-07 type,

3 – fastening of ZHBR-65SHD type

Fig. 13. Dependence of the dynamic response factor on speed of motion of the rolling stock for different
solutions of the track superstructure: curve 1 – fastening of FOSSLOH type, 2 – fastening of

KZF-07 type, 3 – fastening of ZHBR-65SHD type

Fig. 14. Correlation of the rail base dynamic to the static force ratioo on electric with velocity of
locomotive VL-80

making the most optimum decisions for the design of new tracks and renovation of the existing
facilities. In addition, regular monitoring allows increasing the level of safety of the railway track
and its operational lifetime as well as reducing the costs of current maintenance. The further
direction of research should provide the development of complex systems for monitoring of
railway tracks with the use of vibration-measuring equipment for the most objective assessment
of their state.
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Table 1. Results of track superstructure diagnostics with various types of intermediate rail
fastenings

Type of fastening f1 [Hz] f2 [Hz] d1 d2 Q1 Q2 V2 [km/h]

FOSSLOH 22 62 3.6 1.4 1.06 2.3 106

KZF-07 21 54 2.84 1.45 1.24 2.23 92

ZHBR-65SHD 20 53 2.9 1.3 1.22 2.47 91

ZHBR-65 14 33 3.3 1.52 1.18 2.13 56
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The subject of analytical and numerical investigations in this paper is a metal seven-layer
rectangular plate with a trapezoidal corrugated main core and two trapezoidal corrugated
cores of faces. The hypothesis of deformation of the normal to the middle surface of the
plate after bending and field of displacements is formulated. The plate is simply supported
on all its edges and subjected to a uniform pressure. Equations of equilibrium are derived
based on the theorem of minimum total potential energy and are solved with the use of
the Galerkin method. The influence of the trapezoidal corrugation pitch of the cores on the
deflection and the equivalent stress is analysed.

Keywords: rectangular layered plate, corrugated cores, hypothesis of deformation, deflection,
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1. Introduction

The basic theoretical models of sandwich structures were formulated in the mid of the 20th
century. Two decades later, Plantema (1966) and Allen (1969) elaborated first monographs de-
voted to bending, buckling and design problems of sandwich beams, plates and shells. Noor
et al. (1996), Vinson (2001), Carrera (2003), Carrera and Brischetto (2009) presented a re-
view of the problems related to computational models, applications and analysis of sandwich
structures. Kazemahvazi and Zenkert (2009) developed an analytical model for the compressive
and shear response of monolithic and hierarchical corrugated composite cores. Ji et al. (2010)
described design procedures and the construction process of a glass fiber reinforced polymer
corrugated-core sandwich bridge superstructure. Seong et al. (2010) introduced bi-directionally
corrugated cores in order to reduce anisotropic behaviour of sandwich plates with open channel
cores under the bending load. Magnucka-Blandzi (2011) described and solved analytically the
problem of a simply supported rectangular sandwich plate under compression in plane. Poirier et
al. (2013) proposed a methodology for designing lightweight laser-welded steel sandwich panels
with superior structural performance. Jha et al. (2013) presented static analysis of orthotro-
pic functionally graded elastic, rectangular and simply supported plates under transverse loads.
Zhang et al. (2013) investigated compressive strengths and the dynamic response of corruga-
ted sandwich plates with unfilled and foam filled sinusoidal plate cores. Magnucka-Blandzi and
Magnucki (2014) determined analytically transverse shear moduli of corrugated cores in four
different shapes. The influence of the corrugation shape on the shear modulus was studied. Le-
winski et al. (2015) studied transverse shear moduli of two thin-walled trapezoidal corrugated
cores of seven-layer sandwich plates. Magnucka-Blandzi et al. (2015) presented a mathematical
modelling of the transverse shearing effect for sandwich beams with sinusoidal corrugated cores.
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The buckling and bending problems were solved. Magnucki et al. (2016) formulated two analy-
tical models of a seven-layer steel beam with a transverse sinusoidal corrugated main core and
two sandwich facings with steel foam cores, and solved the problem of bending and buckling.
Cheon and Kim (2015) suggested an equivalent plate model to analyze the mechanical behavio-
ur of corrugated-core sandwich panels under tensile and bending loads. Mantari and Granados
(2015) presented a static analysis of functionally graded plates. In the paper, a simply supported
square sandwich plate was subjected to a bi-sinusoidal load. Vaidya et al. (2015) investigated
the response of sandwich steel beams with corrugated cores to quasi-static loading by employ-
ing experimental and computational approaches. A parametric study was also carried out on
large-scale structural size beams of a few meters in length.

The subject of this study is a metal seven-layer rectangular plate with a trapezoidal corru-
gated main core and two trapezoidal corrugated cores of facings. The plate is simply supported
and loaded with a uniformly distributed pressure.

2. Mathematical modelling of a seven-layer plate

2.1. Displacements and strains

A seven-layer rectangular plate with the trapezoidal corrugated main core, two inner flat
sheets, two trapezoidal corrugated cores of the facings and two outer flat sheets is shown in
Fig. 1. The plate is simply supported on all its edges and subjected to a uniform pressure p0.

Fig. 1. Scheme of the seven-layer rectangular plate

The direction of the core facings corrugations is orthogonal to the one of the main core
corrugation. Trapezoidal corrugations of the main core and facings cores are shown in Fig. 2.

Fig. 2. Scheme of the corrugations of the (a) main core and (b) faces cores
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Taking into account the layered structures of the plate, it is easy to notice that the straight
line normal to the middle plane of the plate before bending does not remain straight and normal
after bending. The hypothesis is assumed that the straight line – normal after bending – takes
a shape of a broken line (Fig. 3). The problem of the hypothesis for multi-layer structures was
described, e.g. by Carrera (2003) and Magnucki et al. (2016).

Fig. 3. Deformation of the normal to the middle plane of the plate

The displacements with consideration of the hypothesis are as follows:
1) outer flat sheets

• the upper sheet for −(0.5 + 2x1 + x2) ¬ ζ ¬ −(0.5 + x1 + x2)

u(x, y, z) = −tc1
[
ζ
∂w

∂x
+ ψ(x, y)

]
v(x, y, z) = −tc1

[
ζ
∂w

∂y
+ x2φ(x, y)

]
(2.1)

• the lower sheet for 0.5 + x1 + x2 ¬ ζ ¬ 0.5 + 2x1 + x2

u(x, y, z) = −tc1
[
ζ
∂w

∂x
− ψ(x, y)

]
v(x, y, z) = −tc1

[
ζ
∂w

∂y
− x2φ(x, y)

]
(2.2)

2) trapezoidal corrugated cores of the facings

• the upper core for −(0.5 + x1 + x2) ¬ ζ ¬ −(0.5 + x1)

u(x, y, z) = −tc1
[
ζ
∂w

∂x
+ ψ(x, y)

]

v(x, y, z) = −tc1
{
ζ
∂w

∂y
−
[
ζ +

(1
2
+ x1

)]
φ(x, y)

} (2.3)

• the lower core for 0.5 + x1 ¬ ζ ¬ 0.5 + x1 + x2

u(x, y, z) = −tc1
[
ζ
∂w

∂x
− ψ(x, y)

]

v(x, y, z) = −tc1
{
ζ
∂w

∂y
−
[
ζ −

(1
2
+ x1

)]
φ(x, y)

} (2.4)
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3) inner flat sheets

• the upper sheet for −(0.5 + x1) ¬ ζ ¬ −0.5

u(x, y, z) = −tc1
[
ζ
∂w

∂x
+ ψ(x, y)

]
v(x, y, z) = −tc1ζ

∂w

∂y
(2.5)

• the lower sheet for 0.5 ¬ ζ ¬ 0.5 + x1

u(x, y, z) = −tc1
[
ζ
∂w

∂x
− ψ(x, y)

]
v(x, y, z) = −tc1ζ

∂w

∂y
(2.6)

4) main corrugated core for −0.5 ¬ ζ ¬ 0.5

u(x, y, z) = −tc1ζ
[∂w
∂x
− 2ψ(x, y)

]
v(x, y, z) = −tc1ζ

∂w

∂y
(2.7)

where x1 = ts/tc1, x2 = tc2/tc1 are dimensionless parameters, ξ = z/tc1 – dimensionless
coordinate, tc1, tc2, ts – thicknesses of the main core, facing cores and flat sheets (Fig. 2),
ψ(x, y) = u1(x, y)/tc1, φ(x, y) = v1(x, y)/tc2 – dimensionless functions of displacements, u1(x, y),
v1(x, y) – displacements in the x and y directions, respectively, w(x, y) – deflection (Fig. 3) – de-
flections of each layer are equal and referenced to the middle plate layer, so w(x, y, z) ≡ w(x, y)
and εz ≡ 0.
Thus, the linear relations for strains are as follows:

1) outer flat sheets (upper/lower)

ε(u/l)x =
∂u

∂x
= −tc1

(
ζ
∂2w

∂x2
± ∂ψ

∂x

)
ε(u/l)y =

∂v

∂y
= −tc1

(
ζ
∂2w

∂y2
± x2

∂φ

∂y

)

γxz = γyz = 0 γ(u/l)xy =
∂u

∂y
+
∂v

∂x
= −tc1

(
2ζ

∂2w

∂x∂y
± ∂ψ

∂y
± x2

∂φ

∂x

) (2.8)

2) trapezoidal corrugated cores of the facings (upper/lower)

ε(u/l)x = −tc1
(
ζ
∂2w

∂x2
± ∂ψ

∂x

)
ε(u/l)y = −tc1

{
ζ
∂2w

∂y2
−
[
ζ ±

(1
2
+ x1

)]∂φ
∂y

}

γxz = 0 γyz = φ(x, y)

γ(u/l)xy = −tc1
{
2ζ

∂2w

∂x∂y
± ∂ψ

∂y
−
[
ζ ±

(1
2
+ x1

)]∂φ
∂x

}
(2.9)

3) inner flat sheets (upper/lower)

ε(u/l)x = −tc1
(
ζ
∂2w

∂x2
± ∂ψ

∂x

)
ε(u/l)y = −tc1ζ

∂2w

∂y2

γxz = γyz = 0 γ(u/l)xy = −tc1
(
2ζ

∂2w

∂x∂y
± ∂ψ

∂y

) (2.10)

The sign “+” refers to the upper facing (u), and the sign “−” refers to the lower facing (l).
4) main corrugated core

εx = −tc1ζ
[∂2w
∂x2
− 2∂ψ

∂x

]
εy = −tc1ζ

∂2w

∂y2

γxz = 2ψ(x, y) γyz = 0 γxy = −2tc1ζ
( ∂2w
∂x∂y

− ∂ψ

∂y

) (2.11)

Strains (2.8)-(2.11) make a basis for formulation of the elastic strain energy of the seven-layer
plate.



Strength of a metal seven-layer rectangular plate... 437

2.2. Total potential energy of the plate

The elastic strain energy of the plate is a sum of the energy of the individual layers

U (plate)ε = U (s−o)ε + U (c−2)ε + U (s−i)ε + U (c−1)ε (2.12)

Consecutive components of the sum are as follows:
1) energy of the outer flat sheets

U (s−o)ε =
tc1
2

a∫

0

b∫

0





−( 12+x1+x2)∫

−( 12+2x1+x2)

[Φ(u,s−o)σ,ε ] dζ +

1
2
+2x1+x2∫

1
2
+x1+x2

[Φ(l,s−o)σ,ε ] dζ




dx dy (2.13)

where

Φ(u/l,s−o)σ,ε = σ(u/l)x ε(u/l)x + σ(u/l)x ε(u/l)x + τ (u/l)xy γ(u/l)xy (2.14)

stresses (Hooke’s law)

σ(u/l)x =
E

1− ν2 (ε
(u/l)
x + νε(u/l)y ) τ (u/l)xy =

E

2(1 + ν)
γ(u/l)xy (2.15)

and strains – expressions (2.8).
Integration of expression (2.13) with respect to the coordinate ζ provides

U (s−o)ε =
Et3c1
1− ν2

a∫

0

b∫

0

(
C
(s−o)
2 f

(s−o)
22 − c(s−o)1 f

(s−o)
12 + x1f

(s−o)
11

)
dx dy (2.16)

where

c
(s−o)
2 =

1

12
[28x21 + 18x1(1 + 2x2) + 3(1 + 2x2)

2]x1 c
(s−o)
1 = (1 + 3x1 + 2x2)x1

f
(s−o)
22 =

(∂2w
∂x2

)2
+ 2ν

∂2w

∂x2
∂2w

∂y2
+
(∂2w
∂y2

)2
+ 2(1− ν)

( ∂2w
∂x∂y

)2

f
(s−o)
12 =

(∂2w
∂x2
+ ν

∂2w

∂y2

)∂ψ
∂x
+ x2

(
ν
∂2w

∂x2
+
∂2w

∂y2

)∂φ
∂y
+ (1− ν)

(∂ψ
∂y
+ x2

∂φ

∂x

) ∂2w
∂x∂y

f
(s−o)
11 =

(∂ψ
∂x

)2
+
1− ν
2

(∂ψ
∂y

)2
+ x2

[
2ν
∂ψ

∂x

∂φ

∂y
+ (1− ν)∂φ

∂x

∂ψ

∂y

]

+ x22

[1− ν
2

(∂φ
∂x

)2
+
(∂φ
∂y

)2]

2) energy of the corrugated cores of the facings

U (c−2)ε =
1

2

a∫

0

b∫

0

{
1

b02

∫

ATr

[Φ(u,c−2)σ,ε ] dA
(c−2)
Tr +

1

b02

∫

ATr

[Φ(l,c−2)σ,ε ] dA
(c−2)
Tr

}
dx dy (2.17)

where

Φ(u/l,c−2)σ,ε = σ(u/l)x ε(u/l)x + σ(u/l)y ε(u/l)y + τ (u/l)xy γ(u/l)xy + τ (u/l)yz γ(u/l)yz (2.18)

stresses

σ(u/l)x = Eε(u/l)x σ(u/l)y = E(c−2)y ε(u/l)y τ (u/l)xy = G(c−2)xy γ(u/l)xy

τ (u/l)yz = G(c−2)yz γ(u/l)yz

(2.19)

and strains – expressions (2.9).



438 E. Magnucka-Blandzi et al.

The area of one pitch of the trapezoidal corrugated cross section (Fig. 2)

A
(c−2)
Tr = 2t2c2x02(xf2xb2 + s̃a2) (2.20)

where x02 = t02/tc2, xf2 = bf2/b02, xb2 = b02/tc2 are dimensionless parameters, s̃a2 – dimension-
less length of one pitch – trapezoid

s̃a2 =

√
(1− x02)2 + x2b2

(1
2
− xf2

)2

Integration of expression (2.17) provides

U (c−2)ε = Et3c1

a∫

0

b∫

0

[
f
(c−2)
22 + Ẽ(c−2)y f

(c−2)
12 + G̃(c−2)xy f

(c−2)
11 + G̃(c−2)yz f

(c−2)
10

]
dx dy (2.21)

where

f
(c−2)
22 = c

(c−2)
2x

(∂2w
∂x2

)2
− 2c(c−2)1x

∂2w

∂x2
∂ψ

∂x
+ c
(c−2)
0x

(∂ψ
∂x

)2

Ẽ(c−2)y =
xb2x

3
02

2(3xf2xb2 + s̃a2)(1 − x02)2
f
(c−2)
10 = x2

φ2(x, y)

t2c1

f
(c−2)
12 = C

(c−2)
2y

(∂2w
∂y2

)2
− C(c−2)1y

∂2w

∂y2
∂φ

∂y
+ C

(c−2)
0y

(∂φ
∂y

)2

f
(c−2)
11 = 4C

(c−2)
2y

( ∂2w
∂x∂y

)2
+ C

(c−2)
0y

(∂φ
∂x

)2
−
(
2C
(c−2)
1y

∂φ

∂x
+ c
(c−2)
1xy

∂ψ

∂y

) ∂2w
∂x∂y

+ x2
(
x2
∂φ

∂x
+
∂ψ

∂y

)∂ψ
∂y

C
(c−2)
2x =

1

2
x2x02

[
x22(1− x02)2

(
xf2 +

s̃a2
3xb2

)
+ (1 + 2x1 + x2)

(
xf2 +

s̃a2
xb2

)]

G(c−2)xy =
x02
2(1 + ν)

C
(c−2)
1x = x2x02(1 + 2x1 + x2)

(
xf2 +

s̃a2
xb2

)

C
(c−2)
0x = 2x2x02

(
xf2 +

s̃a2
xb2

)
C
(c−2)
1y =

1

2
x22

(
1 + 2x1 +

4

3
x2
)

C
(c−2)
0y =

1

3
x32 C

(c−2)
2y = x2

[
x21 + x1(1 + x2) +

1

4

(
1 + 2x2 +

4

3
x22

)]

C
(c−2)
1xy = 2x2(1 + 2x1 + x2) G̃(c−2)yz =

2

(1− ν2)xb2fv
(x02
s̃a2

)3

details in Lewinski et al. (2015)
3) energy of the inner flat sheets

U (s−i)ε =
tc1
2

a∫

0

b∫

0





−
1
2∫

−( 12+x1)

[Φ(u,s−i)σ,ε ] dζ +

1
2
+x1∫

1
2

[Φ(l,s−i)σ,ε ] dζ




dx dy (2.22)

where

Φ(u/l,s−i)σ,ε = σ(u/l)x ε(u/l)x + σ(u/l)x ε(u/l)x + τ (u/l)xy γ(u/l)xy (2.23)

stresses (Hooke’s law)

σ(u/l)x =
E

1− ν2
(
ε(u/l)x + νε(u/l)y

)
τ (u/l)xy =

E

2(1 + ν)
γ(u/l)xy (2.24)

and strains – expressions (2.10).
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Integration of expression (2.22) with respect to the coordinate ζ provides

U (s−i)ε =
Et3c1
1− ν2

a∫

0

b∫

0

(
C
(s−i)
2 f

(s−i)
22 − C(s−i)1 f

(s−i)
12 + x1f

(s−i)
11

)
dx dy (2.25)

where

C
(s−i)
2 =

1

4

(
1 + 2x1 +

4

3
x21

)
x1 C

(s−i)
1 = (1 + x1)x1 f

(s−i)
22 = f

(s−o)
22

f
(s−i)
12 =

(∂2w
∂x2
+ ν

∂2w

∂y2

)∂ψ
∂x
+ (1− ν) ∂

2w

∂x∂y

∂ψ

∂y
f
(s−i)
11 =

(∂ψ
∂x

)2
+
1− ν
2

(∂ψ
∂y

)2

4) energy of the main corrugated core

U (c−1)ε =
1

2b01

a∫

0

b∫

0

{ ∫

ATr

[Φ(c−1)σ,ε ] dA
(c−1)
Tr

}
dx dy (2.26)

where

Φ(c−1)σ,ε = σxεx + σyεy + τxyγxy + τxzγxz (2.27)

stresses

σx = E
(c−1)
x εx σy = Eεy τxy = G

(c−1)
xy γxy τxz = G

(c−1)
xz γxz (2.28)

and strains – expressions (2.11).
The area of one pitch of the trapezoidal corrugated cross section (Fig. 2)

A
(c−1)
Tr = 2t2c1x01(xf1xb1 + s̃a1) (2.29)

where x01 = t01/tc1, xf1 = bf1/b01, xb1 = b01/tc1 are dimensionless parameters, s̃a1 – dimension-
less length of one pitch – trapezoid

s̃a1 =

√
(1− x01)2 + x2b1

(1
2
− xf1

)2

Integration of expression (2.30) provides

U (c−1)ε = Et3c1

a∫

0

b∫

0

( 1
24
Ẽ(c−1)x f

(c−1)
22 +

1

24
Ẽ(c−1)y f

(c−1)
12 +

1

6
G̃(c−1)xy f

(c−1)
11 +2G(c−1)xz f

(c−1)
10

)
dx dy

(2.30)

where

f
(c−1)
22 =

(∂2w
∂x2

)2
− 4∂

2w

∂x2
∂ψ

∂x
+ 4

(∂ψ
∂x

)2
f
(c−1)
12 =

(∂2w
∂y2

)2

f
(c−1)
10 =

ψ2(x, y)

t2c1
f
(c−1)
11 =

( ∂2w
∂x∂y

)2
− 2 ∂

2w

∂x∂y

∂ψ

∂y
+
(∂ψ
∂y

)2

Ẽ(c−1)x =
xb1x

3
01

2(xf1xb1 + s̃a1)
G̃(c−1)xy =

x01
2(1 + ν)

Ẽ(c−1)y = 2
x01
xb1
(1− x01)2(3xf1xb1 + s̃a1) G̃(c−1)xz =

1− x01
4(1− ν2)xb1fu

(x01
s̃a1

)3

detail in Lewinski et al. (2015).
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The work of the load, a uniformly distributed pressure p0, is in the following form

W =

a∫

0

b∫

0

p0w(x, y) dx dy (2.31)

The total potential energy is a sum of elastic strain energy (2.12) and work (2.31).

3. Equations of equilibrium and its solution

The principle of minimum total potential energy

δ(U (plate)ε −W ) = 0 (3.1)

where U
(plate)
ε is the elastic strain energy of the plate (2.12) andW is the work of the load (2.35).

The system of the equations of equilibrium – three partial differential equations derived
based on principle (3.1) is in the following form

ℜ(s−o−i)w + ℜ(c−2)w + ℜ(c−1)w =
p0
Et3c1

(3.2)

where

ℜ(s−o−i)w =
1

1− ν2
{
2(C

(s−o)
2 + C

(s−i)
2 )∇4w − C(s−o)1

[ ∂
∂x
(∇2ψ) + x2

∂

∂y
(∇2φ)

]

−C(s−i)1

∂

∂x
(∇2ψ)

}

ℜ(c−2)w = 2ℜ(c−2)w,w −ℜ
(c−2)
w,ψ −ℜ

(c−2)
w,φ

ℜ(c−2)w,w = C
(c−2)
2x

∂4w

∂x4
+ C

(c−2)
2y

(
4G̃(c−2)xy

∂4w

∂x2∂y2
+ Ẽ(c−2)y

∂4w

∂y4

)

ℜ(c−2)w,ψ =
∂

∂x

(
2C
(c−2)
1x

∂2ψ

∂x2
+ C

(c−2)
1xy G̃(c−2)xy

∂2ψ

∂y2

)

ℜ(c−2)w,φ = C
(c−2)
1y

∂

∂x

(
2G̃(c−2)xy

∂2φ

∂x2
+ Ẽ(c−2)y

∂2φ

∂y2

)

ℜ(c−1)w =
1

12
ℜ(c−1)w,w −

1

6
ℜ(c−1)w,ψ ℜ(c−1)w,w = Ẽ

(c−1)
x

∂4w

∂x4
+ 4G̃(c−1)xy

∂4w

∂x2∂y2
+ Ẽ(c−1)y

∂4w

∂y4

ℜ(c−1)w,ψ =
∂

∂x

(
Ẽ(c−1)x

∂2ψ

∂x2
+ 2G̃(c−1)xy

∂2ψ

∂y2

)
∇4w = ∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

and

ℜ(s−o−i)ψ + ℜ(c−2)ψ + ℜ(c−1)ψ = 0 (3.3)

where

ℜ(s−o−i)ψ =
1

1− ν2
{
(C
(s−o)
1 + C

(s−i)
1 )

∂

∂x
(∇2w)− 2x1

[
2
∂2ψ

∂x2
+ (1− ν)∂

2ψ

∂y2

]

− x1x2(1 + ν)
∂2φ

∂x∂y

}

ℜ(c−2)ψ =
∂

∂x

(
2C
(c−2)
1x

∂2w

∂x2
+ C

(c−2)
1xy G̃(c−2)xy

∂2w

∂y2

)
− 2

(
C
(c−2)
0x

∂2ψ

∂x2
+ x2G̃

(c−2)
xy

∂2ψ

∂y2

)

− x22G̃(c−2)xy

∂2φ

∂x∂y

ℜ(c−1)ψ =
1

6

∂

∂x

(
Ẽ(c−1)x

∂2w

∂x2
+ 2G̃(c−1)xy

∂2w

∂y2

)
− 1
3

(
Ẽ(c−1)x

∂2ψ

∂x2
+ G̃(c−1)xy

∂2ψ

∂y2

)
− 4G̃(c−1)xz

ψ(x, y)

t2c1
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and

ℜ(s−o−i)φ + ℜ(c−2)φ = 0 (3.4)

where

ℜ(s−o−i)φ =
1

1− ν2
{
x2C

(s−o)
1

∂

∂y
(∇2w)− x1x22

[
(1− ν)∂

2φ

∂x2
+ 2

∂2φ

∂y2

]
− x1x2(1 + ν)

∂2ψ

∂x∂y

}

ℜ(c−2)φ = ℜ(c−2)φ,w − x22G̃(c−2)xy

∂2ψ

∂x∂y
−ℜ(c−2)φ,φ

ℜ(c−2)φ,w = C
(c−2)
1y

∂

∂y

(
2G̃(c−2)xy

∂2w

∂x2
+ Ẽ(c−2)y

∂2w

∂y2

)

ℜ(c−2)φ,φ = 2C
(c−2)
0y

(
G̃(c−2)xy

∂2φ

∂x2
+ Ẽ(c−2)y

∂2φ

∂y2

)
− 2x2G̃(c−2)yz

φ(x, y)

t2c1

∇2w = ∂2w

∂x2
+
∂2w

∂y2

Three equations of equilibrium (3.2), (3.3) and (3.4) with three unknown functions w(x, y),
ψ(x, y) and φ(x, y) are approximately solved assuming three unknown functions in the forms

w(x, y) = wa sin
πx

a
sin

πy

b
ψ(x, y) = ψa cos

πx

a
sin

πy

b

φ(x, y) = φa sin
πx

a
cos

πy

b

(3.5)

where wa, ψa, φa are parameters of the functions, a, b – sizes of the plate (Fig. 1).
Substituting these functions into equations (3.2), (3.3) and (3.4) and using the Galerkin

method, three algebraic equations are obtained

α11wa − α12
b

π
ψa − α13

a

π
φa =

16

π3
a2b2

t3c1

p0
e

α21
π

a
wa − α22ψa − α23φa = 0

α31
π

b
wa − α32ψa − α33φa = 0

(3.6)

where the dimensionless elements

α11 = α
(1)
11 + α

(2)
11 + α

(3)
11 α

(1)
11 =

2

1− ν2 (C
(s−o)
2 + C

(s−i)
2 )

( b
a
+
a

b

)2

α23 = x2
( x1
1− ν + x2G̃

(c−2)
xy

)
α
(3)
11 =

1

12

[
Ẽ(c−1)x

( b
a
)2 + 4G̃(c−1)xy + Ẽ(c−1)y

(a
b
)2
]

α
(2)
11 = 2

[
C
(c−2)
2x

( b
a
)2 + C

(c−2)
2y

(
4G̃(c−2)xy + Ẽ(c−2)y

(a
b
)2
)]

α12 =
1

1− ν2 (C
(s−o)
1 + C

(s−i)
1 )

( b
a
+
a

b

)
+ 2C

(c−2)
1x

b

a
+ C

(c−2)
1xy G̃(c−2)xy

a

b

+
1

6

(
Ẽ(c−1)x

b

a
+ 2G̃(c−1)xy

a

b

)

α13 =
x2
1− ν2C

(s−o)
1

( b
a
+
a

b

)
+ C

(c−2)
1y

(
2G̃(c−2)xy

b

a
+ Ẽ(c−2)y

a

b

)

α21 = α12 α31 = α13 α32 = α23

α22 =
2x1
1− ν2

[
2
b

a
+ (1− ν)a

b

]
+ 2

(
C
(c−2)
0x

b

a
+ x2G̃

(c−2)
xy

a

b

)
+
1

3

(
Ẽ(c−1)x

b

a
+ G̃(c−1)xy

a

b

)

+
4

π2
G̃(c−1)xz

ab

t2c1

α33 =
x1x
2
2

1− ν2
[
(1− ν) b

a
+ 2

a

b

]
+ 2C

(c−2)
0y

(
G̃(c−2)xy

b

a
+ Ẽ(c−2)y

a

b

)
+
2x2
π2

G̃(c−2)yz

ab

t2c1
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Solving equations (3.6) one obtains

wa =
16

π6αw

a2b2

t3c1

p0
E

ψa =
16

π5
αψ
αw

a2b

t3c1

p0
E

φa =
16

π5
αφ
αw

a2b

t3c1

p0
E

(3.7)

where

αw = α11 − (αψα12 + αφα13) αψ =
bα21α33 − aα31α23
a(α22α33 − α223)

αφ =
aα31α22 − bα21α32
b(α22α33 − α223)

The stresses on the outer sheets and in the middle of the plate, for ζo = ∓(0.5 + 2x1 + x2) and
x = a/2, y = b/2 are

σx =
1

1− ν2
[( b
a
+ ν

a

b

)
ζo ± (αψ + νx2αφ)

] 16
π4αw

ab

t2c1
p0

σy =
1

1− ν2
[(a
b
+ ν

b

a

)
ζo ± (ναψ + x2αφ)

] 16
π4αw

ab

t2c1
p0

(3.8)

and the equivalent stress (Huber-Mises-Hencky)

σeq =
√
f2σx − fσxfσy + f2σy

16

π4(1− ν2)αw
ab

t2c1
p0 (3.9)

where

fσx =
( b
a
+ ν

a

b

)
ζo ± (αψ + νx2αφ) fσy =

(a
b
+ ν

b

a

)
ζo ± (ναψ + x2αφ)

4. Finite element model of the seven-layer plate

A family of simply supported rectangular plates of dimensions 2024mm×2000mm subjected
to a uniform load of 0.01MPa has been considered. The linear static analysis was carried out
using the finite element software ABAQUS. A quarter of the rectangular plate was modeled.
The linear S4R shell elements were placed at the mid-surface of the plate layers (Fig. 4).

Fig. 4. The meshing scheme of a simply supported plate

The mesh density study was carried out to refine the global mesh size to 4mm. The mesh
convergence plot for the maximum deflection in the middle of the top face sheet is presented in
Fig. 5.
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Fig. 5. The mesh convergence plot

Perfect bonding between the cores and the flat sheets was assumed. The interaction between
flanges of the cores and the flat sheets was provided with the use of the tie constraint. The
flanges of the cores were slave surfaces and the flat sheets were master surfaces.

The boundary conditions were imposed only to edges of the flat sheets (master surfaces) –
each edge was simply supported. The implementation of the symmetry and the simply supported
boundary conditions on a quarter of the plate is schematically shown in Fig. 6.

Fig. 6. The scheme of boundary conditions

5. Results of numerical calculations of deflection and stresses of the plate

The aim of these calculations was to verify the results obtained through the linear finite element
analysis with those obtained through an analytical method. The maximum deflection and the
equivalent stress of the family of seven-layer rectangular plates, using both analytical and finite
element methods, was evaluated. The results of the parametric studies for changes of b02 and b01
are collected in Case 1 and Case 2, respectively.

Case 1. The study for constant area of the trapezoidal corrugation of the facing core

A
(c−2)
Total = nA

(c−2)
Tr , where n is the number of the corrugations and A

(c−2)
Tr (2.20) is the

area of one pitch of the trapezoidal corrugated cross section. The numerical calcula-
tions are carried out for the rectangular plate with the following sizes: a = 2024mm,
b = 2000mm, ts = 0.8mm, tc1 = 11.2mm, t01 = 0.8mm, b01 = 46mm, bf1 = 10mm,

tc2 = 9.2mm, bf2 = 8mm, A
(c−2)
Total = 1811.83mm

2, p0 = 0.01MPa, and material constants



444 E. Magnucka-Blandzi et al.

E = 2 · 105MPa, ν = 0.3. The results of the calculations are presented in Table 1. The va-
lues in the ABAQUS columns in Table 1 enclosed in parentheses are percentage differences
with respect to the analytical ones (the absolute value of the relative deviation).

Table 1. The deflection and the equivalent stresses of the plate for the first case A
(c−2)
Total = const

b02
[mm]

t02
[mm]

wa σeq
n Analytical ABAQUS Analytical ABAQUS

[mm] [mm] [MPa] [MPa]

50 40.0 0.8 5.30 5.41 (2.1%) 59.4 60.01 (1.0%)

60 33.333 0.751 5.33 5.43 (1.9%) 59.7 60.86 (1.9%)

70 28.571 0.6968 5.38 5.48 (1.8%) 60.1 62.40 (3.8%)

80 25.0 0.6409 5.43 5.53 (1.7%) 60.5 63.44 (4.7%)

90 22.222 0.5867 5.51 5.61 (1.8%) 60.9 64.94 (6.4%)

100 20.0 0.5363 5.61 5.72 (1.9%) 61.2 66.29 (8.0%)

Case 2. The study for constant area of the trapezoidal corrugation of the main core

A
(c−1)
Total = mA

(c−1)
Tr , where m is the number of the corrugations and A

(c−1)
Tr (2.29) is the area

of one pitch of the trapezoidal corrugated cross section. The numerical calculations are
carried out for the rectangular plate with the following sizes: a = 2024mm, b = 2000mm,
ts = 0.8mm, tc1 = 11.2mm, bf1 = 10mm, tc2 = 9.2mm, t02 = 0.8mm, b02 = 40mm,

bf2 = 8mm, A
(c−1)
Total = 1876.03mm

2, p0 = 0.01MPa, E = 2 · 105MPa, ν = 0.3. The results
of the calculations are presented in Table 2. The values in the ABAQUS columns in Table 2
enclosed in parentheses are percentage differences with respect to the analytical ones (the
absolute value of the relative deviation).

Table 2. The deflection and the equivalent stresses of the plate for the second case

A
(c−1)
Total = const

b01
[mm]

t01
[mm]

wa σeq
n Analytical ABAQUS Analytical ABAQUS

[mm] [mm] [MPa] [MPa]

44 46.0 0.8 5.30 5.41 (2.1%) 59.34 60.01 (1.1%)

54 37.481 0.7349 5.33 5.43 (1.8%) 59.44 60.07 (1.1%)

64 31.625 0.6652 5.41 5.49 (1.5%) 59.73 60.47 (1.2%)

74 27.351 0.5973 5.65 5.65 (0.0%) 60.55 61.33 (1.3%)

84 24.095 0.5245 6.48 5.98 (8.0%) 63.90 63.00 (1.4%)

6. Conclusions

As a conclusion, it can be said that the results obtained through the analytical and the numerical
method are consistent with each other. It proves that the broken-line hypotheses assumed for
deformation of the cross-section in x and y directions are sufficient for evaluating the plate
deflection and equivalent stresses. It can also be seen that decreasing of the parameter b01 has
much more influence on the increase of the maximum deflection of the plate. This effect is due
to a significant change in the shear rigidity of the plate.

Acknowledgements The project was funded by the National Science Centre allocated on the basis of

the decision number DEC-2013/09/B/ST8/00170.



Strength of a metal seven-layer rectangular plate... 445

References

1. Allen H.G., 1969, Analysis and Design of Structural Sandwich Panels, Pergamon Press, Oxford,
London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig

2. Carrera E., 2003, Historical review of Zig-Zag theories for multi-layered plates and shells, Applied
Mechanics Reviews, 56, 3, 287-308

3. Carrera E., Brischetto S., 2009, A survey with numerical assessment of classical and refined
theories for the analysis of sandwich plates, Applied Mechanics Reviews, 62, 1-010803, 1-17

4. Cheon Y.J., Kim H.G., 2015, An equivalent plate model for corrugated-core sandwich panels,
Journal of Mechanical Science and Technology, 29, 3, 1217-1223

5. Jha D.K., Kant T., Singh R.K., 2013, Stress analysis of transversely loaded functionally graded
plates with a higher order shear and normal deformation theory, ASCE Journal of Engineering
Mechanics, 139, 12, 1663-1680

6. Ji H.S., Song W., Ma Z.J., 2010, Design, test and field application of a GFRP corrugated-core
sandwich bridge, Engineering Structures, 32, 2814-2824

7. Kazemahvazi S., Zenkert D., 2009, Corrugated all-composite sandwich structures. Part 1: Mo-
deling, Composite Science and Technology, 69, 7, 913-919

8. Lewinski J., Magnucka-Blandzi E., Szyc W., 2015, Determination of shear modulus of ela-
sticity for thin-walled trapezoidal corrugated cores of seven-layer sandwich plates, Engineering
Transactions, 63, 4, 421-438

9. Magnucka-Blandzi E., 2011, Mathematical modelling of a rectangular sandwich plate with a
metal foam core, Journal of Theoretical and Applied Mechanics, 49, 2, 439-455

10. Magnucka-Blandzi E., Magnucki K., 2014, Transverse shear modulus of elasticity for thin-
walled corrugated cores of sandwich beams. Theoretical study, Journal of Theoretical and Applied
Mechanics, 52, 4, 971-980

11. Magnucka-Blandzi E., Magnucki K., Wittenbeck L., 2015, Mathematical modelling of she-
aring effect for sandwich beams with sinusoidal corrugated cores, Applied Mathematical Modelling,
39, 9, 2796-2808

12. Magnucki K., Magnucka-Blandzi E., Wittenbeck L., 2016, Elastic bending and buckling of
a steel composite beam with corrugated main core and sandwich faces – Theoretical study, Applied
Mathematical Modelling, 40, 2, 1276-1286

13. Mantari J.L., Granados E.V., 2015, A refined FSDT for the static analysis of functionally
graded sandwich plates, Thin-Walled Structures, 90, 150-158

14. Noor A.K., Burton W.S., Bert C.W., 1996, Computational models for sandwich panels and
shells, Applied Mechanics Reviews, 49, 3, 155-199

15. Plantema F.J., 1966, Sandwich construction – the bending and buckling of sandwich beams, plates,
and shells, John Wiley & Sons, New York, London, Sydney

16. Poirier J.D., Vel S.S., Caccese V., 2013, Multi-objective optimization of laser-welded steel
sandwich panels for static loads using a genetic algorithm, Engineering Structures, 49, 508-524

17. Seong D.Y., Jung C.G., Yang D.Y., Moon K.J., Ahn D.G., 2010, Quasi-isotropic bending
responses of metallic sandwich plates with bi-directionally corrugated cores, Materials and Design,
31, 6, 2804-2812

18. Vaidya S., Zhang L., Maddala D., Hegert R., Wright J.T., Shukla A., Kim J.H., 2015,
Quasi-static response of sandwich steel beams with corrugated cores, Engineering Structures, 97,
80-89



446 E. Magnucka-Blandzi et al.

19. Vinson J.R., 2001, Sandwich structures, Applied Mechanics Reviews, 54, 3, 201-214

20. Zhang J., Qin Q., Wang T.J., 2013, Compressive strengths and dynamic response of corrugated
metal sandwich plates with unfilled and foam-filled sinusoidal plate cores, Acta Mechanica, 224, 4,
759-775

Manuscript received May 19, 2016; accepted for print September 8, 2016



JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

55, 2, pp. 447-459, Warsaw 2017
DOI: 10.15632/jtam-pl.55.2.447

AN AUTOMATED CAD/CAE INTEGRATION SYSTEM FOR THE
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In order to take advantage of the sophisticated features offered by CAD and CAE packages
for modeling and analysis during the design process, it is essential to build a bridge assu-
ring a coherent link between these tools. Furthermore, this integration procedure must be
automated so as to get rid of the repetitive costing effort. In this paper, a new automated pro-
cedure for the CAD/CAE integration, implemented for the parametric design and structural
analysis of aircraft wing structures is presented. This procedure is based on the automation
capacity available in modern computer aided tools via build-in basic programming languages
as well as the capacity of the model data exchange. The geometric and numerical models
can be controlled to generate a large variety of possible design cases through parameters
introduced beforehand.

Keywords: CAD/CAE integration, design automation, aircraft wing, parametric design

1. Introduction

Due to the existing competition, manufacturing companies strive to decrease the product life
cycle in order to produce more in a relatively reduced time (Asiedu and Gu, 1998). Consequently,
a need has been raised for evolution in design tools, namely, Computer Aided Design (CAD) and
Computer Aided Engineering (CAE) software (Sapuan et al., 2006). One of the requirements
is to shorten the time spent in the design process, especially when identical tasks exist while
modeling different products or when the design process consists of repeated activities that can
be programmed in a simple loop.

The progress in CAD and CAE technologies served as a major part in the improvement
of the design process quality. The product development cycle changed from design ⇒ build
⇒ test ⇒ fix to design ⇒ analyze ⇒ test ⇒ build (Rowe, 2006). In the traditional approach,
physical prototypes had to be built in order to be evaluated, and the design was based on
the designers’ experience and judgment. Nowadays, numerical analysis is used in the upstream
phase simultaneously with the geometric design. The validation of a new design is performed
using virtual prototyping, which involves modeling, engineering analysis and multidisciplinary
optimization. CAD and CAE tools have become a quintessential part of the design process and
have been widely applied in structure design (Dietrich et al., 1999; Edke and Chang, 2006).

Generally, the limited capabilities of modeling features in CAE tools and those of structural
analysis, if they are available, in CAD tools lead designers to use two or more independent
software packages for modeling and analysis (Gujarathi and Ma, 2011). Moreover, looking for
more efficient and lighter structures by a structural optimization process creates a need for
sharing the geometric model and analysis information in an iterative environment.

Furthermore, to solve optimization problems, the model has to be updated after each iteration
by changing the design parameters. If this task is to be performed manually, the designer has
to perform a complicated and time consuming job, particularly in the case where the model is
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governed by a large number of parameters (Roy et al., 2008). Therefore, it is requisite not only
to integrate CAD and CAE tools but also to automate the integration procedure in order to
avoid designer’s intervention at each iteration.

The integration between CAD and CAE tools can be easily performed due to the data
exchange translators available in most popular CAD and CAE tools. In order to make the
integration procedure automatic, the software used must offer the ability to automate tasks and
access to features via a built-in programming language as well as the possibility to run in the
batch mode.

In the recent years, a number of works has used the integration between CAD and CAE
tools as a design solution. Su and Qin (2003) used IGES data files to integrate Pro/ENGINEER
and ANSYS for a worm gearing design. Edke and Chang (2006) performed shape optimization
of heavy load carrying components by integrating Solidworks, Pro/ENGINEER and ANSYS
via IGES. Other works (Park and Dang, 2010; Wang et al., 2014; Peng et al., 2014) focused on
developing an automated framework for CAD/CAE integration.

In this paper, a new procedure for the design process of aircraft wing structures is presented.
The originality of the presented work lies in the full automation of the design process, the
complexity in the case considered of the wing structure as well as the applicability to different
types of wings via parametric modeling. The design process involves both geometric modeling
and structural analysis by integrating two commercial CAD and CAE tools. The control of the
geometric and numerical models can be done using design parameters, introduced manually in
order to explore and compare different design cases. The approach is supported by a graphical
user interface GUI in order to ease parameter data input and result access.

2. Need for CAD/CAE integration

As mentioned before, the design is no longer a pure geometric modeling task due to the considera-
ble progression of the numerical simulation becoming the key area in product design. Nowadays,
the design process involves both Computer Aided Design (CAD) and Computer Aided engi-
neering (CAE). In addition, the evolution in the design process requires geometric modeling
and mechanical analysis to be driven in parallel. The model has to be submitted into analysis
in order to be verified and, therefore, modified on the basis of the results obtained. Although
most of the commercial CAE tools support modeling, available CAD functions do not fulfill all
desired requirements. The aim to reach a better design in an iterative environment calls for a
strong connection between CAD and CAE tools, which bring us to what is called “simulation
driven design” (Fig. 1). This interconnection accelerates the loop design-analysis-redesign and
thus reduces costs and improves product quality.

Fig. 1. Simulation driven design (CAD/CAE integration process)
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The “Post processing results” step is an evaluation of the model based on the design objective
taking into account the analysis results. Consequently, the modifications to be done are spotted
in the “design modification” step then submitted to action when the next loop starts.

In order to ease the design modification, engineers tend to use the parametric modeling, that
is to include parameters to drive the geometry in CAD models through parametric and varia-
tional approaches (Fig. 2). Thus, new designs can be generated simply by changing parameter
values, which facilitates the definition of the design space.

Fig. 2. Parametric modeling methodology on an aircraft wing

For the sake of ensuring the interconnection between CAD and CAE tools, data exchange
translators have been developed and improved to transform data from one CAD system to
another CAD file format. The CAD data translation can be done by the built-in export function
supported in most of the commercial CAD. The common Data translation formats are: STEP,
IGES, STL, parasolid. The geometric data can be easily provided to the CAE software via the
built-in import function. Thus, the integration between CAD/CAE systems has been guaranteed.
It remains to automate this export/import task so that the designer evades monotonous effort.

3. Design process automation

In order to modify the model, the designer must redo all tasks, namely, model the new geometry
based on the new parameter values, export the model from CAD software and import it into CAE
software, prepare the FEM model, submit into analysis and finally explore results. Therefore, the
best way to reduce human unnecessary effort and time consumption is to precede by automation.

In other words, automation is the ability provided by the software to access modeling or
analysis functionalities via a built-in programming language. The model in request can be ge-
nerated after executing the program in-which several functions are called sequentially to exert
different tasks. Accordingly, repeated tasks can be simply programmed in a loop and the mo-
del can be simply updated by modifying the variable values in the program. By adopting this
methodology, companies can significantly reduce design time, perform more design iterations in
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a relatively reduced time with a lower cost and, therefore, increase the overall quality of their
design processes.

This automatic mechanism can be performed by CAD software based on the Applica-
tion Programming Interfaces (APIs) and programming modules, such as the Pro/Toolkit of
Pro/Engineer, CAA of CATIA, OpenAPI and OPEN GRIP of Unigraphics. In addition, most
of the CAE packages are equipped with a parametric design language (PDL), e.g. Adaptive Pro-
gramming Design Language (APDL) of Ansys, Patran Command Language (PCL) of Patran et
al.. These PDLs are usually structured scripting languages by which the designers can import
the geometric model, assign materials, prepare the FE mesh, apply loads and boundary condi-
tions and submit the model to analysis. Moreover, the required analysis results can be extracted
from the output file which can be post processed by programming as well. This is known as
the automated finite element modeling technique AFEM (Nawijn et al., 2006) and was used in
many works to generate reliable FE models of complicated structures (Rocca and van Tooren,
2009; Sohaib, 2011).
The CAD and CAE software used in the integration system must allow the execution in the

batch mode, that is without a graphic user interface (GUI). Consequently, it is possible to execute
the CAD or CAE program from a windows command prompt which runs the corresponding
software in an invisible mode. This will significantly decrease the required time for modeling
and analysis compared to the graphic mode.

In addition to the two CAD and CAE tools, there is a need for an implementing software
to complete the integration system. This software is responsible for controlling the integration
process, it ensures the parameter value automatic modification in the programs, the execution
of the programs in the software batch mode to invoke the modeling/analysis processes and the
extraction of analysis results from the output of the CAE component.

The implementing software writes parameter values introduced by the designer to the mode-
ling program. The CAD component, run in the batch mode, executes the program to generate
the geometric model automatically and exports it to a common data format file. Again, the
implementing software writes parameter values to the analysis program and runs the CAE com-
ponent which imports the CAD model, identifies the analysis tasks, carries out the simulation
process and provides the analysis results. Finally, the implementing software accesses result files
and extracts the values required.

4. Implementation of the integration system

The selection of the software forming integration system depends on the designer choice and the
available tools. In the present work, SIEMENS NX, MSC.PATRAN/NASTRAN and MATLAB
have been chosen as CAD, CAE and implementing software, respectively. The flowchart of the
integration system is depicted in Fig. 3.

4.1. CAD component

SIEMENS NX (formerly Unigraphics NX) is a leading parametric modeling CAD software.
It offers various tools of automation: Knowledge Fusion, GRIP programming, Macros, NX Open,
Journals, User Defined Objects etc.
Over the available automation tools, GRIP is used in our integration procedure. GRIP (Gra-

phics Interactive Programming) is a convenient, flexible and powerful interactive graphic pro-
gramming language. GRIP is used to create FORTRAN-like programs to operate the Unigraphics
system. GRIP programming method can be used to automate most of the operations under the
UG for developers. Commands are available to create geometric functions and modify existing
geometry.
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Fig. 3. Flowchart of the CAD/CAE integration system

The GRIP program is written to a text file with a (.grs) format. It has to be compiled then
linked before it can be executed by the SIEMENS NX software. Thanks to the batch mode
running ability, compilation, linkage and execution can be done by a WINDOWS command
that operates on a batch file. This command can be executed from the implementing software
MATLAB. Being the case, the designer avoid the action of opening GRADE (GRIP Advanced
Development Environment) to compile and link the .grs file then SIEMENX NX software to
execute the .grx file.

The GRIP program starts by creating a new active part which is necessary to execute the
modeling process and ends by exporting the model to a geometry exchange format file, in our
case IGES format. Unfortunately, there is no GRIP function to export the model in a format
other than .prt. The solution is to use another tool for automation which is journaling, by writing
a VB journal to export the model in IGES format and call it from the GRIP program.

4.2. CAE component

MSC/PATRAN is a pre/post-processing software for Finite Element Analysis (FEA), provi-
ding solid modeling, meshing, analysis setup and post-processing for multiple solvers including
MSC NASTRAN, ABAQUS, LS-DYNA, ANSYS, etc. It uses a simple step-by-step approach
that helps to create, analyze and interpret a mathematically realistic model of the structure.

The programming language which can be used in conjunction with MSC/PATRAN is called
Patran command language (PCL). PCL is a high level block structured language. It has many
features similar to traditional programming languages. The PCL program is in the form of a
text file called the session file (.ses) formed by a succession of PCL functions.

The session file starts with importing the geometric model, then creating materials and
properties, then it prepares the FE mesh, applies loads and boundary conditions and finally
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submits the analysis job to MSC.NASTRAN (The FEA solver chosen). When the job is done,
the result file (.f06 Format) is generated.

5. Case study of an aircraft wing structure

One of the most critical components and complicated structures of an aircraft is the wing. It
is a framework made up of spars and ribs and covered with a skin. The particular design of a
wing depends on many factors, such as the size, weight, speed, rate of climb, and use of the
aircraft. The parametric modeling of an aircraft wing is based on parameters which concern the
shape, dimension and configuration of the wing. From the large number of wing parameters, the
following can be listed (Kachel, 2013): airfoil specification, root chord length, wing span, taper
ratio (ratio between the tip chord and the root chord), sweep angle, dihedral angle, twist angle,
incidence or setting angle, number of spars (and their configuration), number of ribs (and their
configuration).

5.1. Parametric geometry model generation

The aircraft wing shape is mainly described by the geometric profile called “airfoil”. The
airfoil profile can be defined from the coordinates of the upper and lower curves. These coordi-
nates are provided in text files that can be read by the GRIP program as the first step (Fig. 4).
If the coordinates are given in percentages, they must be multiplied by the root chord length as
follows

x =
x%

100
c y =

y%

100
c (5.1)

where c is the value of the chord length.

Fig. 4. Points defining of the aerodynamic profile

The developed aircraft wing modelling program uses the B-spline functions which make it
possible to apply the parametric approach to the modelling process of virtual structures.

The B-spline curve has the zero value in all parametrisation subintervals, except for m+ 1.
Such curves can be defined recurrently in the following manner

Ni,0(x) =

{
1 xi ¬ x ¬ xi+1
0 for other x

(5.2)

the m degree B-spline in the interval is defined as

Ni,m(x) =
x− xi

xi+m − xi
Ni,m−1(x) +

xi+m+1 − x
xi+m+1 − xi+1

Ni+1,m−1(x) (5.3)
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When taking into consideration equations (5.2) and (5.3), we can find a clear form of the
B-spline curve of any degree, which is directly used in algorithms designed for determining curves
in CAD systems. When applying the presented approach, we can easily describe the shape of
the aerodynamic profile used to construct the aircraft wing.

The tip airfoil profile is created by applying multiple transformation on the root profile:

• Translation by the wing span
• Scale by the taper ratio
• Multiple rotations by sweep, twist and dihedral angles.

These transformations are programmed in the developed GRIP program as follows:

...

CSYS0=&WCS

MAT1=MATRIX/TRANSL,0,span,0

upper curve(n)=TRANSF/MAT1,upper curve(1)

CS(n)=TRANSF/MAT1,CSYS0

&WCS=CS(n)

MAT2=MATRIX/SCALE,taper ratio

upper curve(n)=TRANSF/MAT2,upper curve(n),MOVE

MAT3=MATRIX/ZXROT,twist angle

upper curve(n)=TRANSF/MAT3,upper curve(n),MOVE

...

Next, the wing skin, spar and rib surfaces are generated from the tip and root profiles.
The creation of the spars and ribs is programmed in loops, where the increment represents the
rib/spar position. For example, the loop for creating rib surfaces from curves can be written as
follows:

...

DO/rb1:,i,2,n-1

rib(i)=BSURF/CURVE,upper curve(i),lower curve(i)

rb1:

...

The following flowchart (Fig. 5) illustrates the structure of the GRIP program and shows
the steps to follow in order to achieve the desired wing model.

In order to construct a correct FEM model without free edges, it is necessary to associate
the mesh nodes on the surface edges. Thus, the skin, rib and spar surfaces must be split into
small parts: we define the part of a rib between two neighbor spars, or the leading edge and the
first spar, or the last spar and the trailing edge as a rib part. Also, the part of a spar between
two neighbor ribs as the spar part and the skin part between two neighbor ribs and two neighbor
spars as a skin part (Fig. 6)

The next step is to export the model as IGES file. As mentioned before, this is done by calling
a VB journal that executes this task. To perform different tasks by programming, surface part
labels are used as function inputs. Although, when the wing model is imported in MSC.PATRAN
as a single IGES file, the surface parts are labeled as a whole and, therefore, labels can not be
distinguished in order to operate on a specific group of parts. The solution is to export/import
the model as three separate IGES files: “skin.igs”, “ribs.igs” and “spars.igs”.

5.2. Automated FE model generation

For the CAE component, the first task programmed in the PATRAN session file is to import
the model IGES files one by one to identify the surface labels. For example, after importing the
first file “skin.igs”, the number of surfaces imported can be determined, and thus it is known
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Fig. 5. GRIP program flowchart

Fig. 6. Skin, spar and rib surfaces split into small parts

that the skin part labels are from 1 to the the determined number, and so on. To illustrate more,
a portion from the session file, showing PCL code used to perform this, is presented below:

...

INTEGER entities imported(9) $$ number of patran entities imported by

type

INTEGER N skin parts $$ total number of skin parts

INTEGER N spar parts $$ total number of spar parts

INTEGER N rib parts $$ total number of rib parts

ugi import iges v5("C:\skin.igs", 0,"default group",...,entities imported)
N skin parts=entities imported(3) $$ "3" for entity type: surface

ugi import iges v5("C:\spars.igs", 0,"default group",...,entities imported)
N spar parts=entities imported(3)
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ugi import iges v5("C:\ribs.igs", 0,"default group",...,entities imported)
N rib parts=entities imported(3)

In addition to the total number of spar parts and ribs parts, it is necessary to determine
the number of ribs and spars in the model, noted R and S, respectively. This can be performed
using these equations

R =
N skin parts

2
−N spar parts+ 1

S = N rib parts− N skin parts

2
− 1

(5.4)

Next, materials and properties are created based on analysis parameters (materials and
thicknesses), and the surfaces are meshed after specifying a mesh seed to control element sizes
and to ensure node association (equivalence verification). The PCL program developed is written
in such a way that the aircraft wing geometric model can be modified and the mesh will be
updated accordingly (Fig. 7). Finally, loads and constraints are applied and the analysis job is
submitted to MSC.NASTRAN software.

Fig. 7. Mesh update using the automated finite element modeling

After MSC.NASTRAN software finishes the analysis, output files are created. The MATLAB
script reads the result files and looks for the specific result values, which can be displacements,
stresses, natural frequencies, etc.

As analysis parameters, many choices are available, such as material specifications, thick-
nesses, load intensity (for static analysis), etc. For our simple case study, the aircraft wing is
supposed to be clamped at its root. Both solution types “Linear static” and “Normal modes”
can be supported by the presented integration procedure. For the static analysis, the wing is
supposed to be subjected to a uniform pressure on its skin surface. Results desired can be either
displacements or stresses of the wing structure due to the applied pressure for the static analysis,
and natural frequencies for the normal mode analysis (Fig. 8).

5.3. Results and discussion

In order to simplify the use of the integration system, a MATLAB graphical user interface
is implemented (Fig. 9). This GUI eases parameter value input and result access. The user
can simply introduce the desired parameter values for modeling as well as for analysis, choose
the analysis type and run the integration procedure. The script programs (GRIP program and
PCL program) are then created according to parameter input values, and the software packages
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Fig. 8. Plots of the static and dynamic analysis results: (a) displacement result plot, (b) stress result
plot, (c) normal modes

(SIEMENS NX and PATRAN/NASTRAN) are executed in the invisible mode to carry on the
desired task. When the analysis is completed, the results as well as preview graphics are shown
in the same interface. Accordingly, there is no interaction of the user with the design software
tools, and the overall time of the modeling and calculation is only about 45 seconds. Thus,
exploring the behavior of a new design case (different geometric/analysis parameter value) is no
longer a time/effort consuming task due the automation capacity of the approach.

Fig. 9. A graphical user interface for the integration procedure

One other original quality of the developped framework is that it offers the ability to investi-
gate the behavior of the structure with respect to changes of a chosen parameter. This is done
by running the procedure in a simple loop, where the parameter value changes at each itera-
tion. Therefore, the structure response can be related to its parameters, through approximate
mathematical expressions using interpolation techniques, which allows the use of conventional
optimization algorithms. The automated integration procedure is, consequently, indispensable
for conducting an optimization task. The parameters, for modeling as well as for analysis, can
play the role of design variables, and the objective function can be set as one of the result cases
(minimize the maximum stress, maximize the lowest frequency value, etc).
In the present work, the procedure is used to emphasize the dependency of the wing structure

maximal stress and first natural frequency on some of its parameters. One of the requirements
for the structural design is to limit the maximal stress over the structure under critical load
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cases. In order to predict the resistance of the wing structure under some specific load intensity,
the maximum von Mises stress over the structure is calculated for different values of the wing
parameters. This allows one to verify if the von Mises stress reaches the critical value, known as
the yield strength, for the design cases described by the parameter values. Similarly, to prevent
the structure from free vibrations and resonance damage, natural frequency dependency on the
wing parameters must be determined. Figure 10 shows the effect of variation of the wing chord
and the spar thickness on the maximum von Mises stress over the structure as well as the change
in the first frequency value in function of the wing span and the taper ratio.

Fig. 10. Dependency of the wing behavior on its parameters: (a) von Mises stress in function of the
chord length, (b) von Mises stress in function of the spar thickness, (c) first frequency in function of the

wing span, (d) first frequency in function of the taper ratio

The presented figures show that some relations (e.g. Figs. 10b-10d) between the structure
behavior and design parameter can be modeled by simple mathematical functions (linear, po-
lynomial,...) and hence reduce the huge computational cost that the optimization may require.
Some other relations (e.g. Fig. 10a) which present a discontinuity point out the usability of
conventional optimization algorithms only after the fitting operation. Therefore, the presented
approach proves its indispensability as a preparatory step for the optimization problem. Mo-
reover, including geometric parameters (wing taper ratio, sweep back angle,...) as optimization
design variables is not possible using the optimization module in CAE software. Thanks to the
present methodology, the optimization can examine a large design space where both geometric
and analysis parameters of the wing structure can be mapped for optimal values.
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6. Conclusions

The CAD/CAE integration technique has become more and more popular in design process
early stages as a tool for time and cost reduction. The idea behind this work is to develop
a seamless automated integration procedure intended to ease design modification, explore a
large design space in a relatively reduced time and to prepare for optimization activities. The
developed procedure is based on popular commercial parametric CAD-CAE tools, SEMENS
NX with its programming language GRIP and MSC.PATRAN/NASTRAN with its automation
module PCL, and MATLAB as the implementing software. An aircraft wing structure has been
the case to which the procedure was applied. The complexity of the considered case lies mainly
in the encountered difficulties of programming the analysis tasks so as to be compatible with
the changes of the geometry layout (change of the number of spars/ribs). In addition, acting
on the imported entities (mainly surfaces) requires knowledge of their specific labels which are
assigned automatically by MSC.PATRAN software, which complicates the programming task.

It has been shown that the presented approach is requisite for probing the design space
and examine the structure behavior over it. Having the structure response in fucntion of its
parameters constructs a primary base to conduct an optimization problem without the need
for excessive computational time. Thus the presented work serves as a solid ground for the
implementation of a generic aircraft wing optimization framework.
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The paper presents results of analysis of selected dynamic features of an uneven-running two-
-wheeled strand transmission. The characteristic features of such type of transmissions is the
ability of obtaining variable kinematic and dynamic features by the application of wheels
with a noncircular envelope. Particularly, high interest of application of uneven-running
transmissions was done in the previous century. At that time, a concept of application
of such transmissions for process and machine control was invented. The applications in
textile and engineering industry are widely known. A mathematical model of the multiplying
transmission is presented. Few versions of dynamic features of the transmission for different
loads and solid moments of inertia are examined. The presented results can be very helpful
for designers of classical and uneven-running strand transmissions.

Keywords; transmission, variable gear ratio, mathematical model

1. Introduction

The analysis of dynamic features of a strand transmission with variable gear ratio is a complex
and a nontypical process. This complexity results from the specific character of such a trans-
mission, which is determined by the shape of the toothed wheel. It is found that there is a lack
of scientific literature concerning empirical research of strand transmissions with noncircular
toothed wheels.
The author of the work (Grzelak, 2007) presented the equation of motion of a strand trans-

mission with elliptical wheels. He also estimated the influence of initial orientation and the
geometry of rotating elements on the characteristics of velocity and acceleration, which are cau-
sed by an impulse of moment that is acting on the driving wheel. This problem was solved
with the application of Matlab software. The author showed that the elliptical transmission
with identical wheels can work as a transmission with a constant or periodically variable gear
ratio. However, during the analysis of kinematics and dynamics, he did not take into account
the following condition: length of the wrap of the transmission for any angle of rotation of the
wheel must be a constant value and must be equal to length of the standard belt.
The subject of the work by Buśkiewicz (2000) was analysis of torque transfer in the trans-

mission with one elliptical wheel and one circular wheel, which was eccentric fixed. The constant
length of wrap was not kept in that transmission. The relationships between torques on driving
and driven wheels were formulated for the analysed transmission.
The study by Kelm (2006) was about the determination of differences between lengths of

driving and driven strands of the uneven-running two-wheeled transmission. The author presen-
ted the application of a pulley with a slight out-of-round in the drive of the timing gear of a
combustion engine. He showed the advantages of such a solution in comparison with a classical
strand transmission with circular wheels.
In the available literature, there is a lack of discussion about strand vibrations in uneven-

running transmissions. The studies concerning classical strand transmissions are only known
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(Kido et al., 1994; Krasiński and Stachoń, 1997, 2004; Martins and Robson, 2013). These studies
do not exhaust the topic with reference to theory of vibrations (Bajkowski, 1989; Kurnik, 1985).
However, one can find many publications about the load capacity of transmissions with different
types of belts (Bulushi et al., 2015; Chen et al., 1998; Jang et al., 2014; Johannesson and Distner,
2002; Korolev, 1990).
The main purpose of the application of an uneven-running transmission is not transfer of

power, but the obtaining of variable kinematic features. Therefore, forces resulting from continu-
ous accelerating or decelerating of masses of noncircular belt pulleys have the essential influence
on the load capacity of the transmission (without external resistant torque). The goal of the
research is the determination of the influence of:

• mass moments of inertia of toothed wheels,
• values of coefficients of viscous damping,
• angular velocities of the driving shaft,
• resistant torques MOP ,

• load torques MS

on the selected dynamic features of the uneven-running transmission.
Multiplying and reduction gear are taken into account in the research.

2. The mathematical model of an uneven-running transmission

Multiplying gear are taken into account in the presented research of transmissions.
Lagrange’s equations of the 2nd type are basic equations for the determination of the equation

of motion for the uneven-running transmission. The classical form of the equation is as follows

d

dt

(∂EK
∂u̇i

)
− ∂EK

∂ui
+
∂EP
∂ui
+
∂RR
∂u̇i
= Fi i = 1, 2, . . . , n (2.1)

where EK , EP , ER are kinetic, potential and dissipation energy of the system, respectively,
u̇, u – velocities and generalized coordinates, Fi – generalized excitation.

Fig. 1. A diagram of the strand transmission with noncircular cogbelt pulleys

In the analysed transmission

EK =
1

2
J1ϕ̇
2 +
1

2
J2ψ̇

2 ER =
1

2
C1ϕ̇

2 +
1

2
C2ψ̇

2

and EP = 0 – assumption: the strand is inextensible.
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After determining components of the energy and substituting these components to equation
(2.1), the following form of the equation of motion for the strand transmission – multiplying
gear (Fig. 1) has been obtained

J1ϕ̈+ J2ϕ̈
∂ψ

∂ϕ
+ J2ψ

d

dt

∂ψ

∂ϕ
+ C1ϕ̇+ C2ψ̇

∂ψ

∂ϕ
=MS −MOP

∂ψ

∂ϕ
(2.2)

where J1, J2 are reduced mass moments of inertia for the driving and driven wheels and shafts,
respectively, ϕ – angle of rotation of the driving wheel, ψ – angle of rotation of the driven wheel,
C1, C2 – coefficients of viscous damping in the bearings of driving and driven shafts, MS – load
torque of the driving wheel, MOP – resistance torque.
It is assumed that the transmission will be loaded with a constant resistance torque which

is defined as

MOP =MOP max(1− e−αϕ̇) (2.3)

In order to solve equation (2.2), one should determine the relationship ψ = f(ϕ), which
describes the change of the angle of rotation of the driven wheel in function of the angle of
rotation of the driving wheel. The mean square trigonometric polynomial of the 6th degree is
used for description of this relationship

ψ = aϕ+ b sin(2ϕ) + c sin(2ϕ) + d cos(4ϕ) + e sin(4ϕ) + f cos(6ϕ) + . . .+ g(6ϕ)

The time derivative of the angle of rotation of the driven wheel (velocity) is determined as

ψ̇ =
dψ

dt
= aϕ̇− 2b sin(2ϕ)ϕ̇ + 2c cos(2ϕ)ϕ̇ − 4d sin(4ϕ)ϕ̇

+ . . .+ 4e cos(4ϕ)ϕ̇ − 6f sin(6ϕ)ϕ̇ − 6g cos(6ϕ)ϕ̇ = ϕ̇∂ψ
∂ϕ

(2.4)

that is

ψ̇ = ϕ̇
dψ

dt

The second time derivative of the angle of rotation of the driven wheel is determined as
follows (acceleration)

ψ̈ =
dψ̇

dt
= aϕ̈− 2b2 cos(2ϕ)ϕ̇2 − 2b sin(2ϕ)ϕ̈ − 2 · 2c sin(2ϕ)ϕ̇2

+ . . .+ 2c cos(2ϕ)ϕ̈ − 4 · 4d cos(4ϕ)ϕ̇2 − 4d sin(4ϕ)ϕ̈ − 4 · 4d cos(4ϕ)ϕ̇2

− . . .− 4e cos(4ϕ)ϕ̈ − 6 · 6f cos(6ϕ)ϕ̇2 − 6f sin(6ϕ)ϕ − 6 · 6g sin(6ϕ)ϕ̇2 + 6g cos(6ϕ)ϕ̈

For simplification of the record, the following denotation is taken into consideration:
dψ/dϕ = CM , where the index M denotes the multiplying gear

dψ

dϕ
= a−2b sin(2ϕ)+2c cos(2ϕ)−4d sin(4ϕ)+4e cos(4ϕ)−6f sin(6ϕ)−. . .−6g cos(6ϕ) = CM

(2.5)

while

d2ψ̇

dϕ̇2
=

d

dϕ

(dψ
dϕ

)
= −4b cos(2ϕ)− 4c sin(2ϕ) − 16d cos(4ϕ) − 16e sin(4ϕ)

− . . .− 36f cos(6ϕ) − 36g sin(6ϕ) = −BM
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The following relationship is determined as the last one

d

dt

(dψ̇
dϕ̇

)
= −4b cos(2ϕ)ϕ̇ − 4c sin(2ϕ)ϕ̇ − 16d cos(4ϕ)ϕ̇ − 16e sin(4ϕ)ϕ̇

− . . . − 36f cos(6ϕ)ϕ − 36g sin(6ϕ)ϕ̇
(2.6)

For simplification of the record, the following denotation is taken into consideration:

BM ϕ̇ = 4b cos(2ϕ)ϕ̇ + 4c sin(2ϕ)ϕ̇ + 16d cos(4ϕ)ϕ̇ + 16e sin(4ϕ)ϕ̇

+ . . . + 36f cos(6ϕ)ϕ̇ + 36g sin(6ϕ)ϕ̇

On the basis of relationships (2.4)-(2.7) and proper substitutions, the following form of
equation (2.2) is obtained for the multiplying gear

J1ϕ̈+ J2ϕ̈
(∂ψ
∂ϕ

)2
− C2M − J2ϕ̇2CMBM ϕ̇+ C1ϕ̇+ C2ϕ̇(CM )2 =MS −MOPCM (2.7)

and finally

ϕ̈ =
(MS + 2BMCMJ2)ϕ̇

2 − (C1 + C2C2M )ϕ̇
J1 + J2C

2
M

(2.8)

3. Results of numerical calculations

A few variants of the dynamics of the two-wheeled uneven-running transmission for different
values of load and mass moments of inertia are analysed below. In order to improve calculations,
computer program Uneven-running strand transmission – Dynamics, NPC-D has been designed.
This program has been written in Visual Basic. The constant step of integration with the value
of 0.001 s has been assumed in calculations. The task has been solved with the use of the Runge-
-Kutta method of the 4th order.
At first, the multiplying gear with constant values of the kinematic excitation (ω1 = 40 rad/s)

and with the following data: J1 = 0.06 kg·m2, J2 = 0.01 kg·m2, C1 = 0N·m·s, C2 = 0N·m·s,
MS = 0N·m,MOP = 0N·m (Figs. 2 and 3) has been analysed. In order to simplify description of
the axis in graphs, the following denotations are taken into consideration: ω – angular velocity,
a – acceleration.

Fig. 2. Velocity of wheel 1 and 2 in function of time (ω1 = 40 rad/s)

Next figures (Figs. 4 and 5) present characteristics of velocity and acceleration of the ge-
ar wheels of the multiplying gear with the following values: ω1 = 1 rad/s, J1 = 0.06 kg·m2,
J2 = 0.01 kg·m2, C1 = 0.002N·m·s, C2 = 0.01N·m·s, MS = 0.1N·m, MOP = 0N·m.
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Fig. 3. Acceleration of wheel 1 and 2 in function of time (ω1 = 40 rad/s)

Fig. 4. Velocity of wheel 1 and 2 in function of time (ω1 = 1 rad/s)

Fig. 5. Acceleration of wheel 1 and 2 in function of time (ω1 = 1 rad/s)

Figures 6 and 7 illustrate characteristics of the change in velocity and acceleration of the
gear wheels of the multiplying gear for the following data: J1 = 0.3 kg·m2, J2 = 0.3 kg·m2,
C1 = 0.02N·m·s, C2 = 0.02N·m·s, MOP = 4N·m, MS = 9N·m.
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Fig. 6. Velocity of wheel 1 and 2 in function of time (ω1 = 20 rad/s)

Fig. 7. Acceleration of wheel 1 and 2 in function of time (ω1 = 20 rad/s)

4. Summary

On the basis of the determined characteristics of the mathematical model of the transmission,
one can draw the following conclusions and observations:

• Considerable accelerations of the driven wheels occur for low values of mass moments of
inertia and for relatively high values of velocities.

• Constant gear ratio and constant accelerations can be obtained when the dimensions
(mass) of the gear wheels are great.

• The transmission can not work with a too high rotational speed.
• In the case of multiplying gear with the following values of mass moments of inertia:
J1 = 0.06 kg·m2 and J2 = 0.01 kg·m2, without the external load and on the assumption
that frictional resistance is neglected; one can observe (during kinematic excitation) that
the velocity of the driving wheel is characterized by considerable variability for a quasi-
-constant velocity of the driven wheel. In the range of velocity from 10 rad/s to 40 rad/s,
the acceleration of the driven wheel is 15 times higher than the acceleration of the driving
wheel.

• For the multiplying gear with the considered conditions: viscosity friction, small torqueMS

and no resistance torque; the characteristics of rotational speed and acceleration are similar
but their amplitudes are different, and the acceleration of wheel 1 is higher than the
acceleration of wheel 2.
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• The resistance torque which is placed in the description of the analysed transmission, does
not cause any changes to the characteristics of velocity and acceleration. However, in this
case, the acceleration of the driven wheel is higher than the acceleration of the driving
wheel.

• Equal and relatively small values of mass moments of inertia for both wheels and the
following assumptions: no frictional resistance and no loads; lead to higher amplitudes of
velocity and acceleration in comparison with transmissions with different mass moments
of inertia.
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The crack initiation angle and propagation path for two different disc shaped test specimens
(i.e., SCB and CBD specimen) are investigated experimentally and theoretically. The Maxi-
mum Tangential Stress (MTS) criterion does not calculate the crack initiation angle in SCB
and CBD specimens correctly. Moreover, at the angles after occurrence of pure mode II,
where the stress intensity factor of mode I becomes negative, this criterion is not applicable.
Therefore, in this research work, Improved MTS (IMTS) criterion which has been implemen-
ted in the extended finite element method and is applicable under tensile and compressive
loading conditions to examine the crack propagation path in the aforementioned disc shaped
specimens. Furthermore, an experimental study on a cracked Brazilian disc specimen has
been conducted at different angles. Results of IMTS criterion in these specimens show that
the crack propagation path and the crack initiation angle can be predicted theoretically by
using IMTS criterion.

Keywords: Extended Finite Element Method (XFEM), maximum tangential stress (MTS)
criterion, improved maximum tangential stress (IMTS) criterion, crack propagation, stress
intensity factor

1. Introduction

Investigation of the fracture grow path is an important task to optimize size of rock pieces or
control stability of cracked rock structures in many applications of rock engineering such as rock
cuttings, excavations and rock stability analysis. In rock structures, most of failures occur under
a mixed mode in practice (combination of the opening and shearing mode), and thus fracture
path of cracked structures may grow in curved paths and not necessarily along the direction of
the initial crack (Aliha et al., 2010). Therefore, investigating the crack initiation angle and the
crack propagation path under the mixed loading mode are favorite subjects for researchers in
the field of rock mechanics. There are a large number of theoretical models (Erdogan and Sih,
1963; Hussain et al., 1974; Nuismer, 1975; Palaniswamy and Knauss, 1972; Sih, 1974; Theocaris
and Andrianopoulos, 1982) and experimental techniques (Grassl and Rempling, 2007; Isaksson
and St̊ahle, 2002; Lin et al., 2009; Song et al., 2004; Xeidakis et al., 1997) for investigating the
mixed mode of crack growth in rock materials. Theoretical failure criteria such as the Maximum
Tangential Stress (MTS) criterion (Erdogan and Sih, 1963), the minimum strain energy density
criterion (Sih, 1974), and the maximum energy release rate criterion (Hussain et al., 1974) have
been frequently used by researchers working on rock and geo-material fields in order to estimate
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the direction of the mixed mode in the crack growth process. These failure models are usually
developed based on stress, strain, and energy conditions in front of the crack tip, and the stress
intensity factor is often used to estimate the crack growth direction.
Various numerical methods such as the boundary element method, finite difference method,

meshless method and finite element method (FEM) are adopted to problem-solving in fractu-
re mechanics. The common purpose of these methods has always been to achieve a precise,
straightforward and a developed practical solution containing advantages of previous methods
and upcoming their restrictions and shortcomings. This process of development of numerical
methods led to the appearance of a novel method in 1999, called the extended finite element
method (XFEM) which is based on the finite element method. This method takes advantage of
all features of the finite element method in solving different problems, and it has resolved its
shortcomings in predicting of crack initiation and propagation. In this method, the crack is de-
fined as mesh independent, hence, the crack is able to grow anywhere through the finite element
mesh. Extensive studies using this method which have been conducted in a short time after its
appearance indicate that this method has a great capability in modeling problems associated
with fracture mechanics (Budyn et al., 2004; Campilho et al., 2011; Fan and Jing, 2013; Huynh
and Belytschko, 2009; Mergheim et al., 2005; Singh et al., 2012). Thus this method has been
chosen as the numerical solution tool in our research work.
The Maximum Tangential Stress criterion in which the crack is propagated from the crack

tip along the direction of maximum tangential stress has been used more extensively in the
XFEM for the modeling of crack growth. The direction of crack propagation when the MTS
criterion is assigned in numerical modeling depends on the calculated value of stress intensity
factors as follows

θc = 2 tan
−1 1

4

(
KI
KII
±
√( KI

KII

)2
+ 8

)
(1.1)

where θc is the crack initiation angle andKI andKII are stress intensity factors in modes I and II,
respectively. When the crack is placed in a compressive stress field, the value of the stress in-
tensity factor of mode I becomes negative and this criterion is no longer able to estimate the
direction of crack propagation. While, rocks unlike most engineering materials often experience
compressive loading and therefore most rock failures are also occurred under such conditions.
Therefore, attempts have been made to study the initiation and propagation of cracks under
compressive loading conditions in the literature. Lack of efficiency of the MTS criterion under
compressive conditions has been addressed by other researchers (Al-Shayea, 2005; Aliha et al.,
2010; Bobet, 1997; Shen and Stephansson, 1994; Wu and Wong, 2012). Bobet (1997) compared
results of crack initiation angle by MTS criterion with results obtained from uniaxial compres-
sive tests and stated that this criterion did not offer a suitable estimation of the crack initiation
angle. He also represented a stress-based criterion in order to estimate crack initiation angle on
the boundary element method. Shen and Stephansson (1994) also developed the F criterion or
the modified G criterion for the same purpose. Wu and Wong (2012) examined crack propaga-
tion under compressive loading using the Mohr-Coulomb criterion using the numerical manifold
method.
Recently, the MTS criterion has been improved and implemented in XFEM in order to be

utilized in different loading conditions from tensile to compressive loading (Eftekhari et al.,
2016). This criterion is called the Improved MTS (IMTS) criterion and it has been evaluated in
some examples and then used in a cracked specimen under uniaxial compression. Results from
the IMTS criterion are perfectly matched with the experimental and numerical modeling results
reported in the literature (Eftekhari et al., 2016).
Different laboratory specimens and experimental methods have been proposed and used to

determine rock fracture toughness so far. However, a review of previous studies indicates that the
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most commonly used specimens for conducting fracture tests and studying crack growth in rocks
and geo-materials are disc shaped specimens such as Cracked Brazilian Disc (CBD) (Atkinson et
al., 1982; Awaji and Sato, 1978; Eftekhari et al., 2015a), Hollow Centre Cracked Disc (HCCD)
(Choi et al., 1988; Eftekhari et al., 2015c; Shiryaev and Kotkis, 1983), Flattened Brazilian
Disc (Wang and Xing, 1999; Wang et al., 2004), Modified Ring (Thiercelin, 1989; Thiercelin
and Roegiers, 1986), Semi-Circular Bend (SCB) specimen (Chong et al., 1987; Eftekhari et al.,
2015b; Kuruppu and Chong, 2012).

Two frequently employed disc type specimens are the cracked Brazilian disc subjected to
diametral compression and the semicircular bend specimen subjected to three-point bend lo-
ading. Simple geometry, straight forward preparation and easy loading and also capability to
perform different mode combinations are the main advantages of these specimens. Hence, these
test specimens have been used frequently to investigate mixed mode crack growth of rock ma-
terials (Al-Shayea, 2005; Ayatollahi and Aliha, 2008; Chen et al., 1998; Eftekhari et al., 2015a;
Eftekhari et al., 2015b; Liu et al., 2007). Recently, International Society for Rock Mechanics
(ISRM) has suggested the SCB specimen to be the new standard specimen in the determination
of the fracture toughness of pure mode I (Kuruppu et al., 2015).

Figure 1 shows the geometry and loading condition of the CBD and SCB specimens used
for mixed mode I/II fracture tests. In the CBD specimen, the angle β is defined as an angle
between the direction of centre crack with length 2a and the applied loading direction. The SCB
specimen is a semicircular disc of radius R which has an angled edge crack with respect to the
applied load P . For both specimens, pure modes I and II and the mixed mode can be provided
by changing the crack angle β. Obviously, β = 0◦ is associated with the case of pure mode I
condition. By increasing the loading angle from zero, mode II is introduced.

Fig. 1. Geometry and loading conditions of CBD and SCB specimens subjected to mixed mode I/II
loading: (a) CBD specimen, (b) SCB specimen

Experimental results with CBD and SCB specimens have showed that the approximated
crack initiation angle by the MTS criterion is different with the measured values by laboratory
experiments (Aliha et al., 2010). Aliha et al. (2010) introduced a criterion called Generalized
MTS (GMTS) in order to estimate the crack propagation direction more accurately.

Theoretically, when KI value is equal to zero, pure mode II occurs. In the SCB and CBD
specimens, KI value decreases by increasing the initial crack angle, and after the angle of oc-
currence of pure mode II, its value becomes negative (Eftekhari et al., 2015a; Eftekhari et al.,
2015b). Results of investigations of crack initiation and propagation in the CBD specimen shows
that the angle of appearance pure mode II happens at lower than 30◦ (Eftekhari et al., 2015a),
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thus, at the angles beyond this value, the stress intensity factor of mode I becomes negative
and the MTS and GMTS criteria which are based on the stress intensity factor are no longer
applicable. However, experimental results by this specimen have showed that at the crack angles
higher than this value, fracture and crack propagation path occurs similar to the mixed mode
(Al-Shayea, 2005; Ghazvinian et al., 2013; Haeri et al., 2014). This phenomenon was observed
and reported in Eftekhari et al. (2015c), when they showed that the fracturing mode in macro
and micro scales are different. The comparison result indicates that the fracture in micro-scale,
unlike the macro-scale, includes a combination of different modes of fracturing (Eftekhari et
al., 2015c). Therefore, as also stated by Sharafisafa and Nazem (2014), it seems that crack pro-
pagation under compressive conditions is more controlled by tensile stresses around the crack
tip.

In this research work, a numerical sensitivity analysis about crack propagation in SCB and
CBD specimens with different initial crack angles when the IMTS criterion is assigned, has been
conducted. The results have been also compared with laboratory tests and the reported results
in the literature.

2. Extended Finite Element Method (XFEM) and Improved MTS (IMTS)
criterion

Extended Finite Element Method (XFEM) was initially introduced by Belytschko and Black
(1999). They presented a method based on the finite element method for modeling of crack
propagation which does not need the re-meshing process. In this method, discontinuous enri-
ched functions are added to the finite element approximation for crack demonstration and the
crack grows arbitrarily within the finite element mesh. The most important and effective step
toward improvement of the extended finite element method was taken by (Moës et al., 1999)
and (Dolbow, 1999). The existence of a crack in the extended finite element method leads to
two different enrichments in the problem; crack interior and crack tip enrichment. The crack
interior is enriched by a modified discontinuous Heaviside function (Eq. (2.1)), and the crack tip
is enriched using functions presented in Eq. (2.2)

H(x) =

{
+1 for x > 0
−1 for x < 0

(2.1)

and

{Fj(r, theta)}j=1,2,3,4 =
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
(2.2)

Among these functions, only the first function (
√
r sin(θ/2)) is discontinuous, which is indi-

cative of the function discontinuity along two faces of the crack. The extended finite element
approximation for the displacement field is defined as follows

uh(x) =
∑

i∈I

Ni(x)ui +
∑

j∈J

Nj(x)Hj(x)aj +
∑

k∈K

Nk(x)
4∑

l=1

Fl(x)b
l
k (2.3)

where N(x) are shape functions, ui are nodal displacements (standard degrees of freedom),
aj are vectors of additional degrees of nodal freedom associated with the Heaviside function, and
blk are vectors of additional degrees of nodal freedom associated with the elastic asymptotic crack-
tip functions. In equation (2.3), I is the set of all nodes in the mesh, J is the set of enriched nodes
with discontinuous enrichment and K is the set of nodes enriched with asymptotic enrichment.
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All nodes of the element intersected by the crack are enriched by the step function, and
also the nodes of element containing a crack tip are enriched by the near-tip displacement
field. Equations and matrixes in the extended finite element method proceed similar to the
conventional finite element method. The displacement field approximation space in form of the
extended finite element (Eq. (2.3)) is replaced in equilibrium equations. From this enriched
approximation, the standard discrete equation Kd = f is obtained, where d is the vector of
unknowns or degrees of freedom (for both common finite element degrees and additional degrees
of freedom associated with enrichment), f is the external vector of forces and K is the stiffness
matrix. The vectors and matrices are generally obtained by assemblage in each element.

A numerical code called MEX-FEM has been developed based on XFEM formulation with
C++ programming language and employed into simulation of fracture propagation in some
specimens of rock such as the cracked Brazilian disc (Eftekhari et al., 2014, 2015a) and the
semi-circular bend specimen (Eftekhari et al., 2015b). In order to determine the direction of
crack propagation, the Improved MTS criterion which was previously introduced and verified by
the authors and reported in Eftekhari et al. (2016), is employed. A tension crack is propagated
from the tip of a pre-existing crack in the direction of the maximum tangential tensile stress
as also previously employed by Bobet for the modeling of crack propagation by the Boundary
Element Method (Bobet and Einstein, 1998) and formulated as follows

∂σθ
∂θ
= 0

∂2σθ
∂θ2

< 0 (2.4)

The direction of crack propagation with the IMTS criterion is similar to the MTS criterion,
while the initiation angle is determined regarding the values of stress near the crack tip and it is
completely independent of the value of the SIF. In this case, the SIF value does not compute by
the interaction integral procedure. In order to find the direction of maximum tangential stress,
the stress state near the crack tip is processed in two steps. Firstly, the values of stresses in
the numerical integration points near the crack tip are transformed from the Cartesian system
to the polar coordinate system in order to calculate the value of tangential stress. Since the
numerical integration points are irregularly located near the crack tip, in the second step, the
values of tangential stress in the proposed points with regular intervals in different angles are
calculated by an interpolating process. In this way, the direction of maximum tangential stress
is identified (Eftekhari et al., 2016).

3. Simulation of SCB specimen using IMTS criterion

Observation of crack initiation angle on the SCB specimen in laboratory shows higher values
compared to the numerical simulation values by the MTS criterion (Aliha et al., 2010). Aliha
et al. (2010) introduced a criterion called GMTS in order to estimate the crack propagation
direction which, in this criterion, tangential stress is defined as the following expansion series
and it estimates the crack initiation angle more accurate than the MTS criterion. This criterion
includes a quantity called T stress in addition to stress intensity factors. This stress is a non-
-singular and constant stress, and other values of the series are represented by O(

√
r) and are

negligible.

σθθ =
1√
2πr
cos

θ

2

(
KI cos

2 θ

2
− 3
2
KII sin θ

)
+ T sin2 θ +O(

√
r) (3.1)

The experimental results and those calculated by the GMTS criterion in the SCB specimen
with the span ratio (S/R) and crack length ratio (a/R) of 0.43 and 0.3, respectively, are well
matched (Aliha et al., 2010). Thus, to examine this result with the IMTS criterion, simulations
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with the span ratio (S/R) of 0.43 and crack length ratio (a/R) of 0.3 and the initial crack angles
of 0, 15, 30, 45 and 60 are conducted. The results of crack initiation angle in the SCB specimen
with the IMTS criterion and also experimental results and GMTS criterion as well as values
calculated by the MTS criterion is demonstrated in Fig. 2.

Fig. 2. Crack initiation angle in SCB specimen in laboratory and also simulation results using IMTS,
GMTS and MTS criteria

It can be seen that the simulation results by the IMTS and GMTS criteria are well fitted with
laboratory experimental results. In such a geometry of the SCB specimen, pure mode II occurs
at angle of 50◦. Obviously, for the crack angle beyond this value, the stress intensity factor of
mode I becomes negative. Since GMTS and also MTS criteria are based on the values of stress
intensity factors, investigation of the crack propagation direction at angles higher than 50◦ are
not possible in this specimen. Meanwhile, the crack initiation angle at the initial crack angle
of 60◦ is calculated using the IMTS criterion.

4. Simulation of CBD specimen using IMTS criterion

In contrary to the reported results about crack propagation in the SCB specimen, laboratory
experimental results in the CBD specimen showed a lower approximation compared to the
simulation results by the MTS criterion (Aliha et al., 2010). Although the GMTS criterion gives
an acceptable estimation of the value of crack initiation angle, as mentioned earlier, the MTS
and GMTS criteria are applicable up to the initial crack angle in which pure mode II occurs.
On the other hand, the angle of pure mode II in the CBD specimen happens when the initial
crack angle is smaller than 30◦. While the reported experimental results in the literature show
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that the crack is propagated even at an angle larger than 30◦ (up to 60◦), just like in the mixed
mode (Al-Shayea, 2005; Ghazvinian et al., 2013; Haeri et al., 2014).

Due to the inaccessibility of results of the effect of the crack initiation angle on crack propa-
gation path in the CBD specimen, in this research work, laboratory experiments are conducted
with the initial crack angles of 0◦, 15◦, 30◦, 45◦ and 60◦. A dental plaster with tensile and unia-
xial compressive strength of 3.8 and 30.15MPa, respectively, and density of 1.81 kg/cm3 is used
to prepare the CBD specimens. After weighting the plaster and mixing it with ocher powder
(red color), 30 cc per 100 grams of the plaster according to the manufacturer’s recommendation
is added. Its initial holding time is about 15 minutes and within 7 days the maximum strength
is achieved (Babanouri et al., 2011).

Although the CBD specimen has been widely used in the modeling and laboratory experi-
ments of rock fracture mechanics, it has not been proposed as a standard specimen by ISRM.
Thus, there is no a specific and unique standard for this test. In this research work, an attempt
has been made to use conditions and terms considered by other researchers in their experiments
(Aliha et al., 2010; Ghazvinian et al., 2013; Haeri et al., 2014), in preparing and conducting test
specimens. The experimental and numerical investigations performed by Aliha et al. (2010) on
the CBD specimens with different dimensions but with the same crack length ratios show that
dimensions of the specimen does not affect the results. While the crack length ratio plays the
crucial role in the final results. Thus, the same proposed crack length ratio used in the literature
is employed in the current study. Diameter and thickness of the disc are 60mm and 25mm,
respectively, and the crack length is 18mm with the crack length ratio of 0.3.

According to the ISRM standard for the SCB specimen (Kuruppu et al., 2015), crack thick-
ness on the specimen should be smaller than 1.5mm. In this research work, in order to create a
crack in the specimen, a plastic film with thickness of 1mm is used. The artificial crack is also
kept in the middle part of the specimen.

Fig. 3. Patterns of crack propagation in CBD specimen in laboratory with crack angles of (a) 0◦,
(b) 15◦ (c) 30◦, (d) 45◦, (e) 60◦

All prepared specimens, according to the aforementioned angles experience a constant com-
pressive loading conditions. All tests are also conducted according to the ISRM standard method
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for the CCNBD specimen with rigid and parallel loading plates (Fowell, 1995). Furthermore, the
loading rate was kept at 0.5MPa/s as considered in the previous studies with the CBD speci-
men (Ghazvinian et al., 2013; Haeri et al., 2014). The patterns of crack propagation in the CBD
specimen with different crack angles in laboratory are shown in Fig. 3.

The results show that in the case of the initial crack angle of 0◦, the crack is propagated from
its tip toward its initial direction. While at other angles, the crack is deviated from its direction
and propagates toward loading points. Also it can be seen that the crack initiation angle is
completely different from the results of the MTS criterion, which was presented earlier. The
results of the crack initiation angle with the direction of the initial crack angle in the laboratory
and also IMTS, MTS and GMTS criteria are shown in Fig. 4.

Fig. 4. Crack initiation angle in CBD specimen in laboratory and IMTS, GMTS and MTS criteria

It can be seen that the predicted values by the IMTS criterion are well matched with the
laboratory experimental results and also GMTS simulation results, and completely differ from
the calculated values by the MTS criterion. The GMTS and MTS criteria are applicable up to
the angle of occurrence of pure mode II while in the IMTS criterion, prediction is also possible
at angles beyond the predicted angle of pure mode II. The results of the crack propagation path
in the specimens with different angles using the IMTS criterion are shown in Fig. 5.

The results of the crack propagation path by the IMTS criterion show that just like in the
experimental specimens, the crack grows along its initial direction at the initial crack angle of
zero, while at other angles, it deviates from its direction and propagates toward the loading
points. By increasing the initial crack angle, the crack initiation angle is increased. In order to
perform a more precise comparison, the results of the crack propagation path in the experimental
specimens and also numerical simulations are shown in Fig. 6. The crack propagation path in the
experimental specimen and numerical simulation is displayed by bold and dash lines, respectively.
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Fig. 5. Patterns of crack propagation in CBD specimen using IMTS criterion with crack angles of
(a) 0◦, (b) 15◦ (c) 30◦, (d) 45◦, (e) 60◦

Fig. 6. Comparison of the results of the crack propagation path in experimental specimens with IMTS
criterion in CBD specimen with the initial crack angle of (a) 0◦, (b) 15◦ (c) 30◦, (d) 45◦, (e) 60◦

According to the figure, it can be seen that there is a good agreement between the results of the
crack propagation path using the IMTS criterion and the experimental results.

The results of application of the IMTS criterion in XFEM to predict the crack propagation
path in different specimens show that this criterion can precisely calculate the crack propagation
direction in a cracked specimen under tension or compression.
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5. Conclusion

Maximum Tangential Stress (MTS) criterion does not calculate the crack initiation angle in SCB
and CBD specimens correctly. Moreover, at the initial crack angles beyond the occurrence of
pure mode II, where the stress intensity factor of mode I becomes negative, this criterion is not
applicable. Therefore, in this research work, the IMTS criterion which has been implemented
in the extended finite element method and is applicable under tensile and compressive loading
conditions has been utilized to examine the crack propagation path in SCB and CBD specimens.
Also, in order to evaluate the Improved MTS criterion in determination of the crack propagation
path at angles beyond the occurrence of pure mode II, a laboratory experimental study on the
CBD specimen has been conducted.

When the IMTS criterion is employed in simulation of the crack propagation path in the
SCB specimen, the results are well matched with modeling results by the GMTS criterion and
also laboratory experimental test results. In the IMTS criterion, the crack initiation angle at
the initial crack angle of 60◦ could be calculated, whereas due to the negative stress intensity
factor of mode I at this angle, the MTS and GMTS criteria are not applicable.

The estimation of crack propagation in the CBD specimen using the IMTS criterion shows a
good agreement with the experimental results. Also it is observed that unlike MTS and GMTS
criteria, the IMTS criterion is applicable in this specimen at initial crack angles beyond the
occurrence of pure mode II. The results demonstrate that using the MTS criterion in simulating
crack propagation in both SCB and CBD specimens introduces an unknown degree of uncerta-
inty into the results. The MTS criterion underestimates the crack initiation angle in the SCB
specimen and overestimates it in the CBD specimen compared with the laboratory experimental
and also simulation results by the IMTS criterion. The results of the IMTS criterion show that
it is well matched with the experimental results and can be used in different specimens under
different tensile and compressive loading conditions.
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In the present work, the defect detection while using Discrete Wavelet Transform in rectan-
gular plate structures is investigated. The plate bending is described by using the Boundary
Element Method with boundary integral equations formulated in a modified simplified appro-
ach. The boundary elements of a constant type in a non-singular approach are implemented.
Defects are introduced by additional edges forming slots or holes in relation to the basic
plate domain. Estimation of the defect position is performed while using wavelet coefficients
of curvature and deformation signals as well as a newly proposed moving variance estimator.
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1. Introduction

Damage generally can be defined as a change in the material which impairs functioning of the
structural element at a given moment or in the future. As a result, it may lead to destruction
of the element or, in the worst case, even of the whole structure. Defects usually have the form
of delaminations, cracks, local material damage due to corrosion or fatigue; they may also take
the form of voids or undesired inclusions. The issue of early detection, locating and quantifying
structural damage is one of the most important engineering problems because it is closely linked
to safety and durability of the object.
For years, many researchers have developed different methods of identifying defects with a

focus on non-destructive testing (NDT). The essence of NDT is to locate failure in the structu-
ral element without changing its properties and functionality. Further analysis and subsequent
stages of identification include: classification and severity assessment of damage, determination
of its position, forecasting of probability of an element or the whole structure destruction and
estimating the remaining potential lifetime of the structure.
Starting from the simplest NDT technique, namely visual inspection, one can mention me-

thods basing on information from e.g. acoustic emission (Rogers, 2005), X-rays (Shinoba et al.,
2004), eddy current (Gros, 1995), ultrasonography (Zhang et al., 2004), magnetic field (Lee et al.,
2004) or soft computing methods such as artificial neural networks (Waszczyszyn and Ziemiań-
ski, 2001) and evolutionary algorithms (Burczyński et al., 2004). The traditional approach, based
on the analysis of natural frequencies (Dems and Mróz, 2001) and modal shapes of structure
vibrations (Ostachowicz and Kaczmarczyk, 2001), is still used and further developed. However,
the global static or dynamic structural response is rather insensitive to localized damage.
A promising tool in structural identification is Wavelet Transform (WT) which can surpri-

singly well extract the desired detailed information from numerous data representing the global
response of a defective structure. The application of WT for identification of cracks in structures
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received a great attention over the last decade. Douka et al. (2003), Quek et al. (2001), Gentile
and Messina (2003), Garstecki et al. (2004) as well as Kim and Melhem (2004) used the WT for
crack detection in beams. The effectiveness of the discrete wavelet transform (DWT) combined
with the inverse analysis for damage identification in beams was discussed in Knitter-Piatkowska
and Garbowski (2013). In plate structures, a 2D WT used by Loutridis et al. (2005) and Rucka
and Wilde (2004); Douka et al. (2004) used 1D WT to analytically determined mode shapes
along several perpendicular lines while Chang and Chen (2004) used spatial wavelet analysis
to estimate the crack size. Damage detection while using 1D and 2D DWT of a temperature
field recorded on the surface of a plate structure was discussed in Ziopaja et al. (2011). More
complex structures such as frames were analysed by Ovanesova and Suarez (2004) and trusses
by Knitter-Piątkowska et al. (2014). The previous studies clearly demonstrate that the use of
WT in search for structural damage is a promising and developing field of investigation.
Our intention in the present work is to examine performance of DWT as a method for crack

identification in plates. The attention is focused on defects propagated from the external edge
of a plate, which contributes new elements to the established knowledge. The position of the
crack is determined as the absolute maximum of a moving variance estimator which uses the
wavelet transformed response signals as the input. The feasibility of the proposed method is
demonstrated by means of numerical examples. The effect of added noise on the performance
of the method is investigated via noise immunity tests. The contribution of the current study is
based on a simple fact which provides accurate results (even with high portions of added noise)
and its implementation could be computationally efficient.

2. The discrete wavelet transform – theoretical foundations

In the current study, the WT will be implemented in which, for the representation of a signal
f(t), a linear combination of wavelet functions is applied. The theory of the WT has been
presented in many publications, e.g. Meyer (1992) and Daubechies (1992). The foundations of
the wavelet transformation will be mentioned below. As a matter of fact, the continuous wavelet
transform of the signal f(t) in the time and frequency domain can be defined as

Wf(a, b) =

∞∫

−∞

f(t)ψa,b(t) dt (2.1)

where the overbar denotes the complex conjugate of the function under it. The function ψ(t) is
called the wavelet (mother) function, it belongs to the L2(R) field and must satisfy the condition
of admissibility (Mallat, 1989) which leads to the inequality

∞∫

0

|Ψ(ω)|2
ω

dω <∞ (2.2)

where Ψ(ω) is the Fourier transform of ψ(t), and it is defined as

Ψ(ω) =

∞∫

−∞

ψ(t)e−iωt dt (2.3)

In this case it becomes oscillatory because its average value is equal to zero. The character of
mother function may be real or complex-valued. In the considered cases, real-valued family of
wavelets is applied. The set of wavelets is obtained by scaling and translating of the function ψ,
which leads to the relation

ψa,b =
1√
|a|ψ

( t− b
a

)
(2.4)
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where t denotes time or a space coordinate, a is the scale parameter and b the translation
parameter. The parameters a and b take real values (a, b ∈ R) and additionally a 6= 0. The
element

√
|a| is the scale factor which ensures constant wavelet energy regardless of the scale.

It means that ‖ψa,b‖ = ‖ψ‖ = 1.
In the present numerical approach, the leading role will be taken by DWT. DWT requires

neither integration nor explicit knowledge of the scaling and wavelet function. The family of
discrete wavelet functions can be obtained on the assumption that a = 1/2j , b = k/2j and
substitution of them into Eq. (2.4). It leads to the following relation

ψj,k(t) = 2
j

2ψ(2jt− k) (2.5)

in which k and j are scale and translation parameters, respectively. The meaning of these
parameters can be clearly illustrated for the simplest Haar wavelet (Fig. 1).

Fig. 1. Haar wavelet family: (a) mother wavelet j = 0, k = 0, (b) wavelet with parameters j = 0, k = 1,
(c) j = 2, k = 2, (d) j = 2, k = 4

The main requirement (which is the one of contributions of the current study) is the use of
a WT implementation algorithm that is computationally efficient in terms of required memory
and processing power. The classical implementation of DWT consists of a pair of finite impulse
response filters (FIR) (high-pass and low-pass) which are applied to the signal in parallel. The
pyramid algorithm by Mallat (1989) computes the 1D convolution based WT at different levels of
resolution. The produced coefficients are the result of a recursive convolution between the signal
and corresponding filter for preselected values of j and k. This convolution-based DWT requires
a large number of arithmetic computations and memory allocations leading to quite demanding
computing scheme. Towards to the direction of the computational efficient algorithmic approach,
a light-weight implementation for performing the WT can be adopted. This is the Lifting Scheme
(Daubechies and Sweldens, 1998; Sweldens, 1996) which requires fewer computations (half of
those needed for the convolution based DWT). In general, it consists of three steps: split, lift
and scale. The basic idea is to initially compute a trivial wavelet by splitting the analyzed signal
into odd and even subsequences and then modifying these subsequences by consecutive predict
and update steps.
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For the selection of an appropriate wavelet, we adopt general recommendations by Ovaneso-
va and Suarez (2004) for the selection of wavelets that can perform a Fast Wavelet Transform
(FWT) and satisfy symmetry and exact reconstruction. The candidate wavelets are the bior-
thogonal and the Haar. Fortunately, both wavelet families are supported by the Lifting Scheme.
The last criterion that leads us to the choice of biorthogonal (bior.) wavelet (Cohen et al., 1992)
in the current study, is that the Haar is an irregular wavelet (while the biorthogonal is not)
(Meyer, 1992). This property has been proved significant for crack detection (Ovanesova and
Suarez, 2004).
The biorthogonal wavelets relax the assumption of a single orthogonal basis (such as the

Haar) and belong to the family of wavelets that are derived from bases that are semi-orthogonal,
biorthogonal or non-orthogonal. Instead, they have primary and dual scaling (ϕ, ϕ̃) and wavelet
(ψ, ψ̃) functions – a characteristic that provides more flexibility to the construction of wavelet
base.
The scaling and wavelet are related as

∫
ψ̃j,k(x)ψj′k′(x) dx = 0 (2.6)

as soon as j 6= j′ or k 6= k′ and even
∫
ϕ̃0,k(x)ϕ0k′(x) dx = 0 (2.7)

as soon as k 6= k′.
One wavelet (ψ̃) used for analysis of the signal s produces coefficients cj,k as below

c̃j,k =

∫
s(x)ψ̃j,k(x) dx (2.8)

while the other wavelet (ψ) is used for synthesis of the signal s from wavelet coefficients as
follows

s =
∑

j,k

c̃j,kψj,k (2.9)

Naming the biorthogonal wavelets follows the convention biorNr.Nd, where Nr is the number of
the order of the wavelet or scaling functions used for signal synthesis, while Nd is the order of
functions used for signal analysis. In our study, we adopt the bior2.2 wavelet which is presented
in Fig. 2.

3. Problem formulation and numerical analysis

The aim of this work is to detect location of a defect provided that the defect (damage) exists
in the considered plate structure. Numerical investigation is based on signal analysis of the
structural static response. The plate material is assumed as linear-elastic. The plate bending is
described and solved by the Boundary Element Method. The boundary integral equations are
derived from a non-singular approach. Rectangular plates simply-supported along the edges are
considered. The analysis of the structural response is conducted with the use of signal processing
tool, namely the wavelet transformation in its discrete form. Defects in plates are modeled as
slots near the plate boundary and introduced as a set of free edges. An example of the plate
with a defected edge is illustrated in Fig. 3. The plate is loaded by a single concentrated P
force moving along the indicated line, for example 1), 2) or 3). The force P can have a static
or dynamic character. At the selected D point measured are: deflection w, angle of rotation in
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Fig. 2. Biorthogonal 2.2 wavelet: (a) analysis scaling function, (b) analysis wavelet function,
(c) synthesis scaling function, (d) synthesis wavelet function

Fig. 3. Defective plate structure

arbitrary direction ϕ, curvatures κ or internal forces such as bending and twisting moments or
transverse forces as the response of the structure.

The measured response parameters have a character of the influence lines in its discrete form.
The signal of the structural response defined in this way is processed while using DWT whose
basis is described in Section 2.

The plate bending is described as the Boundary Element Method in a simplified modified
approach where there is no need to introduce concentrated forces at the plate corners and
equivalent shear forces at the plate continuous edges. This approach was widely described for
static, dynamic and stability analysis in Guminiak (2007, 2014) and Guminiak and Sygulski
(2007). The boundary integral equations are derived from Betti’s theorem. For static analysis
of a plate subjected by an external distributed load q and concentrated force P , the governing
equations have the form
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c(x)w(x) +

∫

Γ

[
T ∗n(y,x)w(y) −M∗ns(y,x)

dw(y)

ds
−M∗n(y,x)ϕn(y)

]
dΓ (y)

=

∫

Γ

[T̃n(y)w
∗(y,x) −Mn(y)ϕ

∗

n(y,x)] dΓ (y) +

∫

Ω

q(y)w∗(y,x) dΩ(y) + P (i)w∗(i, x)

c(x)ϕn(x) +

∫

Γ

[
Tn∗(y,x)w(y) −M∗ns(y,x)

dw(y)

ds
−M∗n(y,x)ϕn(y)

]
dΓ (y)

=

∫

Γ

[T̃n(y)w
∗(y,x) −Mn(y)ϕ

∗

n(y,x)] dΓ (y) +

∫

Ω

q(y)w∗(y,x) dΩ(y) + P (i)w∗(i, x)

(3.1)

where the fundamental solution of the biharmonic equation

∇4w∗(y,x) = 1
D
δ(y,x) (3.2)

is given as Green’s function

w∗(y,x) =
1

8πD
r2 ln r (3.3)

for a thin isotropic plate, r = |y − x|, δ is the Dirac delta, x is the source point and y – field
point, D = Eh3/[12(1 − ν2)] is the plate stiffness, h – plate thickness, E and ν are the Young’s
modulus and Poisson’s ratio. The coefficient c(x) is taken as c(x) = 1 when x is located inside
the plate domain; c(x) = 0.5 when x is located on the smooth boundary and c(x) = 0 when x is
located outside the plate domain. The second boundary integral equation (2.9) can be obtained
by replacing the unit concentrated force P ∗ = 1 and the unit concentrated moment M∗n = 1.
Such a replacement is equivalent to differentiation of the first boundary integral equation (3.1)1
with respect to the coordinate n at a point x belonging to the plate domain and letting this
point approach the boundary and taking n coincide with the normal to it. The expression
T̃n(y) denotes the shear force for clamped and for simply-supported edges, T̃n(y) = Vn(y) (an
equivalent shear force) on the boundary far from the corner in the case of a simply supported
edge or T̃n(y) = Rn(y) (distributed reaction force) on a small fragment of the boundary close
to the corner. As the concentrated force at the corner is used only to satisfy the differential
biharmonic equation of the thin plate, one can assume that it could be distributed along a plate
edge segment close to the corner (Guminiak and Sygulski, 2007). The relation between ϕs(y)
and the deflection is specified by a simple relation ϕs(y) = dw(y)/ds, hence the angle of rotation
in the tangent direction ϕs(y) can be evaluated using a finite difference scheme of the deflection
with two or more adjacent nodal values. In the present analysis, the employed finite difference
scheme includes the deflections of two adjacent nodes.

4. Procedure for crack identification

4.1. Wavelet selection

The fundamental question that arises before the application of wavelet analysis in any kind
of time series is about the selection of the most appropriate wavelet. In our case, a preliminary
selection has been made in accordance to the available selections in the Matlab Toolbox (Misiti
et al., 2000) since this is the software in which the proposed method is implemented. Following
the recommendations from Section 2, we have explored several biorthogonal wavelets before we
concluded that the biorthogonal 2.2 wavelet performed better.
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4.2. Proposed methodology

The inspired idea behind the use of wavelets for crack identification lies in the fact that
the existence of cracks introduces discontinuities in the structural response (Ovanesova and
Suarez, 2004; Mallat, 1989; Meyer, 1992). It is not rare that these discontinuities cannot be
visually observed from response signals (i.e. amplitudes of displacement), but they can be easily
identified when these signals are projected onto the wavelet domain, especially from the detail
coefficients. Thus, our novel approach focuses on the identification and enhancement of the
information that we can derive from wavelet detail coefficients and can be directly correlated
with crack location. The original procedure for crack identification can be summarized as below:

• Calculate (or measure in the case of real experiments) the signal that can be directly
associated to the structural response. In the current study, we use curvatures κx, κy and
vertical displacement signals w.

• Compute the low level (up to scale 4) detail coefficients. This low level selection was
successfully applied in previous studies as well (Ovanesova and Suarez, 2004).

• The crack location can be estimated as the local maximum (LM) of the absolute value in
the detail coefficient.

In the case in which the aforementioned estimation is not clear (i.e. for noisy signals or when
detail coefficients present more than one nearby LM) apply an appropriate estimator to isolate
the LMM. In the current study, a moving variance estimator (MVE) is used as below

MVE =
1

n− 1
n∑

i=1

(xi − xi)2 (4.1)

where n is number of samples in the moving window. Small values of n provide a more rapid
detection of sharp changes (increased sensitivity) but may lead to false estimations due to
outliers (decreased selectivity). On the contrary, higher values of n are not prone to sharp peaks
or outliers but they introduce significant delays between the real and the detected peak. In our
case, n = 3 is selected as the best compromise between sensitivity and selectivity. This value
corresponds to a moving window with length around 5% of the total number of measurements
(which are N = 64).
The LM from detail coefficients are projected as the maximum of the moving variance esti-

mator.

5. Numerical results

The aim of this work is to detect localization of a defect provided that the damage (crack)
exists in the considered plate structure. Numerical investigation is conducted basing on signal
analysis of the structural static response. A rectangular plate structure, simply-supported on
the boundary is considered. The Boundary Element Method is applied to solve a thin plate
bending problem. Each plate edge is divided into 30 boundary elements of the constant type.
The collocation point is located slightly outside the plate edge, which is estimated by parameter
ε = δ/d, where δ is the real distance of the collocation point from the plate edge, and d is
the element length (Guminiak, 2014). For each example, ε = 0.001 is assumed. The diagonal
boundary terms in the characteristic matrix are calculated analytically, and the rest of them
using 12-point Gauss quadrature. The plates properties are: E = 205.0GPa, ν = 0.3, h = 0.02m.
All plates are loaded statically. A static concentrated external load P = 1000N is replaced
by an equivalent constant distributed loading q acting over the square surface of dimensions
0.05m×0.05m. Plate defects are introduced by the additional boundaries (free edges) forming
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a hole in relation to the basic plate domain. The static concentrated load is applied at selected
points along the direction parallel to one plate dimension. As the structural response, deflections
and curvatures are taken into account. Curvatures κx, κy can be identified using displacements
given in three points: left, central and right, where the left and right points are located in
direct vicinity of the central point. The curvature κxy can be found while using displacements
of four points located in direct vicinity of the central point. Subsequently, the curvatures can be
calculated using classic difference operators. The measurement point is located near the damaged
area of the considered plate. The minimum number of measurements is equal to 32 (Knitter-
-Piątkowska et al., 2014). In the considered examples, a number of 64 measurements has been
applied.

5.1. Plate with middle crack

The plate loaded by a static concentrated P force is considered and presented in Fig. 4. The
coordinates of the measurement point A are: xA = 2.15m and yA = 0.25m. The introduced
plate defect is described by the parameter e = 0.005m.

Fig. 4. The considered plate structure with a middle crack

The response signals that are used for the crack identification are: curvature κx, curvature κy
and displacement w, which are presented in Fig. 5, respectively.

For each above signal, a DWT using bior.2.2 wavelet has been performed. The obtained
results are shown in Fig. 6 for detail 1 coefficients. The detail coefficients from the remaining
scales of each transform are not presented since the significant information can be derived from
coefficients of scale 1 only. At each figure, location of the crack is depicted as a vertical dotted
line. A common pattern is unfolded for all three signals: the LMM clearly indicates the crack
position. More specificly, for signal κx, the crack position is identified from the maximum of
detail 1 coefficient while for κy and displacement signals, the crack position is identified from
the minimum. The importance of the previous observation is based on the fact that a simple
threshold detector (applied to detail 1 coefficients) is used, and as a result, we can identify
location of the crack with a significant accuracy.

A criticism to the previous findings can be raised if we assume that one of the response
signals κy (and probably other signals that are contaminated by noise), presents nearby LMM
(in form of subordinate peaks) that may affect the accuracy of threshold detection that we
propose earlier. For this reason, we applied MVE to detail 1 coefficients in order to enhance
information of the crack location and thus to enhance the accuracy of the proposed threshold
detector. Figure 7 shows the results where the crack location is presented with a very clear peak
of MVE. This event eliminates any uncertainty about the crack identification procedure and
provides a clear answer to the question “if there is a crack and where it is located”.
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Fig. 5. Response signals for the plate with a middle crack: (a) curvature κx, (b) curvature κy and
(c) displacement w; number of measurements N = 64

Fig. 6. Detail coefficients at scale 1 of (a) curvature κx, (b) curvature κy and (c) displacement signals w
of the plate with a middle crack; vertical dotted line indicates the actual location of the crack

5.2. Plate with a corner crack

The plate loaded by a static concentrated P force is considered and presented in Fig. 8. The
coordinates of the measurement point D are: xA = 3.75m and yA = 0.35m. The introduced
plate defect is described by parameters: e1 = e2 = e3 = 0.005m.

The same procedure as in Section 5.1 is applied to the plate with a corner crack. Figure 9
shows the response signals where the corresponding results from DWT are shown in Fig. 10.
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Fig. 7. MVE estimations for detail 1 coefficients of (a) curvature κx, (b) curvature κy and
(c) displacement signals w of the plate with a middle crack; vertical dotted line indicates the actual

location of the crack

Fig. 8. Considered plate structure with a corner crack

The used wavelet is the bior.2.2, and the detail coefficients at scale 4 are taken into account.
The vertical dotted line indicates the beginning of the corner crack. The results are clearer than
in the case of the plate with the middle crack: the LMM can be easily detected as there are no
subordinate peaks in the detail coefficients. The LMM again successfully points out the location
of the crack. Thus, the use of MVE in this case is not presented since it will not add significant
information to the crack identification procedure.

An important note, common for both cases, is regarding the detail coefficients amplitudes.
As we can observe, the amplitude of detail coefficients is 50 times smaller than the amplitude
or the corresponding response signal. This, in turn, means that the details coefficients are prone
to add with white noise. The level of noise influence is further examined in the next Section.

5.3. Noise immunity test

Due to unavailability of experimental data, the proposed method has been tested for its noise
immunity by adding to the response signals independent realizations of artificial White Gaussian
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Fig. 9. Response signals for the plate with a corner crack (a) curvature κx, (b) curvature κy,
(c) curvature κxy, and displacement w

Fig. 10. Detail coefficients at scale 4 of: (a) curvature κx, (b) curvature κy, (c) curvature κxy and
(d) displacement w signals of plate with corner crack; vertical dotted line indicates the actual location

of crack
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Noise (WGN). To ensure a large scale assessment, a range of 81 Signal-to-Noise (SNR) cases
are considered (for each plate) in order to represent several measurement conditions. The range
of the examined signals begins from 100 db (almost noiseless) up to 20 db (quite noisy signal)
in 1 db decrements. Figure 11 presents the latter case (SNR = 20 db) for signals from the plate
with a middle crack, whereas in Fig. 12, the corresponding MVE results are presented.

Fig. 11. The noisy case (SNR = 20db) of response signals for the plate with a middle crack:
(a) curvature κx, (b) curvature κy and (c) displacement w

Fig. 12. MVE estimations for detail 1 coefficients of (a) curvature κx, (b) curvature κy and
(c) displacement signals w with SNR = 20db of the plate with a middle crack; vertical dotted line

indicates the actual location of the crack

From Fig. 12, it is obvious that MVE fails to detect the crack location for every noisy signal.
This situation is observed in the plate with the corner crack as well. Such observations have led
us to the examination of the minimum SNRmin where the proposed method can successfully
estimate the crack location. For example, with signals having SNR = 45 db, it is still possible to
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identify the location as presented in Fig. 13. The results from the aforementioned noise tests are
shown in Fig. 14. The results from Fig. 14 indicate that there is no common SNRmin, but it is
noticeable that for SNR  40 db the proposed method can estimate the crack location accurately.
In addition, the results from noise tests for the plate with the corner crack reveal that the
performance of MVE estimations for κx and κy signals is quite remarkable. This observation must
be expected since (as shown in Fig. 9) these two specific signals present intrinsic discontinuity at
the crack location (thus the DWT can easily detect it). The results from the curvature κxy and
displacement w signals are less prominent but their SNRmin remains below 40 db. The detailed
results of the performance of MVE on each signal can be found in Table 1.

Fig. 13. MVE estimations for detail 1 coefficients of (a) curvature κx, (b) curvature κy and
(c) displacement signals w with SNR = 45db of the plate with a middle crack; vertical dotted line

indicates the actual location of the crack

Fig. 14. MVE errors in crack location estimation for response signals with the middle crack (a) and the
corner crack (b). The SNR is ranging from 20db to 100db (in 1 db steps): curvature κx

(black solid line), curvature κy (black dashed line), displacement w (grey dotted line) and curvature κxy
(grey dashed line)

Stacking the previous results together, it is clear that the crack location identification will be
influenced (at least in one case) by noise if the corresponding response signals have SNR < 40 db.
This is the conservative point of view since there are response signals (the κx and κy) that can
perform nearly perfect (i.e. exact identification of crack location) with SNRmin reduced down to
36 db. The previous observations dictate that the proposed method is quite robust to additive



494 A. Knitter-Piątkowska et al.

Table 1. Noise immunity test results

Plate with middle crack Plate with corner crack

response signal κx κy w κx κy κxy w

SNRmin [db] 34 36 40 25 26 30 36

noise, and for this reason, further study with experimental data must take place in order to
validate the above conclusions.

6. Conclusions

The implementation of DWT for identification of signal discontinuity in the analysis of plate
structures is presented in the given paper. Bending of a thin plate (static analysis) is descri-
bed by boundary integral equations and solved using the BEM. Despite the fact, the studied
problem is two-dimensional from the point of view of deformation description. Application of
one-dimensional discrete DWT leads to satisfying results in defect detection. The proposed ap-
proach allows discovering small disturbances in the response signal of a defective structure and
does not require a reference to the signal from an undamaged structure (additional errors avo-
ided). The considered examples proved that DWT of the structural response signal expressed
in deflections or curvatures established at a selected domain point, quite correctly identifies the
presence and position of the defect. The data are gathered in one measurement point in equal
time intervals. The detection of defect position can easily be implemented by using a simple thre-
shold detector applied to the corresponding DWT detail coefficients. In the case where a small
uncertainty exists, the making use of an additional detector (called Moving Variance Estimator –
MVE) is proposed. The purpose of MvE is to enhance the information that may remain “hidden”
(due to non-distinguishable peak) or “blurred” (due to subsequent peaks) near defect position,
and this is the original element in the paper. The results indicate that the MVE performs quite
satisfactory on deriving accurately the position of the defect, especially for deformation response
signals.

Since the current study is a numerical one, it is expected that there will be a contamination
of response signals by noise in real experiments. For this reason, additional research regarding
the performance of the proposed method over noisy signals has been carried out. More specificly,
we add independent realizations of artificial White Gaussian Noise to response signals generating
a dataset with SNR from 20db to 100db (in 1db increments). We have noticed that even with
the presence of noise there is a minimum SNR over which it is possible to reveal accurately the
position of the defect using MVE. This minimum SNR has been estimated for both plates and
for every response signal.

The importance and novelty of the current study does not lie only in the application of DWT
for crack identification but goes a step further to the implementation of a real time system for
crack location. In a such way, a prototype system will be highly benefited from the use of DWT
since it is computationally efficient regarding signal processing resources. Moreover, by using the
lifting approach implementation algorithm (Daubechies and Sewldens, 1998) we will be able to
adapt two main advantages of the lifting approach against the widely used polyphase algorithm:
doubling computation speed (Sweldens, 1996) and in-place computation of coefficients (without
allocating extra memory) (Meyer, 1992). The above properties may be mission-critical in real-
world installations where small memory buffers and very low-power microprocessors perform
necessary calculations in wireless sensor network implementation.
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The study presents a method to determine the σa−N curve (high cycle fatigue) for profiles
made of AW-6063 T6 aluminium alloy. Experimental material data for a mini specimen
taken directly from the tested item and selected empirical correlations allowing for a size
effect have been used. A model yielding the lowest relative error of estimating the fatigue
life is presented.
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1. Introduction

Modular frame systems made of aluminium profiles are an important innovation of the last fifteen
years in the science of structures. They are applied in many industries, including mechanical
engineering. Selecting a suitable profile size due to its strength and durability requires knowledge
on fatigue, material and profile properties.

The σa − N curve can be determined for a limited fatigue life using an analytical method
based on commonly accepted quantities defining the curve (slope coefficient of the σa−N curve
in the range of high cycles (m)

log σa =
1

m
logN = b (1.1)

and knee point for a specific group of materials (σAK , τAK) – Fig. 1) or using experimental
tests (Kocańda et al., 1997). Comparison of fatigue characteristics of some selected materials
are presented in the paper by Kurek et al. (2014).

Fig. 1. Specific σa −N curve estimated from FITNET procedure (FITNET, 2006)
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Examplary records of the analytical approach to estimate the fatigue life are available in
one of the FITNET procedures (path 2b). The approach includes analytical determination of
the σa −N curve at constant amplitude loads. The knee point is taken for No = 10

6 cycles and
stress determined from the equation (FITNET, 2006):
— for normal stress

σW = fW,σRm (1.2)

— for shear stress

τW = fW,τRm (1.3)

where fW,σ, fW,τ are coefficients determined by the material and stress type, Rm is tensile
strength.
Stress values σAK , τAK (see Fig. 1) are calculated based on the product of stresses σW , τW

and the correction factor allowing for the effect of selected factors on fatigue life (size, notch,
roughness and average stress). The fatigue σa−N curve is estimated from the fatigue life range
allowing for the slope coefficient m in accordance with Fig. 1.
For the analytical method, the results of the fatigue life estimation may be burdened by a

high error resulting from natural high scatter of input values available in the literature. Figure 2
shows a histogram of the coefficient m distribution compared to the gamma distribution for
smooth steel specimens. Distribution width correlates to quality of the analytical test of the
approximation, rendering the method inaccurate.

Fig. 2. Example of the distribution of the coefficient m for a construction steel and smooth specimen –
normal stress (Strzelecki and Sempruch, 2014)

The experimental approach is characterized by a significantly greater accuracy and is discus-
sed in this work for aluminium profiles.
Aluminium profiles are manufactured in the extrusion process. Material properties change

as a result of extrusion. The implementation of experimental methods for aluminium profiles
often does not allow one to take full dimensional standard specimens. In the case of profiles,
identification of prefabricated element properties requires non-standard specimens with reduced
dimensions (referred to as mini specimens) due to limited dimensions of the tested item.
Figure 3 shows examplary applications of profiles and specimens taken directly from the

profile. The purpose of the study is to discuss the method to determine strength and fatigue
properties of profiles to further determine fatigue life and fatigue limit.
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Fig. 3. Aluminium profiles: (a) application, (b) prevailing operational loads, (c) specimen for material
tests

2. Test methods for aluminium mini specimens

2.1. Test stand

General strength and fatigue tests discussed in this study were performed on a standard
servo-hydraulic testing machine (Instron 8874) – Fig. 4a. The machine features a dynamometer
operating at ±25 kN force and 100N·m torque. Monotonic tests were carried out using Instron
2620 Series dynamic strain gauge extensometer (12.5mm gauge length with a travel of ±5mm).
As a part of verification of the test method for mini specimens, the tests were performed on

a testing machine of the author’s own design – Fig. 4b (Tomaszewski and Sempruch, 2014a).

Fig. 4. Test stand used in the study: (a) Instron 8874, (b) own design

2.2. Applied loads

The fatigue properties were determined at a high-cycle fatigue regime. The tests were per-
formed at controlled stress. The σa −N curve was plotted based on 6 load levels for a total of
15 specimens. Test conditions conformed to standard requirements (PN-74/H-04327). A macro
crack was used as a fatigue test end criterion. The tests were carried out at 5Hz load change
frequency, resulting from the technical capabilities of the servo-hydraulic testing machine used.
The upper load level was limited by the experimental yield point (R0.2 = 226MPa).
The tested specimen featured low resistance to buckling, thus the load cycle was changed at

a constant tensile component (stress ratio > 0).

2.3. Fatigue test specimen

Flat specimens with variable width of the measured section were used throughout the tests
(Fig. 5). The specimen size was determined by its ability to be taken from the specific profile
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(Fig. 6). The value t was determined by the profile wall thickness. Mini specimens were prepared
by machining (milling). No additional working was used, e.g. grinding, polishing.

Fig. 5. Specimen used in high-cycle fatigue tests: t = 1.58± 0.03, w1 = 3.5, w2 = 7, l = 50, R = 25

3. Example tests

3.1. Material and material identification

Experimental tests were performed on AW-6063 T6 aluminium alloy specimens. The tested
material was taken directly from the profiles manufactured in the extrusion process. The fatigue
properties were affected by a surface finish of the prefabricated element, thus the material was
taken from anodized profile (most common profile surface treatment). Figure 6 shows the profile
geometry.

Fig. 6. Size of specimen taken form: (a) profile, (b) flat bar

Mechanical properties were determined in monotonic load conditions as per (PN-EN ISO
6892-1:2010). See Table 1 for results. The results show a low standard deviation. Table 2 shows
selected material properties in accordance with the manufacturer’s specification. Figure 7 shows
static characteristics (ε− σ curve).
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Table 1. Mechanical properties of AW-6063 T6 aluminium alloy (anodized) – mini specimen
(So = 5.5mm

2)

No. Rm [MPa] R0.2 [MPa] Ru [MPa] E [MPa] A [%] Z [%]

1 250 226 281 69 319 16.8 29.6

2 249 225 271 67 532 11.2 22.1

3 250 226 270 69 632 12.8 23.1

4 251 227 293 67 664 12 32.4

5 250 225 275 69 181 12.8 24.4

Average value 250 226 278 68 665 13.1 26.3

Standard deviation 0.7 0.8 9.4 989 2.2 4.4

Table 2. Mechanical properties of AW-6063 T6 aluminium alloy (anodized) – manufacturer’s
data

Rm [MPa] R0.2 [MPa] E [MPa] A [%]

245 195 70 000 10

Fig. 7. Stress-strain diagram of a specimen taken from the anodized profile made of
AW-6063 T6 aluminium alloy

3.2. Test results

Experimental tests aimed to determine the coefficient m. Fatigue life was determined at
selected stress amplitude levels based on the tests of the mechanical property. Table 3 shows the
test results.

The data are approximated to a linear equation corresponding to 50% likelihood of specimen
failure. Figure 8 shows the diagram in a bi-logarithmic system. Experimental points and solid
line corresponding to linear regression are shown compared to the confidence interval (grey
area). The regression line shows a high coefficient of determination R2. The coefficient m for the
analysed aluminium alloy taken from the profile is 7.35.

The effect of the cross-section must be taken into account to consider the curve as universal
and reliable for the group of profiles. It is thus necessary to determine the correlation between
the positions of each curve plotted for the specimens with different cross-sections. The studies
presented in (Tomaszewski et al., 2014) show that within the high-cycle fatigue range, the σa−N
curves plotted for the mini specimen (So = 3.5mm

2) and the standard specimen (So = 28mm
2)

made of AW-6063 T6 aluminium alloy (from flat sections) are parallel (Table 4). This is indicated
by a similar slope coefficient of the regression line (m ≈ const ) and statistical parallelism tests.
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Table 3. Test results for fatigue life (PN-74/H-04327) for mini specimen (So = 5.5mm
2) made

of AW-6063 T6 aluminium alloy taken from the profile

Stress, R = 0.1 Fatigue life,
σa [MPa] σmax [MPa] N [cycles]

36 855
97.9 220 38 946

48 011

88 337
89 200 94 717

107 079

146 563
80.1 180 166 113

180 036

305 253
75.7 170 365 625

429 974

66.8 150 604 432

62.3 140
932 905
1 182 165

Fig. 8. Graphical representation of the σa −N curve in the high-cycle fatigue regime for
AW-6063 T6 aluminium alloy

Table 4. Comparison of the linear regression coefficients of the σa −N curve for AW-6063 T6
aluminium alloy (from flat section)

Cross-sectional Regression line, Coefficient of
area R = 0.1 determination

So [mm
2] 1/m b R2

28 −0.078 2.319 0.97

3.5 −0.078 2.374 0.93
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The flat bars were shaped in the same conditions as the profiles. The size effect for aluminium
alloy is not affected by the stress amplitude (load). With a known coefficient m and the size
effect for the specific group of structural materials, the fatigue properties can be determined for
the entire family of the profiles.

4. Size effect

The size effect defines the relationship between the fatigue properties of the material or structural
element and its size. The material strength decreases with an increase in size of the tested item
subject to monotonic or fatigue loads (Carpinteri et al., 2009). The reduction in strength is
affected by factors related to a random distribution of defects in the material, shape and type
of load and the effect of technological processes during production.
The size effect is commonly defined as a ratio of strength properties of a specimen with

specific cross section and the standard specimen

KZ =
σ(−1)

σ(−1)n
KHC =

σ

σn
KS =

Rm
Rmn

(4.1)

where σ(−1)/σ/Rm is the fatigue limit/fatigue strength/tensile strength of the specimen with
any cross-section, σ(−1)n/σn/Rmn is the fatigue limit/fatigue strength/tensile strength of the
normative specimen (cross-section 20-80mm2) while maintaining the same material. Figure 9
shows schematic relation between the cross-sectional area and the coefficient K.

Fig. 9. Schematic relation between the cross-sectional area and the coefficient of cross-section size

Aluminium alloys show changes in fatigue properties depending on the cross-section of the
tested specimen. The changes were verified based on the experimental tests of the coefficient K
(Eq. (4.1), Table 5) for AW-6063 T6 aluminium alloy taken from flat bars (Tomaszewski and
Sempruch, 2015).

Table 5. Comparison of the coefficients KS and KHC (Tomaszewski and Sempruch, 2015)

Cross-sectional
KS KHCarea, So [mm

2]

3.5 1.150 1.131

28∗ 1 1
∗ equivalent point A in Fig. 9

Notwithstanding the origin of the size effect, the fatigue life is estimated from empirical
correlations between the coefficient K value and a specific specimen dimension (e.g. diameter d).
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Table 6 shows selected size effect correlations allowing for the range of application and the author
of the given proposal. Due to the analysis of tests for specimens with rectangular cross-section,
the correlations are examined for the cross-sectional area So.

Table 6. Quantitative correlation between cross-section coefficients KZ , author’s study based
on (Shigley et al., 2004)

KZ Range [mm] Author

0.947

1− 0.406/d 3.2 ¬ d ¬ 48 Moore

0.931
(
1 +

0.014

0.1 + (d/25.4)2

)
d ¬ 50 Heywood

1 d ¬ 8 Shigley
and

Mitschke
1.189d−0.097 8 ¬ d ¬ 250
0.6 d  250

1− d− 7.62
381

50 ¬ d ¬ 230 Roark

5. Verification example

The purpose of the analysis is to estimate the σa − N curve in a high-cycle fatigue regime
for a selected profile based on experimental data obtained for a mini specimen. The correction
coefficient of cross-section K is used to shift the curve in parallel to the side of the lower fatigue
life. The shift direction corresponds to a general trend known for metals, where fatigue properties
decrease with an increase in the cross-sectional area.

Initial empirical size effect correlations are implemented for the fatigue limit. Since in the
range of elastic deformation of the material the initiation and propagation of the fatigue crack
are similar, the values presented in Table 5 can be used in the high-cycle fatigue regime.

Based on many experimental studies as well as on the author’s own study (Tomaszewski and
Sempruch, 2015), a change in fatigue properties manifest itself as an increase in specimens smaller
than the standard specimens. The coefficient K is higher than 1 in this range of specimen sizes
(Table 5). Implemented empirical correlations will be analysed irrespective of the scope shown
in Table 6.

Fig. 10. Graphical comparison of the correlations of the cross-section coefficient based on Table 6
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Figure 10 shows a graphical approach regarding the analytical correlations to determine
K coefficient: The curves are intersected by vertical lines corresponding to selected cross-sectional
areas: 3.5mm2, 5.5mm2 (mini specimen), 28mm2 (standard specimen), 560mm2 (profile).
The analysed correlations do not allow for the material constants that are difficult to deter-

mine, and thus are easy to apply within the scope of basic engineering calculations. Allowing
for the scatter of experimental results, the material data can be found in the model based on
the weakest link theory (Weibull, 1949), fractal approach (Carpinteri et al., 2009) or energy
law (Baz̆ant, 1984). Verification of correct implementation is described in (Tomaszewski et al.,
2014).
Quantitative assessment of the degree of conformity of empirical and analytical data (based

on the correlations in Table 5) is performed for the following cross-sectional areas: 3.5 and
28mm2. It results from the availability of experimental data and material properties similar to
the target aluminium alloy the profile is made of. Table 7 shows the coefficient KHC determined
based on analytical correlations and experimental data. The relative error estimated from the
following equation is used in the quantitative analysis

δ =
σex − σcal

σex
· 100 (5.1)

where σex is the experimental fatigue limit for a specific fatigue life, σcal is the analytical fatigue
limit for a specific fatigue life.

Table 7. Comparison of cross-section coefficient values determined based on analysed empirical
correlations and experimental tests

Cross-sectional
area, So [mm

2]

KHC

Shigley and
Mitschke

Experimental tests
Moore Heywood Roark (Tomaszewski and

Sempruch, 2015)

3.5 1.173 1.053 1.106 1.014 1.131

28 1.016 1.015 0.999 1.004 1

Table 8 shows the error δ determined based on equation (4.2). Application of the Roark
equation does not give significant differences in the results, therefore this model will not be
analyzed. Moore, Shigley and Mitschke equations have been used due to discrepancies in the
obtained coefficient KHC . Results from the Moore equation estimate higher KHC values corre-
sponding to a higher fatigue life by positioning the σa −N curve on the unsafe side in relation
to the experimental data. The situation is reversed for the Shigley and Mitschke equations, and
thus the values are lower.

Table 8. Relative errors for the analysed empirical correlations

Cross-sectional Relative error [%]
area, So [mm

2] Moore Heywood Shigley and Mitschke

3.5 −3.7 6.9 2.2

28 −1.6 −1.5 0.0

Table 9 shows the coefficient KHC calculated for the cross-sectional area of the mini specimen
(So = 5.5mm

2) and analysed profile (So = 560mm
2). The σa −N curve for the mini specimen

has been shifted in parallel by the value of the calculated coefficient KHC . Table 10 shows
coefficients of linear regression for the straight lines.
The Moore equation overestimates the values, whereas Shigley and Mitschke equations un-

derestimate the values, thus it seems that the most correct values for the cross-sectional area of
560mm2 are between those curves (Fig. 11).
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Table 9. Cross-section coefficient values determined based on the analysed empirical correlations

Cross-sectional KHC

area, So [mm
2] Moore Heywood Shigley and Mitschke

5.5 1.119 1.049 1.082

560 0.962 0.942 0.865

Table 10. Comparison of linear regression coefficients of the σa − N curves for AW-6063 T6
aluminium alloy

Cross-sectional
Results

Regression line, R = 0.1
area, So [mm

2] 1/m b

5.5 Experiment −0.136 2.619

analytically – Moore −0.136 2.556
560 analytically – Heywood −0.136 2.575

analytically – Shigley and Mitschke −0.136 2.534

Fig. 11. Fatigue σa −N curves plotted for the experimental data and analytical models of the size effect

A change in fatigue properties of the material or a structural element is most often analysed
in the context of its fatigue life. For stress amplitudes σa corresponding to 90MPa and 60MPa,
the fatigue life is determined based on the regression equation (Moore, Shigley and Mitschke
model). The results have been compared with the experimental data (Table 11).

6. Summary

The article presents test methods to obtain material data for an aluminium profile and estimate
the σa − N curve for the actual cross-sectional area of the tested item (higher than the tested
specimen). Thus, selected empirical correlations of the size effect are used in the study.

Due to the inability to obtain experimental data for the profile, the discussed correla-
tions have been verified directly using the experimental test results for the mini specimen
(So = 3.5mm

2) and the standard specimen (So = 28mm
2). The specimens in theory are made

of the same material as the profile – AW-6063 T6 aluminium alloy. The calculated analytical
σa − N curves using Moore, Shigley and Mitschke equation for 28mm2 cross-section yield the
lowest relative error at −3.7-2.0%.
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Table 11. Differences in the fatigue life at two stress amplitude levels (90MPa, 60MPa) for
the mini specimen (So = 5.5mm

2) and profile (So = 560mm
2) determined based on selected

empirical correlations of the size effect

Stress amplitude,
σa [MPa]

Fatigue life, N
Experiment Moore Shigley and Mitschke
So = 5.5mm

2 So = 560mm
2 So = 560mm

2

90 77 254 26 407 18 195

60 1 523 040 520 609 358 715

Theoretical fatigue life determined using analytical method for the profile is three times (as
per Moore equation) or four times (as per Shigley and Mitschke equation) lower than for the
specimen taken directly from the profile. This approach is advantageous in terms of engineering
calculations, since the fatigue values obtained will be on the safe side in relation to the actual
values.
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Fuzzy logic has been used in different research fields for more than three decades. It has be-
come a robust method to solve complex and intricate problems which are otherwise difficult
to solve by traditional methods. But it still requires some human experience and knowledge.
In the present study, an attempt is made to design a hybrid optimization technique for au-
tomatic formation of the fuzzy knowledge based rules using an evolutionary algorithm. This
hybridization technique has been applied in the field of damage detection and location of
cracks in cracked structural elements. In this paper, a robust fault diagnostic tool based on
a differential evolution algorithm and fuzzy logic has been proposed. Theoretical and Finite
Element analyzes are done to model the crack and to find the effect of the presence of cracks
on changes of vibrational characteristic (natural frequencies) of a fixed-fixed beam. The in-
puts to DEA-FL system are the first three relative natural frequencies, and the outputs from
the system are the relative crack depth and relative crack location. For the validation of the
results obtained from the proposed method and to check the robustness of the controller,
experimental analysis is performed. To find average error rates, the bootstrap method has
been adopted.

Keywords: fuzzy logic, differential evolution algorithm, crack, natural frequency

1. Introduction

Zadeh (1965) introduced Fuzzy Logic (FL). He introduced a concept of the partial set member-
ship rather than a classical set membership or non-membership. Fuzzy Logic was then presented
as a way of processing data and not presented as a control method. Fuzzy Logic is a mathema-
tical logic that attempts to solve problems by assigning values to an imprecise range of data to
reach the most accurate result. FL is an approach to compute “degrees of truth” rather than
fully “true” or “false” (1 or 0) of the classical logic. Due to its rule over the traditional method,
it has been widely used in various fields. Some of researchers (Ganguli, 2001; Jiao et al., 2015)
also used this logic system in structural health monitoring, navigation of robots (Parhi, 2005),
etc. Fuzzy Logic System (FLS) consists of fuzzy sets, membership functions and rule tables. The
main aim of any FLS is first to define the membership functions. The MFs are defined by the pa-
rameters based on the author’s experience. Some of the researchers have used genetic algorithms
to fuzzy logic together, but in this case the results from the genetic algorithm layer is trained
again in the fuzzy logic layer for refinement (Dash and Parhi, 2014), some have used hybridized
membership functions to be applied in the fuzzy inference system (Thatoi et al., 2014).
The Differential Evolution Algorithm (DEA) was proposed by Storn and Price (1997). The

algorithm became popular due to its capacity of producing effective results with simplicity. This
is a population oriented evolutionary algorithm (Tang, 2012). It has the capacity of memorising
individual’s optimal value by sharing the internal information. The operators involved are mu-
tation, crossover and selection (Qin and Suganthan, 2005). Most of the time, it is considered as
a greedy Genetic Algorithm while ensuring quality. DE has been successfully applied in diverse
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fields such as mechanical engineering, communication, and pattern recognition (Dewhirst et al.,
2010).

Due to the competition to produce better and better results by using Artificial Intelligence
(AI) techniques, different researchers have tried to hybridize different AI techniques or impro-
ved the performance of the AI techniques by using different enhanced operations. Some of the
researchers have tuned parameters of DEA using a memtic algorithm (Neri, 2008), hybridized
PSO with DEA (Thangaraj et al., 2010), some have used FLS for diversity control of popula-
tion of DEA (Amali and Baskar, 2013), and some others have used multi objective evolutionary
algorithms for the enhancement of performance of FLC (Xue et al., 2005). But less work has
been proposed to integrate FLS and DEA using simple steps to be used in the field of vibration
analysis of cracked structures for crack location.

Cracks, faults or damages are a serious threat to the current and future performance of
a system. This may occur due to over stressing during operation in extreme environmental
conditions or due to any accidental scenarios. The present crack may grow during working and
may lead to failure if the crack grows beyond the critical limit. So it is needed to investigate
the fault occurrence in structures at the earliest possible stage. Damage detection methods
employing vibration characteristics of a component of a structure have emerged as a reliable
method for predicting structural health (Khiem and Tran, 2013; Daneshmehr et al., 2013).
Damage assessment attempts to determine whether structural damage has occurred try to find
the location and extent of the damage (Pawar and Sawant, 2014). The methods using vibration
analysis offer some advantages over conventional methods. The frequency measurement method
is easier to use in in real-time as it only requires a small number of sensors, and the measurement
is straightforward. Furthermore, to make the analysis of nonlinearity in the vibration based
fault detection methods, different researchers use the finite element analysis (Sinha et al., 2002;
Caddemi and Morassi, 2013). Nowaday, numbers of software packages are available in the market
that makes the analysis easier (Musmar et al., 2014; Parandaman and Jayaraman, 2014). This
work aims at advancing damage detection methods by proposing this method of crack detection.
The results suggest the evidence of presence of a crack. A 2-D finite element model has been
developed to study modal properties and identify the presence of a crack in the structural
element.

In the process of damage identification and detection, traditional mathematical techniques
are rather insufficient due to difficulty in the modelling of highly nonlinear components. New
methods of the modelling based on AI techniques have shown promising results for the modelling
of nonlinearities. So the inverse problem of damage detection of any material of any section can
be solved using computational intelligent techniques. In the effort to find a convenient solution to
a problem using AI systems, several difficulties are faced by the designer. It is not an easy task to
solve problems while running an algorithm. This clearly paves the way to find better AI systems
in a hit and trial method. Due to the lack of a common framework, it remains often difficult to
compare various AI systems conceptually and evaluate their performance comparatively. So the
results are purely based on the problem definition and the designer when applied to different
approaches.

In this paper, a hairline transverse crack is modeled using Finite Element Analysis (FEA).
Then the first three natural frequencies are extracted and converted into relative values from
FEA. The relative values of the natural frequencies (rfnf, rsnf, rtnf) are found out by comparing
the natural frequencies of the uncracked and cracked beam. Relative values of the crack depth
and crack location (rcd, rcl) are also found using a similar method. This work considers only
the natural frequencies because they are less prone to error while calculating. The relative first
natural frequency (rfnf), second (rsnf) and relative third natural frequency (rtnf) are treated as
the input variables in the proposed method. The outputs from the system are the relative values
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of crack depth (rcd) and crack location (rcl) which, in turn, contain the information of damage
severity.

2. Cracked beam modelling

A mathematical model must be chosen to obtain results by numerical simulation. Most of the
studies are made assuming the crack to be open and remain open during vibration. For theoretical
and finite element analysis, it is assumed that there is no displacement and rotation of the beam
at the clamped end and the crack is a non-propagating crack. Most of the studies are made
assuming the crack to be open and remain open during vibration to make the mathematical
modeling simple. A fixed-fixed beam with a transverse hairline crack has been modeled in the
present work. Due to the presence of the crack, an additional flexibility is introduced which can
be defined in a matrix form. In this work, a 2 × 2 matrix is considered. The dimension of the
matrix depends on the degrees of freedom. The transverse surface crack has depth a, width B
and height W . Here, the fixed-fixed beam is subjected to the axial force P1 and the bending
moment P2 as shown in Fig. 1.

Fig. 1. (a) Cracked fixed-fixed beam, (b) cross sectional view of the cracked fixed-fixed beam

Tada et al. (1973) proposed the strain energy release rate at the fractured section as

J =
1

E′
(K11 +K12)

2 (2.1)

where

frac1E′ =





1− γ2
E

for plain strain condition

1

E
for plain stress condition

(2.2)

(1) where K11, K12 are the stress intensity factors of mode I (opening of the crack) for the load
P1 and P2, respectively.

Taking Ut as the strain energy due to the crack and applying Castigliano’s theorem, the
additional displacement along the force Pi can be calculated

ui =
∂Ut
∂Pi

(2.3)

By definition, the flexibility influence coefficient Cij which forms the elements of the flexibility
matrix can be written as

Cij =
∂ui
∂Pj
=

∂2

∂Pi∂Pj

a∫

0

J(a) da (2.4)
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After finding out all the four coefficients of the flexibility matrix, the local stiffness matrix can
be obtained by taking the inversion of the compliance matrix, i.e.

K =

[
K11 K12
K21 K22

]
=

[
C11 C12
C21 C22

]
−1

(2.5)

From the governing equations of the free vibration mode of the cracked beam, the normal
function for the system can be defined as

U1(x) = A1 cos(Kux) +A2 sin(Kux) U2(x) = A3 cos(Kux) +A4 sin(Kux)

Y 1(x) = A5 cosh(Kyx) +A6 sinh(Kyx) +A7 cos(Kyx) +A8 sin(Kyx)

Y 2(x) = A9 cosh(Kyx) +A10 sinh(Kyx) +A11 cos(Kyx) +A12 sin(Kyx)

(2.6)

where

x =
x

L
u =

u

L
y =

y

L
β =

L1
L

Ku =
ωL

Cu
Cu =

√
E

ρ
Ku = L

√ ω

Cy
Cy =

√
EI

µ
µ = Aρ

(2.7)

Here U1(x, t) and U2(x, t) are normal functions of longitudinal vibration for the sections before
and after the crack and Y1(x, t), Y2(x, t) are normal functions of bending vibration for the same
sections.
Analyzing the normal functions of the longitudinal and bending vibration condition, the

characteristic equation (the determinant) of the system can be written as

|Q| = 0 (2.8)

This determinant |Q| is a function of the natural circular frequency ω, the relative location of
the crack β and the local stiffness matrix K which, in turn, is a function of the relative crack
depth a/W .

3. Finite element modelling of the cracked beam

For vibration analysis of the uncracked and cracked cantilever beam, ALGOR V 19.3 SP 2 Finite
Element Program is used. First, the beam element with a different single crack is plotted using
CATIA V5R15 software, and then they are treated in ALGOR environment. The uncracked and
cracked beam model is then analyzed in ALGOR environment. First of all, mesh generation is
performed. The mesh size is around 1.4529mm and approximately 33369 elements are created.
Then the parameters such as the element type (brick and isotropic), material name (aluminium
alloy) are defined in the ALGOR environment. After that boundary conditions are given by
constraining all degrees of freedom of the nodes located on the left end of the beam. The model
unit is then changed to SI standards. Then, in the analysis window, a particular analysis type
is selected (natural frequency, i.e. modal analysis). Then the analysis is performed and the first
three modes of natural frequencies at different crack locations and crack depths of the fixed-
fixed beam are recorded. Figure 2 shows the modes of vibration of the cracked beam after finite
element analysis.

4. Definition of Fuzzy Logic System parameters while applied to Fault Detection

Fuzzy logic is a logic based system in which the fuzzy logic is used to represent different forms of
knowledge to model interactions and relationships among system variables. Fuzzy logic systems
are a very important tool for the modeling of complex systems. The shortcomings of fuzzy logic
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Fig. 2. First three modes of vibration of the cracked fixed-fixed beam

are systematic design and learning capacity. The main challenge of a fuzzy inference system is
to design fuzzy rules according to the problem definition.

Another main issue is to design the membership function parameters (variable definition)
involved with the rule. From the literature available, it can be observed that many methods
have been formulated to tune the MF parameters using different evolutionary algorithms. But
less of the work is done to optimize both fuzzy membership functions and fuzzy rules. So in the
present work, an effort is made to optimize both the fuzzy membership function and the fuzzy
rules.

The proposed fuzzy system is based on the Mamdani fuzzy model (Fig. 3). Fuzzy linguistic
variables are defined before assigning different membership functions and definition of their
ranges. These linguistic variables play a major role during formation of the rule table. These are
linguistic objects or words rather than numbers.

The different linguistic variables used for input and output variables are given as below:

Input 1: (rfnf): low (L), medium (M), high (H)

Input 2: (rsnf): low (L), medium (M), high (H)

Input 3: (rtnf): low (L), medium (M), high (H)

Output 1: (rcd): small (S), medium (M), large (L)

Output 2: (rcl): small (S), medium (M), big (B)
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Fig. 3. Fuzzy controller with its input and output variables

The rule base section of the fuzzy inference system works on the application and implementation
of the fuzzy rules. The fuzzy rules are usually of the form of “if-then” statements. The if –
antecedent part and then – part is known as the consequent part. The two fuzzy parts are
connected with the connectors like AND, OR, NOT, etc.

A typical rule in a Mamdani fuzzy system in the current problem is defined as below:

If x1 is LF, x2 is MF, x3 is LF then y1 is SD, y2 is ML (4.1)

Based on the fuzzy subset, the fuzzy rules are defined in a general form as follows

If (fnf is fnfi and snf is snfj and tnf is tnfk) then (cd is cdijk and cl is clijk) (4.2)

where ij, k = 1, 2, 3, because of “rfnf”, “rsnf”, “rtnf” have 3 membership functions each.

From above expression (4.2), two sets of rules can be written

If (rfnf is rfnfi and rsnf is rsnfj and rtnf is rtnfk) then rcd is rcdijk

If (rfnf is rfnfi and rsnf is rsnfj and rtnf is rtnfk) then rcl is rclijk
(4.3)

According to the usual Fuzzy Logic control method (Parhi, 2005), a factor wijk is defined for
the rules as follows

wijk = µfnfi(freqi) ∧ µsnfj(freqj) ∧ µtnfk(freqk) (4.4)

where freqi, freqj and freqk are the first, second and third natural frequency of the cantilever
beam with a crack, respectively. Applying the composition rule of interference (Parhi, 2005), the
membership values of the relative crack location and relative crack depth (location) are given as

µrclijk(location) = wijk ∧ µrclijk(location) ∀length ∈ rcl
µrcdijk(depth) = wijk ∧ µrcdijk(depth) ∀depth ∈ rcd

(4.5)

The overall conclusion by combining the output can be written as follows

µrcl(location) = µrcl111111(location) ∨ . . . ∨ µrclijk(location) ∨ . . . ∨ µrcl131313(location)

µrcd(depth) = µrcd111111(depth) ∨ . . . ∨ µrcdijk(depth) ∨ . . . ∨ µrcd131313(depth)

(4.6)

The crisp values of thw relative crack location and relative crack depth are computed using the
center of gravity method (Parhi, 2005) as

Relative crack location = rcl =

∫
location µrcl(location) dlocation∫

µrcl(location) dlocation

Relative crack depth = rcd =

∫
depthµrcd(depth) ddepth∫

µrcd(depth) ddepth

(4.7)
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5. Analysis of fault detection using simple differential evolution algorithm (DEA)

Differential Evolution (DE) which utilizes NP D-dimensional vectors of real valued parameters
is a parallel direct search method. P (G) is the current population composed of encoded with
individuals Xi. Figure 4 describes the idea of the Differential Evolution Algorithm which has
been used for crack detection in the current research work.
Here Xi = {x1, x2, x3, x4, x5}, where x1 – rfnf, x2 – rsnf, x3 – rtnf, x4 – rcd, x5 – rcl,

G – number of generations, D – number of parameters.

Fig. 4. Differential evolution algorithm

The following steps describe the algorithm for Differential Evolution Algorithm.

1. Read the parameters – scaling factor F , crossover constant Cr, population size Np, maxi-
mum iterations Gmax and decision variables D (i.e. rfnf, rsnf, rtnf, rcd and rcl).

2. Set the iteration G = 0, population index i = 1, set the decision variable j = 1.

3. Initialise the parent vector uniformly in the random search space. The initial value of the
j-th parameter in the i-th individual at the generation G = 0 is given as

x
(0)
j,i = x

min
j + randj(0, 1)(x

max
j − xminj ) j = 1, . . . ,D i = 1, . . . , Np (5.1)

4. Once initialised, DE mutates the population to produce a population of Np mutant vectors

X
′(G)
i = XG

a + F (X
G
b −XG

c ) i = 1, . . . , Np (5.2)

The indices a, b and c are randomly chosen. These indices are different from each other and
from the base vector index i. The scaling factor F is a real and constant factor F ∈ [0, 2].
As this constant is used in the mutation operator and used to control the rate at which
the population evolves, here in the current paper it is taken as 0.3.

5. After mutation, uniform crossover is employed to generate trial vectors X ′′i by mixing the
mutant vectors and target vectors Xi

X
′′(G)
j,i =




X
′(G)
j,i if randj(0, 1) ¬ Cr ∨ j = jrand

X
(G)
j,i otherwise

(5.3)

The crossover operation is applied to each pair of the target vector Xi and its corresponding
mutant vector X ′i to generate the trial vector X

′′

i .

The crossover probability is a user defined value. The crossover probability is defined as
Cr ∈ (0, 1) and in this work it is taken as 0.6. The crossover operator copies the j-th
parameter of the mutant vector X ′i to the corresponding parameter of the trial vector X

′′

i

if randj(0, 1) ¬ Cr, otherwise it is copied from the corresponding target vector Xi.
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6. Sometimes the upper and lower bounds of the newly generated trial vectors exceed the
given value and then they are randomly and uniformly initialised to the initial value
given previously. The objective function values of all trial vectors are evaluated. Then the
selection operator (according to the fitness rank) determines the population by choosing
between the trial vectors and their predecessors (target vectors):

a) if the trial vector X
′′(G)
i has an equal or lower fitness function value (optimal) than

that of its target vector X
(G)
i , it replaces the target vector in the next generation,

b) otherwise, the target vector retains its place in the population for at least one more
generation

X
(G+1)
i =




X
′′(G)
i if f(X

′′(G)
i ) ¬ f(X

′′(G)
i ) i = 1, . . . , Np

X
(G)
i otherwise

(5.4)

7. Once the new population is installed, the process of mutation, crossover and selection is
repeated for several generations.

8. The algorithm stops after reaching threshold values for the target vector.

The hybridized methodology consists of three major steps, i.e., preprocessing, processing, post-
processing. In the preprocessing, the individual solutions are fed to the DEA. Then the fuzzy
rules using DEA in this step are fed to the Fuzzy Inference System (FIS) for the implementation
and aggregation of the fuzzy rules. In the postprocessing, the results from the FIS are defuz-
zified to give the crisp result (rcd, rcl) from the methodology. Figure 5 describes the proposed
methodology in the pictorial form.

Fig. 5. Pictorial presentation of DEAFL system

Following are the steps used for computation of MF using Differential Evolution Algorithm
(DEA) described in detail.

1. In the first step of hybridisation of the DEA and FLS is to represent the fuzzy rules in
terms of DEA parameters.
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Here Xi, which is an individual in the population of DEA, represents the fuzzy rule, where
x1, x2, x3, x4, x5 represent the linguistic variables of fuzzy membership functions in the
fuzzy rule.

2. Then initialisation takes place using equation (5.1) of DEA.

3. The initial population undergoes mutation using equation (5.2) of DEA.

4. Then uniform crossover is applied to the mutant vectors using equation (5.3) of DEA.

5. A fitness function is used to make selection between the trial vector and the target vector,
whichever becomes the best fit replaces the target vector in the next generation. Otherwise,
if the stopping criteria are met, the algorithm stops making the current target vector as
the best solution (fuzzy rule).

6. Likewise when some (Musmar et al., 2014) fuzzy rules are generated using DEA, they are
fed to the Mamdani fuzzy inference system.

7. After the implementation and aggregation of the fuzzy rules in the inference system, the
results are defuzzified using centroid defuzzification.

8. The defuzzification process shows the crisp output from the fuzzy inference system.

6. Experimental set-up used in the fault detection of the cracked beam

The instruments used in free vibration analysis of the fixed-fixed beam are an impact hammer,
vibration pick-up, vibration analyzer and vibration indicator. Using the impact hammer, the
cracked fixed-fixed beam is excited in the free vibration mode. The vibration analyzer is PULSE
LAB Prolite 3560. The excitation parameters are picked up by the vibration pick-up or acce-
lerometer. Then these parameters are fed to the vibration analyzer, where the parameters are
analyzed, and the results are shown in the vibration indicator.

Several tests are conducted using the experimental setup (Fig. 6) on aluminium alloy beam
specimens (800mm×38mm×6mm) with a transverse crack for determining the natural frequ-
encies at different crack locations and crack depths. These specimens are given vibration by
the impact hammer, and the 1st, 2nd and 3rd natural frequencies are recorded in the vibration
indicator. The schematic diagram of the experimental set-up is shown in Fig. 7.

Fig. 6. Schematic diagram of experimental set-up; 1 – cracked fixed-fixed beam with a single crack,
2 – vibration pick-up, 3 – vibration analyzer, 4 – vibration indicator, 5 – impact hammer,

6 – power distribution
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7. Results and discussion

The results found from the application of the algorithms are given in this Section. The formula
used for calculation of the errors is given in Eqs. (7.1) and (7.2).
The percentage error in FEA is calculated using the following formula

FEA result− Result from the proposed technique
FEAresult

· 100 (7.1)

The percentage error in the experimental work is calculated using the following formula

Exp. result− Result from the proposed technique
Exp.result

· 100 (7.2)

Table 1. Comparison of the results from FLS and FEA

rfnf rsnf rtnf red rcl red using rcl using percent. percent.
No. from from from from from the FLS the FLS error error

FEA FEA FEA FEA FEA technique technique rcd rcl

1 0.9952 0.9992 0.9944 0.28125 0.5625 0.272194 0.543206 3.22 3.43

2 0.9958 0.9998 0.9940 0.25 0.46875 0.241275 0.451922 3.49 3.59

3 0.9960 0.9999 0.9987 0.25 0.25 0.2412 0.240325 3.52 3.87

4 0.9969 0.9969 0.9952 0.1875 0.5 0.181106 0.4817 3.41 3.66

5 0.9705 0.9703 0.9700 0.2166 0.5 0.209301 0.4811 3.37 3.78

Table 2. Comparison of the results from FLS and experimental analysis

rfnf rsnf rtnf red rcl red using rcl using percent. percent.
No. from from from from from the FLS the FLS error error

FEA FEA FEA FEA FEA technique technique rcd rcl

1 0.9988 0.9993 0.9976 0.15625 0.3125 0.150703 0.300438 3.55 3.86

2 0.99979 0.9960 0.9996 0.333 0.3125 0.320712 0.300156 3.69 3.95

3 0.9552 0.9551 0.9549 0.2833 0.375 0.272025 0.362138 3.98 3.43

4 0.9211 0.9219 0.9218 0.4 0.25 0.38436 0.24055 3.91 3.78

5 0.9463 0.9460 0.9458 0.367 0.3125 0.353127 0.300969 3.78 3.69

Table 3. Comparison of the results from DEAFLS and FEA

rfnf rsnf rtnf red rcl red using rcl using percent. percent.
No. from from from from from the FLS the FLS error error

FEA FEA FEA FEA FEA technique technique rcd rcl

1 0.9952 0.9992 0.9944 0.28125 0.5625 0.274753 0.549338 2.31 2.34

2 0.9958 0.9998 0.9940 0.25 0.46875 0.24365 0.458531 2.54 2.18

3 0.9960 0.9999 0.9987 0.25 0.25 0.2444 0.24395 2.24 2.42

4 0.9969 0.9969 0.9952 0.1875 0.5 0.183544 0.4871 2.11 2.58

5 0.9705 0.9703 0.9700 0.2166 0.5 0.211467 0.48635 2.37 2.73

In this paper, the bootstrap method has been adapted to find the average error rates. The
bootstrap method is a statistical method for obtaining an estimate of the error. The results of
the methods with 95% confidence intervals are provided in Table 5. As the confidence interval
is taken as 95%, the formula for determination of the average error rates is

µ− 1.96 s√
n
< mean error < µ+ 1.96

s√
n

(7.3)

where µ – mean, s – standard deviation, n – sample population.
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Table 4. Comparison of the results from DEAFLS and Experimental Analysis

rfnf rsnf rtnf red rcl red using rcl using percent. percent.
No. from from from from from the FLS the FLS error error

FEA FEA FEA FEA FEA technique technique rcd rcl

1 0.9988 0.9993 0.9976 0.15625 0.3125 0.152469 0.304563 2.42 2.54

2 0.99979 0.9960 0.9996 0.333 0.3125 0.324375 0.303781 2.59 2.79

3 0.9552 0.9551 0.9549 0.2833 0.375 0.275594 0.366563 2.72 2.25

4 0.9211 0.9219 0.9218 0.4 0.25 0.38936 0.242825 2.66 2.87

5 0.9463 0.9460 0.9458 0.367 0.3125 0.356247 0.303688 2.93 2.82

Table 5. Results from the bootstrap method with 95% confidence intervals

Table 1 Table 2 Table 3 Table 4

rcd rcl rcd rcl rcd rcl rcd rcl

3.298398- 3.516654- 3.631526- 3.567417- 2.174495- 2.263439- 2.500648- 2.426724-
3.505602 3.815346 3.932474 3.916583 2.453505 2.636561 2.827352 2.881276

The performance of the Fuzzy Logic Controller depends on the fuzzy membership functions
and fuzzy rules. So, it is very much needed to optimize or adjust the parameters according to the
problem domain. Fuzzy rules are usually generated using linguistic terms in the if-then format,
and it largely depends on the human expertise to derive them. In all conditions, the correct
choice of the fuzzy membership function with the linguistic variables plays an important role in
the performance of the Fuzzy Logic Controller.
It is very difficult to present the expert’s knowledge perfectly through the linguistic varia-

bles, always. The rule base of the Fuzzy Logic Controller has many parameters which must be
adjusted. These parameters are capable to alter or modify the controller performance.
The previous work proposed by different researchers (automatic design of the fuzzy member-

ship function) still required human experts to handle the control system. In those works, only
the membership functions were optimized. Fuzzy rules which form the skeleton of the fuzzy rule
based system still needs human expertise for its generation. So, in order to overcome the above
stated problems, a method to produce fuzzy rules automatically is proposed in this work.

8. Conclusion

A method for crack prediction in beam-like structures has been designed and developed using
a clonal selection algorithm and fuzzy logic. It is found that the presence of cracks has a re-
markable effect on the dynamic characteristics of the beam under consideration. Theoretical,
finite element and experimental analysis have been carried out to calculate vibration parame-
ters. These vibration parameters have been used to make a database and subsequent design of
the hybrid system. Different operations like crossover and mutation used in the clonal selection
algorithm are given in detail. Likewise, different parameters of the fuzzy logic are also discussed.
Table 1 and 3 provide a comparison of the results from FEA with the results from FLS

and DEAFLS, respectively. Similarly Table 2 and 4 provide a comparison of the results of the
experimental analysis with FLS and DEAFLS, respectively.
The error for FLS is found to be 3.402% and 3.666% in comparison with the results from FEA

for rcd and rcl. In comparison with the results of the experimental analysis for rcd and rcl, the
errors are found to be 3.782% and 3.742%. While applying DEAFLS to the current problem, the
errors are found to be 2.314% and 2.45% in comparison with the results from FEA for rcd and
rcl. While comparing with the results of the experimental analysis for rcd and rcl, the errors are
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found to be 2.664% and 2.654%, respectively. From the results and errors, it can be concluded
that the proposed method of fusion of the fuzzy logic system and the differential evolution
algorithm gives better results than the logic system standalone. This improvement occurs due
to some automation of generation of fuzzy rules using the differential evolution algorithm. So,
this method can be used as a robust tool for online damage detection of cracked structures as
well as other engineering applications.
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The shear strength of sand and its mechanical properties can be affected by numerous para-
meters. This work presents an experimental investigation which aims to study the influence
of the fines content, the depositional method and the grain size on the shear strength of
Chlef sand. Tests were conducted with the shear box on two types of soil, the natural sand
and the clean sand-silt mixture. Dense samples (Dr = 88%) were reconstituted through dry
deposition for each type of the material. An additional series of tests was carried out on
a medium dense natural sand (Dr = 52%) prepared by dry and wet (w = 3%) deposition
methods. All specimens were subjected to normal stresses of 100kPa, 200 kPa and 300 kPa
and there was no immersion of water. The tests results show that the behavior of sand can be
affected by three parameters, the fines content, the deposition method and the particle size.
The maximum shear stress and the friction angle decrease as the fines content increases, the
initial water content increases, the effective grain size diameter decreases and the uniformity
coefficient increases. The cohesion intercept increases with the increasing fines content and
decreasing initial water content. Overall, the samples prepared by the dry deposition me-
thod show more resistance than those prepared by the wet deposition method. The results
obtained are generally in agreement with the previous research on drained and undrained
saturated sand in the literature.

Keywords: dry sand, fine content, water content, grain size, depositional method

1. Introduction

Soil of the Chlef region is vulnerable to earthquakes and its mechanical effects as the north of
Algeria is a part of the African tectonic plate. On October 10th 1980, the Chlef region was hit
by an earthquake of magnitude 7.3 [12], considered the strongest in its history. Much damage
occurred due to landslides, pavement deformation and liquefaction [3]. Due to all these facts,
the characterization of the mechanical behavior of soil of this region and especially the sand of
Chlef river is of relevance to mitigate and prevent similar disaster in the future.

The shear strength of soil was studied through the direct shear test. The experiment showed
that very similar shear strength results could be obtained on saturated sand and dry sand,
provided that the sand remained saturated and that drainage took place freely during shear,
and in both cases the effective stresses were equal to the total stresses (Head and Epps, 2011).

The behavior of saturated Chlef sand is the topic of study of many researchers, but studies
conducted on the dry chlef sand are rare in the literature.

The objective of this research was to study the effect of the fines content, the deposition
method and the particle size on the shear strength of the dry Chlef sand (without saturation by
immersion in water) using the direct shear apparatus.
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2. Literature review

The effect of the fines content and the sample preparation method on the liquefaction resistance
of saturated soil was the subject of some controversial research, because no consensus could be
found in the literature.

Researchers who studied the effect of the fines content on the resistance of saturated soils are
divided into three groups; some say that an increase in the fines content increases the liquefaction
resistance (Chang et al., 1982; Amini and Qi, 2000), others say that it reduces the liquefaction
resistance (Shen et al., 1977; Troncosco and Verdugo, 1985; Finn et al., 1994; Vaid, 1994; Zlatovic
and Ishihara, 1997; Arab, 2009; Belkhatir et al., 2013, 2014), while the third group of researchers
conclude that the liquefaction resistance decreases with an increasing fines content to a minimum
value, then it rises (Law and Ling, 1992; Koester, 1994; Bouferra and Shahrour, 2004).

The results obtained on the effect of the depositional method are not all in agreement, some
authors found that the samples prepared by the sedimentation method present a higher resistance
to liquefaction than the samples prepared by other methods such as the dry funnel pluviation and
the wet deposition (Zlatovic and Ishihara, 1997); others found that the liquefaction resistance
of the samples prepared by the wet deposition is larger than that of samples prepared by the
dry funnel pluviation (Mulilis et al., 1977; Yamamuro and Wood, 2004). Canou (1989), Ishihara
(1993), Benahmed et al. (2004) found that the resistance of the samples prepared by the dry
funnel pluviation is more elevated than by the wet deposition method. The tests performed by
Della et al. (2009) on saturated Chlef sand confirmed this result, showing that the dry funnel
pluviation method gives stable samples (dilating) while the wet deposition method encourages
contractance.

It is known in the literature that the particle size significantly affects the resistance to
soil liquefaction. Whether from studies conducted in the laboratory (Lee and Fitton, 1968) or
in situ observations (Tsuchida, 1970; Seed and Idriss, 1971), many boundaries of particle size
distribution curves have been proposed to identify liquefiable soils. To study the effect of grain
size, a series of undrained tests were performed by Belkhatir et al. (2011). They found that the
undrained shear strength at the peak and the undrained residual shear strength decreased as
the coefficient of uniformity increased while the average diameter decreased and fines content
increased up to 50%.

Due to the lack of studies conducted on the unsaturated sand of Chlef region (Northern
Algeria), it was suggested to study the effect of the fines content, the deposition method and
the particle size on the shear strength of the dry Chlef sand (without saturation by immersion
in water) using the direct shear apparatus.

3. Material tested

The tests were realized on sand from the Chlef river (which crosses the city of Chlef to the west
of Algiers). However, two types of the Chlef sand were used; the natural sand and the clean sand
mixed with different fractions of silt (from 0% to 40%). The Chlef river silt shows low plasticity
with a plasticity index equal to 5.81%. Figure 1 shows microphotographs of the natural and the
clean sand. The properties of the natural sand, the clean sand-silt mixture and the silt used in
this study are illustrated in Table 1. The grain size distribution curves of the tested soils are
shown in Fig. 2.

Figure 3 shows the variation of the maximum and the minimum void ratio with the fines
content. It is clear that both decrease with the increasing fines content (Fc) up to a value
Fc = 30% beyond which they begin to increase following the same trend (similar observation
were reported by Belkhatir et al. (2013)).
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Fig. 1. Microphotographs: (a) Chlef natural and (b) Chlef clean sand (zoom 50x)

Table 1. Index properties of materials used

Material
Fc GS emin emax

D10 D30 D50 D60 CU CC[%] [g/cm3] [mm] [mm] [mm] [mm]

Natural sand 1 2.700 0.586 0.946 0.171 0.311 0.463 0.538 3.153 1.055

Clean sand 0 2.652 0.632 0.795 0.266 0.431 0.596 0.700 2.634 0.999

Silty sand
(clean sand
+ fines
content)

10 2.654 0.536 0.703 0.077 0.369 0.549 0.643 8.304 2.733
20 2.655 0.458 0.697 0.029 0.298 0.510 0.616 21.622 5.058
30 2.657 0.449 0.687 0.017 0.087 0.420 0.535 30.630 0.811
40 2.658 0.504 0.759 0.011 0.057 0.307 0.437 38.305 0.662

Silt 100 2.667 0.991 1.563 – 0.015 0.029 0.036 – –

Fig. 2. Grain size distributed curves of the tested materials
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Fig. 3. Maximum and minimum void ratios versus fines content

4. Experimental program

In this study, a series of tests were performed on the natural sand and the clean sand-silt mixture
for a relative density Dr = 88% (also Dr = 52% for some tests) under three normal stresses
σN = 100 kPa, 200 kPa and 300 kPa. To study the effect of the depositional method, dry or wet,
the initial water contents were set to w = 0% and 3%, respectively.

The tests were performed using a square direct shear box 60×60mm2. The initial sample
height was 25mm. The test consisted in placing a sample in the shear box and subjecting it to
a vertical load N that represented the normal stress applied (100 kPa, 200 kPa, 300 kPa) and a
horizontal load T which was gradually increased. The direct shear test allowed measuring the
peak and residual shear strength corresponding to every normal stress.

Two methods were used to set-up the sample, the dry deposition and the wet deposition
methods. In the wet deposition method, the dry sand was mixed thoroughly with a small quantity
of water (3%) until a homogeneous soil sample was obtained. In the dry deposition method, the
sand was deposited in the dry state. To achieve the two relative densities, the sample was divided
into three layers. Each layer was compacted to achieve the dense state (Dr = 88%), however,
no compaction was necessary to achieve the medium dense state (Dr = 52%), so only the
sample surface was leveled off. After the set-up, the samples were sheared at a constant speed
(1mm/min).

5. Test results

5.1. Effect of fines content

To study the effect of fines content on the shear strength of dry sand, five samples of sand-silt
mixture (Fc = 0% to 40%) were tested under three normal stresses. Figure 4a shows the effect
of the fines content on the shear stress of dry sand (σN = 300 kPa, Dr = 88%). For samples with
Fc = 0% to 20%, the mobilized shear stress increased with the increasing horizontal displacement
to reach the maximum value (located between 2 and 3mm) and then it gradually decreased;
whereas the mobilized shear stress of samples with Fc = 30% and Fc = 40% did not show the
peak value (Fig. 4a).
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Figure 4b shows the Mohr-Coulomb failure envelope that represents the relationship between
the maximum shear stress τmax and the normal stress σN according to the following formula

τmax = C + σN tanϕ (5.1)

where C and ϕ are the cohesion intercept and the friction angle, respectively.

Figure 4b shows clearly that the slope of the failure envelope decreases with the increasing
fines content. The reliability of these results is high considering the limited spread obtained for
each series of tests (R2 = 0.97 ∼ 0.99).

Fig. 4. Effect of the fines content on the strength: (a) shear stress versus horizontal displacement
σN = 300 kPa, Dr = 88%, (b) maximum shear stress versus normal stress

Fig. 5. Maximum shear stress (τmax) versus fines content (Fc), σN = 100, 200, 300kPa, Dr = 88%

The development of the maximum shear stress with the fines content is shown in Fig. 5. It is
clear from this figure that the maximum shear stress decreases with the increasing fines content



528 A. Flitti et al.

for the three normal stresses (σN = 100, 200, 300 kPa), but the decrease is more pronounced for
σN = 300 kPa.

Figure 6 shows the effect of the fines content on the mecanical properties (cohesion intercept
and friction angle) of the sand-silt mixture for the dense state (Dr = 88%). It can be seen that
the cohesion increases with the increasing fines content (Fig. 6a). For the friction angle, it is
clear that it decreases lineary with the increasing fines content (Fig. 6b). This decrease in the
resistance is probably due to the presence of fine particles between grains of sand that promote
reduction in the contact between sand particles. The same effect was found by Arab (2009) on
the saturated sand.

Fig. 6. Variation of mechanical properties with the fines content (Fc), Dr = 88%: (a) cohesion versus
fines content, (b) friction angle versus fines content

5.2. Effect of the mode of deposition

In order to study the effect of the depositional method (dry or wet), a series of tests were
performed on the natural sand. Two values of initial water content were used; w = 0% for
the dry case, and w = 3% for the wet case. Specimens at two relative densities were tested
(Dr = 52%, Dr = 88%) subjected to three levels of normal stresses (σN = 100, 200 and
300 kPa).

The relationship between the mobilized shear stress and the horizontal displacement is shown
in Fig. 7. For the medium dense state (Dr = 52%), it is clear from Fig. 7a that the shear
stress of the dry specimens rapidly increases until a horizontal displacement of about 3mm
occurs. Beyond that, the increase is less significant. The results on the specimens prepared by
wet deposition show a mobilized shear stress that increases continuously with the increasing
horizontal displacement. In the dense state (Dr = 88%), Fig. 7b shows that the shear stress of
the dry method rises to reach a peak value (between 3mm and 6mm), while the shear stress
of the wet method keeps increasing with the horizontal displacement as in the medium dense
specimens.

Figure 8 shows the variation of the maximum shear stress τmax (deduced from Fig. 7) with
the initial water content in the two states, the dense and the medium dense. It is clear that the
maximum shear stress of the dry specimens is higher than that of the wet specimens. This result
is in agreement with that obtained by Della et al. (2009) on the saturated sand. The difference
in the resistance between the dry and wet deposition method is more pronounced in the dense
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Fig. 7. Shear stress versus horizontal displacement, σN = 100, 200 and 300kPa: (a) medium dense state
(Dr = 52%), (b) dense state (Dr = 88%)

Fig. 8. Maximum shear stress (τmax) versus water content (w), σN = 100, 200 and 300kPa,
Dr = 52% and 88%

state. Furthermore, the difference in the resistance between the dense state and the medium
dense state is more apparent in the dry deposited samples than in the wet deposited samples.

The effect of the depositional method in terms of the initial water content on the mechanical
properties of sand is shown in Fig. 9. It is clear that the cohesion intercept decreases with the
increasing initial water content for both the dense and the medium dense state (Fig. 9a), but
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the trend of the decrease is more pronounced in the dense state. Concerning the friction angle,
it can be seen from Fig. 9b that it also decreases with the increasing initial water content with
the same trend for the two relative densities. This decrease in the friction angle confirms the
previous result and allows saying that the dry samples are more resistant than the wet samples.

Fig. 9. Variation of the mechanical characteristics with the initial water content (w), Dr = 52%
and 88%: (a) cohesion versus water content, (b) friction angle versus water content

5.3. Effect of the particle size

Only the effective grain size diameter D10 and the uniformity coefficient Cu were chosen
as parameters to study the particle size effect on the shear stress and the friction angle of the
sand-silt mixture. For each normal stress level (σN = 100, 200 and 300 kPa), it was found that
the maximum shear stress increases according to a logarithmic trend with an increasing effective
grain size diameter D10 (Fig. 10a). About the friction angle, Fig. 10b shows that it increases
with the increasing effective grain size diameter and decreasing fines content.
As it is known, the uniformity coefficient (Cu) is a crude shape parameter (Holtz and Kovacs,

1981) and it represents the ratio of the 60% particle size (D60) to the 10% particle size (D10)
(Head, 2006). Figure 11 shows the effect of the uniformity coefficient on the mechanical behavior
of the sand-silt mixture. By increasing the fines content from 0% to 40%, the uniformity coeffi-
cient values range between 2.6 and 38.3, this is why Figs. 11a and 11b present similar tendencies
and results with those of Figs. 5 and 6b, respectively showing that the maximum shear stress
and the friction angle decrease linearly with the increasing uniformity coefficient. These findings
are in agreement with those found by Belkhatir et al. (2011) on the saturated sand.

6. Conclusion

Results of experimental research on the influence of the fines content, the depositional method in
terms of the initial water content and the grain size on the shear stress as well as the mechanical
properties of Chlef river sand (natural and clean sand-silt mixture) have been presented.
Shear tests were performed in a direct shear apparatus. Two relative densities were evalu-

ated Dr = 52% and 88% for the natural sand using two sample preparation methods, the dry
deposition and the wet deposition, while only dense (Dr = 88%) specimens of clean sand-silt
mixture were tested using the dry deposition. The specimens were sheared dry without water
immersion and they were subjected to three levels of normal stresses σN = 100, 200 and 300 kPa.
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Fig. 10. Effect of the effective grain size diameter D10: (a) maximum shear stress (τmax) versus the
effective grain size diameter, (b) friction angle versus the effective grain size diameter

Fig. 11. Effect of the uniformity coefficient Cu: (a) maximum shear stress (τmax) versus the uniformity
coefficient, (b) friction angle versus the uniformity coefficient

Test results showed that the fines content, the depositional method and the grain size affect
the strength of the dry sand. It was found that by increasing the fines content, the strength of the
sand-silt mixture decreases, the friction angle decreases and the cohesion increases. Concerning
the effect of the depositional method, it was shown that the maximum shear stress of the dry
deposited specimens was higher than that of the wet deposited specimens. Also, the friction
angle and the cohesion decreased with the increasing initial water content at deposition. About
the effect of the grain size, the tests illustrated that the maximum shear stress and the friction
angle increased with the increasing grain size diameter D10 and the decreasing fines content.
Furthermore, the results showed that the maximum shear stress and the friction angle decreased
linearly with the increasing uniformity coefficient and the fines content.
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The results obtained from this study performed on the dry Chlef river sand are in agreement
with those carried out on the saturated sand reported in the literature.
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The paper deals with propagation of SH waves in a viscoelastic layer over a couple stress
substrate with imperfect bonding at the interface. A dispersion equation of SH waves in a
viscoelastic layer overlying the couple stress substrate with an imperfect interface between
them has been obtained. Dispersion equations for propagation of SH waves with perfectly
bonded interface and slippage interface between two media are also obtained as particular
cases. Effects of the degree of imperfectness of the interface are studied on the phase velo-
city of SH waves. The dispersion curves are plotted and the effects of material properties of
both couple stress substrate and viscoelastic layer are studied. The effects of internal micro-
structures of the couple stress substrate in terms of characteristic length of the material are
presented. The effects of heterogeneity, friction parameter and thickness of the viscoelastic
layer are also studied on the propagation of SH waves.

Keywords: SH waves, couple stress theory, imperfect bonding, characteristic length, visco-
elasticity

1. Introduction

The dynamical behaviour of near surface materials is very complicated and could not be expla-
ined on the basis of classical continuum mechanics. To explain the relationship between stress
and strain at a particular subsurface point, the near surface of earth is modelled as a viscoelastic
material (Butler, 2005). Wide variations of rocks erupted from volcanoes and scattering of high
frequency seismic waves support the existence of small scale heterogeneity in the earth litho-
sphere. Hence, heterogeneity and viscoelasticity are to be considered for real characterisation of
internal microstructure of solid earth.
Shear horizontal (SH) waves are linearly polarized in the direction normal to the direction

of propagation and parallel to the surface. These waves propagate in a layer in contact with an
elastic half space. The study of these guided waves has received much attention in the field of
seismology for estimating damage capabilities of seismic waves. These waves are also helpful for
studying surface mechanical properties of underlying solids in non destructive testing techniques
and in electronics industry (Simonetti and Cawley, 2004; Qingzeng et al., 2014). SH waves in
a layered structure for a perfectly bonded interface between two media are studied by many
researchers, but this condition is rarely achieved in reality. Due to certain reasons like thermal
mismatch or some faults in the manufacturing process, cracks or defects may appear at the
interface which leads to an imperfect interface. Components of the displacement field are not
continuous at the common boundary of two media in the case of an imperfect interface. The
difference in displacement fields is assumed to linearly depend upon the traction vector. These
imperfections at the common boundary may affect the propagation of SH waves.
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Bhattacharya (1970) pointed out some possible exact solutions to the SH-wave equation for
inhomogeneous media. Schoenberg (1980) studied elastic wave behaviour across a linear slip
interface by assuming that the displacement discontinuity is linearly related to stress traction,
which itself is continuous across the interface. He studied the effects of interfacial compliances
on reflection and transmission coefficients of plane harmonic waves. Liu et al. (2007) studied
Love waves in layered graded composite structures with a rigid, slip and imperfectly bonded
interface which was described using an interface shear spring model. They showed that for the
imperfectly bonded interface, the phase velocity of Love waves changed in the range of velocities
for the rigid and slip interface conditions. Nie et al. (2009) studied shear horizontal guided waves
in a coupled plate consisting of a piezoelectric layer and a piezomagnetic layer. They assumed
that both layers are transversely isotropic and are perfectly bonded at the interface. They
concluded that phase velocity of SH waves approached the smaller bulk shear wave velocity of
the two materials in the system with the increase in the wave number. Borcherdt (2009) studied
the propagation of SH waves in viscoelastic media. Kumar and Chawla (2011) studied wave
propagation at an imperfect boundary between the transversely isotropic thermodiffusive elastic
layer and half space in the context of the Green-Lindsay theory. They presented the effects of
various parameters involved in the problem on both phase velocity and attenuation of SH-waves.
Singh et al. (2011) studied propagation of waves at an imperfectly bonded interface between two
monoclinic thermoelastic half-spaces. Otero et al. (2011) studied dispersion relations for SH
waves on a magnetoelectroelastic heterostructure with imperfect interfaces. They observed that
with decreasing values of imperfect bonding parameter, propagation velocity also decreased. Cui
et al. (2013) studied SH waves in a piezoelectric structure with an imperfectly bonded viscoelastic
layer. Sahu et al. (2014) studied SH waves in a viscoelastic heterogeneous layer over a half
space with self-weight. They studied the effects of gravity, heterogeneity and internal friction
on propagation of SH waves in the viscoelastic layer over the half space. They observed that
heterogeneity of the medium affected the velocity profile of SH wave significantly. Vardoulakis
and Georgiadis (1997) studied SH surface waves in a homogeneous gradient-elastic half space
with surface energy. They showed the existence of SH waves in a homogeneous gradient-elastic
half space. Recently, Sharma and Kumar (2016) studied propagation of SH waves in layered
media consisting of a viscoelastic layer perfectly bonded with a couple stress substrate.

In the classical elasticity, it is assumed that the matter is continuously distributed without
any defects, and internal microstructure of the material is also ignored. Experimental results
have shown that the materials having inner atomic structure or microstructures behave diffe-
rently at the micro level as compared to macroscale. Due to these shortcomings of the classical
elasticity, size dependent continuum mechanics has been developed, which accounts for the in-
ternal microstructure of the material and predicts the dependence of macroscopic response on
microstructural parameters of the material. Voigt (1887) was first to generate the idea of couple
stresses in the material. Cosserat and Cosserat (1909) gave a mathematical model involving
couple stresses in the material but they did not give any specific constitutive relations. Later
on, many researchers like Toupin (1962), Mindlin and Tiersten (1962), Koiter (1964), Eringen
(1968) and Nowacki (1974) worked on this idea and presented many theories. In these theories,
the concept of couple stress was introduced by defining the deformation of the material through
displacement and an independent rotation vector, which were associated with stresses and co-
uple stresses through constitutive relations. Due to rotation, the couple stress theory was able
to explain the dispersive nature of waves, which was not captured by the classical theory of
elasticity.

Many researchers have used couple stress theory to study problems of wave propagation in
elastic media under different conditions. Sengupta and Ghosh (1974a,b) studied the effects of
couple stresses in elastic media, they deduced the equations of surface waves in elastic media
under the influence of couple stresses and observed that the couple stresses affect the velocity
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of Rayleigh and Love wave propagation. Das et al. (1991) studied thermo-viscoelastic Rayleigh
waves under the influence of couple stress and gravity. Debnath and Roy (1988) studied pro-
pagation of edge waves in a thinly layered laminated medium with stress couples under initial
stresses. They showed that for a specific compression, the presence of couple stresses increase the
velocity of wave propagation with an increase in the wave number, whereas the trend was totally
reversed when there was no couple stress. Georgiadis and Velgaki (2003) studied the dispersive
nature of Rayleigh waves propagating along the surface of a half-space at high frequencies using
the couple stress theory.

There were some difficulties with the original couple stress theory like indeterminacy of
the spherical part of the couple stress tensor or involvement of separate material length scale
parameters. Hadjesfandiari and Dargush (2011) proposed a consistent couple stress theory by
considering true continuum kinematical displacement and rotation. In that proposed theory, it
was shown that the couple-stress tensor was skew-symmetric and the skew-symmetric part of
the gradient of the rotation tensor was the consistent curvature tensor. It is also shown that for
an isotropic material two Lamé parameters (λ and µ) and one length scale parameter (η = µl2)
completely characterise the behaviour. Here, a length scale parameter l called the characteristic
length is relevant for studies conducted at the micro or nano level for the materials which exhibit
internal microstructures like composites or cellular solids. It is assumed that the characteristic
length is comparable to the average cell size of the material.

Keeping in mind various factors affecting the dispersion of SH waves like nature of the
interface between two media, properties of the half space and coated layer, we intend to study
SH waves in a viscoelastic layer lying over a couple stress substrate with an imperfect interface
between them. To study the effects of microstructures of the substrate on the propagation of
SH waves, a model comprising of granular macromorphic rock (Dionysos Marble) exhibiting the
properties of a couple stress solid underlying heterogeneous viscoelastic layer is employed. The
couple stress theory proposed by Hadjesfandiari and Dargush (2011) is applied for observing the
effects of microstructures of the material of the substrate in terms of the characteristic length
and other parameters of the viscoelastic layer on the propagation of SH waves.

2. Formulation and solution of the problem

Consider a layer of a viscoelastic medium of thickness H lying over a couple stress substrate
with microstructures. The interface between two media is assumed to be imperfect. The origin
of the coordinate system O(x, y, z) lies on the interfacial surface joining the substrate and layer
of the viscoelastic medium. Here, the z axis is pointing vertically downwards into the half space,
the interface between the layer and half space is given by z = 0 and the free surface of the layer
is z = −H. For SH waves, displacement components and body forces are independent of the
y co-ordinate, so if (u, v,w) are the displacement co-ordinates of a point, then u = w = 0 and
v is a function of the parameters x, z and t.

Fig. 1. Geometry of the problem
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2.1. Couple stress half space

The basic governing equation of motion and constitutive relations of couple stress theory for
an isotropic material in the absence of body forces (Hadjesfandiari and Dargush, 2011) are given
by

(λ+ µ+ η∇2)∇(∇ · u) + (µ− η∇2)∇2u = ρ∂
2u

∂t2
(2.1)

where λ and µ are Lamé constants, η = µl2 is the couple-stress coefficient, l is the characteristic
length, ρ is density of the material of the half space, and u is the displacement vector.
Let us assume that u = [0, v, 0] and ∂/∂y ≡ 0. Under these conditions, the equation of

motion becomes

(∂2v
∂x2
+
∂2v

∂z2

)
− l2

(∂4v
∂x4
+
∂4v

∂z4
+ 2

∂4v
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C22

∂2v

∂t2
(2.2)

where C22 = µ/ρ.
We assume the solution to Eq. (2.2) to be v = f(z) exp[−i(ωt − kx)], where k is the wave

number, ω = kc is the angular frequency and c is the phase velocity. Using this solution in Eq.
(2.2), we get

d4f

dz4
− Sd

2f

dz2
+ Pf = 0 (2.3)

where

S = 2k2 +
1

l2
P = k4 +

k2

l2
− ω2

l2C22

Since in the couple stress elastic half space the amplitude of waves decreases with an increase
in depth, so the solution to the above differential equation becomes

f(z) = A1e
−a1z +B1e

−b1z (2.4)

where

a1 =

√
S +
√
S2 − 4P
2

b1 =

√
S −
√
S2 − 4P
2

and

v = (A1e
−a1z +B1e

−b1z)e−i(ωt−kx) (2.5)

The constitutive relations in the elastic half space are given by (Hadjesfandiari and Dargush,
2011)

σji = λuk,kδij + µ(ui,j + uj,i)− η∇2(ui,j − uj,i)

µji = 4η(ωi,j − ωj,i) ωi =
1

2
ǫijkuk,j

(2.6)

Here, ui are displacement components, σji is the non-symmetric force-stress tensor, µji is the
skew symmetric couple-stress tensor, δij is Kronecker’s delta, ǫijk is the permutation tensor and
i, j, k = 1, 2, 3
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Using Eq. (2.5) in eq. (2.7), we get

σyz =
[
µ(−a1A1e−a1z − b1B1e−b1z) + µl2(a1A1k2e−a1z

+ b1B1k
2e−b1z − a31A1e−a1z − b31B1e−b1z)

]
e−i(ωt−kx)

µxz = 2µl
2
[
a21A1e

−a1z + b21B1e
−b1z − (A1e−a1z +B1e−b1z)k2

]
e−i(ωt−kx)

(2.8)

2.2. Heterogeneous viscoelastic layer

For the heterogeneity of the layer, we assume that properties of the medium change only in
the z-direction. For SH waves propagating in the x-direction and causing displacement in the
y-direction only, we shall assume that u1 = [0, v1, 0] and ∂/∂y ≡ 0.
The equation of motion in the absence of body forces and under the above mentioned as-

sumptions (Ravinder, 1968) is given by

∂Pxy
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+
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where

Pxy =
(
µ1 + η1

∂

∂t

)∂v1
∂x

Pyz =
(
µ1 + η1

∂

∂t
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In the upper viscoelastic layer µ1, η1 and ρ1 are assumed to be function of depth only and are
given by

µ1 = µ0(1− sinαz) η1 = η0(1− sinαz) ρ1 = ρ0(1− sinαz) (2.10)

where µ0, η0, ρ0 are the constant values of µ1, η1 and ρ1 at the interface of the layer and half
space, and α is an arbitrary constant having dimensions of the inverse of length.
For the heterogeneous viscoelastic layer, Eq. (2.9) becomes

(
µ1 + η1

∂

∂t

)∂2v1
∂x2
+

∂

∂z

[(
µ1 + η1

∂

∂t

)∂v1
∂z

]
= ρ1

∂2v1
∂t2

(2.11)

Now, assuming the solution v1 = vL(z) exp[−i(ωt− kx)], the equation of motion becomes
d2vL
dz2
+
1

µ1
(µ1)

′
dvL
dz
+
(ρ1ω2
µ1
− k2

)
vL = 0 (2.12)

where µ1 = µ1 − iωη1 and (µ1)′ = dµ1/dz. Taking vL(z) = Y1(z)/
√
µ1, Eq. (2.12) reduces to

d2Y1
dz2
+

[
1

4(µ1)
2

(dµ1
dz

)2
− 1
2µ1

d2µ1
dz2
+
ρ1ω
2

µ1
− k2

]
Y1 = 0 (2.13)

Solving this equation further, gives

d2Y1
dz2
+
[α2
4
+
ρ0ω
2

µ0
− k2

]
Y1 = 0 (2.14)

where µ0 = µ0 − iωη0.
The solution to the above differential equation is

Y1 = A cos(mz) +B sin(mz)

where A and B are arbitrary constants and

m2 =
α2

4
+
ρ0ω
2

µ0
− k2

Hence v1 = vL(z) exp[−i(ωt− kx)] = (Y1(z)/
√
µ1) exp[−i(ωt− kx)], that

v1 =
1√
µ0

1√
1− sinαz [A cos(mz) +B sin(mz)]e

−i(ωt−kx) (2.15)
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3. Boundary conditions

Boundary conditions to be satisfied at the free surface of the viscoelastic layer and at the
interfacial surface between the viscoelastic layer and the couple stress half space are:

(i) The top surface of the viscoelastic layer should be stress free, so Pyz = (µ1 +
η1∂/∂t)(∂v1/∂z) = 0 at z = −H.

(ii) The difference in displacement fields is assumed to depend linearly upon the traction
vector, that is Pyz = G(v− v1) at z = 0, where G measures the degree of imperfectness at
the interface.

(iii) The magnitude of shear stresses of both the couple stress substrate and the viscoelastic
layer should be equal at the interface, that is Pyz = σyz at z = 0.

(iv) The couple stress tensor µxz should vanish at the interface, that is µxz = 0 at z = 0.

4. Derivation of secular equation

4.1. SH waves in the viscoelastic layer over the couple stress half space with an imperfect
interface

Using the above mentioned boundary conditions, we get following four equations
√
µ0[2m(1 + sin(αH)) sin(mH) + α cos(αH) cos(mH)]A

+
√
µ0[2m(1 + sin(αH)) cos(mH)− α cos(αH) sin(mH)]B = 0

−
(√

µ0α

2
+

G√
µ0

)
A−

√
µ0mB +GA1 +GB1 = 0

α
√
µ0A

2
+
√
µ0mB + µa1[1 + (a

2
1 − k2)l2]A1 + µb1[1 + (b21 − k2)l2]B1 = 0

(a21 − k2)A1 + (b21 − k2)B1 = 0

(4.1)

Equations (4.1) will have a non-trivial solution if the determinant of coefficients of the unknowns
A, B, A1, B1 vanishes. Applying this condition to the above system of equations, we obtain the
following secular equation for the SH waves in the heterogeneous viscoelastic layer imperfectly
bonded to a couple stress half space with microstructures as

(−2T1µ0m+ T2µ0α)[Q+G(b21 − a21)] + 2T2QG = 0 (4.2)

where

T1 = 2m[1 + sin(αH)] sin(mH) + α cos(αH) cos(mH)

T2 = 2m[1 + sin(αH)] cos(mH)− α cos(αH) sin(mH)
Q = µ(k2 − a21)(k2 − b21)(a1 − b1)l2 + µb1(k2 − a21)− µa1(k2 − b21)

Now, separating the real and imaginary parts of eq. (4.2), we get a dispersion equation of SH
waves as

[−2R1µ0m1 − 2R1ωη0m2 − 2I1ωη0m1 + 2I1µ0m2
+ α(R2µ0 + ωη0I2)][Q+G(b

2
1 − a21)] + 2R2QG = 0

(4.3)

and the imaginary part gives us the damping equation of SH waves as

[2R1ωη0m1 − 2R1µ0m2 − 2I1µ0m1 − 2I1ωη0m2
+ α(I2µ0 −R2ωη0)][Q+G(b21 − a21)] + 2I2QG = 0

(4.4)



Dispersion of SH waves in a viscoelastic layer... 541

4.2. SH waves in the viscoelastic layer over the couple stress half space with a perfectly
bonded interface

If in Eq. (4.2) G→∞, we get a secular equation for SH waves in the viscoelastic layer over
the couple stress half space with a perfectly bonded interface. It is the same as that obtained
by Sharma and Kumar (2016)

(−2T1µ0m+ T2µ0α)(b21 − a21) + 2T2Q = 0 (4.5)

4.3. SH waves in the viscoelastic layer over the couple stress half space with a slip interface

If in Eq. (4.2), G → 0, the secular equation for SH waves in the viscoelastic layer over the
couple stress half space for a slippage interface is given by

(−2T1µ0m+ T2µ0α)Q = 0 (4.6)

where

T1 = R1 + iI1 T2 = R2 + iI2

m = m1 + im2 m1 =
√
r cos

θ

2
m2 =

√
r sin

θ

2
R1 = 2[1 + sin(αH)](m1S1 −m2S2) + α cos(αH)E1
I1 = 2[1 + sin(αH)](m1S2 +m2S1)− α cos(αH)E2
R2 = 2[1 + sin(αH)](m1E1 +m2E2)− α cos(αH)S1
I2 = 2[1 + sin(αH)](m2E1 −m1E2)− α cos(αH)S2
S1 = sin(m1H) cosh(m2H) S2 = cos(m1H) sinh(m2H)

E1 = cos(m1H) cosh(m2H) E2 = sin(m1H) sinh(m2H)

F1 =
ρ0ω
3η0

µ20 + ω
2η20

F2 =
α2

4
− k2 + ρ0ω

2µ0
µ20 + ω

2η20

r =
√
F 21 + F

2
2 tan θ =

F1
F2

5. Numerical results and discussion

(i) For the viscoelastic layer, various material parameters (Gubbins, 1990) are taken as
ρ0 = 4705 kg/m

3, µ0 = 1.987 · 1010 N/m2, µ0/η0 = 106 s−1, β1 =
√
µ0/ρ0 = 2055m/s.

(ii) The material parameters for the couple stress half space which is made of Dionysos
Marble (Vardoulakis and Georgiadis, 1997) are ρ = 2717 kg/m3, µ = 30.5 · 109N/m2,
C2 =

√
µ/ρ = 3350m/s.

Dionysos Marble is a white fine-grained metamorphic marble with saccharoidal microstruc-
ture. To find the impact of characteristic length, different cases of characteristic length l com-
parable with the internal cell size of granular macromorphic rock O(10−4) such as l = 0.0001m,
l = 0.0004m, l = 0.0008m are considered. In all the figures, phase velocity is plotted using Eq.
(4.3) and the real part of Eq. (4.5). Graphs of damping velocity are plotted using Eq. (4.4) and
the imaginary part of Eq. (4.5).
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5.1. Effects of degree of imperfectness at the interface

To study the role of degree of imperfectness of the interface on the propagation of SH waves
in the viscoelastic layer over the couple stress substrate, curves are provided in Figs. 2a and 2b.
Here, we have considered fixed values of other parameters as αH = 0.54, characteristic length
l = 0.0004m and friction parameter µ1/η1 = 10

6. It can be observed in Fig. 2a that SH waves
are dispersive, and the non dimensional phase velocity c/β1 of SH waves decreases sharply with
an increase in the non dimensional wave number kH before becoming asymptotically constant.
It can also be observed from the profiles in Fig. 2a that an increase in the value of parameter G
leads to an increase in the phase velocity of SH waves for any fixed value of the dimensionless
wave number kH. Since the imperfectness is inversely proportional to G, so an increase in the
imperfectness adversely affects the phase velocity, and the phase velocity is maximum when
the interface is perfectly bonded G → ∞. Figure 2b shows the variation in non dimensional
damping velocity of SH waves with the non dimensional wave number for different values of the
parameter G. It can be observed that the damping velocity increases with an increase in the
parameter G. The damping velocity is also maximum when the interface is perfectly bonded.

Fig. 2. (a) Phase and (b) damping velocity profiles of SH waves with the wave number for
different values of G

5.2. Effects of the heterogeneity parameter

The role of the heterogeneity parameter on both the phase and damping velocities of SH
waves is studied in Figs. 3a and 3b. Dispersion curves are provided for three different values
of the heterogeneity parameter αH = 0.18, 0.54 and 0.72. We have considered values of other
parameters asH = 0.09m, characteristic length l = 0.0004m and friction parameter µ1/η1 = 10

6

and the value of G = 2 · 1.987 · 1010. It can be observed that with the increasing value of
the heterogeneity parameter αH, the phase velocity of SH waves decreases. Figure 3b shows
variation of the damping velocity with the wave number for different values of the heterogeneity
parameter. It can be seen that the damping velocity of SH waves increases with an increase in
the heterogeneity parameter.

5.3. Effects of the friction parameter

Dispersion curves to demonstrate the role of the friction parameter on SH waves in the visco-
elastic layer are provided in Figs. 4a and 4b for three different values of the friction parameter
µ1/η1 = 7 · 105 s−1, 10 · 105 s−1, 80 · 105 s−1. We have considered the values of other parameters
as αH = 0.54, characteristic length l = 0.0004m and G = 2 · 1.987 · 1010. It can be observed
from these figures that both the phase velocity and damping velocity of SH waves decrease with
an increase in the value of the friction parameter µ1/η1.
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Fig. 3. (a) Phase and (b) damping velocity profiles of SH waves with the wave number for
different values of αH

Fig. 4. (a) Phase and (b) damping velocity profiles of SH waves with the wave number for
different values of µ1/η1

5.4. Effects of the thickness of the viscoelastic layer

Figure 5a shows variation in the phase velocity c/β1 against the wave number kH for three
different values of thickness, H = 0.04m, 0.06m, 0.09m. The values of other fixed parameters
are αH = 0.54, µ1/η1 = 10

6, l = 0.0004 and G = 2 · 1.987 · 1010. It is observed that with the
increasing value of thickness of the viscoelastic layer over the couple stress substrate, the phase
velocity of SH waves also increases. Figure 5b shows variation of the damping velocity of SH
waves with the wave number for different values of thickness of the viscoelastic layer. It can be
seen that the damping velocity of SH waves decreases with an increase in thickness of the layer.

5.5. Effects of the internal microstructure of the substrate

For observing the effects of internal microstructure of the underlying substrate, variation in
the phase velocity and damping velocity is shown against the wave number in Figs. 6a and 6b for
three different values of the characteristic length l = 0.0001m, 0.0004m, 0.0008m. The values
of other fixed parameters are taken as αH = 0.54, µ1/η1 = 10

6 and G = 2 · 1.987 · 1010. It can
be observed that both the phase velocity and damping velocity of SH waves increase with an
increase in the characteristic length l of the material.
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Fig. 5. (a) Phase and (b) damping velocity profiles of SH waves with the wave number for
different values of H

Fig. 6. (a) Phase and (b) damping velocity profiles of SH the waves with wave number for
different values of l

6. Conclusion

Propagation of SH waves is studied in a viscoelastic layer bonded imperfectly with a couple stress
substrate. Dispersion equations for propagation of SH waves with a perfectly bonded interface
and a slippage interface between two media are also obtained as particular cases. The numerical
results are presented graphically. Following major conclusions are drawn from the present study:

• SH waves show dispersion in the considered model. Initially, the phase velocity of SH waves
decreases sharply with an increase in the wave number, then it becomes asymptotically
constant for higher wave numbers.

• Imperfectness at the interface between two media has a significant effect on the phase
and damping velocities of SH waves. It is observed that with the decreasing value of
imperfectness at the interface, both the phase and damping velocities of SH waves increase.
The phase and damping velocities are highest when the interface is perfectly bonded.

• The heterogeneity parameter of the viscoelastic layer has an adverse effect on the phase
velocity but it favours the damping velocity. So, the phase velocity decreases and the
damping velocity increases with an increase in the heterogeneity parameter.

• The friction parameter of the viscoelastic layer has an adverse effect on both the phase
and damping velocities. Both of them decrease with the increasing value of this parameter.
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• It is observed that with the increasing value of thickness of the viscoelastic layer over the
couple stress substrate, the phase velocity of SH waves increases. The increasing value of
thickness of the viscoelastic layer does not favour damping velocity.

• Characteristic length l which measures internal microstructure of the material of the under-
lying substrate favours both the phase and damping velocities of SH waves. These velocities
increase with the increasing value of characteristic length of the underlying couple stress
substrate.

The consideration of microstructural effects on the propagation of SH waves in this reali-
stic model may provide possible applications to non-destructive testing techniques and other
engineering fields. The results presented in this work may be applied to the designing of liquid
viscosity sensors and biosensors. As the model is considered to replicate the internal structure
of earth, so it may also find possible application to seismology or geomechanics engineering.
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Although in the scientific literature there are studies regarding optimization of structural
members subject to static loads or even cyclic in-phase loads, the optimization of structures
subject to cyclic, out-of-phase multiaxial loads is still an unexplored issue. In this paper,
we present an approach to the problem of size optimization of rectangular cross-section
members subject to multiaxial in-phase and out-of-phase cyclic loads. The objective of the
optimization is to minimize the cross sectional area of such elements while retaining their
fatigue endurance. Under the proposed methodology, optimum values of the area are achieved
for six loading cases and for three values of the height to width ratio of the cross section,
and these values are reported. The novelty of the approach lies in the inclusion of two
multiaxial high cycle fatigue criteria, i.e., Dang Van and Vu-Halm-Nadot ones, as constraints
for size optimization problems, fully integrated within an in-house developed tool, capable of
handling non-proportional stresses. A plot of the feasible solution space for this optimization
problem is also obtained.

Keywords: size optimization, multiaxial fatigue, non-proportional

Nomenclature

u1, u2 – design variables
Mt,Mb – applied torsional and bending moment, respectively
f−1, t−1 – fatigue limit in fully reversed bending and torsion, respectively
Su – ultimate strength
σij – macroscopic stress tensor
σH – hydrostatic stress
Sij, sij – macroscopic and mesoscopic deviatoric stress tensor, respectively
devρ∗ij – deviatoric local residual stress tensor

I1a, I1m – amplitude and mean value of first invariant of stress tensor, respectively
J2a – amplitude of second invariant of deviatoric stress tensor
φ – phase angle

1. Introduction

Optimization of structural elements is an important problem in engineering design, and rectan-
gular cross-section members are widely used in engineering applications for machine components.
Many authors have applied size, shape and topology optimization techniques to structural

elements as diverse as beams, test specimens, or notched elements subject generally to static
loads or proportional cyclic loads.
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Baptista et al. (2014) optimized the geometry of cruciform specimens for biaxial fatigue
testing machines in order to obtain maximum and uniform stress values in the gauge area
of such specimens, where the fatigue damage was supposed to initiate. Ghelichi et al. (2011)
optimized the shape of the notches in components subject to multiaxial cyclic loads using the
Liu-Zenner criterion and decreasing the stress concentration at the notch.

Andjelić and Milosević-Mitić (2012) solved the problem of optimization of thin walled
I-beams loaded in static bending and torsion. They determined the minimum mass of the
I-beam subject to stress constraints.

Mrzygłód (2010) and Mrzygłód and Zieliński (2006) made remarkable contributions by im-
plementing multiaxial, high cycle fatigue criteria as constraints in the structural optimization
of vehicle parts on the assumption of in-phase loadings. The goal of their optimization was to
decrease the mass of the parts while retaining their fatigue endurance.

Holmberg et al. (2014) explored the problem of topology optimization with fatigue constra-
ints. Their objective was to find the design with the minimum mass that could still withstand
a specific life time. They tested their methodology with some examples involving only one load
direction on models such as L-shaped beams.

Jeong et al. (2015) should be mentioned for developing a topology optimization method that
included static stress and fatigue constraints, the aim of which was to minimize the mass of struc-
tures under the effect of constant amplitude proportional loads. They proved the applicability
of their approach to two-dimensional continuum structures.

In the experimental field, the work by Rozumek et al. (2010) has to be noticed as they
conducted tests on rectangular cross-section specimens subject to combined cyclic loadings and
recorded their lives to crack initiation.

However, there is little research related to the optimization of structural elements subject to
fatigue constraints, much less multiaxial fatigue constraints for problems involving in-phase as
well as out-of-phase cyclic loads.

Therefore, the main problem to be addressed in this paper is to present an approach to
the size optimization of structural members including multiaxial fatigue criteria as constraints,
when the structural member under consideration is subject to biaxial proportional and non-
proportional loads, using in-house developed tools.

2. Description of geometry, stresses and loads applied

The objective of the optimization is to minimize the area of rectangular cross-section members
subject to biaxial cyclic loading, i.e., combined in-phase and out-of-phase bending with torsion
while retaining their fatigue endurance. Therefore, it is necessary to analyze briefly the rela-
tionships between the loads being applied to such members and the resulting normal and shear
stresses.

Let us consider a rectangular cross-section member subject to a torsional moment as well
as to a bending moment as shown in Fig. 1. The maximum shear stress at the center of the
long side due to the torsional moment is given by equation (2.1)1 (Boresi, 2002). Meanwhile, the
stress on the short side is given by equation (2.1)2, point A. In Fig. 1, as in the optimization
process, the width and height of the cross section are identified as u1, u2, respectively

τmax = σ13 =
Mt

k2u2u21
σ12 = k3τmax (2.1)

Factors k2, k3 are shown in Table 1 for several values of the height to width ratio u2/u1
assuming the case where u2 > u1.
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Fig. 1. Rectangular cross-section cantilever beam subjected to combined bending with torsion:
(a) left view, applied torsional moment, (b) front view, applied bending moment

Table 1. Factors k2, k3. Data from Timoshenko and Goodier (1951) and from Gasiak and Robak
(2010)

u2/u1 1.0 1.5 2.0 3.0 4.0 6.0 10.0

k2 0.208 0.231 0.246 0.267 0.282 0.299 0.312

k3 1.000 0.859 0.795 0.753 0.745 0.743 0.742

With regard to the normal stress, owing to the bending moment, it reaches its maximum
value at point A calculated using equation

σ11 =
6Mb

u1u22
(2.2)

We consider the normal and shear stresses at point A and also make the following assump-
tions:

• Bending and torsional moments are applied in a cyclic, fully reversible manner, under the
high cycle fatigue regime.

• With loads applied in a synchronous and sinusoidal way, the normal and shear stresses
change along one loading cycle according to equations

σ11(t) = σ11,m + σ11,a sin
2πt

T
σ12(t) = σ12,m + σ12,a sin

(2πt
T
− φ

)
(2.3)

3. Fatigue criteria included as constraints

The fatigue criteria selected to be included as constraints, i.e., Dang Van, Vu-Halm-Nadot ones,
show good agreement with experimental results. They have been selected such that a comparative
base for the obtained results can be established with the fatigue criteria based on different
methods, i.e., a multi-scale method or stress invariant method.

Although further explanation of these criteria can be found respectively in (Dang Van et al.,
1989; Vu et al., 2010), we make a short review of the stresses to be calculated for each of them.

3.1. Dang Van criterion

This criterion evaluates an equivalent stress resulting from the linear combination of meso-
scopic shear and hydrostatic stresses. Then it compares this equivalent stress against the fatigue
limit in fully reversed torsion t−1, see equation (3.3)1. As a previous step to the calculation
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of mesoscopic stresses, it is mandatory to obtain quantities such as components of the macro-
scopic stress tensor σij(t), the hydrostatic stress σH(t), and the macroscopic deviatoric stress
tensor Sij(t) all of them acting throughout one loading cycle

σH(t) =
σ1(t) + σ2(t) + σ3(t)

3
Sij(t) = σij(t)− σH(t)Iij (3.1)

The calculation of the deviatoric local residual stress tensor devρ∗ij, is not a trivial task when
loads are non-proportional, but it is a fundamental step to the calculation of mesoscopic stresses

sij(t) = Sij(t) + devρ
∗

ij τ(t) =
s1(t)− s3(t)

2
(3.2)

The value of α is defined in equation (3.3)2, and for both criteria β = t−1

max[τ(t) + ασH(t)] ¬ β α =
3t−1
f−1
− 3
2

(3.3)

3.2. Vu-Halm-Nadot criterion

This multiaxial fatigue criterion is based on invariants of the macroscopic stress tensor and it
has an advantage of low-computation time. Its evaluation requires, in the first place, calculation
of the amplitude of the second invariant of the macroscopic deviatoric stress tensor

J ′2(t) =
√
J2a(t) =

√
1

2
[Sa(t) · Sa(t)] (3.4)

after which their authors propose to introduce the mean value of the second invariant of the
deviatoric stress tensor along one loading cycle

J2,mean =
1

T

T∫

0

J ′2(t) dt (3.5)

Once these quantities are obtained, the Vu-Halm-Nadot criterion is expressed as
√
γ1J

′2
2 (t) + γ2J

2
2,mean + γ3If (I1a, I1m) ¬ β (3.6)

where If is a function of I1a and I1m

I1a =
1

2

{
max
t∈T

I1(t)−min
t∈T

I1(t)
}

I1m =
1

2

{
max
t∈T

I1(t) + min
t∈T

I1(t)
} (3.7)

While using this criterion, the ultimate strength is employed to distinguish between two classes
of metals, i.e., low-strength with Su < 750MPa, and for which If is given by

If (I1a, I1m) = I1a + I1m (3.8)

and high-strength with Su > 750MPa, and for which If is given by

If (I1a, I1m) = I1a +
f−1
t−1

I1m (3.9)

where γ1, γ2 are material parameters dependent on the ultimate strength of the material. The
value of γ3 is given by

γ3 =
1

f−1

(
t2
−1 −

f2
−1

3

)
(3.10)
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For low-strength metals: γ1 = 0.65, γ2 = 0.8636; for high-strength metals: γ1 = 0.3, γ2 = 1.7272.
An in-house tool has been developed for the use of such criteria as fatigue constraints on size

optimization problems for both proportional and non-proportional loads. This in-house tool has
been developed using the commercial software Matlab (MATLAB Optimization Toolbox User’s
Guide, 2013).

4. Formulation of the optimization problem

The size optimization problem can be expressed as finding the set of design variables {u} that
minimize the objective function, i.e., the area of the rectangular cross-section members subject
to biaxial bending with torsion

min f(u1, u2) = u1u2 (4.1)

while keeping the state variable, i.e., their fatigue endurance under the value of β (Christensen
and Klarbring, 2009), selecting one of the equations

max[τ(t) + ασH(t)] ¬ β√
γ1J

′2
2 (t) + γ2J

2
2,mean + γ3If (I1a, I1m) ¬ β

(4.2)

We also add a linear constraint to this problem, representing a specific height to width ratio of
the cross section

u2 ¬ c1u1 (4.3)

This optimization problem is solved using our in-house tool developed in Matlab. The optimiza-
tion method used is the Sequential Quadratic Programming algorithm (SQP), a gradient based
algorithm that can handle constrained nonlinear programming problems.
The Sequential Quadratic Programming algorithm works by solving in an iterative manner

a series of quadratic programming sub-problems which are based on the expansion about the
current design point of both the objective and the constraint functions using the Taylor series.
Although the full description of this algorithm is out of the scope of this paper, a detailed
description of it can be found in Venkataraman (2002).
The SQP algorithm is implemented within the optimization function fmincon of Matlab and,

in turn, this function is coded in our tool, which invokes the constraint functions (which are not
explicit functions of the design variables u1, u2), and the objective function in every iteration.
A flowchart of the optimization approach is presented in Fig. 2. The design variables {u} are

changed throughout the optimization process while keeping the values of the applied bending
and torsional moments. Thus, as geometry changes, the applied stresses are updated in every
iteration as well as the equivalent stress calculated according to the multiaxial high cycle fatigue
criterion. The latter is then compared against the permissible value of β that is t−1. New values
of u1, u2 are set and the iterative process continues until the objective function, i.e., the cross
sectional area achieves the conditions of convergence and the solution still satisfies the fatigue
constraints.

5. Numerical examples

As a numerical example of the size optimization approach presented here, we use a rectangular
cross-section beam model as the one depicted in Fig. 1, under biaxial in-phase and out-of-phase
loads.
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Fig. 2. Flowchart of the implemented optimization approach

We define six loading cases acting over this model representing cyclic, fully reversible, bending
and torsional moments. These combinations appear in Table 2. For the first three loading cases,
bending and torsional moments are applied in phase, therefore φ, the phase angle, equals zero.
For the last three loading cases, bending and torsional moments are applied out of phase, and
φ equals 90◦. Examples of the resulting stress histories are seen in Fig. 3.

Table 2. Loading cases acting over the rectangular cross-section model. Applied bending mo-
ment Mb,a, applied torsional moment Mt,a, phase angle φ

Loading Mb,a Mt,a φ
case [Nm] [Nm] [deg]

1 20 10 0

2 25 12.5 0

3 30 15 0

4 20 10 90

5 25 12.5 90

6 30 15 90
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Fig. 3. Stress histories acting over the model: (a) in-phase loads, (b) out-of-phase loads

The material employed in the analyses is hard steel. It has the following properties relevant
for fatigue design: ultimate strength Su = 680MPa, fatigue limit in fully reversed bending
f−1 = 313.9MPa, fatigue limit in fully reversed torsion t−1 = 196.2MPa. Data are taken from
Nishihara and Kawamoto reported in (Papadopoulos et al., 1997).

As stated earlier, the objective of the optimization is to minimize the area of the rectangular
cross section member for each loading case and for three different height to width ratios of
the section (1.50, 1.75, and 2.00). This is accomplished while keeping the values of the applied
bending and torsional moments, and also while keeping the fatigue endurance of the model. The
initial values of the design variables are set as: u1 = 8mm, u2 = 10mm for all loading cases.
This point is selected from within the feasible region, which we explain in detail in the next
Section.

6. Results and discussion

The optimum values of area of the rectangular cross-section members have been calculated for
each loading case of Table 2, using the Dang Van and Vu-Halm-Nadot multiaxial high cycle
fatigue criteria as constraints. This means finding the minimum cross sectional area that will
withstand the applied loads, and will do it with an equivalent stress below the fatigue limit in
fully reversed torsion, or in other words, will be able to resist infinite life.

These results are shown in tables 3, 4 and 5 for three different height to width ratios of the
section, respectively. We will explain our results throughout an example. Let us refer to loading
case six for which: Mb,a = 30Nm, Mt,a = 15Nm, φ = 90

◦. The initial values of the design
variables selected from within the feasible region are: u1 = 8mm, u2 = 10mm. The height to
width ratio is 1.50, and the Dang Van fatigue criterion is used. After application of the size
optimization, the optimum value of area found is 60.29mm2. For the same loading conditions
but using aH/W ratio of 1.75, the optimum value is 57.27mm2. Finally, for aH/W ratio of 2.00,
the optimum value is 54.78mm2.

We use the feasible solution space for the same loading case as a graphical representation of
the optimization problem. It is shown in Figs. 4 and 5 for both fatigue criteria, respectively.

The points on any curve of this diagram have the same value. Therefore, we observe contour
curves of a constant area representing the objective function, to decrease from the upper right
corner to the down left corner of the picture. Three dotted lines represent the values of the
height to width ratio of the cross section. The remaining solid curve represents the value of the
fatigue limit for each criterion. The initial values of the design variables are selected from within
the feasible region, i.e., the region beneath the specific line of H/W ratio and above the curve
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Table 3. Optimum values of the area for 1.0 · 106 cycles. Height to width ratio: 1.50
Loading Mb,a Mt,a φ Aoptim [mm

2]
case [Nm] [Nm] [deg] Dang Van VHN

1 20 10 0 54.70 52.70

2 25 12.5 0 63.47 61.15

3 30 15 0 71.68 69.05

4 20 10 90 46.01 50.49

5 25 12.5 90 53.39 58.58

6 30 15 90 60.29 66.16

Table 4. Optimum values of the area for 1.0 · 106 cycles. Height to width ratio: 1.75
Loading Mb,a Mt,a φ Aoptim [mm

2]
case [Nm] [Nm] [deg] Dang Van VHN

1 20 10 0 52.98 50.99

2 25 12.5 0 61.48 59.17

3 30 15 0 69.43 66.82

4 20 10 90 43.71 48.49

5 25 12.5 90 50.72 56.27

6 30 15 90 57.27 63.54

Table 5. Optimum values of the area for 1.0 · 106 cycles. Height to width ratio: 2.00
Loading Mb,a Mt,a φ Aoptim [mm

2]
case [Nm] [Nm] [deg] Dang Van VHN

1 20 10 0 51.78 49.77

2 25 12.5 0 60.08 57.76

3 30 15 0 67.85 65.22

4 20 10 90 41.80 46.95

5 25 12.5 90 48.51 54.49

6 30 15 90 54.78 61.53

of fatigue endurance. The optimum values are at the intersection of a H/W ratio line and the
fatigue curve, see Figs. 4 and 5. They correspond to those reported in Tables 3-5.

In Figs. 6a and 6b, the convergence histories for loading case 6 using both criteria are shown.
As it can be seen, after the initial value of the objective function is set, the Sequential Quadratic
Programming algorithm quickly converges to the minimum point within just four iterations.

In order to establish a comparative base for the results obtained and to check their effecti-
veness, we have arrived at similar optimum values of the objective function by means of fatigue
criteria based on two different methods, i.e., multi-scale and stress-invariants.

Furthermore, the results from Tables 3-5 and Figs. 4 and 5 show that amongst the optimum
values, less amount of material is needed to withstand the applied loads when the H/W ratio
is increased, see Table 6. Finally, with regard to the fatigue criteria included as constraints, the
Vu-Halm-Nadot criterion has an advantage of faster computing times.

7. Conclusion

Little research has been devoted to the problem of size optimization of structural members sub-
ject to non-proportional cyclic stresses. Therefore, we present an approach aimed at minimizing
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Fig. 4. Feasible solution space using the Dang Van criterion as a constraint, loading case 6. Contour
curves of a constant area in mm2

Fig. 5. Feasible solution space using the Vu-Halm-Nadot criterion as a constraint, loading case 6.
Contour curves of a constant area in mm2

the area of rectangular cross-section members under multiaxial in-phase and out-of-phase cyclic
loadings while retaining their fatigue endurance.

This approach is based on the use of an in-house developed tool, in which two multiaxial high
cycle fatigue criteria have been included as constraints, i.e., the Dang Van and Vu-Halm-Nadot
criteria, coded as nonlinear constraints within the fmincon optimization function in Matlab.
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Fig. 6. Convergence diagram, loading case 6. Initial value of the objective function in all cases: 80mm2.
Fatigue criterion: (a) Dang Van, (b) Vu-Halm-Nadot

Table 6. Reduction of optimum values of the area as the height to width ratio increases, for
both criteria

Increase of Reduction Reduction
Loading the height of area [%] of area [%]
case to width Dang Van VHN

ratio criterion criterion

1, 2, 3 1.50 to 1.75 3.14 3.24

4, 5, 6 1.50 to 1.75 5.01 3.95

1, 2, 3 1.75 to 2.00 2.28 2.39

4, 5, 6 1.75 to 2.00 4.35 3.17

In the numerical examples given as the reference, optimum values of the area are obtained
for each loading case and for three values of the height to width ratio of the cross section. If we
consider mass of an element to be proportional to its cross-sectional area, minimizing this area
would mean a reduction of mass.

The novelty of the approach lies in the inclusion of multiaxial high cycle fatigue criteria as
constraints for structural optimization problems capable of handling non-proportional loads, and
the obtainment of the feasible solution space, including these fatigue constraints, which is a visual
aid for verifying the viability of the solution for each loading case. The results of the applied
approach are encouraging, since it can be useful for experimental work in which rectangular
cross-section specimens are used, or as a base for methods focused on size optimization using
the Sequential Quadratic Programming algorithm.
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The modern approach of Virtual Engineering allows one to detect with some accuracy the
residual life of components especially free of cracks. The life estimation becomes cumbersome
when the components contain a crack. A straightforward formulation requires a parameter
that considers geometrical constraints and materials properties. The magnitude of the stress
singularity developed by the tip of a crack, needs to be expressed by the Stress Intensity
Factors (SIF). In order to prove the validity of the results, calibration by experimental and/or
analytical technique is required. To have a better understanding of this parameter, in the first
part of this paper an analytical model to compute the SIF connected to crack propagation
into Mode I has been implemented. The case study displays a pipeline component with a
crack defect submitted to internal pressure. Therefore, an appropriate correlation between
the analytical approach and numerical simulation has been established embedded.

Keywords: crack, Finite Element (FE), internal pressure, Stress Intensity Factors (SIF)

1. Introduction

Mechanical engineering, manufacturing and/or materials performance are still attractive fields
of research because of the existence of imperfections in the material components. This open
question is notable on pipeline structures that seem to impose an effective challenge due to
cumulative price between residual life estimation and capital costs (Schoots et al., 2011). The
future development of manufacturing capabilities and the industrial applications of steel cylin-
ders, tailored in this field, is recognized to be very sensitive to the defects occurrence.

The sizes of defects deal with the magnitude of industrial accidents in such cylinders (Staat
and Duc, 2007). In technological product innovation, the fracture properties of steel cylinders
with defects are very important for their engineering design and application. In the final product,
defects may arise in different ways because of cumulative loading action (i.e. internal pressure,
temperature gradient, friction between soil/pipes interface and so on, see in Fig. 1).

The crack like “cavities” in Buried Pipeline was determined in (Lee and Choi, 1999) using the
maximum equivalent stresses. The simplified approach show the effects of cavities on maximum
equivalent stresses of the buried pipeline, and the stresses associated of two main factors such as
size and location. Here, may be worth to note that there is a link between the effects of location
while the cavities are at the same depth. It was observed when the cavities develop larger than
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Fig. 1. Example of loads generated in a pipe section

pipeline diameter, the effects of cavities located below the pipeline are found to be larger than
those located above the pipeline.

A method to solve the fracture behavior of cracked pipes can be settled using the J-Q appro-
ach, by using a plane-strain constrain to characterize the effects of control on cleavage fracture
behavior. This method allows good assessment for material with cleavage fracture behavior,
because the toughness data appear more applicable for cleavage fracture predictions. The ap-
proach works well on pressurized pipelines and cylindrical vessels compared to standard methods
with an assumption valid on deep notch fracture specimens under bend loading (Cravero and
Ruggieri, 2005).

The impact of geometric parameters as well as the crack-tip opening displacement (CTOD)
and the crack tip opening angle (CTOA) allows accurate solution in the case of a dam aged pi-
peline. A digital camera and image analysis software may offer evidence of the progression of the
crack tip and may estimate accurately the CTOA (Darcis et al., 2008). This consideration became
effective for the fracture evaluation in a particular case of ductile behavior. However, this imposes
some limitation in a distinct type of engineering situations, namely situations in which ductile
fracture can develop quantitatively a priori and occur in mode I, as it is frequently in the case
of pipelines and pressure vessels (Corigliano et al., 1999). To predict experimentally the activity
of burst pressures in a thin-walled gas pipeline containing longitudinal cracks, a micromechanics
approach based upon the computational cell methodology enclosed in the Gurson-Tvergaard
model and a deformation-based approach settled on the CTOA criterion may be relevant. The
verification methodology shows the potential predictive capability of the cell approach incorpo-
rating the GT model, particularly for moderate to deep crack size to pipe thickness ratios (a/t).
However, burst pressure predictions for a shallow crack pipe specimen displayed poor agreement
with experiments and largely overestimated the measured failure pressures (Rugieri and Dotta,
2011).

By using the constraint R∗, the effects of geometries and crack dimensions was determined
on axially cracked pipes and SENT (Single Edge Notched Tension) specimens (Tan et al., 2015).
The creep crack-tip constraint are significant when changes are made to some parameters, for
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examples, by increasing crack depth, crack length linked to D/t (diameter/thickness). A con-
straint level as a function of test specimens from high to low may be ordered in the following
manner: CT (Compact Tension), CST (C-Shaped Tension), SENB (Single-Edge Notched Bend),
SENT and CCT (Center-Cracked Tension). It was observed that the constraint developed by
the pin-loaded SENT specimen was almost the same as that of the clamped SENT specimen.
Besides, the creep constraint R∗ of SENT specimen increases with increasing crack depth a/W
(crack depth/specimen width) and specimen width W .

At low temperature (−40◦C to −60◦C), crack extension vs. time is a critical importance
situation because the dynamic crack propagation is very often encountered. To determine fitness
for service of arctic pipelines, bursting tests of line pipes samples at low temperature were
carried out within a reasonable uncertainty by using timing wires. The determination highlights
the axial crack fracture mechanism in a quasi-cleavage manner in the center of the pipe wall
showing width of the shear lips be positively correlated with test temperature and burst pressure
(Murtagian et al., 2005). Recently, Nordhagen et al. (2014) proposed a numerical solution using
a simple artificial fluid-structure interaction model validated using an advanced ideal fluid-
structure interaction proposal. It appears that average crack speed is most sensitive to pipe
thickness, followed by initial pressure, Cockcroft-Latham fracture parameter, decay length, yield
strength, pipe diameter and work-hardening.

In order to ensure safe design of pipelines, new methods are compulsory; they can be based on
depth knowledge and appropriate characterization of material resistance. However, it is necessary
to find a combination between quasi-static test and dynamic drop weight tear testing (DWTT)
on modified specimens with pre-fatigued crack where the application of the cohesive zone (CZ)
and Gurson-Tveergard-Needleman (GTN) models to describe ductile material damage may be
applied. This approach contributes to an increase in the understanding of major parameters
controlling ductile fracture propagation and helping to establish a reliable procedure for safe
design of new high-capacity pipelines with regard to crack arrest (Scheider et al., 2014).

In this paper, steel cylinders submitted to internal pressure with longitudinal surface defects
are evaluated. This kind of longitudinal defects develop, usually, on the external part of the pipe
surface in the axial way. The major consideration is dedicated to calculating contributions of
the SIF in the steel cylinders submitted to different levels of loading.

To be noted, this survey attempts to confront also the solutions proposed in literature (Heliot
et al., 1997; McGowan and Raymund, 1997; Shin and Cai, 2004; You et al., 2007) devoted to
calculation of SIFs of pressurized cylinders with longitudinal cracks. In fact, this paper permits
one to consolidate a robust strategy, suitable for designing industrial components by using
the Finite Element Methods (FEM) confidently. So, using the analytical models cited in the
literature allows eliminating “the industrial fear” that appears while an industrial user comes in
the contact with “the black box” approach of the FEM tools.

In Fig. 2, we present respectively a physical problem where the SIFs can be applied success-
fully along the crack front, the component from a steel cylinder with different external surface
crack sizes. The internal pressure enforced to fracture the wall size was P = 1.5MPa that corre-
sponded to a working pressure of a pipeline platform. In the present configuration (i.e. sketched
in Fig. 2a and 2b), it is assumed that both values of the SIF for Mode I, namely, KI parameter
reach the largest values at the deepest points of different external surface cracks and, besides,
decrease from the deepest point down to the surface point along the crack front. A mathematical
formulation of SIFs values along the axial external surface cracks can be very well expressed by
a polynomial equation following the point locations along the crack fronts by using six order
polynomials

KI =
6∑

i=0

Ai
(2φ
π

)i
(1.1)



562 H. Moustabchir et al.

where Ai are constants that depend on the crack type, crack size, internal pressure, dimensions
and of course the material of the cylinder. Details on the conditions of the present formulations
(i.e. while the internal pressure is imposed) and all constants for different axial external surface
cracks are listed in (Su and Gouri, 1999).

Fig. 2. Photographs of an axial crack in an engineering-structure caused by the applied load (the case of
a steel gas cylinder)

2. Stress intensity factors (SIF) for pipes in service section

Critical temperature, pressure and the fluid stream can activate together a complex mechanism
in the materials behavior while flaw geometries (having different shape) can easily initiate and
propagate. To easy solve this challenge, we only consider a hypothetical case of axial flaws at
the surface of a pipe (Fig. 3).

Fig. 3. Pipe geometry containing longitudinal surface flaw

Thus, in the simplified approach connected to the above flow configuration, a symmetry
dimension of the structure may require. Once established a convenient methodology to run typi-
cal experimental processes, such as this symmetrical geometry, allows detecting accurately the
values of KI . The computation technique needs to sustain this strategy. There, dynamic loading
events such as pressure surges and external impact are ignored, and the expected operating
conditions of the buried pipeline are split into static contributions from the internal pressure,
loading moment and tension stress.
Since each of these stress components creates mode-I opening of the flaw, individual SIF can

be superposed to give a net value of KI

KI NETT ≈ KIP +KIM +KIT (2.1)

with: KIP a factor of internal pressure, KIM a factor of bending load, KIT a factor tension
loading.
A minimum assumption to avoid crack propagation, denoted by as well as the material

fracture toughness (KIC), must be sufficient to overcome the combined constraints of other
factors. The embedded formulation of the cumulative action of these “external” SIFs allows
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propagation of the cracks, when the critical Stress Intensity Factors SIF’s(crit) (i.e. KIC) become
lower with respect to the net value of KI

KIP +KIM +KIT  KIC (2.2)

So, we notice the primary and most important problem in fracture analysis that the pressure
vessel requires determination of the nett value of the SIF of the crack surface. The approach
presented in this survey provides a comprehension range of results of SIFs for external surface
cracks in a cylindrical fissure vessel.

A pipeline structure submitted to internal loading situations may develop the following state
that is displayed in Figs. 4a-4c, where the effect of internal pressure can be examined for three
different conditions. In the first case (i.e. Fig. 4a), we may consider only the pressure loading
condition. In the second case (i.e. Fig. 4b), the pipe segment is assumed to have ‘open ends’ (i.e.
the axial force at the ends due to pressure is zero). Thirdly, a ‘closed end’ situation is exhibited
by applying the corresponding axial force (end-load) to the ends due to the applied pressure.
In reality, the net axial force in a pipeline section may change from tensile to compressive
loading. These loading sequences correspond to realistic situations encountered in pipelines.
However, differences between the results obtained by the applied loads in a proportional or
non-proportional manner could be another problem.

Fig. 4. Different load situations embedded into pipe configuration

When the pipe is loaded under bending routine along with internal pressure, a varying ben-
ding moment distribution along the length may be noted. This is caused by nonlinear geometry
effects. Hence, in simulations with internal pressure, symmetry boundary conditions at the mid-
-length of the pipe are imposed through another set of MPC’s. This facilitates direct calculation
of the resisting moment at the mid-section.

However, has been it verified that the computed fracture parameters are not affected by
these MPC’s at the mid-section. Numerical analyses (i.e. based on the Finite Element Method
(FEM) approach) could be a better tool to simulate the real life of pipe structures (containing
flow) and, besides, to corroborate the analytical results with the numerical approximation.

3. Stress Intensity Factor (SIF) evaluation

The state of crack growth from a given longitudinal notch in a pipe depends somehow on the
nature of the dominant stress state in the component. This reflects the nature of stress intensity
ahead of the crack tip. In this specific case of a cracked component, the available evaluation
routes for determination of the SIFs have been derived by using both analytical and numerical
techniques. The introduction of the K concept (link to the toughness in terms of critical values)
proves to be a special value for studies on fracture and/or fatigue cracking (Tada et al., 2000).

A number of researchers have published particular solutions of SIFs for a great range of notch
profiles and loading conditions. Raju and Newman (1982) and Anderson (1999), in particular,
developed numerical solutions for internally pressurized components containing semi-elliptical
shapes with the aspect ratio α = a/b and relative depth ξ = a/t of the deepest point A on the
defect front, where a is the maximum crack depth. The fracture analysis of the above cracked
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shell is very useful because some recommendations propose replacing the actual surface defect
by an equivalent semi-elliptical crack.
The approach of SIF derived by Raju and Newman (1982) has been taken as the base

framework for semi-elliptical cracks. The crack profile has been defined in terms of the shape
factor Q approximated by the following expressions

Q =





1 + 1.464
(a
c

)1.65
for

a

c
< 1

1 + 1.464
( c
a

)1.65
for

a

c
> 1

(3.1)

This approximation permits accurate estimation even in a particular case, where the correc-
tion factor developed in (ASME, 1981) works as a general model requiring only the first part of
equation (3.1). The general hypothesis is

Q = 1 + 1.464
(a
c

)1.65
(3.2)

Further, the SIF KI is evaluated in terms of the Lamé average hoop stress as

KIP =
PRm
t

√
πa

Q
Y
(a
t
,
a

2c
,
R0
t

)
(3.3)

where P is the internal pressure,Rm andR0 are the mean and outer radii of the pipe, respectively,
t is pipe thickness, a is depth and 2c is crack length.
The formulation expressed in equation (3.3) covers the range of pipes with R/t ¬ 10, con-

sidered in the present survey. It is believed that the approximation is quite good. However, to
check the result, an interpolation between the previous solution and the numerical results pre-
sented by Stonesifer et al. (1992) for the geometrical correction Y has been made. We noticed
that equation (3.3) is valid in the case of pipes with ratios up to R/t = 40. Finally, for consistent
results, the stress intensity factor has been evaluated by the formula presented in (Zahor, 1991)
that partially agree with (Raju and Newman, 1982) and with the same limitations on the R/t
ratio. The formulation is expressed in the following manner

KIP = PRi

√
π

t

(
0.25 +

0.42α + 0.21α2

[0.11(R/t) − 0.1]0.16
)

(3.4)

where the shape factor α is defined

α =
a

t

( c
a

)0.58

Subsequently, the stress intensity factor has been determined for a through wall crack, ad-
opting two different expressions. The first agrees with (Zahor, 1991), described as

KIP =
PRi
t

√
πa(1 + 0.0724ρ + 0.649ρ2 − 0.233ρ3 + 0.0382ρ4 − 0.00235ρ5) (3.5)

with ρ = c/
√
Rit.

In SAQ Handbook (Anderson, 1999), the Stress Intensity Factor K is defined as

KIP =
√
πa

3∑

i=0

σiYi
(a
t
,
a

2c
,
Rm
t

)
(3.6)

where σi are the components which define the stress distribution though the cylinder wall,
according to

σu =
3∑

i=0

σi
(u
a

i)
(3.7)
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The co-ordinate u is defined through the remaining wall thickness (u varies from the crack
depth a to the wall thickness t). The geometrical functions Yi are tabulated in (Raju and
Newman, 1982).
This analytical correction has been confronted to the particular solution of (Zahoor, 1991). By

using this formulation, the key form expression can be settled following the boundary correction
factor Y applied in Eq. (3.3)

Y = 1.12 + 0.053ξ +
1 + 0.02ξ + 0.0191ξ2

1400

(
20− Rm

t

)2
(3.8)

with

ξ =
a

t
· a
2c

The outcomes derived from equation (3.8) are plotted in Fig. 5.

Fig. 5. Variations of KI with relative crack depth determined by Eq. (3.8)

Figure 5 displays the SIFs of steel cylinders with axial surface cracks (considering different
lengths of flow), respecting the condition entailed in (Su and Bhuyan Gouri, 1999; Anderson,
1994). In a particular state (depending on cylinders with axial cracks), the stress intensity factor
can be expressed respecting the following state of different relative crack sizes 2c/t

KIP = 0.4294
(2c
t

)3
− 6.1122

(2c
t

)2
+ 49.489

2c

t
− 4.1444 (3.9)

This expression is valid only in the range of 2.6 < 2c/t < 10.4.
Vis a vis DN100 ABS pipe, in the case when the internal pressure is imposed, the SIF

aroused can be calculated using the FE data considering different flaw depths. The accuracy of
the results may be enhanced using a polynomial approximation as stated below

KIP = 32.149 − 82.294
√
a
a

t
+ 263.661

√
a
(a
t

)2
− 111.753

√
a
(a
t

)3
(3.10)
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In this configuration, the geometric correction factor have the form

Y =
KIP

σIP
√
πa
= 1.824 − 4.669a

t
+ 14.959

(a
t

)2
− 6.341

(a
t

)3
(3.11)

where σIP is the membrane hoop stress of the pipe bore surface derived from the Lamé equation
for a thick-walled cylinder

σIP =
P (R2i +R

2
0

R20 −R2i
(3.12)

where R0 and Ri are the outer and internal radii of the pipe, respectively.

4. FE analysis

The particular model depicted in Fig. 3 highlights a longitudinal crack surface in a pipe under
internal pressure P with configuration translated into numerical computation. The labels in
the above sketch represent the characteristics of the pipe studied, which matches with a real
situation. There, the mean radius and thickness of the pipe are denoted by Rm and t, respectively.
The crack length is characterized by 2c and the geometry is defined such that the depth of the
crack is a. Four different values of Rm/t are employed in the present work and different values of
2c are considered, namely, 2c = 16, 20, 30, 40, 61 and 80mm. In this configuration, the internal
pressure is settled P = 1.5MPa. The 3D elastic computation approach under FE strategy
has been implemented for this case of a longitudinal crack surface. Figure 6 shows details of
the configuration. The methodology has been performed using a general-purpose FE program
(CASTEM, 2014). The material tensile properties introduced in the FE analysis are assumed to
obey the Ramberg-Osgood (R-O) equation

ε

ε0
=

σ

σy
+ α

σ

σy
(4.1)

where ε0, σy, and α are constants, Eε0 = σy , where E is Young’s modulus.

In Table 1, mechanical properties of the material evaluated in this paper which is steel
P264GH are given.

Table 1

Characteristic Values

Elastic strain ε0 = 0.0016

α = 1.86 constant

Modulus of elasticity E = 207000MPa

Poisson’s ratio ν = 0.3

Yield strength σy = 340MPa

Ultimate tensile strength Rm = 440MPa

Elongation to fracture A = 35%

The shape of the crack embedded in the pipe configuration during simulation is sketched in
Fig. 6. In the programing procedure, only a half of the structure has been taken in account to
reduce the resources needed for simulation. The structural mesh, having a progressive density of
the mesh in front of the crack, has been embedded in order to stimulate the stress singularity.
This technique of mesh densities near the notch in the pipeline network was considered with
success in the particular case of fracture defect assessment in (Moustabchir et al.. 2015).
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Fig. 6. Finite element configuration of a half of pipe with a longitudinal flaw

5. Discussions

In this paper, the engineering KI parameter equations for an axial crack surface located in
a pipe under internal pressure are throughly considered. The proposed approach offers details
concerning the results obtained using an analytical method and a 3D computation technique.
The KI parameter determined obeys R-O materials laws in the case of plastic deformation in a
partially and fully plastic situation.

The values of the KI parameter have been determined considering a cylinder containing a
defined crack size (i.e. crack surface). A summary regarding the results obtained using these
methods of different axial crack surfaces are shown in Figs. 7a and 7b.

Figure 7a presents variations of the SIF values at the deepest points (i.e. crack fronts linked
to the wall structure) of the external axial crack surface in the cylinders of different relative
crack depths a/t (crack). The results determined here prove a good approximation between the
FE outcome and literature determinations.

Fig. 7. (a) Variations of the KI parameter at the deepest point for a relative crack depth, (b) variations
of KI parameter versus length of the crack; [13] – Nordhagen et al. (2014), [16] – Scheider et al. (2014),

[18] – Schin and Cai (2004), [19] – Staat and Duc (2007)

Figure 7b deals with the effect of crack length, determining the evolution of SIF values.
These results correspond to a certain situation, where the axial crack surface is characterized
by the following dimensions a/t = 0.2, D/t = 17 and n = 0.0446. To be noted, the effects of
SIF associated to the dimensions of the crack (as well as for different crack lengths) have also
been considered. Figure 7a highlights the activity of the SIF. It increases with an increase in the
crack length, and more particularly, the effects of crack length are observed more pronounced
for short cracks.
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These results confirm that the deepest points (linked to crack front) in a pipe structure are
the most dangerous locations in the cylinders with slender axial surface defects, conforming to
a/t < 1 (crack depth/cylinder thickness).
Besides, Fig. 7b proves the ascendant trend of the SIF values with respect to the crack size

occurred in the pipe, crack dimensions as well as the record of a/t for the external crack surface
in the steel cylinder.

6. Conclusions

Based on the results of this paper, the following conclusions can be drawn:

• The analytical results presented in Figs. 7a and 7b are found to be in good agreement with
numerical results.

• A pipe with an axial external crack surface can be very well modelled using FE, as a
three-dimensional finite element method, starting from a determined assumption. The FE
modelling considers not only the cylindrical body but also the neck and transition areas
of the cylinders, so the modelling process yields accurate results.

• The cylinder dimensions and crack size range are based directly on practically-applied steel
gas cylinders, so the results are of greater practical value and can be applied to steel gas
cylinders. The present results agree well with the results found in the literature.

• The Stress Intensity Factors associated with the axial crack surface are determined for
different sizes. It has also been revealed that it is possible to describe the Stress Intensity
Factor along the crack front of cylinders with axial external cracks by a six-order poly-
nomial of the point of location. In short terms, this approach can be verified very well
involving a second-order polynomial relative to the crack length 2c/t, and a third-order
polynomial relative to the crack depth a/t.
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In this paper, the meshless local radial point interpolation (MLRPI) method is formulated to
the generalized one-dimensional linear telegraph and heat diffusion equation with non-local
boundary conditions. The MLRPI method is categorized under meshless methods in which
any background integration cells are not required, so that all integrations are carried out
locally over small quadrature domains of regular shapes, such as lines in one dimensions,
circles or squares in two dimensions and spheres or cubes in three dimensions. A technique
based on the radial point interpolation is adopted to construct shape functions, also called
basis functions, using the radial basis functions. These shape functions have delta function
property in the frame work of interpolation, therefore they convince us to impose boundary
conditions directly. The time derivatives are approximated by the finite difference time-
-stepping method. We also apply Simpson’s integration rule to treat the non-local boundary
conditions. Convergency and stability of the MLRPI method are clarified by surveying some
numerical experiments.

Keyword: non-local boundary condition, meshless local radial point interpolation (MLRPI)
method, local weak formulation, radial basis function, telegraph equation

1. Introduction

The telegraph equation is one of the important equations of mathematical physics with ap-
plications to many different fields such as transmission and propagation of electrical signals
(Gonzalez-Velasco, 1995; Jordan and Puri, 1999), vibrational systems (Boyce and DiPrima,
1977), random walk theory (Banasiak and Mika, 1998) and mechanical systems (Tikhonov and
Samarskii, 1990), etc. The heat diffusion and wave propagation equations are particular cases of
the telegraph equation. Recently, increasing attention has been paid to the development, ana-
lysis and implementation of stable methods for numerical solutions of second-order hyperbolic
equations. There have been many numerical methods for hyperbolic equations, such as the finite
difference, the finite element, and the collocation methods, etc. (see Almenar et al., 1997; Ciment
and Leventhal, 1978) and literatures therein.

On the other hand, many of natural phenomena in science and engineering have been mo-
delled by non-local boundary value problems. In these non-local problems, some integral terms
often appear in the boundary conditions. These types of problems constitute a special class of
boundary value problems which widely appear in mathematical modelling of various processes
of physics, heat transfer, ecology, thermoelasticity, chemistry, biology and industry.

According to the numerical results obtained, the present methods can be considered as
practical and effective numerical techniques to solve telegraph equations with non-local boundary
conditions.
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Let Ω = [0, 1]. Consider the 1D linear telegraph equation

∂2u

∂t2
+ c

∂u

∂t
+ bu− p∂

2u

∂x2
= f(x, t) (x, t) ∈ Ω × [0, T ] (1.1)

with the initial and non-local boundary conditions

u(x, 0) = u0(x)
∂u

∂t
(x, 0) = ψ(x)

u(0, t) = γ1

1∫

0

u(x, t) dx+ µ1(t)

u(1, t) = γ2

1∫

0

u(x, t) dx+ µ2(t)

(1.2)

where c, b and p are positive constants, γ1 and γ2 are constants and the functions f , ψ, µ1(t)
and µ2(t) are assumed to be sufficiently smooth. Many partial differential equations are too
complex to be solved by analytical methods. This caused mathematicians and engineers to come
up with numerical methods such as the finite difference method (FDM) and the finite element
method (FEM) to solve the equations. Although, these methods have been successfully applied
to computational fluid dynamics problems, their accuracy depends critically on mesh quality
and they have many difficulties in dealing with some complex problems. These difficulties can
be overcome by meshless methods which have attracted considerable interest over the past few
years (Kochmann and Venturini, 2014; Liu and Gu, 2005; Pan and Yuan, 2009; Sladek et al.,
2006). These meshless methods do not require mesh for discretisation of the problem domain, and
they construct approximate functions only via a set of nodes, so-called field nodes. In general,
the meshless methods can be grouped into two categories. The first category is based on weak
forms such as the element free Galerkin (EFG) method (Belytschko et al., 1995; Singh et al.,
2007), the second category is based on strong forms such as meshless methods based on the
radial basis functions (RBFs) (Dehghan and Shokri, 2008; Kansa, 1990). In addition, a meshless
method based on combination of the strong and weak form has also been developed and is known
as the meshless weak strong (MWS) form method. Due to the ill-conditioning of the resultant
linear systems in the RBF-collocation method, various approaches are proposed to circumvent
this problem (Libre et al., 2008; Ling and Schaback, 2008), being among them. The weak forms
are used to derive a set of algebraic equations through a numerical integration process using
a set of quadrature domain that may be constructed globally or locally in the domain of the
problem. In the global formulation, background cells are required for the integration of the weak
form. Strictly speaking, these meshless methods are not truly meshless methods. But in methods
based on the local weak form formulation, numerical integrations are carried out over a local
quadrature domains, therefore, no cells are required. As a result, they are referred to as truly
meshless methods such as the meshless local Petrov-Galerkin (MLPG) method (Atluri and Zhu,
1998; Dehghan and Mirzaei, 2008; Shirzadi, 2014; Shivanian, 2015b). In the literature, several
meshless weak form methods have been proposed such as the diffuse element method (DEM)
(Nayroles et al., 1992), smooth particle hydrodynamic (SPH) (Bratsos, 2008; Dashtimanesh and
Ghadimi, 2013), reproducing kernel particle method (RKPM) (Liu et al., 1995), boundary node
method (BNM) (Mukherjee and Mukherjee, 1997), partition of unity finite element method
(PUFEM) (Melenh and Babuska, 1996), finite sphere method (FSM) (De and Bathe, 2000),
boundary point interpolation method (BPIM) (Gu and Liu, 2002) and boundary radial point
interpolation method (BRPIM) (Gu and Liu, 2003). Liu applied the concept of MLPG and
developed the meshless local radial point interpolation (MLRPI) method (Hosseini et al., 2015;
Liu and Gu, 2001; Shivanian, 2013, 2015a; Shivanian and khodabandehlo, 2014). In this paper,
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we concentrate on the numerical solution of Eqs. (1.1) and (1.2) using the meshless local radial
point interpolation (MLRPI) method. Besides, we use Simpson’s integration rule to impose the
non-local boundary condition.

2. Approximation of field variables using the radial point interpolation method

Consider a continuous function u(x) defined in a domain Ω, which is represented by a set of
field nodes. The u(x) at the point of interest x is approximated as follows

u(x) =
n∑

i=1

Ri(x)ai +
m∑

j=1

pj(x)bj = R
T(x)a+PT(x)b (2.1)

where Ri(x) is thea radial basis function (RBF), n is the number of RBFs, pj(x) is the monomial
in the 1-D space x and m is the number of the monomials. In the present work, we have applied
thin plate spline (TPS) multiquadrics (MQ) as the radial basis functions in Eq. (2.1). In order
to determine ai and bj in Eq. (2.1), a support domain is needed for the point of interest at x so
that n field nodes are included in the support domain. Then, coefficients ai and bj in Eq. (2.1)
can be determined by the following system of n linear equations

Us = Rna+Pmb (2.2)

in which the vector Us is

Us = {u1, u2, u3, . . . , un}T (2.3)

moreover, Rn and Pm are the RBFs and polynomial moment matrices, respectively. On the
other hand, Eq. (2.1) can be rewritten as

u(x) = RT(x)a+PT(x)b =
{
RT(x),PT(x)

} [a
b

]
(2.4)

and then, by using that, we obtain

u(x) =
{
RT(x),PT(x)

} [Rn Pm
PTm 0

]
−1

Ũs

=
{
RT(x),PT(x)

}
G−1Ũs = Φ̃

T(x)Ũs

(2.5)

where Φ̃T(x) can be be introduced by

Φ̃T(x) =
{
RT(x),PT(x)

}
G−1 = {φ1(x), φ2(x), . . . , φn(x), φn+1(x), . . . , φn+m(x)} (2.6)

The first n functions of the above vector function are called the RPIM shape functions corre-
sponding to the nodal displacements. We show them by the vector Φ̃T(x), so that it is

Φ̃T(x) = {φ1(x), φ2(x), . . . , φn(x)} (2.7)

Equation (2.5) is then transformed into

u(x) = Φ̃T(x)Us =
n∑

i=1

φi(x)ui (2.8)
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3. Finite differences approximation

The following finite difference approximations of the order O(∆t)2 are used for time discretization

∂2u(x, t)

∂t2
∼= 1

∆t2
(
u(k+1)(x)− 2u(k)(x) + u(k−1)(x)

)

∂u(x, t)

∂t
∼= 1

2∆t

(
u(k+1)(x)− u(k−1)(x)

) (3.1)

Also, we employ the following approximation using the Crank-Nicolson technique

u(x, t) ∼= 1
3

(
u(k+1)(x) + u(k)(x) + u(k−1)(x)

)

∂2u(x, t)

∂x2
∼= 1
3

(∂2u(k+1)(x, t)
∂x2

+
∂2u(k)(x, t)

∂x2
+
∂2u(k−1)(x, t)

∂x2

) (3.2)

where uk(x) = u(x, k∆t).

Using the above approximations, Eq. (1.1) can be written as

1

∆t2
(
u(k+1)(x)− 2u(k)(x) + u(k−1)(x)

)
+

c

2∆t

(
u(k+1)(x)− u(k−1)(x)

)

+
b

3

(
u(k+1)(x) + u(k)(x) + u(k−1)(x)

)

− p

3

(∂2u(k+1)(x)
∂x2

+
∂2u(k)(x)

∂x2
+
∂2u(k−1)(x)

∂x2

)
=
1

3

(
f (k+1)(x) + f (k)(x) + f (k−1)(x)

)

(3.3)

Supposing the notations λ = 1/∆t2 and µ = c/(2∆t), we obtain

(
λ+ µ+

b

3

)
u(k+1) − p

3

∂2u(k+1)(x)

∂x2
=
(
2λ− b

3

)
u(k) +

p

3

∂2u(k)(x)

∂x2

+
(
−λ+ µ− b

3

)
u(k−1) +

p

3

∂2u(k−1)(x)

∂x2
+
1

3

(
f (k+1)(x) + f (k)(x) + f (k−1)(x)

)
.

(3.4)

4. The meshless local weak form formulation

Instead of setting the global weak form, the MLRPI method sets up the weak form over the local
quadrature cell such as Ωq, which is a small region taken for each node in the global domain Ω.
The local quadrature cells overlap with each other and cover the whole global domain Ω. The
local quadrature cells could be of any geometric shape and size. In one dimensional problems,
they are lines (intervals). The local weak form of Eq. (3.4) for xi ∈ Ωi

q = (xi − rq, xi + rq) can
be constructed as

∫

Ωiq

[
(
(
λ+ µ+

b

3

)
u(k+1) − p

3

∂2u(k+1)(x)

∂x2

]
ν(x) dx =

∫

Ωiq

[(
2λ− b

3

)
u(k) +

p

3

∂2u(k)(x)

∂x2

]
ν(x) dx

+

∫

Ωiq

[
(
(
−λ+ µ− b

3

)
u(k−1) +

p

3

∂2u(k−1)(x)

∂x2

]
ν(x) dx

+

∫

Ωiq

[1
3

(
f (k+1)(x) + f (k)(x) + f (k−1)(x)

)]
ν(x) dx

(4.1)
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where Ωi
q is the local quadrature domain corresponding to the point i, and ν(x) is the Heaviside

step function defined by (Hu et al., 2006; Liu et al., 2006)

ν(x) =

{
1 x ∈ Ωq
0 x /∈ Ωq

(4.2)

as the test function in each local quadrature domain. Hence, we obtain

(
λ+ µ+

b

3

) ∫

Ωiq

u(k+1)ν(x) dx− p

3

∫

Ωiq

∂2u(k+1)(x)

∂x2
ν(x) dx

=
(
2λ− b

3

) ∫

Ωiq

u(k)ν(x) dx+
p

3

∫

Ωiq

∂2u(k)(x)

∂x2
ν(x) dx

+
(
−λ+ µ− b

3

) ∫

Ωiq

u(k−1)ν(x) dx+
p

3

∫

Ωiq

∂2u(k−1)(x)

∂x2
ν(x) dx

+
1

3

∫

Ωiq

(
f (k+1)(x) + f (k)(x) + f (k−1)(x)

)
ν(x) dx

(4.3)

Using integration by parts, one obtains

∫

Ωiq

∂2u(k)(x)

∂x2
ν(x) dx = ν(x)

∂u(k)(x)

∂x

∣∣∣
x=xi+rq

x=xi−rq
−
∫

Ωiq

∂u(k)(x)

∂x

∂ν(x)

∂x
dx (4.4)

Then, by applying the test function, the following local weak equation is obtained

(
λ+ µ+

b

3

) ∫

Ωiq

u(k+1) dx− p

3

(
∂u(k+1)(x)

∂x

∣∣∣
x=xi+rq

x=xi−rq

)

=
(
2λ− b

3

) ∫

Ωiq

u(k) dx+
p

3

(
∂u(k)(x)

∂x

∣∣∣
x=xi+rq

x=xi−rq

)

+
(
−λ+ µ− b

3

) ∫

Ωiq

u(k−1) dx+
p

3

(
∂u(k−1)(x)

∂x

∣∣∣
x=xi+rq

x=xi−rq

)

+
1

3

∫

Ωiq

(
f (k+1)(x) + f (k)(x) + f (k−1)(x)

)
dx

(4.5)

5. Discretization in the MLRPI method

In this Section, we consider Eq. (4.5) to see how to obtain discrete equations. Consider N
regularly located points on the boundary and domain of the problem, i.e. interval [0, 1], so
that the distance between two consecutive nodes in each direction is constant and equal to h.
Assuming that u(xi, k∆t), i = 1, 2, . . . , N are known, our aim is to compute u(xi, (k + 1)∆t),
i = 1, 2, . . . , N . So, we have N unknowns and to compute these unknowns, we need N equations.
To obtain the discrete equations from locally weak forms (4.5) for the nodes located in the interior
of the domain, i.e., for xi ∈ interior Ω, we substitute approximation formulas (2.8) into local
integral equations (4.5) to have
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[(
λ+ µ+

b

3

) N∑

j=1

( ∫

Ωiq

φj(x) dx

)
− p

3

N∑

j=1

(
∂φj(x)

∂x

∣∣∣
x=xi+rq

− ∂φj(x)

∂x

∣∣∣
x=xi−rq

)]
u
(k+1)
j

=

[(
2λ− b

3

) N∑

j=1

( ∫

Ωiq

φj(x) dx

)
+
p

3

N∑

j=1

(
∂φj(x)

∂x

∣∣∣
x=xi+rq

− ∂φj(x)

∂x

∣∣∣
x=xi−rq

)]
u
(k)
j

+

[(
−λ+ µ− b

3

) N∑

j=1

( ∫

Ωiq

φj(x)dx

)
+
p

3

N∑

j=1

(
∂φj(x)

∂x

∣∣∣
x=xi+rq

− ∂φj(x)

∂x

∣∣∣
x=xi−rq

)]
u
(k−1)
j

+
1

3

∫

Ωiq

(
f (k+1)(x) + f (k)(x) + f (k−1)(x)

)
dx

(5.1)

6. Numerical implementation of the MLRPI method

By using Simpson’s integration rule for nodes which are located on the boundary, we have for
all k

u(k)(x1) = γ1
h

3

[
u(k)(x1) + 4u

(k)(x2) + 2u
(k)(x3) + . . . + 4u

(k)(xN−1) + u
(k)(xN )

]
+ µ1(k∆t)

u(k)(xN )= γ2
h

3

[
u(k)(x1) + 4u

(k)(x2) + 2u
(k)(x3) + . . .+ 4u

(k)(xN−1) + u
(k)(xN )

]
+ µ2(k∆t)

(6.1)

where x1 = 0 and xN = 1.
The matrix forms of Eqs. (5.1) and (6.1) for all N nodal points in the domain and the

boundary of the problem are given below
[(
λ+ µ+

b

3

) N∑

j=1

Ai,j −
p

3

N∑

j=1

Bi,j

]
u
(k+1)
j =

[(
2λ− b

3

) N∑

j=1

Ai,j +
p

3

N∑

j=1

Bi,j

]
u
(k)
j

+

[(
−λ+ µ− b

3

) N∑

j=1

Ai,j +
p

3

N∑

j=1

Bi,j

]
u
(k−1)
j + Ei(k − 1, k, k + 1)

(6.2)

where

Ai,j =

∫

Ωiq

φj(x) dx

Bi,j =

(
∂φj(x)

∂x

∣∣
x=xi+rq

− ∂φj(x)

∂x

∣∣∣
x=xi−rq

)

Ei(k − 1, k, k + 1) =
1

3

∫

Ωiq

(
f (k+1)(x) + f (k)(x) + f (k−1)(x)

)
dx

(6.3)

Assuming

Ai,j =
(
λ+ µ+

b

3

)
Ai,j −

p

3
Bi,j Bi,j =

(
2λ− b

3

)
Ai,j +

p

3
Bi,j

Ci,j =
(
−λ+ µ− b

3

)
Ai,j +

p

3
Bi,j U = {ui}N×1

Ek = [E1(k − 1, k, k + 1), E2(k − 1, k, k + 1), . . . , EN (k − 1, k, k + 1)]T

(6.4)

yields
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AU(k+1) = BU(k) +CU(k−1) +Ek (6.5)

Furthermore, to satisfy Eqs. (6.1), for both nodes belong to the boundary, i.e., {x1, xN}, we set

Eki =

{
µ1(k∆t) i = 1

µ2(k∆t) i = N

∀j : Bi,j = Ci,j = 0 i = 1, N

A1 =
[
1− γ1

h

3
,−4γ1

h

3
,−2γ1

h

3
, . . . ,−4γ1

h

3
,−γ1

h

3

]

AN =
[
−γ2

h

3
,−4γ2

h

3
,−2γ2

h

3
, . . . ,−4γ2

h

3
, 1− γ2

h

3

]

(6.6)

where A1 and AN are the first and N -th rows of the matrix A, respectively.
At the first time level, when n = 0, according to the initial conditions that are introduced

in Eq. (1.2), we apply the following assumptions

u(0) = u0 u(−1) ∼= u(1) − 2∆tψ(x)

where

u0 = [u0(x1), u0(x2), . . . , u0(xN )]
T ψ = [ψ(x1), ψ(x2), . . . , ψ(xN )]

T

7. Numerical experiments

In this Section, two numerical expriments for application of the meshless local radial point
interpolation method (MLRPI) in solving the one-dimensional linear telegraph equation with
non-local boundary conditions are presented. In both examples, the domain integrals are evalu-
ated with 3 points Gaussian quadrature rule. In these problems, the regular distributed nodal
points are used. Also, in order to implement the meshless local weak form in these cases, the
radius of the local quadrature domain rq = 0.8h is selected, where h is the distance between the
nodes in the x direction (h = ∆x). The size of rq is such that the union of these sub-domains
must cover the whole global domain. The radius of the support domain to the local radial point
interpolation method is rs = 4rq. This size is significant enough to have a sufficient number of
nodes (n) to give appropriate shape functions. Also, in Eq. (2.1), we set m = 5.

Example 1. We set c = 20, b = 25 and p = 1. The exact solution of the first example is taken
as u(x, t) = t3(2x3 − x + 4), (x, t) ∈ [0, 1] × [0, 1]. According to this exact solution, f(x, t) is
given by

f(x, t) = (6t+ 3ct2)(2x3 − x+ 4) + bt3(2x3 − x+ 4)− 12pxt3

the initial conditions are

u(x, 0) = 0
∂u

∂t
(x, 0) = 0

and the non-local boundary conditions take the form

u(0, t) =

1∫

0

u(x, t) dx t  0

u(1, t) =
5

4

1∫

0

u(x, t) dx t  0
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Tables 1 and 2 as well as Fig. 1a show the results of the MLRPI method to solve Example 1
using TPS as the radial basis function. Also, Tables 3 and 4 as well as Fig. 1b illustrate the
results of the current method to solve Example 1 using MQ as the radial basis function. As
it is seen, the MLRPI method is of high accuracy. Furthermore, it is seen that the method is
convergent with respect to the spatial and time variable using both TPS and MQ.

Fig. 1. Numerical solutions and the exact solution at time t = 1.0 for Example 1: (a) using TPS,
(b) using MQ. The solid line corresponds to the exact solution, the starred line corresponds to the

numerical solution of the MLRPI with ∆t = 0.0001 and ∆x = 0.0125

Table 1. The L1, L2 and L∞ errors calculated by MLRPI for Example 1 with different ∆x
and ∆t at time t = 1.0 (using TPS)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.25 4.070835E-03 2.136594E-03 1.508984E-03

0.001 0.125 3.470766E-04 1.792837E-04 1.587210E-04

0.001 0.1 1.718355E-04 7.995307E-05 6.922815E-05

0.001 0.05 6.156571E-05 1.401474E-05 5.949385E-06

Table 2. The L1, L2 and L∞ errors calculated by MLRPI for Example 1 with different ∆x and
∆t at time t = 1.0 (using TPS)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.0125 1.945099E-04 2.169317E-05 2.997031E-06

0.0005 0.0125 4.863614E-05 5.424111E-06 7.494035E-07

0.00025 0.0125 1.217382E-05 1.357562E-06 1.875924E-07

0.0001 0.0125 1.964876E-06 2.192364E-07 3.026972E-08

Table 3. The L1, L2 and L∞ errors calculated by MLRPI for Example 1 with different ∆x and
∆t at time t = 1.0 (using MQ)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.25 4.070835E-03 2.136594E-03 1.508984E-03

0.001 0.125 3.459171E-04 1.780828E-04 1.575668E-04

0.001 0.1 1.715535E-04 7.972770E-05 6.898580E-05

0.001 0.05 6.154538E-05 1.401788E-05 5.974310E-06
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Table 4. The L1, L2 and L∞ errors calculated by MLRPI for Example 1 with different ∆x and
∆t at time t = 1.0 (using MQ)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.0125 1.942840E-04 2.166659E-05 2.993550E-06

0.0005 0.0125 4.841030E-05 5.397581E-06 7.459259E-07

0.00025 0.0125 1.194834E-05 1.331264E-06 1.841192E-07

0.0001 0.0125 1.740619E-06 1.944979E-07 2.682201E-08

Example 2. We set c = 20, b = 25 and p = 1. The exact solution of the this example is taken
as u(x, t) = t3 sin(x+ 1), (x, t) ∈ [0, 1] × [0, 1]. According to this exact solution, f(x, t) is given
by

f(x, t) = (6t+ 3ct2) sin(x+ 1) + bt3 sin(x+ 1) + pt3 sin(x+ 1)

the initial conditions are

u(x, 0) = 0
∂u

∂t
(x, 0) = 0

and the non-local boundary conditions take the form

u(0, t) = 0.8797864387

1∫

0

u(x, t) dx t  0

u(1, t) = 0.950701283

1∫

0

u(x, t) dx t  0

Tables 5 and 6 as well as Fig. 2a show the results of the MLRPI method to solve Example 2
using TPS as the radial basis function. Besides, Tables 7 and 8 as well as Fig. 2b demonstrate
the results of the present method to solve Example 2 using MQ as the radial basis function. As
it is seen, the MLRPI method is of high accuracy. Moreover, we see that the convergence with
respect to both the time step (∆t) and the number of nodal points (N) are hold, no matter
which kind of RBF we use.

Fig. 2. Numerical solutions and the exact solution at time t = 1.0 for Example 2: (a) using TPS,
(b) using MQ. The solid line corresponds to the exact solution, the starred line corresponds to the

numerical solution of the MLRPI with ∆t = 0.0001 and ∆x = 0.0125

On the top of that, the MLRPI method can be used to solve complex engineering problems
with lower computational cost, higher accuracy, simpler construction of higher-order shape func-
tions and easier handling of large deformation problems.
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Table 5. The L1, L2 and L∞ errors calculated by MLRPI for Example 2 with different ∆x and
∆t at time t = 1.0 (using TPS)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.25 4.467206E-04 2.263494E-04 1.434185E-04

0.001 0.125 2.548359E-05 1.304920E-05 1.148951E-05

0.001 0.1 1.502825E-05 6.430589E-06 5.320887E-06

0.001 0.05 1.175112E-05 2.629557E-06 8.956239E-07

Table 6. The L1, L2 and L∞ errors calculated by MLRPI for Example 2 with different ∆x and
∆t at time t = 1.0 (using TPS)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.0125 4.418773E-05 4.914641E-06 5.709157E-07

0.0005 0.0125 1.104494E-05 1.228475E-06 1.426643E-07

0.00025 0.0125 2.7603974E-06 3.070796E-07 3.561701E-08

0.0001 0.0125 4.405399E-07 4.920947E-08 6.985131E-09

Table 7. The L1, L2 and L∞ errors calculated by MLRPI for Example 2 with different ∆x and
∆t at time t = 1.0 (using MQ)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.25 4.467206E-04 2.263494E-04 1.434185E-04

0.001 0.125 2.542164E-05 1.296910E-05 1.140565E-05

0.001 0.1 1.500617E-05 6.414381E-06 5.302278E-06

0.001 0.05 1.174746E-05 2.629195E-06 8.987330E-07

Table 8. The L1, L2 and L∞ errors calculated by MLRPI for Example 2 with different ∆x and
∆t at time t = 1.0 (using MQ)

∆t ∆x ‖E‖1 ‖E‖2 ‖E‖∞
0.001 0.0125 4.413908E-05 4.909225E-06 5.701902E-07

0.0005 0.0125 1.099625E-05 1.223055E-06 1.419426E-07

0.00025 0.0125 2.711815E-06 3.016704E-07 3.548134E-08

0.0001 0.0125 3.928077E-07 4.390304E-08 5.957403E-09

8. Conclusions

In the aforementioned discussion, we applied the meshless local radial point interpolation
(MLRPI) method to solve the linear telegraph equation with non-local boundary conditions.
The radial point interpolation method is adopted for approximating the field variable. Also the
weak form of the discretized equations has been constructed on local subdomains. So, this me-
thod requires neither domain element nor background cells in either the interpolation or the
intergration. It means this method is a truly meshless method. Furthermore, time discretization
has been done using finite difference techniques. The principal benefit of the method is to capture
the behavior of the solution for similar problems with non-local boundary conditions where most
of schemes fail. Also, the MLRPI method can easily handle the damage of the components, such
as fracture which is very useful to simulate material breakage. Finally, accuracy and usefulness
of the proposed method are illustrated by two examples.
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This paper presents preparation with modeling and theoretical predictions of mechanical pro-
perties of compatibilized functionally graded and uniform distribution polyethylene/modified
montmorillonite nanocomposites manufactured by solution and melt mixing techniques. The
morphology is studied by Scanning Electron Microscopy (SEM) and comparisons are made
between two techniques. Young’s modulus of nanocomposites for functionally graded and
uniform distributions is calculated using a genetic algorithm and is then compared with
the results of other theoretical prediction models mentioned in the literature as well as
experimental results. It is found that the melt mixing technique is the preferred prepara-
tion method, and the results obtained from the theoretical predictions of genetic algorithm
procedure are in good agreement with the experimental ones.
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1. Introduction

Nanocomposites have attracted attention in the recent years because of their improved mechani-
cal, thermal, solvent resistance and fire retardant properties compared to the pure or conventio-
nal composite materials. There has been growing interest in polymer/nanoclay nanocomposites
in recent years because of their outstanding properties at low loading levels as compared with
conventional composites. It has been observed that adding small quantities of nanoclay to some
thermoplastics as a reinforcing filler to form nanocomposite materials has not only led to more
improved mechanical and thermal properties, but also to enhancement of dielectric strength
and partial discharge resistance (Kawasumi et al., 1997; Tan and Yang, 1998; Han et al., 2001;
Kornmann et al., 2001; Utracki and Kamal, 2002; Hotta and Paul, 2004; Zhao and He, 2006;
Awaji et al., 2009; Chen and Chen, 2009; Kim et al., 2009). As reported in several previous
papers (Avila et al., 2008; Nam et al., 2001; Hrachova et al., 2013; Pakdaman et al., 2013; Grigo-
riadi et al., 2012), some continuum-mechanics based theoretical models have been proposed to
predict mechanical properties of polymer/clay nanocomposites. Fornes and Paul (2003) applied
the Halpin-Tsai and Mori-Tanaka reinforcement theories to predict the modulus of nylon based
nanocomposites. The modulus obtained using Mori-Tanaka calculation increased with nanoclay
reinforcement as predicted. The Halpin-Tsai formula gave higher values to the modulus but
could still be used to predict its magnitude.
Some efforts have been focused on the modeling of mechanical properties of nanoclay-

-reinforced polymer composites (Sheng et al., 2004) and nanoparticle-reinforced polymer com-
posites (Smith et al., 2002; Brown et al., 2003). Those modeling efforts have demonstrated the
need for the development of a model that would predict mechanical properties of nanopartic-
le/polyimide composites as a function of nanoparticle size and weight fraction as well as the mo-
lecular structure of the nanoparticle/polyimide interface. Although experimental-based research
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can ideally be used to determine structure-property relationships of nanostructured composites,
experimental synthesis and characterization of nanostructured composites demands making use
of sophisticated processing methods and testing equipment, which may result in exorbitant costs.
To this end, computational modeling techniques for determination of the mechanical properties
of nanocomposites have proven to be very effective (Liu and Chen, 2003; Chen and Liu, 2004;
Avila et al., 2006; Haque and Shamsuzzoha, 2003; Isik et al., 2003; Thilly et al., 2009; Dong
et al., 2008; Song and Youn, 2006). Genetic algorithms are a family of computational models
inspired by evolution. These algorithms encode a potential solution or a specific problem on a
simple chromosome-like data structure and apply recombination operators to these structures
so as to preserve critical information. Genetic algorithms are often viewed as function optimi-
zers, although the range of problems to which genetic algorithms have been applied is quite
broad.

Functionally Graded Materials (FGMs) are inhomogeneous composite materials with gra-
dient compositional variation of the constituents (e.g., metal and ceramic) from one surface of
the material to the other, which results in continuously varying material properties. The mate-
rials are intentionally designed in such a way that they possess desirable properties for specific
applications. Shen (2009, 2011) suggested that the interfacial bonding strength can be impro-
ved through the use of a graded distribution of CNTs in the matrix and examined nonlinear
bending behavior of simply supported, functionally graded nanocomposite plates reinforced by
single walled carbon nanotubes subjected to a transverse uniform or sinusoidal loading in thermal
environment. He also investigated post-buckling of nanocomposite cylindrical shells reinforced
by SWCNTs subjected to axial compression in thermal environment and showed that the li-
near functionally graded reinforcements can increase the buckling load. Shen and Xiang (2012)
investigated large amplitude vibration behavior of FG-CNTRC cylindrical shells in thermal envi-
ronments. They assumed that the material properties of CNTRCs were temperature-dependent
and solved the equations of motion by an improved perturbation technique to determine nonli-
near frequencies of the CNTRC shells.

The present work deals with the preparation and modeling with theoretical predictions of
mechanical properties of compatibilized functionally graded and uniform distribution polyethy-
lene/low density polyethylene (LDPE)/modified montmorillonite (MMT) nanocomposites pre-
pared by both solution and melt mixing techniques. The morphology is studied by Scanning
Electron Microscopy (SEM) and comparisons are made between the two techniques and then
between functionally graded polyethylene/clay nanocomposites with the uniform ones. By using
the genetic algorithm procedure, Young’s modulus of nanocomposites for functionally graded
and uniform distributions is calculated and then is compared with the results of other theore-
tical predictions models mentioned in the literature and the experimental results. It is found
that the melt mixing technique is the preferred method for preparation the functionally graded
and uniform distribution polyethylene/clay nanocomposites. Finally, it is shown that the results
obtained from the genetic algorithm approach are in good agreement with the experimental
ones.

2. Experimental

2.1. Materials

The polymer matrix used in this study was a linear low-density polyethylene with the trade
name LL209AA from Arak Petrochemical Co. (Iran), with melt flow index (MFI) of 0.9 g/10min
and density of ρ = 0.92 g/cms. The nanofiller were K10 montmorillonite from Sigma-Aldrich,
Germany. Also, the polyethylenglycol employed in this study was polyethylenglycol 40 from
Merk-KGaA, Germany.
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2.2. Processing

2.2.1. Melt mixing technique for uniformed distribution (UD)

An internal mixer from Brabender, Germany (model WHT 55), with roller type rotors and
mixer capacity of 55 cm3 was used for preparing nanocomposites samples. The nano clay (MMT)
was dried at 40◦C in a vacuum oven for a minimum of 48 h. Low density polyethylene (LDPE)
and polyethylenglycol were added to the nanoclay. All materials were manually premixed before
introduction into the mixer. The extrusion temperature was set at 140-180◦C from the feeder
to the die.

2.2.2. Solution technique for uniformed distribution (UD)

The nanoclay (MMT) was dried at 40◦C in the vacuum oven for a minimum of 48 h. Low
density polyethylene (LDPE) and toluene solution were added to the nanoclay. The mechanical
mixture was stirred for 30min at room temperature. After 30 min of mechanical stirring, the
suspension was treated with ultrasound for 20min. After stirring, the suspension was distilled.
The ultrasonic stirring from Hielscher, Germany (model UP400S), was used to ultrasound the
suspension.

2.2.3. Melt mixing technique for functionally graded distribution (FGD)

After the melt mixing procedure, the products were then compressed and molded into she-
ets by an electrically heated hydraulic press. The thickness of every sheet was 1mm and four
sheets with different nanoparticles weight fractions (pure, 1wt.%, 3wt.% and 5wt.%) were em-
ployed to form functionally graded nanocomposite. The processing of melt mixing technique for
functionally graded distribution is presented in Fig. 1.

Fig. 1. Processing of melt mixing technique for functionally graded distribution: (a) primary set of
nanocomposite sheets with different nanoparticle fractions, (b) processing the FG nanocomposite,

(c) fabricated FG nanocomposite

2.3. Scanning electron microscopy (SEM) analysis

The morphology of nanocomposite cross section samples was investigated using a SERON
AIS2300C scanning electron microscope. The initial sample preparing process was carried out
by a gold-coater chamber. Figure 2a is the SEM photography of the nanocomposite for uniform
distribution prepared by the solution technique and Fig. 2b is the SEM image of the nanocom-
posite for uniform distribution prepared by the melt mixing technique.
Figure 2a shows that the morphology for the solution technique is not homogeneous, which

reveals a poor intercalated/exfoliated structure. However, when the melt mixing technique was
employed and a compatibilizer was added (Fig. 2b), it was observed that the density and size of
the aggregates decreased, which indicated that the dispersion of nanoclays within the polymer
matrix was much better. The comparisons between Fig. 2a and Fig. 2b show that the adhesion
of the particles of nanoclay and polymer in the presence of the compatibilizer is improved. The
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Fig. 2. SEM image of nanocomposite prepared by (a) solution technique and (b) melt mixing technique
for uniform distribution

Fig. 3. SEM image of nanocomposite prepared by melt mixing technique for functionally graded
distribution

morphology of nanocomposites cross section samples for functionally graded distribution was
investigated by a TESCAN MRIA3 SEM after being coated with gold. Figure 3 is the SEM
image of the nanocomposite for functionally graded distribution prepared by the melt mixing
technique. It seems that the dispersion of nanoclay varies smoothly and continuously from one
surface to the other.

2.4. Mechanical properties

The tensile properties were evaluated according to ASTM D638 using dumbbell-shaped sam-
ples and a Gotech universal testing machine (Model GT-AI5000L) tensile tester with a crosshead
speed of 50mm/min. The material compositions of the nanocomposites are listed in Table 1.

Figure 4a illustrates the effect of nanoparticles with different weight fractions on the elastic
modulus. As noticed, the elastic modulus begins to increase up to 5wt.% of nanoclay. As the



Preparation with modeling and theoretical predictions... 587

Table 1. Sample compositions

Sample
LDPE Compatibilizer MMT
[wt%] [wt%] [wt%]

1 85 15 –

2 82 15 3

3 80 15 5

4 78 15 7

clay weight fraction exceeds 5wt.%, the elastic modulus levels off, but for functionally graded
distribution, the elastic modulus is generally larger than the corresponding values for uniformed
distribution of the nanoclay.

Fig. 4. The effect of nanoparticles with different weight fractions on (a) elastic modulus and
(b) yield strength

Figure 4b illustrates the effect of nanoparticles with different weight fractions on yield streng-
ths. As observed, the yield strengths begin to increase up to 5wt.% of nanoclay. As the weight
fraction of clay exceeds 5wt.%, the yield strengths level off.

3. Modeling

3.1. Theoretical predictions

GA is an unorthodox search or optimization algorithm which was first suggested by John
Holland in his book Adaptation and Artificial Systems (Holland, 1975). As the name suggests,
the GA was inspired by processes observed in natural evolution. The GA method searches for
the best alternative (in the sense of a given fitness function) through chromosome evolution. In
this paper, the 1 − R2adj is introduced as the fitness function which is to be minimized. R2adj is
the accuracy criterion of an arbitrary mechanical property function (such as Young’s modulus).
R2adj is defined as a process which is demonstrated below. The mechanical property is a function

of nanoclay weight percent and R2adj is a function of coefficients which are introduced below.Mi is
considered as the mechanical properties andW as the nano clay weight percent.M1,M2,M3 and
M4 are Young’s modulus, yield stress, ultimate strength and elongation at break, respectively.
The Mi is expressed as a polynomial function of W as follows

Mi =
4∑

j=0

ajiW
j (3.1)
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Now, the coefficients aji are found by maximizing the accuracy of the polynomial function. The
equations can be written as:

R2adj = 1−
V ARE
V ART

(3.2)

in which

V ARE =
SSErr

n− k − 1 V ART =
SSTot
n− 1

SSTot =
n∑
i=1
(yi − y)2 SSErr =

n∑
i=1
(yi −Mi)

2 y = 1n
n∑
i=1

yi

(3.3)

and

Mi(W ) = a0i + a1iW + a2iW
2 + a3iW

3 (3.4)

In these equations, n = 4 is the number of experiments and k = 0 is the number of duplicated
experiments and yi show the experimentally measured mechanical properties. After minimization
of 1−R2adj via MATLAB, the factors aji are obtained after approximately 40 generations.

3.2. Einstein’s model

One of the earliest models developed to predict mechanical properties of composites is Ein-
stein’s model (Einstein, 1956)

Ec
Em
= 1 + 2.5φf (3.5)

where Ec and Em are the moduli of the composite and matrix, respectively. φf is the volume
fraction of the filler in the matrix.

3.3. Guth and Gold model

The reinforcing effect of spherical colloidal fillers on elastomers was studied by Guth and
Gold, and the modulus is given by equation (Guth, 1945)

Ec = Em(1 + 2.5φf + 14.1φ
2
f ) (3.6)

where Ec and Em are the moduli of the composite and matrix, respectively. φf is the volume
fraction of the filler in the matrix. The conversion of weight fractions of nanoclay to volume
fractions is shown in Table 2.

Table 2. Conversion of weight fractions of nanoclay to volume fractions

Volume fraction Weight fraction
of nanoclay of nanoclay

3% 1.44%

5% 2.4%

7% 3.36%
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3.4. Mori-Tanaka model

A combination of the Mori-Tanaka mean stress concept and the eigenstrain idea of Eshel-
by’s inclusion model was used by Tandon and Weng (1984) to determine the overall elasticity
tensor of the nanocomposite materials, assuming that either of the mixture and inclusions (e.g.,
discontinuous fibers/flakes/nanoparticles) are isotropic or transversely isotropic. For a material
reinforced by ellipsoidal particles aligned in the longitudinal direction, the longitudinal modulus
may be determined as

E11

Em
=

1

1 + 1Afp(A1 + 2νmA2)
(3.7)

where the subscripts p and m stand for the particles and the matrix, respectively. νm is Poisson’s
ratio of the matrix and fp are the inclusion particles volume fraction. The constants A and Ai
can be calculated from the matrix/particle properties and components of Eshelby’s tensor Hijkl

(Sheng et al., 2004; Eshelby, 1961; Taya, 1981; Taya and Mura, 1981) which depend on the
particle aspect ratio and dimensionless elastic constants of the matrix.

4. Results and discussion

Obtaining the aji coefficients, Young’s modulus can be expressed as a function of the nanoclay
weight percent as follows

E = −3.401w + 4.97w2 − 0.677w3 + 105.338 (4.1)

Here, w is the nanoclay weight percent. To investigate correctness of the present results, compa-
rison studies are carried out for Young’s modulus of uniform distribution nanocomposites which
are presented in Table 3.

Table 3. Comparison of Young’s modulus for uniform distribution nanocomposites

Nano clay Einstein’s Guth and Gold’s Mori-Tanaka Theoretical Experimental
weight predictions predictions predictions predictions results
percent [Mpa] [Mpa] [Mpa] [Mpa] [Mpa]

pure 105.338 105.338 105.338 105.338 105.338

3% 109.130 109.438 126.362 121.586 121.582

5% 111.658 112.513 132.715 127.958 127.939

7% 114.186 115.863 139.412 92.850 92.795

The compression between theoretical predictions and the experimental data shows high ac-
curacy of the present analysis. Equation (4.1) can be used to derive the suitable relation for
Young’s modulus of the functionally graded distribution. The specimen with functionally gra-
ded distribution consists of four perfectly bonded sheets with a total thickness of 4mm. Each
sheet has 1mm thickness with different nanoparticles weight fractions (pure, 1wt.%, 3wt.% and
5wt.%). Young’s modulus can be written as

E(z) = −3.401(2z + sgn [z]) + 4.97(2z + sgn [z])2 − 0.677(2z + sgn [z])3 + 105.338 (4.2)

As mentioned before, Young’s modulus is assumed to vary as a function of the thickness coordi-
nate z (0 ¬ z ¬ 4). Equation (4.2) can be verified via employing static analysis of the functionally
graded nanocomposite beam under a transverse load. It is considered as a functionally graded
nanocomposite beam as shown in Fig. 5.
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Fig. 5. Schematic of the problem studied

The thickness, length, and width of the beam are denoted, respectively, by h, L, and b. The
position of neutral surface can be determined as (Yaghoobi and Fereidoon, 2010):

h0 =

h/2∫
−h/2

E(z)z dz

h/2∫
−h/2

E(z) dz

(4.3)

In the Euler-Bernoulli theory, the differential equation of deflection can be expressed as (Yagho-
obi and Fereidoon, 2010)

d2w

dx2
=
M(x)

D
(4.4)

where D denotes bending rigidity of the FG nanocomposite beam defined by (Yaghoobi and
Fereidoon, 2010)

D =

h/2∫

−h/2

bE(z)(z − h0)2 dz (4.5)

Boundary conditions for simply supported and cantilever beams are

w = 0 at x = 0, l

w = 0 ∧ dw

dx
= 0 at x = 0, l

(4.6)

By integrating Eq. (4.4) and then applying boundary conditions, Eqs. (4.6), one can easily
obtain deflection of the beam under the transverse load. For static analysis of the functionally
graded nanocomposite beam under the transverse load, the beam apparatus from TQ, England
(Model SM1004), was used for deflection test. The test specimen had a rectangular cross section
(20 × 4)mm2 and a length of 15 cm. The load magnitude for both boundary conditions was
0.54N. The comparison between theoretical and experimental data for the deflection of the
functionally graded distribution nanocomposites is shown in Table 4.

Table 4. Compression between theoretical and experimental data for deflection

Boundary
condition

Load Deflection mea- Theoretical Experimental
position suring position deflection deflection
x [cm] x [cm] [mm] [mm]

Simply support 5.5 7.5 3.82 3.65

Cantilever 7 15 5.87 5.59

As observed, there is a good agreement between the results. Thus the presented approach
for modeling of Young’s modulus of functionally graded distribution nanocomposites has high
accuracy.
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5. Conclusions

This paper presents the preparation with modeling and theoretical predictions of mechanical
properties of functionally graded and uniform distribution polyethylene/low density polyethylene
(LDPE)/modified montmorillonite (MMT) nanocomposites prepared by both solution and melt
mixing techniques. From this study, the following conclusions can be made:

• The mixing technique is generally better than the solution one for preparation of the
polyethylene/low density polyethylene (LDPE)/modified montmorillonite (MMT) nano-
composites.

• The compatibilizer plays an important role in improving the properties of polyethylene/low
density polyethylene (LDPE)/modified montmorillonite (MMT) nanocomposites.

• By increasing weight fractions of the nanoparticles, the mechanical properties increase up
to 5wt.% nanoclay.

• The elastic modulus for FG distribution of the nanoclay is generally larger than the cor-
responding value for the uniform distribution of the nanoclay.

• GA is an acceptable optimization research technique which can be used with confidence
to identify mechanical properties of nanocomposites with maximum accuracy.
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Thermomechanical low cycle fatigue behaviour of P91 steel used in power industry appli-
cations has been extensively investigated. The constitutive model of Armstrong-Frederick,
extended with temperature rate effects, has been applied to describe the behaviour of the
thermo-elastic-plastic material. The proposed model has been successfully implemented in
simulation of low cycle fatigue of the examined steel in two different temperatures.
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1. Introduction

Thermomechanical low cycle fatigue accompanied by elastic-plastic strains is one of the dominant
failure modes in high temperature structural components such as electric power boilers, boiler
pipes, engine elements, etc. Extensive research on the behaviour of various engineering materials
under low cycle fatigue conditions has been carried out for the last 50 years in order to develop
the adequate constitutive modeling as well as the appropriate predictions of the fatigue lifetime
(Taleb et al., 2006; Zhang et al., 2008; Ganczarski and Skrzypek, 2009; Taleb and Cailletaud,
2010; Skrzypek and Ganczarski, 2015).

The aim of this paper is to work out a procedure of comprehensive analysis of thermome-
chanical low-cycle fatigue behaviour on the example of P91 steel, widely used in power industry
applications (Duda et al., 2016). Firstly, the material is tested experimentally in two test tem-
peratures, then the material behaviour is described by a constitutive model implemented into a
numerical procedure. Next, the material characteristics are identified in different test tempera-
tures. Finally, the numerical simulations of fatigue tests are performed and compared with the
experimental results.

To reduce the number of material parameters for identification, the Armstrong and Frederick
constitutive model extended with temperature rate effects is here applied.

The present work is treated as an initial step in the comprehensive analysis of P91 steel
behaviour in thermomechanical fatigue conditions. For this reason, classical Armstrong and
Frederick constitutive model and only two testing temperatures for parameter identification are
considered. However, the procedure of analysis is general and can be applied to a more complex
modeling.
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2. Behaviour of P91 steel

2.1. Experimental equipment and material investigated

Tested specimens (see Fig. 1) were cut out of a boiler pipe of diameter d = 200mm and
wall thickness t = 20mm (see Fig. 2). The chemical composition of steel is shown in Table 1.
Low cycle fatigue tests were strain controlled with constant total strain amplitude (εac = const ,
frequency of loading 0.2Hz) and constant temperature in each test.

Fig. 1. Shape and dimensions of the tested specimen

Fig. 2. Sampling procedure

Table 1. Chemical composition of the steel

C Si Mn P S Cr Mo Ni Al Co Cu Nb Ti V W

0.197 0.442 0.489 0.017 0.005 8.82 0.971 0.307 0.012 0.017 0.036 0.074 0.004 0.201 0.02

Table 2. Loading scheme, strain amplitude and temperature

Loading scheme εaci [%] Ti [
◦C]

εac1 = 0.25 T1 = 20
εac2 = 0.30 T2 = 600
εac3 = 0.35
εac4 = 0.50
εac5 = 0.60

Five levels of the total strain amplitude, and two levels of temperature were applied (see
Table 2). Experiments were performed on the testing machine Instron 8502 equipped with a
heating chamber.
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The temperature was controlled by the use of a thermocouple attached to the sample measu-
ring section. The material deformation was determined by means of a strain gauge extensometer
(gauge length 12.5mm) (see Fig. 3).

Fig. 3. The test stand: (a) ekstensometer mounting, (b) heating chamber

2.2. Material behaviour

The tested steel exhibits cyclic softening, regardless of the testing temperature (half-stress
amplitude decreases with increasing cumulated plastic strain, cf. Golański and Mroziński (2013)).
This softening could be divided into three phases, which are: the rapid softening phase during
the initial few hundred cycles followed by a slow quasi-linear softening phase, and finally again
fast softening till rupture (see Fig. 4) (cf. Bernhart et al., 1999; Mebarki et al., 2004). The
first phase is generally explained by a rapid change in the dislocation density inherited from
the quench treatment, the second is related to the formation of dislocation sub-structure and
carbide coarsening under the action of time, temperature and cyclic load, while the third phase
is a consequence of micro-damage development in the material that ultimately causes failure of
the tested sample (cf. Seweryn et al. 2008; Szusta and Seweryn, 2010).

3. Constitutive model of a thermo-elastic-plastic material

3.1. Basic assumptions

In constitutive modeling, the well-known formalism of thermodynamics of irreversible pro-
cesses with internal state variables and the local state method are often adopted (Maugin, 1999;
Ottosen and Ristinmaa, 2005; Chaboche, 1997a,b, 1986; Skrzypek and Kuna-Ciskał, 2003; Egner,
2012). In this approach, we consider a material as a specific portion of the physical universe,
called a system. The current state of a system is entirely determined by certain values of some
independent variables, called variables of state, which can be scalars, vectors, or tensors (matri-
ces), such as temperature (scalar) or strain (second order tensor). For a thermo-elastic-plastic
material exhibiting mixed hardening the following set of state variables is defined

{V st
α } = {εeij ;αij , p; θ} (3.1)

where εeij are components of the reversible (elastic) strain tensor, αij corresponds to kinematic
plastic hardening, p is the accumulated plastic strain

p =

t∫

0

√
2

3
ε̇pij ε̇

p
ij dt (3.2)

and θ is the absolute temperature in Kelvins.
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Fig. 4. Cyclic softening of the steel at a constant total strain amplitude εac = 0.6%

In the case of infinitesimal deformation, the total strain tensor components εij are expressed
as the sum of the elastic (reversible) εeij , plastic (irreversible) ε

p
ij and thermal ε

θ
ij strains

εij = ε
e
ij + ε

p
ij + ε

θ
ij (3.3)

while thermal strain is expressed as

εθij = α
θ
ij(θ)(θ − θ0) (3.4)

with αθij(θ) standing for components of the thermal expansion tensor, and θ0 for the reference
temperature at which no thermal strains exist.

3.2. State potential and equations of the state

The constitutive behaviour is defined by the specification of two potentials: energy potential
and dissipation potential. The state potential is a closed, convex, and scalar-valued function of
the overall state variables. The Helmholtz free energy ψ is here used, decomposed into thermo-
elastic ρψte and thermo-plastic ρψtp terms (ρ is mass density)

ρψ(V st
α ) = ρψ

te(εeij ; θ) + ρψ
tp(αij , p; θ) (3.5)

The following classical functions are here adopted (cf. for ex. Ottosen and Ristinmaa, 2005;
Egner and Egner, 2015)
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ρψte = ρh(θ) +
1

2
(εij − εpij)Eijkl(θ)(εkl − ε

p
kl)− βij(θ)(εij − ε

p
ij)(θ − θ0)

βij = Eijkl(θ)α
θ
kl(θ)

ρψtp =
1

3
C(θ)αijαij +Q(θ)

[
p+

1

b(θ)
e−b(θ)p

]
(3.6)

where h(θ) is a function of temperature, Eijkl(θ) denote components of the elastic stiffness
tensor, and C(θ), Q(θ), b(θ) stand for temperature dependent material parameters.
The thermodynamic forces conjugated to state variables (3.1) result from the assumed form

of state potential (3.5) and are defined by the following state equations

σij = Eijkl(θ)(εkl − εpkl)− βij(θ)(θ − θ0) Xij =
2

3
C(θ)αij

R = Q(θ)
(
1− e−b(θ)p

) (3.7)

σij is here the stress tensor (thermodynamic force conjugated to elastic strain ε
e
ij), Xij de-

notes the back stress (conjugated to plastic hardening variable αij), and R is the drag stress
(conjugated to accumulated plastic strain p).
If we now define the components of the thermodynamic conjugate force vector {Jα} and the

flux vector components {Ṗα} as

{Jα} =
{
Jmechα ;Jθα

}
=
{
σij,Xij , R;

θ,i
θ

}

{Ṗα} =
{
Ṗmechα ; Ṗ θα

}
=
{
ε̇pij ,−α̇ij,−ṗ;−qi

} (3.8)

then the dissipation inequality can be expressed as the scalar product of Jα and Ṗα as follows
(Krajcinovic, 1996)

π = JαṖα  0 (3.9)

where π is the dissipation function.

3.3. Dissipation potential and evolution equations

A constitutive model that fulfills the Clausius-Duhem inequality fulfills all formal require-
ments. However, this does not guarantee that the model provides a good approximation of the
real material behaviour. If the internal state variables chosen in the modeling are not identified
with underlying physical mechanisms responsible for dissipation, the theory may be physically
empty (Maugin, 1999). There are various approaches for the establishment of the rate laws, so
that the dissipation inequality is fulfilled. The most often used is the potential approach based on
the assumption of the existence of a dissipation potential F , being a closed, convex, and scalar-
valued function of thermodynamic forces (3.8)1, and some other possible variables. The potential
of dissipation F is here assumed not equal to plastic yield surface and dependent on temperature
(non-associated thermo-plasticity). This allows obtaining non-linear plastic hardening rules (cf.
Ganczarski et al., 2010)

F (Jα, θ) = f(Jα, θ) +
3γ(θ)

4C(θ)
Xij(αij , θ)Xij(αij , θ)

f(Jα, θ) =

√
3

2
[sij −Xij(αij , θ)][sij −Xij(αij , θ)]− [σy(θ) +R(p, θ)]

(3.10)

where f(Jα, θ) is the von Mises plastic yield surface, sij is the stress deviator, σy(θ) denotes the
yield stress, and γ(θ) is another temperature dependent material parameter.
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According to the generalized normality rule (cf. Chaboche, 2008), the following classical rate
equations are obtained

ε̇pij = λ̇
p sij −Xij√
3
2 [sij −Xij(αij , θ)][sij −Xij(αij , θ)]

α̇ij = ε̇
p
ij −
3γ

2C
Xij ṗ ṗ = λ̇p

(3.11)

The kinetic equations of force-like variables are obtained by taking time derivatives of functions
(3.7)

σ̇ij = Eijkl(θ)(ε̇kl − ε̇pkl)− Pij θ̇ (3.12)

where

Pij = −
∂Eijkl(θ)

∂θ
(εkl − εpkl) +

∂βij(θ)

∂θ
(θ − θ0) + βij(θ)

Ẋij =
2

3
C(θ)α̇ij +

2

3

dC(θ)

dθ
αij θ̇

Ṙ = Q(θ)b(θ)e−b(θ)pṗ+
[dQ(θ)

dθ

(
1− e−b(θ)p

)
+Q(θ)

db(θ)

dθ
e−b(θ)pp

]
θ̇

(3.13)

3.4. Consistency condition

Calculation of the Lagrange multiplier λ̇p(θ) for rate-independent material needs making use
of the consistency condition

ḟ(Jα, θ) =
∂f

∂σij
σ̇ij +

∂f

∂Xij
Ẋij +

∂f

∂R
Ṙ+

∂f

∂θ
θ̇ = 0 (3.14)

The classical Kuhn-Tucker loading/unloading conditions have the form

f ¬ 0 and ḟ





< 0 and λ̇p = 0 ⇒ passive loading

= 0 and λ̇p = 0 ⇒ neutral loading

= 0 and λ̇p > 0 ⇒ active loading

(3.15)

Substituting equations (3.7) and (3.11) into equation (3.14) leads to the following

ḟ =
∂f

∂σij
σ̇ij − λ̇p

[2
3
C
∂f

∂σij

( ∂f
∂σij
− γαij

)
− ∂f

∂R
Qbe−bp

]
−
{
2

3

dC

dθ

∂f

∂σij
αij

− ∂f

∂R

[dQ
dθ

(
1− e−bp

)
+Q

db

dθ
e−bpp

]
− ∂f

∂θ

}
θ̇ =

∂f

∂σij
σ̇ij − λ̇pH − θ̇S = 0

(3.16)

In the above equation, H is the generalized hardening modulus

H =
2

3
C
∂f

∂σij

( ∂f
∂σij
− γαij

)
− ∂f

∂R
Qbe−bp (3.17)

and S reflects the sensitivity of the yield surface on temperature changes (cf. Egner, 2012)

S =
2

3

dC

dθ

∂f

∂σij
αij −

∂f

∂R

[dQ
dθ

(
1− e−bp

)
+Q

db

dθ
e−bpp

]
− ∂f

∂θ
(3.18)

Expression (3.16) determines the consistency multiplier

λ̇p(θ) =
1

w

[ ∂f
∂σij

Eijklε̇kl −
( ∂f
∂σij

Pij + S
)
θ̇
]

(3.19)

where

w =
∂f

∂σij
Eijkl

∂f

∂σkl
+H (3.20)
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3.5. Heat balance equation

To determine the temperature distribution within the body, the heat balance equation is
used, derived from the first law of thermodynamics by substituting into it the internal energy
density together with Fourier’s law. The heat balance equation takes the form (cθε is the specific
heat capacity at a constant strain and r is the distributed heat source per unit volume)

ρcθε θ̇ = −qi,i + r − θPij(ε̇− ε̇Iij) + σij ε̇pij −
(
R− θ∂R

∂θ

)
ṗ−

(
Xij − θ

∂Xij

∂θ

)
α̇ij (3.21)

4. Numerical implementation and results

4.1. Numerical algorithm

In the case of uniaxial loading (tension/compression), the tensorial quantities: stress tensor,
strain tensor and back stress tensor may be presented in the following matrix forms

[σij ] = σ



1 0 0
0 0 0
0 0 0


 [sij ] = σ



2
3 0 0
0 −13 0
0 0 −13




[εij ] = ε
e



1 0 0
0 −ν 0
0 0 −ν


+ εp



1 0 0
0 −12 0
0 0 −12


+ αθ(θ − θ0)



1 0 0
0 1 0
0 0 1




[Xij ] = X



2
3 0 0
0 −13 0
0 0 −13


 [αij] = α



1 0 0
0 −12 0
0 0 −12




(4.1)

The numerical procedure implementing EAF model has been built by the use of Mathematica 10
software according to the algorithms based on the classical backward Euler scheme and the
Newton-Raphson method (cf. Chaboche and Cailletaud, 1996) (see Fig. 5). The vector ∆S =
[∆λ,∆εe,∆θ,∆α]T contains increments of the unknowns, and is iteratively calculated according
to

∆S(k+1) = ∆S(k) − [J(k)]−1R(∆S(k)) (4.2)

In the above equation [J ] = ∂R/∂∆S is the Jacobian matrix and R(∆S) is the residual vector
containing the components Ri = ∆Si − ∆̂Si, where ∆Si is a variable while ∆̂Si denotes the
function resulting from the evolution rule for the i-th variable Si. It is evident that the condition
R(∆S) = 0 defines the solution. If we expand this condition into a Taylor series, we obtain (4.2).
The iteration procedure is stopped when the norm of R is sufficiently small.

4.2. Identification of model parameters

The identification of model parameters has been performed with the application of SIMULIA-
-Isight package (cf. SIMULIA Abaqus Extended Products, 2014), which provides a platform for
automatic optimal selection of material parameters. For this purpose, two components offered
by the program: “Data Matching” and “Optimization” have been used. “Data Matching” com-
ponent allows one to calibrate the model by analyzing different error measures between the
experimental data and numerical simulation results. The following vector of material parame-
ters Pi is searched

{Pi} = {σy, E, γ,C, b,Q} Pi ∈ 〈Li, Ui〉 (4.3)
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Fig. 5. Numerical algorithm

The parameters are bounded between their respective lower bounds Li and upper bounds Ui.
Before the identification starts, the parameters are subjected to normalization, so that

P i ∈ 〈−1, 1+〉 Pi =
1

2
[(1− P i)Li + (1 + P i)Ui] (4.4)

In the present analysis, the error measure used is the square root of the sum of squared deviations

Fobj(P i) =
m∑

k=1

[σk(Pi)− σek]2 (4.5)

where σek denote the experimental stress data and σk(Pi) are the stress data calculated numeri-
cally by the use of current values of the model parameters Pi.

The “optimization” component is applied to find an optimal solution in the user-defined
field, with the assumed constraints and the objective function defined by (4.5). The constraints
limit the search field to the range of acceptable physical values. To reduce the dimension of
the field in which the optimal solution is searched, the following procedure has been applied:
the initial yield stress σy and the elastic modulus E are identified manually, considering the
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monotonic tensile part of the first hysteresis loop. Next, considering the whole first hysteresis
loop, the approximate values of kinematic hardening parameters (γ and C) are looked for on
the assumption that the isotropic hardening is negligible (b = 0 and Q = 0)

min{Fobj(P i) : E = const ∧ σy = const ∧ b = 0 ∧ Q = 0} (4.6)

Then the parameters related to the isotropic hardening are searched with the use of several
chosen hysteresis loops (loop 2 to 20)

min{Fobj(P i) : E = const ∧ σy = const ∧ γ = const ∧ C = const} (4.7)

As a result, the approximate values of material parameters, constituting the starting po-
int for optimization are set, and the identification of all the unknown material parameters
(E, σy, γ, C, b,Q) is performed once again, but in a substantially limited range around the initial
point. The results of the applied identification procedure are presented in Table 3. Please note
that these data ensure the best fit of the results simulated numerically into the experimental
results for the chosen objective function Fobj(P i). However, the constitutive model does not
account for nonlinear elastic effects, therefore the yield stress is clearly underestimated relative
to the offset yield stress Rp02 for the considered material (cf. Mroziński and Piotrowski, 2013).

Table 3. Material parameters (εac = 0.60%)

20◦C 600◦C

σy [MPa] 278 184

E [MPa] 198 000 159 000

γ 595 752

C [MPa] 130 420 89 120

b 1.02 1.88

Q [MPa] −39 −69

The experimental observations indicate that steel is not stable during fatigue, and that the
microstructure can be modified by the thermal cycle. However, such a case takes place when
temperatures reach or exceed the tempering temperatures, even for a short time (cf. Zhang et
al., 2008). In other words, there are two ranges of temperature, in which the fatigue behaviour
of the steel is different:

(1) Above the tempering temperature, a sharp ageing is observed while the fatigue test addi-
tionally enhances the microstructural evolutions related to ageing. In such a case, changes
of mechanical properties of the steel are induced by factors related independently to the
history of temperature. As a consequence, it is necessary to include additional parameters
(state variables) for correct description of such an influence of temperature in a constitu-
tive model. The identification of model parameters, being temperature history dependent,
should be done for all temperatures by identifying with all tests together with the cho-
sen material functions of temperature (cf. Cailletaud et al., 2000). For this purpose, an
experimental thermomechanical fatigue tests should be performed and used for parameter
identification.

(2) On the other hand, below the tempering temperature (the case considered in the present
analysis) the ageing remains nearly constant, so that the mechanical properties depend on
the current temperature and not on the history of temperature. In such a case, there is no
need to include in the identification procedure all temperatures together, but to use several
isothermal tests in different temperatures, and introduce the influence of temperature on
the material parameters by interpolation techniques with polynomial or spline functions.
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4.3. Simulation of the tests under strain control

Kinematic hardening equations (3.11)2 and (3.13)2, proposed by Armstrong and Frederick
(1996), introduce a recall term, which is collinear with the back stress Xij . For a monotonic unia-
xial loading, the evolution of Xij becomes exponential with a saturation value C/γ. Integration
of (3.13)2 with respect to ε

p
ij (for the isothermal case) yields

Xij = ν
C

γ

(
1− e−νγε

p
ij
)

(4.8)

where ν = ±1 indicates the flow direction. Function (4.8) is shown in Fig. 6a for two testing
temperatures. It can be seen that the translation of the yield surface for the same strain level is
more pronounced in lower temperatures.

Fig. 6. (a) Evolution of back stress versus plastic strain. (b) Evolution of R versus accumulated
plastic strain

The R-p curve obtained on the basis of Eq. (3.7)3 is shown in Fig. 6b. The parameters Q
and b depend on the material and temperature. For cyclic loading, the value of b is usually placed
in the range between 0.5 and 50. In the context of monotonic loading, the value of b should be
much higher (cf. Chaboche, 2008).

Fig. 7. Comparison between experimental and calculated (a) responses with a strain rate of 10−2 and
(b) maximum stress vs. cycles at temperatures of 20◦C and 600◦C

Figure 7a presents a comparison between the test results used in the identification process
and their simulations by the described model using the material parameters for Table 3. As
shown in Fig. 7a, the model simulates the first hysteresis loop with a very good accuracy. Also,
stage I of the tests used in the identification process (the rapid softening phase during the initial
few hundred cycles) is well reflected, see Fig. 7b.



Modeling of cyclic thermo-elastic-plastic behaviour of P91 steel 605

The identification is performed with the use of chosen hysteresis loops only, and not with the
whole fatigue curve. However, when the optimal values of model parameters are obtained, the
(numerically obtained) maximum stress on cycle versus cycle number exhibits a good agreement
with the results of all the first 100 cycles of the experiment (see Fig. 7b).

5. Conclusions

In the present paper, the algorithm for a comprehensive analysis of thermomechanical fatigue
behaviour is presented. Such an analysis consists of five main steps: (1) experimental testing in
several test temperatures, (2) constitutive modeling of material behaviour regarding the efects of
temperature change, (3) numerical implementation of the mathematical model, (4) identification
of model parameters in different test temperatures to obtain temperature-dependent material
characteristics, and (5) validation of the analysis by comparison between the experimental and
numerical results.

The classical Armstrong and Frederick constitutive model used in the presented analysis is
not capable of describing different physical mechanisms able to produce material nonlinearities
on a macro-scale. For this reason, a more advanced constitutive model should be adopted to
properly refelect the material behaviour under different loading paths (cf. Besson et al., 2009;
Saanouni, 2012; Egner and Egner, 2014). However, such advanced models involve many material
parameters that need to be identified. This is why in this research a simple model is considered,
but the described procedure is general and can be applied also to a more compehensive modeling
(cf. Velay et al., 2006; Säı, 2011).
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The notched beams have been commonly used in concrete fracture. In this study, the
splitting-strip specimens, which have some advantages – compactness and lightness – com-
pared to beams, are analyzed for effective crack models. Using the Fourier integrals and
Fourier series, a formula for the maximum tensile strength of concrete is first derived for an
un-notched splitting-strip in the plane of loading. Subsequently, the linear elastic fracture
mechanics formulas of the splitting-strip specimens, namely the stress intensity factor KI ,
the crack mouth opening displacement CMOD , and the crack opening displacement profile
COD , are determined for different load-distributed widths via the weight function.

Keywords: concrete, Fourier integrals, fracture mechanics, splitting test, weight functions

1. Introduction

The split-tension specimens are frequently used to determine tensile strength of materials, such as
concrete and rock (Neville, 2011). The split-cylinder test, which is also called the Brazilian split
test, was proposed by Carneiro and Barcellos (1949). This test was successfully applied to cubes
by Nilsson (1961). However, split-tension test specimens, namely, cylinders, cubes and diagonal
cubes, have also been successfully used in concrete fractures over the last decade (Modeer, 1979;
Tang, 1994; Rocco et al., 1995; Tang et al., 1996; Ince, 2010, 2012a,b). The splitting concrete
specimens exhibit several advantages, e.g., compactness and lightness, and the weight of the
specimen can be disregarded in calculation of fracture parameters.

The experimental investigations on fracture mechanics of cement-based materials conducted
until the 1970s indicated that classical linear elastic fracture mechanics (LEFM) was no longer
valid for quasi-brittle materials such as concrete. This inapplicability of LEFM was due to the
existence of a relatively large inelastic zone in the front and around the tip of the main cracks in
concrete. This so-called fracture process zone (FPZ) was ignored by LEFM. Consequently, several
investigators have developed deterministic fracture-mechanics approaches to describe fracture-
-dominated failure of concrete structures. These models could be classified as cohesive crack
models and effective crack models. Contrary to LEFM, in which a single fracture parameter was
used such as the critical stress intensity factor, those models needed at least two experimentally
determined fracture parameters to characterize failure of concrete structures. These models could
be classified as cohesive crack models and effective crack models: namely the two-parameter
model (Jenq and Shah, 1985), the effective crack model (Nallathambi and Karihaloo, 1986), the
size effect model (Bazant and Kazemi, 1990) and the double-K model (Xu and Reinhardt, 1999).

Analytical and numerical studies on split-tension specimens (Modeer, 1979; Tang, 1994;
Rocco et al., 1995; Tang et al., 1996; Ince, 2010, 2012a,b; Ince et al., 2015, 2016) have revealed
that nominal strength is highly affected by the width of the distributed load and the specimen
size. The existing design codes have not considered these effects in the determination of the
split-tensile strength of concrete. On the other hand, theoretical and experimental studies with
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splitting strip specimens (Davies and Bose, 1968; Filon, 1903; Schleeh, 1978) are limited when
compared to those of other splitting specimens.

For this purpose, LEFM formulas for the stress intensity factor KI , the crack mouth opening
displacement (CMOD), and the crack opening displacement profile (COD) of splitting strip
specimens have been evaluated for different load-distributed widths and initial crack lengths
utilizing the weight function in this study. In addition, the maximum tensile stresses in the
un-notched split-tension strips have also been determined for different load-distributed widths.

2. A historical overview of splitting tests

As indicated in Fig. 1a, a split-tension specimen is placed between the platens of the test machine
and the load is subsequently applied until failure, which is caused by splitting along the vertical
diameter due to the lateral tensile stress that has occurred (Neville, 2011). According to elasticity
theory (Timoshenko and Godier, 1970), the nominal tensile strength of split-tension specimens
is defined as

σNc =
2Pc
πbh

(2.1)

where Pc is the ultimate load, b is the specimen width and h is the specimen depth. However, Eq.
(2.1) is only valid for the concentrated loading condition shown in Fig. 1a. In practice, the applied
load is distributed on the specimens over a finite width (2t) using soft materials, such as hard
cardboard and plywood, as indicated in Fig. 1b (Neville, 2011; Davies and Bose, 1960). Tang
et al. (1992) investigated the effect of distributed load in three-point bending beams and split-
-tension cylinders. The nominal strength decreased with the increasing width of the distributed
load in the split-tension cylinder, whereas this effect was not significant in the bending specimens.
According to Tang (1994), the maximum tensile stress value of the un-notched cylinder specimens
at the plane of loading could be calculated as

σmax =
2P

πbh

√
(1− β2)3 (2.2)

where P is the total compressive load and β = 2t/h = t/d is the ratio of the distributed-load
width to the specimen depth (d is the characteristic specimen size), as depicted in Fig. 1. Rocco
et al. (1995) examined the cylinder and cube specimens and proposed that the maximum tensile
stress could be calculated for the un-notched cube specimens at the plane of loading as follows

σmax =
2P

πbh

[
3

√
(1− β2)5 − 0.0115

]
β ¬ 0.20 (2.3)

Using the boundary element method, a formula for the maximum tensile strength of concrete
was similarly derived for un-notched diagonal cubes in the plane of loading by Ince (2012a) as
follows

σmax =
2P

πbh

1

0.931 + 38.931β4.778
β ¬ 0.25 (2.4)

One of the advantages of diagonal splitting-cube specimens is nearly const = 1/0.931 = 1.074
maximum stress in the plane of loading for β ¬ 0.15, which differs from other splitting specimens.
Approaches based on fracture mechanics and using notched split cylinder specimens were first

performed by Tweed et al. (1972). They developed a closed-form expression for the geometry
factor of the notched split-tension cylinder. Tang (1994) also used the finite element method



The fracture mechanics formulas for split-tension strips 609

Fig. 1. Splitting tension test: (a) geometry and stress distribution, (b) notched specimen and
distributed loading case

to study notched cylinder specimens under the opposite distributed loading and the developed
LEFM formulas (Fig. 1b). Cubical and diagonal cubic specimens with a central notch were
investigated using effective crack models by Ince (2010, 2012a) who evaluated LEFM formulas
with those split-tension specimens for various load-distributed widths and initial crack lengths
using the finite element and boundary element method. A series of experimental studies with
split-tension and beam specimens were also performed. The results were discussed based on
two most popular fracture models: the two-parameter and the size effect models. The results of
the tests revealed that the notched cube and diagonal cube tests can be utilized successfully for
determining the fracture parameters of concrete. Subsequently, Ince (2012b) derived an improved
version of LEFM formulas for splitting cylinder and cube specimens and then computed the four-
term universal weight functions of the split-tension specimens such as cylinder, cube and diagonal
cube by using the boundary element method to simulate the double-K concrete fracture model.

The numbers of theoretical and experimental studies with splitting strip specimens (Davies
and Bose, 1968; Filon, 1903; Schleeh, 1978) were limited when compared to studies conducted
with other splitting specimens. For instance, a formula similar to equations (2.2)-(2.4) was
not developed. Therefore, in the present research, both un-notched and notched splitting strip
specimens have been analyzed using analytical and numerical methods.

3. Deriving LEFM formulas for split-tension strip

In this study, split-tension strip specimens have been simulated for the use in effective crack
fracture models based on earlier studies of split-tension tests for concrete fracture. The weight
function approach was used to determine the LEFM formulas for split-tension strip specimens
with the central initial notch.

The weight function method was originally suggested by Bueckner (1970) and Rice (1972)
to evaluate the stress intensity factor using a simple integration. When a weight function is
determined for a notched body, the stress intensity factors could be calculated for arbitrary
loadings on the same body. For the case of mode I, the stress intensity factors can be expressed
as follows

KI =

a∫

0

σ(y)m(y, a) dy (3.1)
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where a is the crack length, σ(y) is the normal stress along the crack line in the un-cracked
body, and m(y, a) is the weight function (or Green’s functions which are essentially equivalent
to the weight functions) (Gdoutos, 1990).
For the central notch, an infinite strip subjected to four equal point loads on the notch, as

shown in Fig. 2, the Green function was derived by Tada et al. (2000) as follows

KI =
2F√
2d

[
+ 0.297

√
1−

(y
a

)2(
1− cos πa

2d

)]√
tan

πa

2d

[
1−

(
cos

πa

2d

/
cos

πy

2d

)2
]− 1

2

(3.2)

Fig. 2. A center-cracked infinite strip subjected to four equal point loads

The accuracy of Eq. (3.2) is better than 1% for all a/d and y/a (Tada et al., 2000). The
normal stresses along the crack line in the un-cracked body must be first computed to determine
the stress intensity factor according to the weight function method.

3.1. Determination of normal stresses along the crack line in the un-cracked body

In this study, a rectangular plate−l < x < l and−d < y < d with unit width is only loaded by
a uniform compressive traction p0 in the central region −t < x < t of both boundaries y = ±d. It
is modeled by considering earlier studies on split-tension tests (Ince, 2010, 2012a,b), as depicted
in Fig. 3a. In the plane elasticity problems not including body forces, the stress components can
be expressed via the following equations (Barber, 2004; Timoshenko and Godier, 1970)

σx =
∂2Φ

∂y2
σy =

∂2Φ

∂x2
τxy = −

∂2Φ

∂x∂y
(3.3)

in which Φ is the so-called Airy’s stress function of x and y. This function also satisfies the
following bi-harmonic equation

∂4Φ

∂x4
+ 2

∂4Φ

∂x2∂y2
+
∂4Φ

∂y4
= 0 (3.4)

A stress function based on a polynomial can be utilized for some simple cases such as a
continuously distributed loading on the boundaries of the elastic body. However, a more useful
solution for discontinuous loading, as shown in Fig. 3a, may be derived by using Fourier series
(Barber, 2004; Timoshenko and Godier, 1970; Mirsalimov and Hasanov, 2015; Basu and Mandal,
2016). The following equation has commonly been used as the stress function in such cases

Φ = sin(λx)f(y) λ =
nπ

l
(3.5)

where n is an integer and f(y) is only a function of y. When Eq. (3.5) is substituted into Eq.
(3.4) in order to determine f(y), the following ordinary differential equation is obtained

f (4)(y)− 2λ2f ′′(y) + λ4f(y) = 0 (3.6)
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Fig. 3. (a) Base problem for split-tension strip, (b) case of periodic loading

The general solution to the above equation can be written as

f(y) = C1 cosh(λy) + C2 sinh(λy) + C3y cosh(λy) + C4y sinh(λy) (3.7)

Consequently, the stress function of the given problem is

Φ = sin(λx)[C1 cosh(λy) + C2 sinh(λy) + C3y cosh(λy) + C4y sinh(λy)] (3.8)

in which C1, C2, C3 and C4 are arbitrary constants. Since the loading and geometry of the
plate in Fig. 3a are symmetric in both axes, and sinh(λy) and y cosh(λy) are odd functions, the
constants C2 and C3 are equal to zero (Barber, 2004). Therefore, the stress components can be
determined from Eq. (3.3) as follows

σx = sin(λx){C1λ2 cosh(λy) + C4λ[2 cosh(λy) + λy sinh(λy)]}
σy = −λ2 sin(λx){C1 cosh(λy) +C4y sinh(λy)}
τxy = −λ cos(λx){C1λ sinh(λy) + C4[sinh(λy) + λy cosh(λy)]}

(3.9)

When the loading given in Fig. 3a is expanded into the Fourier series, the following equation
can be obtained

p(x) =
p0t

l
+
2p0
l

∞∑

n=1

1

λ
sin(λt) cos(λx) (3.10)

where the first term gives the mean load. The constants C1 and C4 in Eqs. (3.8) and (3.9) can
be determined from the following boundary conditions

y = ±d ⇒ τxy = 0

y = ±d ⇒ σy = p(x)
(3.11)

Substituting the first boundary condition in Eq. (3.9)3, the following equation can be written as

C4 = −C1
λ sinh(λd)

sinh(λd) + λd cosh(λd)
(3.12)

A similar procedure with Eq. (3.9)2 and the second boundary conditions can be carried out for
the corresponding constants as

C1 =
p(x)

λ2 sin(λx)

sinh(λd) + λd cosh(λd)

cosh(λd) sinh(λd) + λd

C4 = −
p(x)

λ2 sin(λx)

λ sinh(λd)

cosh(λd) sinh(λd) + λd

(3.13)
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Consequently, the normal stress σx can be derived from Eq. (3.9)1 as

σx =
2p0
π

∞∑

n=1

ψn(λ, y)

n
sin(λt) cos(λx)

ψn(λ, y) =
cosh(λy)[λd cosh(λd)− sinh(λd)] − λy sinh(λd) sinh(λy)

cosh(λd) sinh(λd) + λd

(3.14)

For the case of the concentrated load, the above equation can be converted into the following
form since 2p0t = P = const and limλ→0 sin(λ)/λ = 1 in which λ = nπ/l

σx =
P

l

∞∑

n=1

ψn(λ, y) cos(λx) (3.15)

Nevertheless, Equations (3.14)1 and (3.15) are indeed valid for the periodic loadings as
indicated in Fig. 3b. For this reason, the residual stresses may naturally occur on the boundaries
x = ±l. On the other hand, these series transform the Fourier integrals in the case of l → ∞
in λ = nπ/l and then they can be used for the non-periodic loadings (Girkmann, 1959). By
considering ∆λ = (π/l)∆n, Eqs. (3.14)1 and (3.15) can be written respectively, as

σx = lim
l→∞

[
2p0
π

∞∑

λ=π/l

ψ(λ, y)

λ
sin(λt) cos(λx)∆λ

]
=
2p0
π

∞∫

0

ψ(λ, y)

λ
sin(λt) cos(λx) dλ

σx = lim
l→∞

[
P

π

∞∑

λ=π/l

ψ(λ, y) cos(λx)∆λ

]
=
P

π

∞∫

0

ψ(λ, y) cos(λx) dλ

(3.16)

in which, the function ψ(λ, y) in Eqs. (3.16) is the same as ψn(λ, y) in Eq. (3.14)2.
From the above discussion, the following data would be the inputs in the analysis:

h = 2d = 1mm and P = 1N in the subsequent analysis. The stress analyses have been per-
formed for the load-distributed width-to-specimen depth ratios β = 2t/h = t/d = 0, 0.05, 0.1,
0.15, 0.20, 0.25, and 0.29. Figure 4 indicates the elastic stress distribution of σx at x/d = 0,
1, 2 and 3 for β = 0 and 0.25 obtained from Eqs. (3.16) based on the Fourier integrals (the
case of the infinitely long strip). In the analysis, the Gauss-Lagurre method with 100 points
has been used for the integration procedure since the analytical solution of Eqs. (3.16) might
not be available. It is seen from this figure that σx decreases very rapidly with the increasing x
and it becomes approximately zero at x/d = 3 for any β value. A similar result for the elastic
stress distribution of σy in the middle plane y = 0 was obtained using a different method based
on the Fourier integrals by Filon (1903) again for an infinite beam subjected to two equal and
opposite concentrated loads (Girkmann, 1959). In addition, Davies and Bose (1968) simulated
the splitting beams with the length/depth= L/h = 3 by using the finite element method for
β = 0 and 1/12.
On the other hand, in the splitting strip specimens, the maximum tensile stress in the plane

of loading does not occur at the midpoint (x = y = 0), unlike in other splitting specimens. The
relative maximum tensile strength values of the splitting strip specimens and other splitting spe-
cimens are given for differentβ values in Fig. 5, comparatively. In this figure, the relative location
values (y/d) of the maximum tensile stresses are also given for the infinite strip specimens. As
shown in Fig. 5, the maximum tensile stress of the strip specimens occurs at the midpoint for
β  0.29. Similar to the maximum tensile stress value of the un-notched diagonal splitting-cube
specimen, Eq. (3.17) is proposed for the maximum tensile stress value of an un-notched splitting
strip specimen in the plane of loading

σmax =
2P

πbd

( 1

0.7 + 1.685β0.617

)
β ¬ 0.29 (3.17)

The accuracy of Eq. (3.17) is 0.5% for the particular data given in Fig. 5.
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Fig. 4. Stress distribution of σx at x/d = 0, 1, 2 and 3 for β = 0 and 0.25 in infinitely long strip

Fig. 5. Comparison of the nominal strengths of split-tension specimens

3.2. LEFM formulas

Using the boundary collocation method, Isida (1971) proved that the central cracked plate
could be practically regarded as an infinite strip when the length/depth= L/h ratio of a plate is
 3. Nevertheless, it was indicated in the analysis for Eqs. (3.14)1 and (3.15) based on the Fourier
series for the finite strip with L/h = 2 (Fig. 3b) that the stress distribution of σx on the vertical
axis at x = 0 was exactly the same as in the case of the infinitely long strip for β = 0 to 0.25.
This may be explained by Saint-Venant’s principle. The sums of the series were continued to be
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taken until the absolute value of the n-th term was less than 1e-100. Consequently, the number
of terms ranged from 192 (small y values) to 340 (large y values). Meanwhile, similar results
were found for certain β values (0.05, 0.10 and 0.20) by Schleeh (1978) who studied on a plate
with L/h = 2 using the Fourier series. Additionally, in this study, it has also been observed that
for σx stress distribution along the plane x = 0, the maximum difference between the solution
with L/h = 2 and that of L/h = 1.5 was 0.1%. Nevertheless, it will be seen in the following
Sections of this work that this difference is much more significant for a cracked body.
In this study, the analysis of the split-tension strip specimens based on fracture mechanics

has been performed for all cases including combinations obtained with α values of 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7 and 0.8 and load-distributed width-to-specimen depth ratio values of β = 0,
0.05, 0.1, 0.15, 0.2, and 0.25. A parallel analysis was also performed using the boundary element
program (BEM). In all analyses, the stress intensity factor KI was computed using Eq. (3.1). In
practice, the polynomial approach was commonly utilized to interpret normal stresses along the
crack line σ(y) in Eq. (3.1) (Anderson 2005). Therefore, in this study, the function of σ(y) was
computed at specific points including 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4mm on the
infinitely long strip with h = 2d = 1mm and then expressed as the 8th degree polynomial by
using the least squares method for each β value. Green’s function in Eq. (3.2) was used as the
weight function m(y, a) in Eq. (3.1), since it was essentially equivalent to the weight function,
as discussed above. The integration procedures were achieved by means of the Gauss-Chebyshev
method.
In this study, the stress intensity factor is defined as follows for the splitting strip specimens

KI = σN
√
πaY (β, α) (3.18)

where σN is the nominal stress according to Eq. (2.1), a is half length of the notch, and Y (β, α)
is the geometry factor, where β is the relative load-distributed width (t/d) and α is the relative
crack length (a/d). The Y (β, α) geometry factors of the splitting specimens are obtained as
Y (β, α) = KI/(σN

√
πa), where KI is calculated from Eq. (3.1).

Fig. 6. Geometry factor Y (β, α) values for split-strip specimens

Figure 6 shows the individual geometry factors obtained from the analytical solution; these
factors are presented as symbols for each α and β value. The geometry factors have been ge-
nerated with the least square method for each β value, as indicated by the curved solid line in
Fig. 6. The general form of the selected function is

Y (β, α) = A0(β) +A1(β)α +A2(β)α
2 +A3(β)α

3 +A4(β)α
4 +A5(β)α

5 (3.19)



The fracture mechanics formulas for split-tension strips 615

where the coefficients Ai (i = 0 to 5) are functions of β, as summarized in Table 1. Equation
(3.19) fits all the results from the analytical solutions with an accuracy of 0.1% for 0.1 ¬ α ¬ 0.8
and any β value. It is emphasized that this accuracy is valid for the strips with L/h  2, as
discussed above.

Table 1. Ai and Bi coefficients for split-strip specimen

Coefficient
β = t/d

0 0.05 0.10 0.15 0.20 0.25

A0 0.7570 0.7656 0.7781 0.7751 0.7534 0.7200

A1 0.5009 0.2618 −0.1872 −0.4591 −0.4724 −0.3435
A2 −2.8063 −1.1558 1.9581 3.8574 3.9428 2.9948

A3 11.4780 6.2913 −3.6245 −9.9595 −10.7060 −8.1581
A4 −16.6660 −9.2409 5.1032 14.5480 16.0060 12.5460

A5 9.9819 5.9303 −2.0490 −7.6288 −8.9671 −7.5169
B0 0.8882 0.8883 0.8851 0.8733 0.8515 0.82158

B1 1.5494 1.4740 1.3054 1.1399 1.0223 0.94892

B2 −6.0402 −5.5487 −4.4507 −3.3906 −2.6901 −2.3399
B3 16.806 15.2700 11.8060 8.4028 6.0978 4.9091

B4 −21.027 −18.8330 −13.8580 −8.9269 −5.5668 −3.8579
B5 11.503 10.2930 7.5156 4.6857 2.6659 1.5512

Fig. 7. Comparison of geometry factor Y values of split-tension specimens for β = 0

The variation of the geometry factors is summarized for the splitting specimens, namely:
cylinder, cube, diagonal cube and infinite strip for the case of concentrated loading in Fig. 7.
The Y functions of cylindrical and cubical specimens have been obtained from the BEM solutions
found in the literature. The BEM solutions for splitting strip specimens with L/h = 1.5 and 2 are
also given in Fig. 7. A one-quarter model has been used for the plain strain conditions, because of
its symmetry in the BEM study. Similar to earlier studies of the author, 250 boundary elements,
including 2 crack tip elements, provided reliable results for the crack tip singularity in a one-
quarter specimen. The following factors have been the inputs in the analysis: Young’s modulus
E = 1MPa, Poisson’s ratio ν = 0.2, h = 2d = 200mm, and P = 100N. A detailed explanation
of the BEM simulations may be seen elsewhere (Ince, 2012a,b). The accuracies of BEM solutions
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of the strip specimens are greater than 1.2% for L/h = 2 and better than 7.5% for L/h = 1.5
in comparison with the solution of the infinitely long strip in Fig. 7. On the other hand, the
behavior of splitting strips is very different from other splitting specimens, as is clearly shown in
Fig. 7. For α = 0, the value of Y of strip specimens approach approximately to 0.75, while that
of the other specimens approach to 1. Furthermore, the Y function of the strip is approximately
parallel to that of the cube.
Tada et al. (2000) proposed that Castigliano’s theorem may be used for calculating opening

displacements of the crack surface in a cracked body, as follows

COD(y) =
2

E′

a∫

aF

KIP
∂KIF

∂F
da (3.20)

where KIP is the stress intensity factor due to loading forces, KIF is the stress intensity factor
due to virtual forces and E′ = E/(1 − ν2) for plane strain and E′ = E for plane stress. In Eq.
(3.20), a is length of the notch and aF is location of the virtual force in the vertical distance
from the center of the specimen, in which the COD value is computed (Fig. 2). In this study,
Equations (3.18) and (3.1) are used for KIP and KIF , respectively. From Eq. (3.20), CMOD
values are computed as follows

CMOD = COD(y = 0) =
2

E′

a∫

0

KIP
∂KIF

∂F
da (3.21)

The CMOD includes not only the elastic constants but also the size of the specimens. The
general forms of the specimens are usually described in a polar coordinate system (Tang 1994).
Therefore, the CMOD is defined as follows in this study

CMOD =
πσNa

E′
V1(β, α) (3.22)

V1(β, α) dimensionless function in Eq. (3.22) is calculated by normalizing CMOD values obtained
from Eq. (3.21) with πσNa/E

′ values. Figure 8 indicates individual V1 values for each α and β.

Fig. 8. Non-dimensional V1(β, α) values for split-strip specimens

The V1(β, α) values are generated by the least squares method for each β, as depicted in Fig. 8.
Similar to Eq. (3.19), the following equation is chosen for the general form of the V1(β, α)
function
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V1(β, α) = B0(β) +B1(β)α +B2(β)α
2 +B3(β)α

3 +B4(β)α
4 +B5(β)α

5 (3.23)

where the coefficients Bi (i = 0, 1, . . . , 5) are functions of β that are listed in Table 1. Equation
(3.23) fits all the results from the analytical solutions with an accuracy of 0.2% for 0.1 ¬ α ¬ 0.8
and any β value.

In practice, COD values in a cracked body normalize the CMOD value to determine the
profile of the crack surface. Consequently, the COD/CMOD ratio is independent of the specimen
size, but does depend on the specimen geometry and loading type (Tang 1994). In this study,
the normalized crack profile of the strip specimen is described by means of regression analysis
via a formula similar to the earlier form for the cylindrical and cubical specimens proposed by
Ince (2012b) as follows

COD(β, y, a)

CMOD
=

√(
1− y

a

)2
+
[
2.367 − 0.038(1 + β)15.9α1.17

(y
a

)0.961][y
a
−
(y
a

)2]
(3.24)

in which y is the vertical distance from the center of the specimen as shown in Fig. 2. The
accuracy of the equation is greater than 3.3% for 0.1 ¬ α ¬ 0.8 and any β value.
Equations (3.18) to (3.24) are based on LEFM for split-tension strip specimens. The concre-

te fracture parameters for effective crack models (two-parameter model, size effect model and
double-K model) could easily be calculated using these equations. The coefficients Ai and Bi for
β values, which are not given in Table 1, could be derived by interpolation.

4. Summary and conclusion

Recently, split-tension specimens such as cylinders, cubes and diagonal cubes have been com-
monly used to determine the tensile strength of cement-based materials. The split-tension strips
have been used to determine the fracture parameters of concrete using the effective crack models
such as the two-parameter model, the size effect model and the double-K in this article. Based
on these theoretical and numerical investigations, the following conclusions can be drawn:

• The number of theoretical and experimental studies on split-tension strip specimens is
limited. Therefore, in this study, a formula for the maximum tensile strength of concrete
has been developed for un-notched strip specimens. The results of the analysis reveal that
the derived formula is valid for strips with the ratio of length/depth= L/h  2 both for the
Fourier integral (the case of the infinite long strip) and the Fourier series (the case of the
finite strip). Similarly, it has been indicated from the parallel analysis, which was based
on the boundary element method, that the LEFM formulas of cracked strip specimens are
valid for strips with L/h  2.
• The initial crack of the splitting strip specimens starts at about the location of the loading
point, while the initial crack in other splitting specimens starts at the center of the section.
However, the initial crack location approximates to the center of the section with the
increasing load-distributed width-to-specimen depth ratios β, and it is in the center of the
section for β  0.29.
• In this study, only double symmetrical strips have been analyzed and they have no vertical
displacement and no shear stress at the middle line y = 0, as is clearly shown in Fig. 3.
Consequently, by considering the upper half of the strip (L/d  4), the results of this study
may also be utilized in the analysis of a cracked elastic layer resting on a rigid smooth
base in soil and rock mechanics. This problem was investigated by Marguerre (1931) for
uncracked elastic layers.
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Systematic examinations on wear behavior of stick/slip contact around metal on metal
have shown that the dissipated energy and contact forces are two important parameters
of wear of wheels and rails. Nevertheless, an accurate estimation of these parameters is
still a great challenge. Recent developments of non-linear dynamical models and simulation
of operational conditions have tried to find a solution of this challenge. These results are
used as the input to calculations of wear propagation. Though, the dynamic model should
be able to predict wheel-rail interaction with high accuracy. In addition, wheel-rail wear
is a function of several other parameters whose their integrated influence becomes more
than the main discussed ones. In this study, with the help of multi-body dynamics (MBD),
an open wagon equipped with three pieces bogies, considering non-linear effects of friction
wedges and structural clearances is modeled in Universal Mechanism. Tangent and curved
sections of the track considering random vertical and lateral irregularities are simulated.
The simulation results are used to calculate wear of both left and right wheels separately.
Specht’s wear model based on Archard’s wear model is used. The studied parameters are
the rail side coefficient of friction, track quality, track curvature, velocity and rail side wear.
Finally, the effects of mentioned parameters are studied on wear depth and wear pattern of
new wheel profiles under incompatible contact (which occurs in Iran railway network). The
results show different wear volume and wear pattern compared to compatible contact.

Keywords: three pieces bogie, Specht wear theory, wear depth, incompatible contact, rail
side wear

1. Introduction

Scientific investigations on the rolling contact problem were begun in early of the 20’th century.
The primary results showed the dependency of motion state on the wheel-rail contact forces. A
practical progress was made in the late sixties and early seventies. In 1967, the computer based
theory of Kalker was known by railway experts and as a consequence, this theory found practical
applications in railway industries.
The first investigation on wear of railway wheel profiles was based on computer simulations

with simple and steady state considerations, like constant velocity on ideal tangent track (Zobory,
1997). Sherrat and Pearce (1991) presented a very simple model. In their model after calculation
of contact forces and creepages, the volume of removal mass was calculated with a wear index.
They also considered one S track followed by a tangent track (Braghin et al., 2006). In some
works, there is an emphasis on the relation between the maximum contact pressure and removal
mass which sometimes considered coefficients as the effects of energy (Zobory, 1997; Telliskiv
and Olofsson, 2004). Nevertheless, most assumptions in wear are used in the correspondence of
dissipated energy in the slip area and special removed mass per unit distance ([5], Jendel, 2002;
Enblom and Berg, 2005; Pombo et al., 2011; Jin et al., 2011; [13]).
Most of the researchers consider that the wear phenomenon occurs only in the wheel, not in

the rail. Also in the models, a linear relation between wear and friction work is usually assumed
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(Zakharov and Zharov, 2002). Examination of changes in the contact point could lead to predict
catastrophic wear which has great importance for increasing velocity (Telliskiv and Olofsson,
2004). Zobory used two different wear regimes: mild wear on the wheel tread and severe wear in
the flange (Braghin et al., 2006).
Recent investigations give us an ability to predict wear of the wheel-rail system under spe-

cified operation with reasonable accuracy. As a consequence, one can model tangent and curve
sections of the track and simulate passage frequency in numerical analysis of railway operation.
This process could be done on tracks with random irregularities. With the help of simulation
results, the wear volume of the rail and wheel can be calculated on different sections of the track.
It is common to use contact codes like CONTACT, FASTSIM or other innovative codes in such
works (Braghin et al., 2006). For example, Iwnicki and Xie (2008) considered a 3D wheel-rail
system for calculation of the rail head wear in the presence of short pitch irregularity, considering
non-Hertzian and non-steady contact based on Kalker’s method (Xie and Iwnicki, 2008a,b).
In this study, with the use of a 3D non-linear dynamic model in the presence of random

irregularities, sensitivity analysis of the wear pattern for different parameters is performed. The
innovation in this paper is the examination of wear in presence of two point contact due to
incompatible contact. As it is seen later, the effects of operational parameters would be different
compared to compatible, one point contact.

2. Iran railway network

Iran geographic location in the Middle East caused freight mass transit development in compa-
rison to passenger transportating. In the recent years, with respect to an increase in the transit
volume and vehicle ages, variant wheel defects are reported by National Railway Administration
[1]. These defects are different from one vehicle type and age to another, but most of the wheels
show 1mm hollow tread at early passages.
Although wheels show little hollow tread on early service life, but these hollows do not fall

into repair regulations. With the use of these wheels in service, finally thin flanges would cause
the wheels to reject. By considering harmful effects of the hollow tread especially in lubricated
curves [5], there is a necessity for a comprehensive study around dynamic performance and
energy consumption of vehicles. Figure 1 shows a 1mm hollow tread after 10 000 km passage.
Table 1 shows total repaired wheel defects in a range of 14 months [1].

Fig. 1. Tread defects after 10 000km passage

Table 1. Total repaired wheel defects (April 2010 – June 2011) [1]

Defect type No. of recorded wheels

Hollow tread 104

Un-conical wheel 58

Sharp flange 847

Thin flange 2085

Total wheel defects 5612
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3. Wear

According to Zakharov’s theory, wear of the wheel and rail are generally proportional to the
energy used to overcome the rolling resistance of the wheels and rails [5]. Wear of the wheels and
rails is defined with the stress P and relative slip in contact area. Wear is also dependent on the
third layer properties which depend, in turn, on lubrication, environment conditions and sand.
On the basis of laboratory tests under un-lubricated conditions, three different wear regimes are
defined: mild, severe and catastrophic. Figure 2 shows a shakedown diagram. It determines areas
of normal and un-normal performance. P is the maximum contact pressure and λ is creepage.
The curve Pλ = 40 determines changes in the wear regime from mild to severe while Pλ = 120
is the change between severe to catastrophic wear [5].

Fig. 2. Shakedown diagram for steel wheels and rails: normal area (1) and abnormal area (2)

3.1. Mathematical description of wear

For mild and severe modes of wear, the wear rate can be defined as a linear function of
friction work [5]. The friction work can be defined as

A =

t∫

0

v(t)(Fxζx + Fyζy) dt (3.1)

where A is the friction work, v stands for velocity, Fx and Fy are longitudinal and lateral contact
forces, and ζx and ζy are creepages which are defined

ξ =
rω −V
V

(3.2)

where r is wheel radius and ω is angular velocity of the wheel. All dimensions are in SI.
One of the most applicable wear theories was presented by Archard (Jendel, 2002). He

considered a linear relation between the wear volume and friction work. Acordingly

I = KvA (3.3)

where I is in m3 and Kv is the wear volume coefficient [m
3/J].

For the use of this model, it is necessary to determine the coefficient Kv at any instan-
ce. Specht suggested a jumping factor α for every wear regime, therefore Kv can be assumed
constant. By implementing the jumping factor into Archard’s equation, it can be rewritten as
follows

I =

{
KvA for w < wcr

KvαA for w  wcr
(3.4)
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where w is the friction power [s/m2] (friction work per second per contact area) and wcr is the
critical friction power which defines the wear regime and changing condition from mild to severe.
Equation (3.4) is known as Specht wear model [13].

3.2. Determination of the wear coefficient

Several experiments for determining the coefficient Kv has been performed. As a result, a
step change in the wear coefficient was obtained by deferent researchers.

The magnitude of Kv has a dependency in the wheel-rail material and its mechanical pro-
perty. A typical magnitude for common wheels and rail is 10−13m3/J and 10 for the jumping
factor. By consideration of a mild wear amplitude, it can be reasonable to assume that the most
part of the removed mass in the railway is due to the severe wear mode.

3.3. Wear calculation algorithm

For calculation of wear of the wheel and rail and its pattern, a sophisticated dynamic model
is required. So it is possible to determine accurately shear forces and creepages in contact area
at any instance. Zobory with the help of Medyna software calculated wear of wheels and rails in
a specific track. The results showed a 5% difference compared to the final field test. The reason
was neglecting the effects of switches. Lewis and Olofsson (2009) calculated wear of wheels
with ADAMS/RAIL. Similar works were performed by Malvezzi with the help of Simpack and
MATLAB and Pombo by Vampire software. In spite of differences in the software, all the works
followed the same algorithm presented in Fig. 3. Global parameters contain contact forces, points,
area, creepages calculated in time domain and imported into wear calculation. With the use of
the wear model wear, depth at any point is calculated, the wheel and rail profile is updated and
analysis continued to the next iteration. In this paper, Universal Mechanism software is used for
both dynamic and wear modeling.

Fig. 3. Wear algorithm
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4. Dynamic model requirements for the train-track system

The process of wheel-rail wear simulation always needs a proper dynamic environment which
is able to make an access to real load and motion data (that show the operation conditions of
the train-track system) for analysis of the removed mass. This dynamic model can be defined
in deferent levels of detail but it should be able to calculate contact forces and creepages with
a high accuracy.

4.1. Three pieces bogie

Three pieces bogies have been used in deferent railway networks for more than 60 years. In
Iran, Russian bogies are widely used in mass transportation. Iran railway equipped 7100 wagons
with these bogies [1]. Table 2 shows types and number of Iran railway wagons equipped with
18100 bogie.

Table 2. Iran wagons equipped with 18100 bogies [1]

Wagon type Number of wagons

Low-sided wagon 1653

Open wagon 3716

Flat wagon 231

Tank car 461

Hooper ballast wagon 200

Hooper wagon 746

These bogies use S1002 wheel profile running on the rail UIC60 with rail inclination 1:20
which leads to two point contact as it is shown in the results. This wheel-rail arrangement is
not suggested in the standard operation [11]. This arrangement results in improper steering and
severe wear during curve negotiation. It also applies different wear pattern for both the wheel
and rail. In such conditions, effects of parameters like rail side lubrication, velocity and track
quality could be different.

A typical three pieces bogie consists of two side frames which are attached each other with
the help of secondary suspension system and a bolster. Damping is provided with 4 friction
wedges which move in vertical and lateral directions.

The wheels with the use of adapters are directly connected to side frames (Fig. 4). The
friction force between adapters and side frames are modeled considering clearances in the UM
template. Direct connection between the adapters and side frames results in high un-sprung mass
and high dynamic loads. Low adapter clearances in both vertical and lateral directions lead to
high bending and shear stiffness of the bogie. This causes imperfect curving of the wheels.

Fig. 4. Connection between an adapter and a side frame

A very unique phenomenon in the three pieces bogie is warping. It usually happens in curves
and also some defects like hollow tread could intensify that. As a consequence of warping, high
angle of attack and flange contact in both left and right wheels occurrs. This results in flange wear



626 M. Shadfar, H. Molatefi

in both left and right wheels simultaneously. Warping makes 18100 bogie unfair for non-straight
corridors. Figure 5 shows a schematic warping of the three pieces bogie.

Fig. 5. Warping of the three pieces bogie

Two dimensional wedges let the bolster to damp vibrations in both vertical and lateral
directions but implement nonlinearity into the model. Pivot friction and side bearers are also
considered in the UM template. Tables 3 to 5 describe parameters of the three pieces bogie
which is avaliable in Universal Mechanism software.

Table 3. Inertial parameters of the train

Part
Mass CG [m] Ixx Iyy Izz
[kg] (from rail surface) [kg·m2] [kg·m2] [kg·m2]

Wheelset 1500 0.475 925 200 925

Axle box 11 0.475 0.04 0.157 0.16

Side frame 526.3 0.525 13.96 175.8 161.8

Bolster 682.6 0.649351 412.609 11.06 415.909

Carbody 90000 1.4 21840 53919 66800

Table 4. Parameters of the suspension system

Part
Kx Ky Kz Kt Coefficient
[N/m] [N/m] [N/m] [Nm/rad] of friction

Secondary
8 · 643000 8 · 643000 8 · 632000 8 · 3325000 –

suspension

Wedges 710000 100000 2 · 632000 – 0.3

Table 5. Wheelset parameters

Wheel bases space [m] 1.85

Tap circle distance [m] 1.5

Longitudinal clearance [mm] 5

Lateral clearance [mm] 5

Wheel profile S1002

In order to verify the model, non-linear hunting velocity of the bogie is extracted. This
velocity is calculated about 95 km/h (26.3m/s). In the next step, vertical acceleration of the
model is compared with the field test mentioned in (Hosein Nia, 2011). The track consists of a
tangent track followed by a curve.
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Figure 6 shows vertical acceleration of the measured data and simulated one. The measured
acceleration is in the range of ±0.5m/s2 and, the MBD model shows a good agreement in both
frequency and amplitude.

Fig. 6. Comparison between the measured and simulated vertical acceleration (Hosein Nia, 2011) (up)
and simulated model in UM (down)

5. Analysis assumptions

This part includes wear analysis results by running a train on different tracks and rail profiles.
The parameters are rail-side coefficient of friction, velocity, track curvature and quality. Table 6
describes the change in each parameter. These analyses are performed for each rail profile.

Table 6. Studied range for parameters

Case Cant Radius of Velocity Rail side coefficient Class
number [mm] curvature [m] [m/s] of friction (FRA)

1 150 600 25 0.1 3

2 150 600 25 0.2 3

3 150 600 25 0.3 3

4 100 500 25 0.2 3

5 100 700 25 0.2 3

6 100 1000 25 0.2 3

7 150 600 25 0.2 3

8 150 600 25 0.2 6

9 100 600 16 0.2 3

10 100 600 20 0.2 3

11 100 600 25 0.2 3

The rail profiles are considered in four different forms as it shown in Fig. 7. The rail profiles
are called new profile, worn 1, worn 2 and worn 3, where worn 1 has the least and worn 3 has
the most side wear. It should be noted that high and low rails have different profiles in their
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worn shapes. All the wheel profiles are considered to be new at the beginning of analysis. The
rail profiles are also considered to be constant in the whole track.

Fig. 7. Worn rail profiles (Lewis and Olofsson, 2009): high rail (left) and low rail (right)

The simulated train consists of 4 wagons as a typical example of a complete train including
locomotive, first wagon, middle wagons and the last wagon. The results are gathered from
wagon 3 as it is shown in Fig. 8.

Fig. 8. Simulated 3D train

The train passee over a track and the results are saved at every passage. The track consists
of a 40m tangent track, 130m spiral, 500m curve section and the final 130m spiral.

This analysis is done 15 times.

6. Results

Figure 9 shows rolling radius difference (RRD) against lateral displacement of the wheel. The
rail profile is UIC 60 and rail inclinations of 1:20 and 1:40, and the wheel profile is S1002. In
the rail inclination 1:40, there is a rolling difference for every lateral displacement. So, for each
lateral displacement, there is a different point on the wheel. This causes uniform wear along the
wheel profile and prevents local wear like hollow tread. In contrast to 1:40, in 1:20 inclination,
there is no significant distribution and the contact point remains constant at the first 6mm of
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wheel lateral displacement. As a result, for each curve, the wheel has to make a flange contact,
so high flange wear occurrs.

Fig. 9. Effects of rail inclination on rolling radius difference (RRD) in right and left wheels

6.1. Wheel-rail compatibility

Figure 10 (left) shows all possible contact points between the wheel and rail. From the top to
down side, wear of the rail profiles increases. For a new rail (up) there are two discrete contact
zones. So, local wear in this arrangement is expected. With an increase in rail wear, these two
zones merge together in order to make a united zone, so a more uniform rate of the contact
point change occurrs.

Fig. 10. Contacts for each profile pair (new wheel and worn rails) (left) and RRD diagrams for each
profile pair (right)

Figure 10 (right) shows an RRD diagram for profile pairs in Fig. 10 (left). It also includes
new wheel and rail profiles in the standard arrangement (rail inclination 1:40). If 1:40, the
diagram is considered as standard dynamic performance, so the wear pattern tends to move
toward standard at worn rail 1. But with an increase in the rail-side wear and material loss, this
dynamic performance descends. So, as a very important result in this part, in sn incompatible or
non-standard arrangement the wear pattern tends to move towards the standard performance,
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but this balance will never get completed. With an increase in the material loss, the dynamic
performance becomes much like a non-standard one again.
The analysis is performed and wear depth for each scenario is calculated. Figure 11 shows

wear depth of the outer wheels. The wear pattern and wear amplitude in two bogies were the
same, so only the outer wheels of the front bogie is plotted. As it is expected, wear of the wheels
in contact with the new rail is more than the worn ones. In ideal, the wear pattern and depth
of all wheels should be the same, so more differences in the wear pattern and more imperfect
curving behavior could be concluded. In Fig. 11, the leading wheels experience flange wear while
the trailing wheels tend to have tread wear. The trailing wheel with the new rail profile shows
flange wear, too. The reason is sharp negative angle of attack and this, as it is shown in Fig. 11,
is eliminated with an increase in the wheel-rail clearance (increase in rail side wear). The train
passes over a simple curve, so discrete flange and treads wear shows two points contact. This
phenomenon due to the incompatible arrangement happens in all cases. Discrete wear of 18100
wheels and hollow tread of new wheel profiles are discussed in Section 2. Kalousek (2005) also
reported discrete wear of 18100 wheel profiles.

Fig. 11. Wear depth diagram for the outer wheels of the front bogie, leading wheel (left) and trailing
wheel (right). Rail-side coefficient of friction is 0.1

Figure 12 shows a change in the RRD diagram of worn wheel profiles compared to the new
one. For all rail profiles (new, worn 1 to 3), wheel wear approaches the standard mode. This
change is negligible for the new rail but worn rail 1 exhibits biggest change in dynamic behavior.
As it was mentioned before, RRD changes from worn rail 1 to 3 decrease because of too much
material loss and the loss of system balance.

Fig. 12. Comparison of RRD diagrams for worn and new wheel profiles
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6.2. Effect of operational parameters

6.2.1. Effect of rail-side friction

With a decrease in rail-side lubrication, the total friction work reduces, but too much reduc-
tion will cause an increase of the work in new rail profile. The reason is the harmful effect in bogie
steering and creepages which decrease significantly. Figure 13 shows a comparison between wear
depth for rail inclinations 1:20 and 1:40. The wear pattern becomes continuous along the wheel
profile. The reason is the one point contact which results in a continuous and smooth change in
the contact point. A change in the rail side coefficient of friction results in a very clear pattern
of wear of the wheels. On the other side (incompatible wheel-rail arrangement), wear depth is
discrete due to two point contact and a sudden change in the contact point from tread to flange.
In contrast to 1:40 ones, the change in the coefficient of friction results in a no clear pattern.
The wear depth amplitude increases in unfair arrangement and it can be concluded that two the
point contact reduced the efficiency of rail side lubrication. From the results for both 1:40 and
1:20 inclinations, wear depth of 0.8-1.0 mm in only 12 km curve passage is not economical. This
determines that the three pieces bogie is not suitable for non-straight corridors.

Fig. 13. Comparison of wear depth for the leading wheel (1:20 and 1:40 rail inclination and
a new rail profile)

6.2.2. Effect of track quality

The change in the track class results in a very clear pattern in wheels though the irregularities
are random (Fig. 14). In the new rail profile, wear decreases with an increment of track quality.
But this pattern is changed in worn rails. The leading wheel shows more wear in class 6 but
the trailing wheels have less wear when compare to class 3. Imperfect curving is still the key
parameter for non-uniform wear of the wheels. Also two the point contact can be concluded
from the diagrams.

Figure 15 shows the total friction work during analysis. On the basis of this diagram, track
quality has a noticeable effect on the rolling resistance of the wheels and, consequently, noticeable
effect on energy consumption of the vehicles.

6.2.3. Effect of velocity

Velocity is the most important parameter in wear. Figure 16 shows wear depth of the wheel
profile passing over a new rail. Wheel tread is more sensible to a change in velocity. With
an increase in speed, the leading wheels have less wear in their tread while the trailing ones
experience more. On the other hand, an increase in velocity results in better steering and more
uniform wear in all wheels.
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Fig. 14. Wear depth diagram for the outer wheels of the front bogie, leading wheel (left) and trailing
wheel (right) (worn rail No. 1)

Fig. 15. Friction work for different rail profiles and track quality

Fig. 16. Wear depth diagram for the outer wheels of the front bogie, leading wheel (left) and trailing
wheel (right) (new rail profile)

Fig. 17. Friction work for different rail profiles and velocities

Figure 17 also shows the total friction work during analysis. With an increase in speed, the
friction work increases while in the wear depth, volume of the removed mass is not changed
noticeably. The reason is better steering of bogies, so the bogie spends shorter time in the severe
wear mode. All worn rails show a lower friction work compared to the new rail profile as it is
expected.
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7. Conclusion

In this study, the effect of rail side wear on the wear pattern of new wheel profiles is examined.
The parameters are the rail side coefficient of friction, track quality, track curvature and velocity.
With respect to the analysis conditions, the effects of wheel-rail clearance and curving behavior
of a selected bogie (pivot friction) are taken into account.
The results show that imperfect curving of the bogie is the key parameter for non-uniform

wear of wheels. Non-uniform wear may result from the tangential force. The wheel-rail clearance
also has great influence in the new wheel wear pattern. The results can be summarized as follows:

• Contact analysis of new wheel profiles with different worn rails show discrete contact zones
along new wheel and new rail profiles. These zones are merged with an increase in the rail
wear.

• The wear pattern of new wheels approaches the standard mode. The change in an RRD
diagram is the most for worn rail 1 and descends to worn rail 3.

• Rail-side lubrication is a common way for reducing lateral forces. But the two point contact
could easily undo the advantages of lubrication.

• The track class has a very clear effect on the wheels, though the irregularities are random.
In the new rail profile, wear decreases with an increase in track quality.

• Track curvature effects become eliminated by the increase in the wheel-rail clearance. This
parameter needs more detailed investigation.

• Velocity has the most effect on the wear pattern for new wheel profiles.
• The importance of compatible contact becomes high for changing velocity conditions.
• With an increase in velocity under incompatible contact, wear of wheels becomes more
uniform.

Based on the results, Iran Railway Research Center organized a field test for calibrations of
the results in wear depth. The wheel and rail wear will be monitored the during following year,
and the results will be used in order to optimize the wheel-rail contact quality.
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A two-dimensional incompressible flow model is presented to study the occurrence of rotating
stall in vaneless diffusers of centrifugal compressors. The diffuser considered has two parallel
walls, and the undisturbed flow is assumed to be circumferentially uniform, isentropic, and to
have no axial velocity. The linearized 2D Euler equations for an incompressible flow in a fixed
frame of the coordinate system are considered. After discretization by a spectral collocation
method based on Chebyshev-Gauss-Lobatto points, the generalized eigenvalue problem is
solved through the QZ algorithm. The compressor stability is judged by the imaginary part
of the eigenvalue obtained. Based on the 2D stability analysis, the influence of inflow angle,
radius ratio and wave number are studied. The results from the present stability analysis
are compared with some experimental measurement and Shen’s model. It is showed that
diffuser instability increases rapidly and the stall rotational speed decreases quickly with an
increase in the diffuser radius ratio. The largest critical inflow angle can be obtained when
the wave number is around 3 ∼ 5 for the radius ratio between 1.5 to 2.2. It is also verified
that the stability model proposed in this paper agrees well with experimental data and has
the capability to predict the onset of rotating stall, especially for wide diffusers.

Keywords: instability, vaneless diffuser, eigenvalue problem, spectral method

1. Introduction

Rotating stall in radial vaneless diffuser is one of the most common flow instabilities in centrifugal
compressors and it can significantly influence the performance of the compressors. The nature of
flow instability, especially rotating stall associated with vaneless diffusers have been extensively
investigated by numerous researchers (Day, 2016; Everitt and Spakovszky, 2013; Spakovszky and
Roduner, 2009; Ubben and Niehuis, 2015).

For decades, efforts have been made by researchers to explain the mechanism and predict the
occurrence of rotating stall within the vaneless diffuser. Quantities of theoretical methodologies
based on different assumptions and simplifications on the base flow have been proposed du-
ring that time. Generally speaking, one of the basic distinctions between the theoretical models
on vaneless diffusers is whether the influence of the boundary layer is taken into considera-
tion. The first type of approaches which was adopted by Jansen (1964), Senoo and Kinoshita
(1977) and Frigne and Braembussche (1985) is that the three-dimensional wall boundary layer



636 C. Hu et al.

is supposed to be responsible for the occurrence of rotating stall in a narrow vaneless diffuser.
According to the experimental and theoretical study of Jansen (1964), the flow was assumed
to be symmetric with respect to the diffuser depth and the local inward radial velocity com-
ponent was treated as the inception of rotating stall. While in Senoo’s vaneless diffuser model,
the flow was no longer assumed to be symmetric and a non-uniform distribution of inlet velo-
city along the axial direction was taken into account. In his calculations, the critical velocity
angle was defined for which reverse flow started in the vaneless diffuser (Senoo and Kinoshita,
1978).

On the other hand, an other theory for the occurrence of rotating stall in a vaneless diffu-
ser, which was employed by Abdelhamid (1980) and Moore (1989), indicates that the stall is
associated with two-dimensional core flow instability in vaneless diffusers which usually have
the width radius ratio above 0.1. The two-dimensional numerical model developed by Moore is
based on calculation of 2D incompressible Euler’s equations. Neutrally stable rotating distur-
bances with low speed were found and a dense set of resonant solutions in which large pressure
perturbations were taken as the criterion of rotating stall in Moore’s work. Chen et al. (2011)
extended the 2 dimensional model of Moore into a 3 dimensional model with consideration of
the distribution of inlet velocity along the axial direction. Sun et al. (2013, 2016) proposed sta-
bility models for axial and centrifugal compressors on the basis of the eigenvalue approach. The
comparisons with the results from experiments validated the effectiveness and accuracy of their
models.

In addition, the significant influence of diffuser geometry and flow parameters on the va-
neless diffuser performance and structure of the stall pattern have been also numerically and
experimentally investigated in the recent years. The experiments carried out by Abdelhamid
(1983) and Bianchini et al. (2013) confirmed that the local reverse flow did not necessari-
ly lead to stall. The dependency of flow instability on the diffuser width ratios and diame-
ter were also verified. The critical flow coefficient becomes larger with a decrease in diffu-
ser width according to experiments of Abidogun (2002). Besides those experimental resear-
ches, the diffuser stability was also numerically investigated by Everitt (2010) through con-
ducting isolated diffuser simulations, and the volute was found to have potential in delaying
the onset of diffuser instability. Although the CFD method has an advantage over theoreti-
cal methods by providing a direct and vivid flow field with a relatively high accuracy, there
is no a certain way for numerical simulation to capture the complicated disturbance with dif-
ferent frequency, amplitude and length scale due to unsteadiness and complexity of the flow
field.

According to Jansen (1964), unsteady inviscid motion of the fluid is analyzed with the
assumption that the disturbances can be expressed in terms of periodic waves. The equations
are then reduced and solutions are sought for the resulting eigenvalue problem. However, it is
mentioned in his paper that the prediction of the number of stall cells and the determination of
the constant in the velocity equation requires a subsequentstudy.

In the present paper, firstly a 2D vaneless diffuser theoretical model based on stability ana-
lysis of an incompressible base flow is established and the full eigenvalue spectrum is obtained.
Then the influence of collocation points and geometric parameters of the vaneless diffuser on the
stability is investigated. Finally, the comparison between the results obtained from the present
stability model and those from several experiments and models reported previously is perfor-
med. Compared to unsteady CFD simulations which are quite time and resources consuming
and Senoo’s stability model, which is unable to provide the stall number, the present analy-
sis is able to predict the occurrence and stall number cheaply and quickly. And compared to
Shen’s model, the present model is easier to be extended to the stability problem concerning the
sensitivity.
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2. Theoretical model

2.1. Numerical methodology

In the present analysis, the stability discussed here is assessed by linearizing 2D Euler’s
equations for a base flow and determined by an operator that describes the evolution of small
perturbations superposed on the base flow. The eigenvalues of this operator give the frequency
and time growth rate of the perturbations. The corresponding eigenfunctions yield the mode
shapes. The perturbation with the largest growth rate is the one that dominates the stability in
the long term, and the positive growth rate means the occurrence of instability.
The diffuser considered has two parallel walls, and the undisturbed flow is assumed to be

circumferentially uniform, isentropic, and to have no axial velocity. To further simplify the
calculation, the perturbations and velocity distribution of the base flow along the axial direction
are neglected. The flow sketch is shown in Fig. 1. The inflow circumferential angle α is defined at
the diffuser inlet as illustrated in Fig. 1b. Then, a 2D flow model for study of the flow stability
in the vaneless diffuser can be developed.

Fig. 1. Sketch of a vaneless diffuser: (a) base flow, (b) inflow angle

2.2. Implementation of the numerical model

2.2.1. Linearization of Euler’s equations

To begin with, viscosity and compressibility are neglected in our study. The flow field is
described by non-dimensionalized 2-D unsteady incompressible Euler’s equations as shown

vr
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∂vr
∂r
+
1

r

∂vθ
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= 0

∂vr
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+ vr

∂vr
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vθ
r
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+ vr
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r
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r∂θ

(2.1)

Here, the velocity is non-dimensionalized by the impeller tip velocity U . The length is non-
dimensionalized by the corresponding inlet radius r1 and the time t is non-dimensionalized
by r1/U . Thus, vr and vθ mean the non-dimensionalized radial and circumferential velocities. In
the stability analysis, the flow field is assumed to consist of the base flow and a small disturbance.
Then, the velocity and pressure can be rewritten as follows

p = p+ p′ vr = vr + v
′

r vθ = vθ + v
′

θ (2.2)
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where p represents base flow pressure and p′ are small disturbances of pressure. For the base flow,
Vr and Vθ represent the inlet radial and circumferential velocity of the base flow, respectively.
Before Eqs. (2.2) are substituted into Eqs. (2.1), emphasis on the small perturbation theory is

made: 1) any disturbances of the 2nd and higher orders are neglected, 2) the base flow is treated
as steady, so ∂•/∂t = 0, c) since the mean flow is circumferentially symmetric, ∂•/∂θ = 0. And
Eqs. (2.1) are still appropriate for the base flow. Then the linearized non-dimensional Euler’s
equations can be derived as follows
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2.2.2. Establishment of the eigenvalue problem

In general, the separation between spatial and temporal coordinates allows making use of
Fourier modes in time when the variables are homogeneous. Then the perturbations can be
written in form of eiθ where the homogeneous variables (including time) are taken into account
and the inhomogeneous variables are taken as the amplitude function. The specific form of the
Fourier mode assumed is that the disturbances are normal modes in the circumferential direction,
the disturbances can be written as follows

p′ = P (r)ei(−ωt+mθ) v′r = A(r)e
i(−ωt+mθ) v′θ =W (r)e

i(−ωt+mθ) (2.4)

where m is the azimuthal wavenumber and ω = ωr + iωi. Taking p
′ for instance as

p′ = P (r)eimθe(−iωr+ωi)t (2.5)

it can be seen that corresponding to eωit dominates the growth rate of disturbances with time.
Namely, if the imaginary part ωi > 0, the disturbances will grow exponentially with time, and
the mode will be unstable. If ωi < 0, the disturbances will decay with time and the mode will
be stable. And is the angular frequency.
The rotational speed of the disturbances in the circumferential direction non-dimensionlized

by the impeller rotational speed is

f =
−ωr
m

(2.6)

Substituting equations (2.4) into (2.3), the ordinary differential equations for A, W , P
which represent A(r), W (r) and P (r) with the subscript omitted, can be obtained as follows
(A′r = dA/dr etc.)
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(2.7)

Since there is no inlet disturbances coming from the outside of the system, homogeneous
ordinary differential equations (2.7) can also expressed as

Mφ = ωJφ (2.8)
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where φ = [A,W,P ]T, and M and J are the corresponding coefficient matrices
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Solving equation (2.8) leads to a generalized eigenvalue problem, and the eigenvalue is used
to determine the instability of the vaneless diffuser.

2.2.3. Establishment of the base flow

According to conservation of angular momentum and mass, the circumferential and radial
velocity can be expressed as follows

vr12πr1 = vr2πr vθ1r1 = vθr (2.10)

Therefore, the expressions of circumferential and radial velocity can be obtained as

vr =
Vr
r

vθ =
Vθ
r

(2.11)

where Vr and Vθ are the radial and circumferential velocity distributions at the diffuser inlet.

2.3. Discretization and calculation

2.3.1. Spatial discretization

Among the widely used spatial discretization methods, spectral methods have played a pro-
minent role in early instability analyses. At present they are particularly useful. In this study, the
spectral method is accomplished with Chebyshev-Gauss-Lobatto points. The two-dimensional li-
near eigenvalue problems posed above can be solved by constructing an operator that discretizes
a n-th order linear ODE in the form of

Lij = an(ri)D
(n)
ij + . . . + a1(ri)D

(1)
ij + a0(ri) (2.12)

where D
(m)
ij , m = 1, 2, . . . , n, is the m-th derivative matrix corresponding to the collocation

points ri, and a0, a1, . . . , an are evaluated at ri.

When using spectral collocation methods, the value of the functions at collocation points is
expressed as follows

φ(r) =
N∑

j=0

ϕj(r)φ̃(ri) (2.13)

where φ(r) is the value of the function at the point r obtained by using interpolant polynomials
constructed for the variables in terms of their values at the collocation points, and ϕ(r) is known
as the basis function.

The collocation points in the calculation domain Ω are chosen as

rΩ = cos
πj

N
j = 0, 1, . . . , N (2.14)
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The extrema of the N -th order Chebyshev polynomial TN are defined in the interval
−1 < rΩ < 1. Then the interpolant ϕj(rΩ) for the Chebyshev scheme is given as

ϕj(rΩ) =
1− r2Ωj
r − rΩi

T ′N (rΩ)

N2cj
(−1)j+1

c0 = cN = 2 cj = 1 0 < j < N

(2.15)

The collocation derivative matrix D for the Gauss-Lobatto grid is denoted by

D
(1)
GL = (dij) 0 ¬ i j ¬ N (2.16)

where the elements d are defined by Canuto et al. (2010) as follows
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In our case, the physical domain of interest r ∈ [1, Rf ] is mapped onto the standard collo-
cation domain, based on the following equation

rΩ = −1 + 2
r − 1
Rf − 1 (2.18)

Thereby, linearized Euler’s equation (2.8) can be illustrated in the collocation domain as follows

MΩφ = ωJΩφ (2.19)

For the 2D incompressible problem, when N collocation points are adopted to discretize the
domain of interest, MΩ is a matrix of size 3N × 3N arising from the three equations for the
problem.

2.3.2. Numerical calculation of the generalized eigenvalue problem

One widely used algorithm for solving generalized eigenvalue problems is the QZ algorithm of
Moler and Stewart (1973). This is a generalization of the QR algorithm for standard eigenvalue
problems. Compared with other algorithms such as the Anorldi method (Meerbergen and Roose,
1997), inverse iteration (Peters and Wilkinson, 1979) and the Jacobi-Davidson method (Sleijpen
and Van der Vorst, 1994), an important feature of the QZ algorithm is that it functions perfectly
well with the presence of an infinite eigenvalue due to singularity of the matrix jΩ . In the current
study, the calculation of the generalized eigenvalue problem proposed in equations (2.17) is
carried out by the QZ algorithm. Matlab is a software with high capability on computational
mathematics, and the function eig based on the QZ method in Matlab has been widely used
for eigenvalue problems such as for the calculation in the present model. For a matrix with
leading dimension of 200 in the present model, the calculation with the function eig can be quite
time-saving.

What should be paid much attention to is that spurious eigenvalues derived from numerical
calculation rather than real physical problem also exist while using the QZ algorithm. One way
to distinguish the spurious eigenvalues from the real ones is to vary the number of collocation
points. The eigenvalues which remain the same are the real ones.
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3. Validation of the model

3.1. Influence of the collocation point number on the calculations

Firstly, the number of collocation points and its independence of the calculation is verified
through changing this number. The eigenvalue spectra with different numbers of collocation
points N at Rf = 2, Vr = 0.1, m = 1 are shown in Fig. 2.
It can be seen that although the largest eigenvalue with the same imaginary part can be

obtained for all numbers of collocation points, the number larger than 50 is preferred to have a
proper, whole sketch of the eigenvalue spectrum. In the subsequent study, 50 collocation points
are adopted in the following calculations considering both numerical accuracy and computational
efficiency. When the collocation number is more than 200 in the subsequent study, a 600 × 600
matrix is solved, and spurious eigenvalues which are at least two orders of magnitude higher
than the real ones come into being.

Fig. 2. Eigenvalue spectrum for different numbers of collocation points

3.2. Influence of diffuser inlet velocity of the base flow on the calculations

Generally, the inlet radial velocity distribution of the diffuser is highly influenced by the
impeller, and the axial uniform radial velocity can seldom be obtained in a practical diffuser
flow. However, the uniform distributed radial velocity for an inviscid flow is associated with the
average inflow angle. A brief connection between the average inflow angle and diffuser stability
can be revealed rapidly with the help of the present 2D stability model. Figure 3 shows the
influence of variability of the inlet velocity of the base flow Vr on the stability of the vaneless
diffuser with the same number N of collocation points, radius ratio Rf and wave number m.
Different inflow angles are also listed corresponding to different inlet velocities.
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It can be seen that with a decrease in the inlet radial velocity of the base flow, the flow in
the vaneless diffuser turns from stability to instability. In other words, with a decrease in the
inlet circumferential flow angle, the flow in the vaneless diffuser tends to instability, which well
agrees with Senoo and Kinoshita (1978). Correspondingly, the inflow circumferential velocity
angle when the rotating stall occurs is taken as the critical inflow angle αc.

Fig. 3. Eigenvalue spectrum for different inlet radial velocities of the base flow

3.3. Influence of geometric parameters on the instability

3.3.1. Influence of the radius ratio Rf

As shown in Table 1, six leading eigenvalues in a descending order of the imaginary part of ω
are presented. Compared with the cases for Rf = 1.5 and 1.67, the imaginary part of the leading
eigenvalue for Rf = 2 and 2.2 become positive. The leading eigenmode of the cases with larger
values of Rf turns to instability. A larger value of the imaginary part of the leading eigenvalue
indicates a higher time growth rate, which means stronger instability of the flow field. Therefore,
the flow tends to instability with an increase in Rf .

3.3.2. Influence of the wave number m

A common feature of the centrifugal compression system is that it exhibits two kinds of
rotating stall. One is known as the impeller stall, having a relatively high rotational speed of
usually more than 50% of the impeller speed; and the other known as the diffuser stall, having
a slower rotational speed at about 10% of the impeller speed. The present stability model is
also applicable to confirmation of the stall number and rotational speed, therefore 3 cases with
different radius ratios Rf are calculated for 5 different wave numbers m.
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Table 1. Six leading eigenvalues for different values of Rf with Vr = 0.131, N = 50 and m = 1

Rf = 1.5 Rf = 1.67 Rf = 2 Rf = 2.2

−0.10977 − 0.25458i −0.024169 − 0.05096i 0.03898 + 0.079355i 0.05377 + 0.104624i

−2.91568 − 0.64371i −2.22947 − 0.323566i −2.01654 − 0.236903i −0.29436 − 0.223245i
0.70504 − 0.72005i 0.332469 − 0.474960i −2.87547 − 0.395488i −1.7518 − 0.28062i
−4.28143 − 0.86662i −3.180583 − 0.49452i 0.327611 − 0.416233i −2.18808 − 0.32481i
2.04559 − 0.91810i 1.25444 − 0.59218i −3.73096 − 0.495389i −2.623871 − 0.33961i
−5.62630 − 1.01110i −4.12054 − 0.602551i 1.161860 − 0.514977i −0.08285 − 0.38274i

When m = 0, the flow tends to be stable under any inlet flow condition. This is because that
the time growth rate of circumferential disturbances are the main concern in our study, and zero
wave number in the circumferential direction indicates that the circumferential disturbances are
neglected, resulting in the absolutely stable condition in the calculation.
As shown in Fig. 4a, the influence of the wave number m on the critical stall angle is

illustrated. It is clearly shown that the critical angle decreases with a decrease in Rf . According
to Abidogum (2002), the most unstable mode (or stall) is often obtained for the wave number m
of 3. It can be seen that the largest critical angle is obtained when m is around 3 with the radius
ratio of 2.2. This is consistent with the result of Abidogum. The wave number corresponding to
the most unstable mode differs for various radius ratios.
In Fig. 4b, the rotational speed of the disturbance corresponding to the onset of instability f

vs. the wave number m is illustrated. It can be seen that the rotational speed of disturbance
linearly increases with an increase in the wave number m while the wave speed decreases quickly
with the diffuser radius ratio, which is consistent with the results of Moore (1989) and Chen et
al. (2011).

Fig. 4. Influence of the wave number m on the critical angle and rotational speed: (a) critical angle vs.
wave number, (b) rotational speed vs. wave number

3.4. Some eigenfunctions

In the theory of linear stability, the maximum response to varyiable initial conditions are what
we concern the most. In the present analysis, the amplification of disturbances is characterized in
terms of the least stable mode of the matrixM. The eigenvalue spectrum when the radius ratio
Rf is 2, wave number m is 1 and the inlet radial velocity is 0.04 are shown in Fig. 5. Among the
eigenvalues obtained, the leading three least stable eigenvalue spectra are selected and labeled as
ω1, ω2, ω3. The eigenfunctions for pressure and velocity perturbations corresponding to the three
different eigenvalues are illustrated in Fig. 6, respectively. The eigenfunctions corresponding to
the three eigenvalues are proved to be sort of non-orthogonal. The non-normality of the linearized
Euler equations has influence on the growth rate of the perturbations in a short timescale.
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Fig. 5. Eigenvalue spectrum for Rf = 2, m = 1, Vr = 0.04

Fig. 6. Eigenfunctions corresponding to three eigenvalues for pressure and velocity perturbations:
(a) – ω1, (b) – ω2, (c) – ω3

4. Application of the present stability model

4.1. Comparison with experimental results in (Kinoshita and Senoo, 1985)

In order to verify the results of the present analysis, the experiment results by Kinoshita and
Senoo (1985) are compared with the predictions from the 2D stability model. In the experiment
by Kinoshita and Senoo (1985), a back sweep angle of β = 24.6◦ was set at the impeller exit,
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and two different values of the radial ratio Rf were tested. The experiment was undertaken at
a low speed, and the inlet velocity distribution was not reported. The present 2D incompres-
sible stability model has been applied to the experimental set up with a uniform inlet velocity
distribution.
Since the rotating stall number observed in (Kinoshita and Senoo, 1985) is 3, the comparison

of the critical flow angle in (Kinoshita and Senoo, 1985), Shen’s in (Chen et al., 2011) and the
present method for the wave number m = 3 is given in Table 2. It can be shown that the result
of the present stability analysis is much closer to the experiential data by Kinoshita and Senoo
(1985) than those derived from Shen’s 3D model.

Table 2. Comparison of the critical flow angle from experiment (Kinoshita and Senoo, 1985),
Shen’s result and current analysis

Rf β [◦] m
α [◦]

experiment Shen present model

1.4 24.6 3 5.2 7.925 6.657

1.67 24.6 3 5.5 12.82 11.631

At a smaller Rf , the agreement between the current method and the experiment is good.
At the same time, this study suggests that the flow becomes significantly less stable for a larger
radial ratio, whereas the experiment shows only a small deterioration of the stability.

4.2. Comparison with the experimental results in (Abidogun, 2002)

In (Abidogun, 2002) the experimental rig, as shown in Fig. 7, consists of an impeller with
radial blades and a vaneless diffuser. Three different values of Rf were tested. According to the
results given in (Abidogun, 2002), the stall wave number were always between 2-4. What makes
rig in (Abidogun, 2002) different from that in (Kinoshita and Senoo, 1985) is the larger axial
width bz (> 0.1), which is more suitable for the models based on inviscid core flow theories such
as Shen’s and the present analysis.

Fig. 7. The experimental rig for a vaneless diffuser in (Abidogun, 2002)

It is illustrated in Table 3 that the inlet critical flow velocity at the onset of stall derived
by Abidogun (2002), Shen’s model and the present stability analysis shows the same trend of
increase with the diffuser radial ratio Rf . For a smaller radius ratio of the diffuser Rf , the
prediction results of the present model and Shen’s model show a higher accuracy than those for
the radius ratio 2.0. Compared with the results in (Kinoshita and Senoo, 1985), the predicted
critical inlet velocity for different radius ratios obtained in this test are all much closer to the
experimental results. One main reason for this lies in that the present analysis and Shen’s model
are both based on the core flow assumption, which is more suitable for vaneless diffusers with
large width.
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Table 3. Comparison of the inlet critical flow in (Abidogun, 2002), Shen’s and the present
stability analysis

Rf m
Vrc

Abidogun Shen present model

1.5 3 0.16 0.1525 0.152

1.7 3 0.216 0.2150 0.215

2.0 3 0.255 0.2925 0.294

5. Conclusions

In this research, a two dimensional stability model of a vaneless diffuser in a centrifugal compres-
sor based on stability analysis is proposed. The independence of the number collocation points
and the influence of geometric parameters on the stability of the vaneless diffuser are verified.
The capability of the present model to predict the onset of stall with different radius ratios is
validated against several experimental data. The present model is effective in stall prediction
for a wide vaneless diffuser. Compared to Moore’s and Shen’s stability models, the advantage of
the present model lies in direct calculation and providing both the complex eigenspectrum and
rotational speed instead of multiple trials and iterations. Another remarking superiority is that
the present model investigates the instability induced by the inviscid main flow, and provides
the fundamental research for further study of the unsteady interaction of the inviscid main flow
and the boundary layers.

In our investigation, the significant effects of the diffuser radius ratio on diffuser stability are
confirmed. The stability deteriorates rapidly with an increase in the radius ratio. The largest
critical inflow angle is obtained when the wave number m is around 3-5 for the radius ratio
between 1.5 to 2.2. Through model assessment, this model has the capability of predicting the
onset of stall in vaneless diffusers and can be applied in the cases without considering the axial
distribution of inlet velocity. However, in the cases where the axial distribution of inlet velocity
plays significant role, the application of a 3D stability model is required.
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In this paper, nonlinear free vibration of nanobeams with various end conditions is stu-
died using the nonlocal elasticity within the frame work of Euler-Bernoulli theory with
von Kármán nonlinearity. The equation of motion is obtained and the exact solution is es-
tablished using elliptic integrals. Two comparison studies are carried out to demonstrate
accuracy and applicability of the elliptic integrals method for nonlocal nonlinear free vibra-
tion analysis of nanobeams. It is observed that the phase plane diagrams of nanobeams in
the presence of the small scale effect are symmetric ellipses, and consideration the small
scale effect decreases the area of the diagram.

Keywords: nonlinear free vibration, nonlocal elasticity, nanobeam, exact solution, elliptic
integrals

1. Introduction

Due to superior properties, nanostructures have attracted much attention in the recent years.
Multiple recent experimental results have shown that as the size of the structures reduces to
micro/nanoscale, the influences of atomic forces and small scale play a significant role in mecha-
nical properties of these nano-structures (Chong et al., 2001; Fleck et al., 1994; Ma and Clarke,
1995). Thus, neglecting these effects in some cases may results in completely incorrect solutions
and hence wrong designs. The classical continuum theories do not include any internal length
scale. Consequently, these theories are expected to fail when the size of the structure becomes
comparable with the internal length scale. Eringen’s nonlocal theory is one of the well-known
continuum mechanics theories (Eringen, 2002) that includes small scale effects with good ac-
curacy to micro/nanoscale devises modeling. The nonlocal elasticity theory assumes that the
stress at a point is a function of the strain at all neighbor points of the body.
In the recent years, studies of nanostructures by using the nonlocal elasticity theory have been

an area of active research. Based on this theory, Reddy (2007) derived the equation of motion
of various kinds of beam theories available (Euler-Bernoulli, Timoshenko, Reddy and Levinson)
and reached analytical and numerical solutions on static deflections, buckling loads, and natural
frequencies. Hosseini-Hashemi et al. (2013) considered surface effects on free vibration of Euler-
Bernoulli and Timoshenko nanobeams by using the nonlocal elasticity theory. Xie et al. (2006)
considered the radial buckling pressure of a simply supported multi-walled carbon nanotube
in the presence of the small scale effects. Kiani (2010) studied free longitudinal vibration of
tapered nanowires. In (Heireche et al., 2008; Narendar and Gopalakrishnan, 2009; Wang and
Hu, 2005; Wang, 2005; Wang and Varadan, 2007), the effect of small scales on wave propagation
of single- and multi-walled carbon nanotubes was considered. As an application of Eringen’s
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nonlocal theory to post-buckling analysis of single-walled carbon nanotubes, it can be referred
to the work done by Setoodeh et al. (2011).
The nonlocal elasticity theory has also been used for nonlinear analyses of nanostructures,

especially nanobeams. In this area, Reddy (2010) derived a nonlocal nonlinear formulation for
bending of classical and shear deformation theories of beams and plates, but he did not present
any numerical results. Yang and Lim (2009) examined the effect of the nonlocal parameter on
nonlinear vibrations of Euler nanobeams. To evaluate the nonlinear natural frequencies, the
method of multiple scales was applied to the governing equation. The method of multiple scales
was also used in (Nazemnezhad and Hosseini-Hashemi, 2014; Hosseini-Hashemi et al., 2014)
for evaluating the nonlocal nonlinear natural frequencies of functionally graded Euler-Bernoulli
nanobeams. Fang et al. (2013), Ghorbanpour Arani et al. (2012), Ansari and Ramezannezhad
(2011), Yang et al. (2010) and Ke et al. (2009) investigated nonlinear free vibration of single
and multi-walled carbon nanotubes with the aid of the nonlocal elasticity theory.
In the mentioned references, a numerical method, the DQ method, semi analytical methods,

the harmonic balance method and the method of multiple scales have been employed to solve the
nonlocal nonlinear governing equations. Hence, no exact closed-form solution is available in the
literature for nonlocal nonlinear analyses of nanobeams. Motivated by the literature survey, this
study aims to investigate the nonlocal nonlinear free vibration of Euler-Bernoulli nanobeams
by an exact solution called the elliptic integrals. To this end, firstly, the governing equation
of motion of the Euler-Bernoulli nanobeam has been obtained in the nonlocal form. Then, a
closed-form expression for the nonlocal nonlinear natural frequencies has been presented by
using the elliptic integrals. Finally, the accuracy of the present exact results are compared with
those reported in literature, and the small scale effects on the phase plane diagram and higher
frequency ratios are considered in the results and discussion śection.

2. Formulation

Consider a nanobeam with length L (0 ¬ x ¬ L), thickness 2h (−h ¬ z ¬ h) and width b
(−b/2 ¬ y ¬ b/2) (Fig. 1). Upon the Euler-Bernoulli beam model, the displacement field at any
point of the nanobeam can be written as

ux(x, z, t) = U(x, t)− z
∂W (x, t)

∂x
uz(x, z, t) =W (x, t) (2.1)

where U(x, t) and W (x, t) are the displacement components of the mid-plane at time t. In
accordance, the von Kármán type of the nonlinear strain-displacement relationship is

εxx =
∂ux
∂x
+
1

2

(∂uz
∂x

)2
=
∂U

∂x
− z ∂

2W

∂x2
+
1

2

(∂W
∂x

)2
(2.2)

Fig. 1. Geometry of the problem

Now, by using Hamilton’s principle, the nonlinear equations of motion of the nanobeam can
be derived as

∂Nxx

∂x
= ρA

∂2U

∂t2
∂2Mxx

∂x2
+

∂

∂x

(
Nxx

∂W

∂x

)
= ρA

∂2W

∂t2
(2.3)
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where Nxx and Mxx are the local force and bending moment resultants, respectively, given by

Nxx =

∫

A

σxx dA = EA

[
∂U

∂x
+
1

2

(∂W
∂x

)2
]

Mxx =

∫

A

zσxx dA = −EI
∂2W

∂x2
(2.4)

Equations of motions, Eqs. (2.3), can be used in the nonlocal form

∂Nnl
xx

∂x
= ρA

∂2U

∂t2
∂2Mnl

xx

∂x2
+

∂

∂x

(
Nnl
xx

∂W

∂x

)
= ρA

∂2W

∂t2
(2.5)

where the superscript nl denotes nonlocal. If the axial inertia is neglected, Eq. (2.5)1 gives

Nnl
xx = N0 = const (2.6)

The nonlocal force and bending moment resultants can be obtained by multiplying the left-
-hand side of Eqs. (2.4) by (1−µ∇2), using Eqs. (2.5) and (2.6), and doing some mathematical
manipulation. Then they are given by

Nnl
xx = EA

[
∂U

∂x
+
1

2

(∂W
∂x

)2
]

Mnl
xx = −EI

∂2W

∂x2
+ µ

(
−Nnl

xx
∂2W

∂x2
+ ρA

∂2W

∂t2

)
(2.7)

For nanobeams with immovable ends (i.e. U and W = 0, at x = 0 and L) and with Eq. (2.6) in
mind, integrating Eq. (2.7)1 with respect to x leads to

Nnl
xx = N

nl
0 =

EA

2L

L∫

0

(∂W
∂x

)2
dx (2.8)

Finally, by substituting Eqs. (2.7)2 and (2.8) in Eq. (2.5)2, the nonlocal nonlinear governing
equation for the Euler-Bernoulli nanobeam can be obtained as

−EI ∂
4W

∂x4
+ µρA

∂4W

∂x2∂t2
+ P

L∫

0

(∂W
∂x

)2
dx
(∂2W
∂x2
− µ∂

4W

∂x4

)
− ρA∂

2W

∂t2
= 0 (2.9)

where P = EA/(2L), I = 2bh3/3, and the equation of motion of the conventional Euler–Bernoulli
beam theory can be obtained from Eq. (2.9) by setting µ = 0.
For nonlinear free vibration analysis, the averaging technique over the space variable (Ga-

lerkin’s method) is used to convert Eq. (2.9) into an ordinary differential equation. Hence, the
transverse displacement of the n-th mode can be assumed as (Azrar et al., 1999, 2002)

W (x, t) = Dφ(x)q(t) (2.10)

where D is an arbitrary constant which represents the amplitude of deflection, q(t) is a time
dependent function to be determined and φ(x) is the linear mode shape obtained as follows
(Rao, 2007)

SS : φn(x) = sin
(nπ
L
x
)

SC : φn(x) = sin(ζ1x)−
sin(ζ1L)

sinh(ζ2L)
sinh(ζ2x)

(2.11)

where

ζ1,2 =

√√√√√1
2

(
± µρAω2

EI
+

√
(µρAω2

EI

)2
+
4ρAω2

EI

)
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The parameters ζ1 and ζ2 can be determined from the eigenvalue equation

ζ2 tan(ζ1L)− ζ1 tanh(ζ2L) = 0

Substituting Eq. (2.10) and its derivatives into Eq. (2.9), then multiplying by the linear mode
shape and integrating along the length of nanobeam, results in

q̈ − γ1q + γ2q3 = 0 (2.12)

where

γ1 =
EIa4

µρAa3 − ρAa1
γ2 =

IPa2(a3 − µa4)
µρA2a3 − ρA2a1

(D
r

)2

a1 =
L∫
0
φ2(x) dx a2 =

L∫
0

(dφ(x)
dx

)2
dx

a3 =
L∫
0
φ(x)

d2φ(x)

dx2
dx a4 =

L∫
0
φ(x)

d4φ(x)

dx4
dx

and r =
√
I/A is the radius of gyration.

Multiplying Eq. (2.12) by q̇ and then integrating with respect to time, with the initial
conditions q(0) = 1 and q̇(0) = 0, leads to

(dq
dt

)2
= −γ1(1− q2) +

γ2
2
(1− q4) (2.13)

Equation (2.13) can be rewritten as

( dq

d(pt)

)2
= (1− q2)(k2q2 − k2 + 1) (2.14)

where p2 = −γ1 + γ2 and k2 = γ2/(2p2). Supposing q = cos θ, and complement the modulus as
pt =

∫ θ
0 (1− k2 sin2 θ)−1/2 dθ, the solution to Eq. (2.14) can be given by (Lestari and Hanagud,

2001)

q(t) = cn[pt, k] (2.15)

where cn is a Jacobi elliptic function. The Jacobi elliptic functions are real for real p and real k2

between 0 and 1 (Byrd et al., 1971). K is defined by using the complete elliptic integral as

K =

π/2∫

0

dθ′√
1− k2 sin2 θ′

(2.16)

Therefore, the nonlocal natural frequency for nonlinear free vibration of nanoscale beams for
each mode can be expressed as

ωnlnl =
π
√−γ1 + γ2
2K

(2.17)

where the subscript nl denotes nonlinear.
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3. Results and discussion

Before presenting numerical results, it is worth to note here that in order to convert the gover-
ning equation of motion, Eq. (2.9), into an ordinary differential equation, Eq. (2.12), single-mode
Galerkin’s method is used. This method can provide the nonlinear natural frequency of nanobe-
ams with a good accuracy at low amplitude ratios (Ke et al., 2010). At higher amplitude ratios,
multi-mode Galerkin’s method is proposed because the effect of coupling of modes increases
(Chandra and Raju, 1975). Therefore, in order to have the highest possible accuracy in the
following discussion all results are presented for low amplitude ratios, D/r ¬ 3.
Table 1 gives the fundamental local nonlinear frequency to fundamental local linear frequency

ratio ωnl/ωl of a nanobeam with SS and SC end conditions for various values of the amplitude
ratio D/r. The solutions obtained by using numerical and approximate methods like GFEM
(Galerkin Finite Element Method) (Bhashyam and Prathap, 1980), RGFEM (Reduced Galerkin
Finite Element Method) (Bhashyam and Prathap, 1980), ASM (Assumed Space Method) (Even-
sen, 1968), and DQM (Differential Quadrature Method) (Malekzadeh and Shojaee, 2013) are also
provided for direct comparison. It is observed that the present results agree very well with those
given by Malekzadeh and Shojaee (2013), Bhashyam and Prathap (1980) and Evensen (1968). It
is also seen from Table 1 that the present results obtained by the exact method are smaller than
those given by numerical and approximate methods. It can be attributed to this fact that natural
frequencies obtained by numerical and approximate methods are the upper bound of the exact
ones.

Table 1. Comparison of the fundamental local frequency ratio ωnl/ωl for a nanobeam with SS
and SC end conditions µ = 0, E = 70GPa, ρ = 2700 kg/m3, ν = 0.3, L/h = 100

SS SC
D/r Present GFEM RGFEM ASM Present GFEM RGFEM ASM DQM

(Exact) [4] [4] [9] (Exact) [4] [4] [9] [21]

0.5 1.0231 1.0308 1.0308 1.0308 1.0130 1.0165 1.0165 1.0676 –

1.0 1.0892 1.1180 1.1180 1.1180 1.0507 1.0641 1.0641 1.0763 1.0641

1.5 1.1902 1.2499 1.2499 1.2500 1.1105 1.1379 1.1379 1.0905 –

2.0 1.3178 1.4142 1.4142 1.4142 1.1886 1.2319 1.2319 1.1099 1.2319

2.5 1.4647 1.6008 1.6008 1.6008 1.2814 1.3407 1.3407 1.1342 –

3.0 1.6257 1.8028 1.8028 1.8028 1.3860 1.4601 1.4601 1.1631 1.4605

3.5 1.7970 2.0158 2.0158 2.0156 1.4998 1.5865 1.5865 1.1963 –

4.0 1.9760 2.2365 2.2365 2.2361 1.6209 1.7166 1.7166 1.2334 –

4.5 2.1608 2.4630 2.4630 2.4622 1.7477 1.8455 1.8455 1.2741 –

5.0 2.3501 2.6937 2.6937 2.6926 1.8792 1.9651 1.9651 1.3181 –

[4] – Bhashyam and Prathap (1980), [9] – Evensen (1968),
[21] – Malekzadeh and Shojaee (2013)

In Table 2, the fundamental nonlocal nonlinear frequency to fundamental local nonlinear
frequency ratios ωnlnl/ωnl obtained by the present exact solution for a nanobeam with SS and
SC boundary conditions is compared with those given by the semi-analytical approach called
the multiple scales method (MSM) (Nazemnezhad and Hosseini-Hashemi, 2014). The results
are listed for various values of the nanobeam length, amplitude ratio, and nonlocal parameter.
Table 2 shows that the present exact results are identical to those reported by Nazemnezhad and
Hosseini-Hashemi (2014) using the multiple scales method. However, the difference between the
two approaches increases for higher amplitude ratios. This is due to the fact that the accuracy
of the multiple scales method depends on the number of slow scale variables in the expansion
series.
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Table 2. Comparison of the fundamental nonlocal frequency ratio ωnlnl/ωnl for a nanobeam with
SS and SC end conditions E = 210GPa, ρ = 2370 kg/m3, ν = 0.24, b = h = 0.1L

Boundary
condition

Length
[nm]

µ
[nm2]

D/r = 1 D/r = 2
Present MSM

AD∗·100 Present MSM
AD ·100

(Exact) [23] (Exact) [23]

SS

10
2 0.9278 0.9293 0.15 0.9509 0.9631 1.22
4 0.8724 0.8754 0.30 0.9141 0.9379 2.38

20
2 0.9800 0.9803 0.03 0.9863 0.9893 0.30
4 0.9613 0.9621 0.08 0.9736 0.9797 0.61

30
2 0.9909 0.9911 0.02 0.9938 0.9951 0.13
4 0.9821 0.9824 0.03 0.9877 0.9905 0.28

SC

10
2 0.9189 0.9202 0.13 0.9547 0.9676 1.29
4 0.8596 0.8625 0.29 0.9239 0.9519 2.80

20
2 0.9771 0.9774 0.03 0.9869 0.9899 0.30
4 0.9561 0.9567 0.06 0.9751 0.9812 0.61

30
2 0.9896 0.9897 0.01 0.9940 0.9953 0.13
4 0.9795 0.9798 0.03 0.9883 0.9909 0.26

∗ – Absolute of difference, [23] – Nazemnezhad and Hosseini-Hashemi (2014)

Table 3. Frequency ratios of the nanobeam for various mode numbers, amplitude ratios, nano-
beam lengths, nonlocal parameters and boundary conditions

D/r
Length µ Boundary Mode number n
[nm] [nm2] condition 1 2 3

1

10
2

SS 0.9278 0.7921 0.6778
SC 0.9189 0.7864 0.6800

4
SS 0.8724 0.6948 0.5832
SC 0.8595 0.6959 0.5982

20
2

SS 0.9800 0.9278 0.8605
SC 0.9771 0.9233 0.8561

4
SS 0.9613 0.8724 0.7764
SC 0.9561 0.8661 0.7728

2

10
2

SS 0.9509 0.8621 0.7918
SC 0.9547 0.8751 0.8141

4
SS 0.9141 0.8020 0.7377
SC 0.9239 0.8316 0.7806

20
2

SS 0.9863 0.9509 0.9062
SC 0.9869 0.9528 0.9100

4
SS 0.9736 0.9141 0.8522
SC 0.9751 0.9190 0.8620

3

10
2

SS 0.9677 0.9108 0.8674
SC 0.9867 0.9423 0.9069

4
SS 0.9439 0.8736 0.8352
SC 0.9790 0.9281 0.8990

20
2

SS 0.9909 0.9677 0.9388
SC 0.9960 0.9768 0.9513

4
SS 0.9826 0.9439 0.9046
SC 0.9925 0.9610 0.9274
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The above discussion verified the merit, high accuracy and applicability of the present exact
solution, elliptic integrals, for nonlocal nonlinear free vibration analysis of nanobeams with va-
rious boundary conditions. In the following discussion, the small scale effects on the nonlinear
free vibration of nanobeams are considered for higher mode numbers and phase plane dia-
grams (q̇(t) versus q(t)). A nanobeam made of aluminum (Al) with the bulk elastic properties
E = 70GPa, ν = 0.35, ρ = 2700 kg/m3 (Ogata et al., 2002) and square cross section
b = 2h = 0.1L is considered as an illustrative example.

Fig. 2. Phase plane diagrams for the nanobeam: (a) D/r = 1, n = 1, L = 10nm; (b) n = 1, L = 10nm,
µ = 2nm2, (c) D/r = 1, L = 10, µ = 2nm2

Table 3 examines the small scale effects on the first three nonlocal to local nonlinear frequency
ratios ωnlnl/ωnl of the SS and SC nanobeams for various amplitude ratios and nanobeam lengths.
It is seen from Table 3 that the decreasing effect of the nonlocal parameter on the frequency ratios
is greater at higher mode numbers. In addition, regardless of the mode number, by increasing
the nanobeam length and amplitude ratio, the decreasing effect of the nonlocal parameter on the
frequency ratio decreases. Moreover, except for D/r = 1, the decreasing effect of the nonlocal
parameter on the frequency ratio is more pronounced for nanobeams with softer boundary
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conditions. When the amplitude ratio equals to 1, similar effects can only be seen at higher
mode numbers and small lengths.
Figures 2a-2c display the phase plane diagrams (q̇(t) versus q(t)) for nanobeams with different

conditions. It is observed from Figs. 2a-2c that the phase plane diagrams of nanobeams in the
presence of the small scale effect are symmetric ellipses, and the diagrams of SC nanobeams are
similar to those of SS nanobeams. Figure 2a exhibits that consideration of the small scale effect
decreases the area of the diagram, and this reduction becomes greater by increasing the value of
the nonlocal parameter. But it is seen from Figs. 2b and 2c that the area of the diagrams increases
as the mode number and the amplitude ratio increase. In other words, an increase/decrease in
the area of the diagrams due to the mentioned parameters is equivalent to an increase/decrease
in the initial velocity condition.

4. Conclusion

This paper deals with exact solutions for large amplitude flexural vibration analysis of nonlocal
Euler-Bernoulli nanobeams with SS and SC end conditions and von Kármán geometric nonline-
arity. The equation of motion of nanobeam has been obtained in a nonlocal form and the exact
analytical solution for natural frequency has been established using the exact elliptic integrals
method. Two test examples are presented to demonstrate the accuracy of the formulation and
applicability of the elliptic integrals method for nonlocal nonlinear free vibration analysis of
nanobeams. It is observed that the small scale effect on the frequency ratios not only depends
on the nanobeam dimensions and vibration amplitude, but also depends on the mode number
and boundary conditions. In addition, it is seen that the small scale effect caused a reduction in
the area of the phase plane diagrams of the nanobeams.
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Fracture behavior of two types of steel (1.4762 and 1.7147) is compared based on their
numerically obtained J-integral values. The J-integral are chosen to quantify the crack
driving force using the finite element (FE) stress analysis applied to single-edge notched
bend (SENB) and compact tensile (CT) type fracture specimens. The resulting J-values are
plotted for growing crack length (∆a – crack length extension) at different a/W ratios (a/W
– relative crack length; 0.25, 0.5, 0.75). Slightly higher resulting values of the J-integral for
1.4762 than 1.7147 can be noticed. Also, higher a/W ratios correspond to lower J-integral
values of the materials and vice versa. J-integral values obtained by using the FE model of
the CT specimen give somewhat conservative results when compared with those obtained
by the FE model of the SENB specimen.

Keywords: crack, steel 1.7147, steel 1.4762, FE analysis

1. Introduction

Material imperfections and failures due to the manufacturing process coupled with severe service
conditions can lead to flaw appearance in engineering structures. Consequently, crack occurrence
and its growth can seriously affect integrity of such structures leading to catastrophic failure.
In order to avoid such a scenario, proper selection of materials is a step of great importance
in the process of structural design. Selection of an improper material may affect product profi-
tability, reduce its service lifetime and finally result in appearance of flaws and failure. Several
requirements have to be met during the material selection process. These requirements include
adequate strength of the material, acceptable rigidity level, resistance to elevated temperatures,
etc., but also the material must be sufficiently resistant to crack propagation.
The resistance of the material to crack propagation in fracture mechanics is usually descri-

bed through one or more parameters obtained by experimental research, like crack tip opening
displacement (CTOD), J-integral or stress intensity factor K. Of all the above mentioned, the
J-integral is suitable for trying to quantify the material resistance to crack elongation when ob-
serving ductile fracture in metallic materials (Kossakowski, 2012). When dealing with a growing
crack, the obtained J values can be correlated to appropriate crack length extensions ∆a giving
the resistance R curve. Standardized experimental procedures are used to obtain the R curve.
Extensive experimental procedures can be, in some cases, accompanied or even substituted using
some of the modern numerical methods, e.g. the finite element (FE) method. Recent research
on the topic of numerical fracture mechanics includes accuracy check of J-integral values ob-
tained by experiments, planar (2D) FE analysis, space (3D) FE analysis or the EPRI method
(Qiao et al., 2014). FE analysis of Mode I fracture in a compact tensile (CT) specimen has been
conducted to reveal effects on micro, meso and macroscale (Saxena and Ramakrishnan, 2007),
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while plastic geometry factors were determined numerically in order to calculate the J-integral
from the load vs. crack mouth opening displacement or load-line displacement curve in the J-R
curve test (Huang et al., 2014). Elastic and plastic constraint parameters for 3D problems were
studied on single-edge notched bend (SENB) and CT specimens of non-standard configuration
to characterize fracture resistance parameters (Shlyannikov et al., 2014). Research on explaining
procedures that guarantee the domain independent property when calculating the 3D J-integral
for large deformation problems was carried out by Koshima and Okada (2015). A 3D domain
integral method based on the extended FE method for extracting mixed-mode stress intensity
factors was described by Wu et al. (2012).

The work presented in this paper is a comparison of numerically obtained J-integral values
taken as a measure of the crack driving force for steels 1.7147 and 1.4762. Steel 1.7147 is usually
used in production of spindles, pistons, bolts, levers, camshafts, gears, shafts, etc. The latter
is a heat-resistant steel used in furnace industry, ceramics and cement industry, etc., i.e., in
applications with high temperature and relatively low tensile requirements. Carbon, low alloy
or high alloy ferritic steels can exhibit ductile fracture at elevated temperatures (Zhu and Joyce,
2015). Structures made of these or similar steels are more than susceptible to the flaw appearance
and crack growth (Wagner et al., 2010; Zangeneh et al., 2014; Gojic et al., 2011). Observing these
examples, it is easy to understand the need for fracture characterization of such materials.

2. Material properties

Two materials are compared: structural steel 1.7147 (AISI 5120, 20MnCr5) and high chromium
stainless steel 1.4762 (AISI 446, X10CrAlSi25). Chemical compositions of the mentioned mate-
rials are given in Tables 1 and 2. Composition of steel 1.7147 can be compared to the standard
EN 10084-2008. Here, the content of carbon equals the maximum standard value (0.22%) while
the rest of the alloying elements are within the prescribed values. Comparing steel 1.4762 to the
standard EN 10095-1999, all of the alloying elements are in the standard ranges.

Table 1. Chemical composition of steel 1.7147 (wt%) (Brnic et al., 2014a)

Material C Mn Si S Nb Cu Cr Ni P Ti Rest

1.7147 0.22 1.23 0.29 0.025 0.03 0.06 1.11 0.08 0.021 0.02 96.914

Table 2. Chemical composition of steel 1.4762 (wt%) (Brnic et al., 2014b)

Material C Mn Si S Mo Al Cr Ni P V Rest

1.4762 0.102 0.519 1.2 0.01 0.116 1.23 23.05 0.6855 0.0217 0.201 72.8648

Engineering stress-strain (σ-ε) diagrams for both steels are given in Fig. 1, while the yield
strength σY S , tensile strength σTS and Young’s modulus E are given in Table 3.

Table 3. Yield strength σY S , tensile strength σTS and Young’s modulus E of the considered
materials (Brnic et al., 2014a,b)

Material σY S [MPa] σTS [MPa] E [GPa]

1.7147 398 562 219

1.4762 487 584 192
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Fig. 1. Steel 1.7147 and steel 1.4762: uniaxial engineering stress-strain diagrams

3. Importance of J-integral

Rice (1968) introduced the J-integral as a path-independent integral that can be encircled
around the tip of a crack and considered equally as an energy release rate parameter and a
stress intensity parameter. In a 2D form and with reference to Fig. 2, it can be written as

J =

∫

Γ

(
w dy − Ti

∂ui
∂x

ds
)

(3.1)

Fig. 2. J-integral arbitrary contour path enclosing the tip of a crack

Equation (3.1) comprises of Ti = σijnj that are components of the traction vector, ui are
the components of the displacement vector and ds is an incremental length along the integral
contour Γ . The strain energy density w can be written as

w =

∫
σij dεij (3.2)

where εij is the sum of elastic and plastic strains at a specific point. The J-integral is path
independent as long as the stress is a function of the strain alone and provided the crack tip is
the only singularity within the contour. The J-integral equation shows that the energy of the
integral contour increases for the crack growth per unit length. The JIc parameter, that can be
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derived, describes the fracture resistance of the material, i.e. required energy for crack growth
per unit length when the contour Γ must shrink to the crack tip

J = lim
r→0

∫

Γ

(
w dy − Ti

∂ui
∂x

ds
)

(3.3)

4. Numerical prediction of J-integral

The experimental single specimen test method following an elastic unloading compliance techni-
que was numerically simulated in order to predict fracture behavior of steels 1.7147 and 1.4762.
It is an experimental test method that estimates the size of the expanding crack based on measu-
red values of the crack mouth opening displacement. The resulting J values serve as a fracture
toughness parameter and can be correlated to crack extension values. The numerical procedure
begins with FE stress analysis. Two-dimensional FE models of two types of fracture specimens,
single edge notched bend (SENB) and compact tensile (CT), are defined according to the ASTM
standard (2005), see Fig. 3. Three initial relative crack length a/W (W = 50mm) ratios are
taken, 0.25, 0.5 and 0.75. As for the material behavior, it is considered to be multilinear isotropic
hardening. Specimens are discretized with 8-node isoparamateric quadrilateral elements. High
deformation gradients occur in the yielding regions around the crack tip. That is why the FE
mesh is refined there. Quasi-static load is imposed on the specimen in order to simulate the
compliance procedure of the single specimen test method. Since the specimen is symmetrical,
only half of it needs to be modelled. To simulate crack propagation, the node releasing technique
has been used.

Fig. 3. Finite element model of: (a) CT specimen, (b) SENB specimen

The second step is to extract stress analysis results from the integration points of finite
elements enclosing the crack tip. This results are used to evaluate J values in the integration
points by Eq. (4.1) (De Araujo et al., 2008) and sum them along the path Γ that encloses the
crack tip giving the total value of J , see Fig. 4

J =
np∑

p=1

GpIp(ξp, ηp) (4.1)

In Eq. (4.1), Gp represents Gauss weighting factor, np stands for the number of integration
points and Ip is the integrand evaluated at each Gauss point p

Ip =

{
1

2

[
σxx

∂ux
∂x
+ σxy

(∂ux
∂y
+
∂uy
∂x

)∂ux
∂x
+ σyy

∂uy
∂y

]∂y
∂η

−
[
(σxxn1 + σxyn2)

∂ux
∂x
+ (σxyn1 + σyyn2)

∂uy
∂x

]√(∂x
∂η

)2
+
(∂y
∂η

)2
}

g

(4.2)
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Fig. 4. J-integral path Γ encircled around the crack tip through FE integration points

Although the crack tip plastic zone radius can be taken as variable using von Mises yield
criterion (Bian, 2009), here it is taken as a constant value. Since a slight variation of J values
is possible in the numerical analysis, three different paths around the crack tip are defined
in each example. The average value of these three paths is taken as the final value of the
J-integral. In order to verify the procedure, the J-integral values are first compared to the
available experimental results. Since there is no available experimental results for steels 1.7147
and 1.4762, the procedure has been first validated on steel 1.6310 (Narasaiah et al., 2010), Fig. 5.

Fig. 5. Validation of numerically obtained J-integral values on steel 1.6310

Good compatibility of the experimental and numerical results encouraged further use of
the numerical procedure for steels 1.7147 and 1.4762. Figures 6 and 7 show the final J values
for 1.7147 and 1.4762 taken as a measure of the crack driving force for different initial crack
lengths a/W according to the crack propagation ∆a.

Fig. 6. J-integral values obtained numerically for steel 1.7147: (a) CT specimen, (b) SENB specimen
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Fig. 7. J-integral values obtained numerically for steel 1.4762: (a) CT specimen, (b) SENB specimen

5. Discussion

Fracture behavior of steel 1.7147 and steel 1.4762 can be predicted based on the numerical
investigation results presented in Figs. 6 and 7 using J-integral values as a measure of the crack
driving force. Observing the obtained diagrams, it is clear that steel 1.4762 has slightly higher
values of the J-integral than 1.7147. This makes steel 1.4762 a bit more adequate to structures
that need less susceptibility to fracture.

The predicted discrepancy in the numerically obtained J values and, therefore, the difference
in resistance to crack extension comparing steels 1.7147 and 1.4762 can be contributed to different
composition and properties (Tables 1-3) of the two steels. Steel 1.4762 has a somewhat higher
value of the nickel content which can add to the noted behavior. Nickel, as the alloying element,
is usually added to stainless steels to reach a certain level of increased strength and hardness
without compromising ductility and toughness levels. Nickel also improves the oxidization and
corrosion resistance when added in suitable quantities to stainless steels. Although steel 1.7147
has an elevated chromium content (1.11%) making it suitable for corrosive environment. Steel
1.4762 is a true stainless steel in which chromium exceeds 12% content (here 23.05%) significantly
improving corrosion resistance. Benefits of chromium as an alloying element in steel are also
improved strength, hardenability, wear resistance and response to heat treatment.

Also, observing Figs. 6 and 7, lower a/W ratios corresponding to higher J values exhibit
a trend observed by other authors (Cravero and Ruggieri, 2003). Also, the J-integral differs
greatly for a/W = 0.75 if matched with a/W = 0.25 and 0.5, then they tend to be close in
values. In addition, J-integral values obtained by the FE model of the CT specimen give a bit
conservative results when comparing them to those obtained from the SENB specimen. That can
be ascribed to the specimen geometry and loading effect. As for the crack geometry, a/W ratios
are kept equal for both steels in relative specimens. That way, the influence of geometry on the
difference in J values for the two steels is negligible.

6. Conclusion

Numerical assessment of the J-integral for steels 1.7147 and 1.4762 can be useful as a prediction
of the possible fracture behavior of materials. Although not validated by an experiment, the
fine correspondence between numerical and experimental results for steel 1.6310 assures confi-
dence in using J-integral values for steels 1.7147 and 1.4762. In the structural design procedure
that includes any of the considered material, the obtained results can be useful in the initial
assessment of the material susceptibility to crack growth.
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The presented work intends to attract attention on the need for fracture behavior characte-
rization of materials recommended for use in specific engineering components. Here, the novelty
of the research lies in numerically predicted values of the J-integral taken as a measure of the
crack driving force for steels 1.7147 and 1.4762 which are, according to the authors’ knowled-
ge, unavailable to construction designers in the presented form. Both materials offer improved
corrosion resistance and can be considered for engineering applications intended to be used in
corrosive environment and susceptible to crack growth and fracture like spiral bevel gears in
truck differential systems prone to failure (Sekercioglu and Kovan, 2007) or stainless steel tubes
found in recuperators and exposed to elevated temperatures that cause failures (Bhattacharyya
et al., 2008). The results of the investigation presented in this paper can be used to avoid such
failure scenarios.
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Carlucci et al. (2013) proposed a theoretical model describing exit vibrations of a shell
launched by a gun. The model treats the shell as a system of a spring, damper and a rigid
mass. In this paper, similar models describing vibrations of shells and monolithic projectiles
are compared with some 1D models taking into account wave reverberations. The comparison
proves that the models taking into account the wave motion, forecast similar amplitudes and
frequencies of vibrations as discrete models. However, details of acceleration time courses
differ considerably. The problem of the influence of the friction force between the shell wall
and the filling is also discussed. The results of modelling serve as well for assessing if some
projectile velocity oscillations detected by making use of the Doppler radar can be solely
attributed to the exit vibrations.

Keywords: intermediate ballistics, projectile vibrations, wave reverberation

1. Introduction

Projectiles and shells moving inside a gun tube undergo compression. After leaving the muz-
zle, they experience a sudden drop of pressure acting on their base. This decompression causes
vibrations of the projectiles and shells, which can be detrimental for the integrity of their in-
ner structure. Ammunition designers take this into account by assuming that there is a step
drop of the pressure from the muzzle pressure to the ambient pressure. However, recently some
data became available enabling designers to take into account the continuous character of the
pressure changes. On the basis of accelerometer records, Carlucci and Vega (2007) proposed an
approximation of pressure changes by the exponential decay curve

p(t) = pm exp(−βt) = pm exp
(
− t

tm

)
(1.1)

Values of the muzzle pressure pm and the coefficient β were published for a 155mm cannon
in Carlucci and Vega (2007) and Carlucci et al. (2013).
Some theoretical models were considered by Trębiński and Czyżewska (2015a,b), enabling

calculation of pressure courses acting on the projectile in the intermediate period. On the basis
of the results of calculations for a broad range of launching systems, an approximate formula
was proposed for calculating the value of the coefficient β for a launching system of the caliber d

β = (0.74 + 0.24Mm)
um
d

(1.2)

Values of the muzzle flow Mach number Mm and the muzzle velocity um can be determined
on the basis of results of internal ballistics calculations.

In Carlucci et al. (2013), a model was proposed describing vibrations of a shell subjected
to the action of a pressure pulse (1.1). The motion of the ogive of the shell was modeled in
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the reference frame moving with the center of gravity of the shell. The ogive was treated as
a rigid mass, whereas the wall of the shell was treated as a spring. Its inertia was taken into
account by adding one third of its mass to the mass of the ogive. A damper was added in order
to take into account damping of the vibrations. The model predicts a considerable magnitude
of acceleration oscillations, which is in qualitative agreement with experimental observations.
Considering accelerometers as vibrating systems showed very small influence of their inertia and
rigidity on the courses of acceleration, except for the very beginning of the process.

The determined values of the period of vibrations of projectiles and shells as well as the
characteristic time tm in expression (1.1) are close to the values of the reverberation time of
elastic waves moving in projectiles and shells. In such a case, one can expect that the results
of modeling with the use of discrete models and models incorporating wave motion may differ
considerably. This paper is devoted to analysis of the role of wave reverberations. The main
objective of this analysis is to determine to which extent the amplitudes and frequencies of the
exit vibrations of projectiles and shells forecasted by discrete models and models taking into
account wave reverberations differ. Several 1D models of the wave motion in a projectile or a
shell, when subjected to action of the pressure pulse described by (1.1), are considered. Conclu-
sions concerning the potential influence of wave processes on the indications of accelerometers
embedded in the projectiles and shells are formulated.

Doppler radar measurements of the velocity changes of a projectile leaving the muzzle of
a 30mm launching system, presented in Leciejewski et al. (2013), showed oscillations of the
velocity value (Fig. 1). The question arose whether these oscillations can be attributed solely to
the vibrations of the projectile. Finding the answer to this question was the secondary objective
of the analysis presented in this paper.

Fig. 1. Results of measurements of the projectile velocity changes outside the muzzle of a 30mm
launching system (Leciejewski et al., 2013)

2. Models

2.1. Models of a monolithic projectile

The sense of physical models considered can be explained by referring to Fig. 2. In model 1,
the projectile is considered as a system of two rigid masses m1 and m2 connected by a spring.
The stiffness of the spring is determined as

ks =
AE

l0
A =

πd2

4
(2.1)
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Fig. 2. Schemes of models 1 and 2

The mathematical model corresponding to physical model 1 is given by the following initial
value problem

m1
d2x1
dt2
− ks(x2 − x1 − l0) = Apme−

t
tm m2

d2x2
dt2
+ ks(x2 − x1 − l0) = 0

x1(0) = 0 x2(0) = l0 −
m2Apm
(m1 +m2)ks

dx1
dt

∣∣∣
t=0
=
dx2
dt

∣∣∣
t=0
= um

(2.2)

Dividing the first equation by m1 and the second one by m2 and summing up the equations,
we obtain

d2(x2 − x1)
dt2

+
( ks
m1
+
ks
m2

)
(x2 − x1 − l0) = −

Fp(t)

m1
(2.3)

Defining a new variable

w = x2 − x1 − l0 (2.4)

we obtain the following initial value problem

d2w

dt2
+ ω2w = −Apm

m1
e−

t
tm ω2 = ks

( 1
m1
+
1

m2

)

w(0) = − m2Apm
(m1 +m2)ks

dw

dt

∣∣∣
t=0
= 0

(2.5)

The solution to the problem is given by

w(t) = − Apm
m1ω2(1 + ω2t2m)

[
ωtm sin(ωt) + cos(ωt) + ω

2t2me
−
t
tm

]
(2.6)

Making use of this, we obtain from the second equation of (2.2) an expression for acceleration
of the forward part of the projectile

a(t) =
Apm

m(1 + ω2t2m)

[
ωtm sin(ωt) + cos(ωt) + ω

2t2me
−
t
tw

]
m = m1 +m2 (2.7)
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Integrating (2.7) from 0 to t, we obtain the following formula for the velocity increase of the
forward part of the projectile

∆u(t) =
Apmtm

m(1 + ω2t2m)

[
1− cos(ωt) + 1

ωtm
sin(ωt) + ω2t2m

(
1− e−

t
tm

)]
(2.8)

In model 2, the projectile is treated as an elastic cylindrical rod with the same caliber d
and mass m as the real projectile and length l0 = 4m/(πd

2). The material properties of the rod
are determined by its density ρ and Young’s modulus E. It is assumed that the force Fp(t) is
produced by the pressure uniformly distributed at the left end of the rod. The pressure changes
in time are described by (1.1). The loading produces a uniaxial stress state in the rod. It is
assumed that there is no force at the right end of the rod. This assumption is justified by the
observation that the pressure acting on the forward part of the projectile is much less than the
pressure acting on its base in the whole phase when the projectile is accelerated. We assume
that at the beginning of the process all parts of the rod have the same velocity and acceleration.

The mathematical model corresponding to physical model 2 is given by the following initial-
boundary value problem in the Lagrangian coordinates

ρu,t= σ,x σ,t= Eu,x

u(x, 0) = um σ(x, 0) = pm
( x
l0
− 1

)

σ(0, t) = −pme−
t
tm σ(l0, t) = 0

(2.9)

Initial condition (2.9)3,4 for the stress σ follows from the assumption that the whole rod has
initially the same acceleration.

Solving the problem, we obtain the following expressions for the velocity increase and acce-
leration of the forward part of the projectile

∆u(t) = ∆um

[
t

Tw
− 2N + 2

N∑

j=1

exp
(
− t− (2j − 1)Tw

tm

)]
∆um =

pm
ρc

N = E
(n+ 1
2

)
n = 0, 1, 2, . . . Tw =

l0
c

c =

√
E

ρ

a(t) = ∆um

[
1

Tw
− 2
tm

N∑

j=1

exp
(
− t− (2j − 1)Tw

tm

)]
(2.10)

2.2. Models of the shell

The physical object considered and its physical models are illustrated in Fig. 3. In model 3,
the ogive and the base of the shell are treated as rigid masses. The wall of the shell of length l0
is treated as an elastic hollow cylinder, whereas the filling (explosive) is treated as an elastic
cylindrical rod with density ρf and velocity of sound cf . It is assumed that there is no friction
between the wall and the filling. Because the filling is more compressible than the wall, it can
also be assumed that there is no contact between the filling and the ogive. A uniaxial stress
state is assumed inside the wall and the filling.

The mathematical description of model 3 is given by the following initial-boundary value
problem (the subscript f refers to the filling)

ρu,t= σ,x σ,t= ρc
2u,x ρfuf ,t= σf ,x σf ,t= ρf c

2
fuf ,x

u(x, 0) = um uf (x, 0) = um
(2.11)
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Fig. 3. Schemes of the physical object (a shell) and of models 1, 3 and 4 used for the analysis

and

σ(x, 0) = ρa0(x− l0)−
m2a0
Ac

a0 =
pmA

m1 +m2 + ρl0Ac + ρf l0Af

σf (x, 0) =
(m1 +m2 +Acρl0)a0 −Apm

Af
+ ρfa0x

(2.12)

and

m1u,t (0, t) = Apme
−
t
tm +Acσ(0, t) +Afσf (0, t)

m2u,t (l0, t) = −Acσ(l0, t) σf (l0, t) = 0
(2.13)

where Af , Ac mean the cross-sectional area of the filling and the wall.
The initial condition for stress (2.12) has been derived on the assumption that at the begin-

ning of the process the whole shell has the same acceleration a0 and on the assumption that there
is no contact between the filling and the ogive. The second assumption has also been applied in
the formulation of the boundary condition at x = l0.
Problem (2.11)-(2.13) has been solved by the method of characteristics. The characteristic

grid is shown in Fig. 4. It shows wave trajectories in the wall of the shell. The values of velocity
and stress in the grid nodes are calculated using the characteristic relations

∆σ = ±ρc∆u ∆x = ±c∆t ∆σf = ±ρfcf∆uf ∆x = ±cf∆t (2.14)

In the node i, we have

σi =
σi+1 + σi−1 + ρc(ui+1 − ui−1)

2
ui = ui−1 +

σi − σi−1
ρc

σfi =
σfL + σfR + ρf cf (ufR − ufL)

2
ufi = ufL +

σfi − σfL
ρfcf

(2.15)
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Fig. 4. Characteristic grid used for calculations for models 3, 4 and 5

The values of velocity and stress inside the filling in the auxiliary nodes L and R (characteri-
stics L− i and R− i correspond to the wave velocity cf ) are calculated by a linear interpolation
between the nodes i− 1 and i+ 1

qL = qi−1 + (qi+1 − qi−1)
c− cf
2c

qR = qi−1 + (qi+1 − qi−1)
c+ cf
2c

q = {uf , σf}
(2.16)

The values of velocity and stress in nodes 1 and n are calculated by making use of an
approximate form of boundary conditions (2.13) and relations at characteristics 1 – BL and
n – BR

uBL = u1 + a1e
−
t
tm

(
1− e−

2∆t
tm

)
+ a2(σ1 + σBL) + a3(σf1 + σfBL)

ufBL = uBL a1 =
Apmtm
m1

a2 =
Ac∆t

m1
a3 =

Af∆t

m1
σBL = σ2 − ρc(uB − u2) σfBL = σfR − ρfcf (uBL − ufR)

uBR = un − a4(σn + σBR) a4 =
Ac∆t

m2
ufBR = ufL −

σfL
ρf cf

σBR = σn−1 + ρc(uBR − un−1) σfBR = 0

(2.17)

The values of velocity and stress inside the filling in the auxiliary nodes L andR are calculated
by a linear interpolation between nodes 1-2 and (n− 1)-n

qL = qn + (qn−1 − qn)
2cf
c+ cf

qR = q1 + (q2 − q1)
2cf
c+ cf

q = {uf , σf} (2.18)

Calculations are performed in two iterations. In the first iteration, the values of stress are
set as

σBL = σ1 σfBL = σf1 σBR = σn (2.19)

In the second iteration, the values of stress calculated in the first iteration are used.

Neglecting friction between the wall and the filling is questionable because the filling is
compressed and it exerts pressure on the wall. Instead of introducing the friction force into the
model, two limiting cases are considered. The model without friction is the first limiting case.
The second limiting case is a model for which it is assumed that the friction force is strong
enough to exclude any displacement between the filling and the wall. If both models give similar
results, it will be no necessity to take into account the friction force. In the second limiting
case, the compressibility of the filling has no influence on the process. Its inertia can be taken
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into account as an additional mass added to mass of the wall. This can be done by artificially
increasing density of the wall material

ρa = ρ+ ρf
Af
Ac

(2.20)

The central part of the shell can be treated as a cylindrical rod with cross-section area Ac
and density ρa. This is the sense of model 4. Its mathematical form is not presented because it
can be easily derived from problem (2.11)-(2.13) by neglecting all the expressions corresponding
to the filling. Also the method of solving the problem is similar to that described for model 3.
In the modeling of the vibrations of the shell, model 1 can be used. The massm1 is calculated

as the sum of mass of the base of the shell and mass of the wall and the filling lying between the
base and the center of gravity. The mass m2 is calculated as the sum of mass of the ogive and
mass of the wall and the filling lying between the ogive and the center of gravity. The stiffness
of the spring is calculated by using formula (2.1) with A replaced by Ac.

Fig. 5. Schemes of the model by Carlucci et al. (2013) (a), (b) and models 5 and 6 (c), (d)

In order to make comparison with the results of the model described by Carlucci et al. (2013),
two more models are considered, as shown in Fig. 5. The vibrations are modeled in the reference
frame moving with the center of gravity. Figure 5a shows the scheme of the model presented in
Fig. 4 in the cited paper. It is erroneous because the force F (t) should be applied to the mass m,
not to the spring and the damper. It is the inertial force, so its value should be expressed as

F (t) =
m

ms
Fp(t) (2.21)

where ms is the total mass of the shell. In Carlucci et al. (2013), the equality of both the forces
was assumed. The proper form of the scheme is shown in Fig. 5b. The equations given in the
cited paper correspond to this scheme. Figure 5c presents a scheme of model 5 considered in
this work. It differs from the scheme in Fig. 5b by the absence of the damper and by the sign
of the coordinate x. The mass m in model 5 is taken as the sum of mass of the ogive and 1/3
of mass of the shell wall. Figure 5d corresponds to model 6. The spring is replaced by an elastic
rod with cross-section area Ac.
The mathematical model corresponding to model 5 is given by the following initial value

problem

m
d2w

dt2
+ ksw = −

m

ms
Apme

−
t
tm w = x− l0

w(0) = − m
ms

Apm
ks

dw

dt

∣∣∣
t=0
= 0

(2.22)

Solving this problem, the following expressions for the velocity increase and acceleration can
be obtained

∆u(t) =
Am2pm

ms(m+ kst2m)

[
tme
−
t
tm + tm sin(ωt)−

ω

ks
cos(ωt)

]

a(t) =
Am2pm

ms(m+ kst2m)

[
ωtm cos(ωt) +

ω2

ks
cos(ωt)− e−

t
tm

] (2.23)



674 R. Trębiński

The mathematical model corresponding to model 6 is given by the following initial-boundary
value problem

ρu,t= σ,x σ,t= ρc
2u,x u(x, 0) = um σ(x, 0) = −mApm

msAc

u(0, t) = 0 m2u,t (l0, t) = −
m

ms
Apme

−
t
tm −Acσ(l0, t)

(2.24)

The problem is solved by the method of characteristics in the way described for model 3.

3. Results of the modeling

Calculations have been performed by making use of models 1 and 2 for a 30mm gun used in the
investigations presented by Leciejewski et al. (2012). The following values of parameters have
been applied: A = 7.07 cm2, l0 = 66mm, m1 = m2 = 183 g, ρ = 7850 kg/m

3, E = 200GPa,
pm = 51.5MPa, tm = 0.0211ms. The value of parameters pm and tm have been determined
by the regression of the pressure course calculated by the model described in Trębiński and
Czyżewska (2015). They are shown in Fig. 6. The dotted line corresponds to the approximation
given by (1.2).

Fig. 6. Pressure course for a 30mm gun calculated by the model proposed in Trębiński and Czyżewska
(2015b), regression curve and approximation of the course using formulae (1.1) and (1.2)

Figures 7a and 7b present a comparison of the results obtained by models 1 and 2. Although
the character of the velocity changes is different for the two models, the amplitude of oscillations
is similar. It is much less than the amplitude of the velocity oscillations presented in Fig. 1. This
suggests that these oscillations cannot be attributed to axial vibrations or wave reverberations
in the projectile. We can suppose that these oscillations are caused by yawing of the projectile
or by the effect of ionization of gases in strong shock waves arising in the vicinity of the muzzle
(description of wave processes accompanying the exit of projectiles are given in Klingenberg and
Heimerl (1988)).
As far as acceleration is concerned, the differences between the two models are much mo-

re pronounced. This means that it is recommended to take into account the wave motion in
predicting the acceleration of a projectile leaving the muzzle.
Figures 8a and 8b present a comparison of the results obtained by models 5 and 6. The values

of parameters used in calculations have been the same as in Carlucci et al. (2013): A = 188 cm2,
Ac = 35 cm

2, l0 = 508mm, m = 3.75 kg, ρ = 7850 kg/m
3, E = 199GPa, pm = 68.9MPa,

tm = 0.1731ms. For the purpose of comparison, it has been assumed that m = ms. The two
models give very close results. This means that in this case taking into account the wave rever-
berations is not necessary.
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Fig. 7. Comparison of the (a) velocity increase and (b) acceleration courses calculated by the use of
models 1 and 2

Fig. 8. Comparison of the (a) velocity increase and (b) acceleration courses of the shell ogive calculated
by the use of models 5 and 6

The picture is somewhat different if we consider the wave motion in the whole shell. Figures 9a
and 9b show a comparison of the calculated acceleration courses of the shell base and the shell
ogive calculated by the use of models 3 and 4. The values of parameters applied in calculations
have been as follows: A = 188 cm2, Ac = 93 cm

2, Af = 95 cm
2, l0 = 590mm, m1 = 6kg,

m2 = 5kg, ρ = 7850 kg/m
3, c = 5035m/s, ρf = 1715 kg/m

3, cf = 2470m/s, pm = 68.9MPa,
tm = 0.1731ms.

Fig. 9. Comparison of the (a) velocity increase and (b) acceleration courses of the shell ogive calculated
by the use of models 3 and 4
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Although models 3 and 4 represent the opposite limiting cases, as far as friction between
the wall and the filling is concerned, they give close results. Therefore, simpler model 4 is
recommended. The results obtained by making use of it are compared with the results from
model 1 in Figs. 10a and 10b. Although the frequency of oscillations of the velocity and the
acceleration values are very close, model 4 forecasts considerably larger amplitudes of oscillations.

Fig. 10. Comparison of the (a) velocity increase and (b) acceleration courses of the shell ogive
calculated by the use of models 4 and 1

Figure 11 presents the acceleration courses of the static center of gravity of the shell calculated
by model 4. These are compared with the acceleration calculated for the shell treated as a rigid
body. It can be seen that an accelerometer positioned in the static center of gravity will record
acceleration courses that considerably differ from the mean acceleration of the shell.

Fig. 11. Comparison of the acceleration courses of the shell static center of gravity calculated by the use
of model 4 and for the shell treated as a rigid body

4. Conclusions

• Models taking into account wave reverberations generally predict similar frequencies and
amplitudes of vibrations to the simple vibrational models. However, the character of time
changes of acceleration differs considerably. Therefore, modeling of the wave motion is
recommended for interpretation of the signals from accelerometers embedded in the shells.

• Close results obtained for models 3 and 4 prove it to be acceptable to assume that there
is no displacement between the wall of the shell and the filling.

• The predicted amplitudes of velocity oscillations of the projectile leaving the muzzle are
much smaller than those which can be deduced from the results of Doppler radar me-
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asurements. Therefore, the observed oscillations of velocity cannot be solely attributed to
vibrations of the projectile.
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In this paper, the effect of geometry and impedance on the acoustic behavior of wall and
lined cylindrical ducts is investigated using a numerical model which enables one to compute
the reflection and the transmission coefficients of such ducts using the multimodal scattering
matrix. From this matrix, the acoustic power attenuation is deduced. By using these tools,
the effect of duct diameter increase and duct diameter decrease of the wall or lined duct
section is studied. The numerical results are obtained for two configurations of wall and
lined ducts. Numerical coefficients of transmission and reflection as well as the acoustic
power attenuation show the relative influence of each type of variation.

Keywords: cylindrical duct, discontinuity effect, transmission, reflection, acoustic attenuation

1. Introduction

The acoustic performance of duct systems is evaluated with different matrices such as the transfer
matrix, the mobility matrix and the scattering matrix. This later showed its efficiency not
only because it describes the reflection and the transmission phenomena of the studied duct as
presented in Abom (1991), Leroux et al. (2003), Bi et al. (2006), Sitel et al. (2006) and Taktak
et al. (2010), but also because it describes the energetic state of the duct element as presented
in Sitel et al. (2006), Taktak et al. (2010), Aurégan and Starobinski (1998).

In a previous work, Taktak et al. (2010) developed a numerical method based on the finite
element method to compute the multimodal scattering matrix of a lined axisymetric duct element
to investigate the effect of a locally reacting liner. Then, that numerical method was developed
to incorporate the flow effect in Taktak et al. (2012, 2013). Finally, Ben Jdidia et al. (2014) used
the multimodal scattering matrix to evaluate the effect of temperature on acoustic behavior of
the duct element lined with porous materials.

In this work, the effect of discontinuities in duct systems is investigated based on the use of
the multimodal scattering matrix. This objective is achieved by studying two types of cylindrical
ducts having sudden changes of the section. In the present work, it is supposed that these section
changes are lined. Then, the effect of geometrical dimensions and the liner on the acoustic
performances of the studied ducts is investigated by computing the reflection, transmission
coefficients and the acoustic power attenuation of these ducts.

The outline of the paper is as follows. The studied problem and numerical computation of the
multimodal scattering matrix are presented in Section 2. Then, the used acoustic impedance to
model the liner is presented in Section 3. Section 4 presents the computation of acoustic power
attenuation from the multimodal scattering matrix. Finally, numerical results are presented
and discussed in Section 5 to evaluate the influence of duct diameter increase or duct diameter
decrease effects on the reflection and transmission coefficients and the acoustic power attenuation
of the studied ducts.
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2. Numerical computation of the multimodal scattering matrix

In this study, a 1m length cylindrical duct element is studied. Two cases of this duct are
investigated:

• The first case, as presented in Fig. 1, is a cylindrical duct with radius R located between
the two axial coordinates zL and zR and presenting an abrupt stricture of the section
between z1 and z2 with radius ρ. The length of the duct is divided into three parts: two
identical parts with length b and radius R and the third part in the middle with length c
and radius ρ.

Fig. 1. Section having a duct diameter decrease and then a sudden duct diameter increase section

• The second case, as presented in Fig. 2, is a cylindrical duct with radius ρ located between
the two axial coordinates zL and zR and presenting an abrupt expansion of the section
between z1 and z2 with radius R. The length of the duct is divided into three parts: two
identical parts with length b and radius ρ and the third part in the middle with length c
and radius R.

Fig. 2. Section with a duct diameter increase and then a sudden duct diameter decrease section

In the present study, we suppose that the abrupt change of the section is lined by a liner
composed of a perforated plate and an absorbing porous material backed by a rigid plate. This
liner is modeled later by its normalized acoustic impedance Z.
The multimodal scattering matrix is relating the out-coming modal pressures array

Pout2N = [P
I−
00 , . . . , P

I−
mn, . . . , P

I−
PQ, P

II+
00 , . . . , P II+mn . . . , P II+PQ ]

T
N

to the incoming modal pressures array

Pin2N = [P
I+
00 , . . . , P

I+
mn, . . . , P

I+
PQ, P

II−
00 , . . . , P II−mn , . . . , P

II−
PQ ]

T
N

as follows (Abom et al., 1991; Taktak et al., 2010)

Pout2N = S2N×2NP
in
2N =

[
RIN×N TI→II N×N
TII→I N×N RIIN×N

]

2N×2N

Pin2N (2.1)

where m and n are respectively the circumferential and radial wave numbers, N is the number
of propagating modes in both cross sections.

RImn,pqis the reflection coefficient of the wave incident to the element from side I, TII→I mn,pq is

the transmission coefficient of the wave from side II to side I, RIImn,pq is the reflection coefficient
of the wave incident to the element from side II and TI→II mn,pq is the transmission coefficient
of the wave from side I to side II.
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The acoustical pressure p in the duct is obtained by solving the Helmholtz equation with the
boundary conditions

k2p+∆p = 0 for Ω

∂p

∂nW
= 0 for ΓWD

Z
∂p

∂nL
= iωρp for ΓLD

(2.2)

k is the wave number, Ω is the acoustic domain inside the duct, ΓWD and ΓLD correspond to
the rigid and lined walls, respectively, nW and nL are the normal vectors of these walls.

The corresponding weak variational formulation of the studied problem is

Π = −
∫

Ω

(∇q · ∇p) dΩ + k2
∫

Ω

qp dΩ +

∫

⋃
Γi

q
∂p

∂ni
dΓi = 0 (2.3)

q is the test function, dΩ and dΓi are the integration elements through the duct domain and
boundaries, respectively, and

⋃
Γi presents the whole boundary. The use of modal decomposition

at left and right boundaries (ΓL and ΓR) introduces the modal pressures as additional degrees
of freedom of the model as presented in the following expression

∫
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pJm
(χmn

a
r
)
dΓL = (P

I+
mn + P

I−
mn)

∫

ΓL

Jm
(χmn
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r
)2
r dΓL

∫
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pJm
(χmn

a
r
)
dΓR = (P

II+
mn + P

II−
mn )

∫

ΓR

Jm
(χmn

a
r
)2
r dΓR

(2.4)

with a being the duct radius (a = R or ρ) and r the radial coordinate.

The last integral of formulation (2.3) is given by the following expression by adding the
modal incoming and outcoming pressures as additional degrees of freedom to the model

∫

⋃
Γi

q
∂p

∂n
dΓ =

∫

Γt

q
( iωρp
Z

)
dΓLD +

Nr∑

n

ikmn

[(
nL(P

I+
mn − P I−mn)

∫

ΓL

qJm(χmnr) dΓL

)

+

(
nR(P

II+
mn − P II−mn )

∫

ΓR

qJm(χmnr) dΓR

)] (2.5)

Jm is the Bessel function of the first kind of the order m, χmn is the nth root satisfying the
radial hard-wall boundary condition on the wall of the main duct, r is the radial coordinate,
nL and nR are the normal vectors.

For a fixed m, system (2.3) results in the following matrix system by taking into account the
boundary conditions (Taktak et al., 2010)

[
[q1, . . . , qM ], [1, . . . , 1]

]




K E1 E2 F1 F2
G1 G2 G3 0 0
0 0 0 0 0
0 0 0 0 0
H1 0 0 H2 H3












p1
...
pM





PI−mn
PI+mn
PII−mn
PII+mn





=





0
...
0





(2.6)
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M is the node number in the domain Ω, K is a matrix relating the test function to the nodal
pressures in the domain, E1, E2, F1 and F2 are matrices relating the test function to the modal
pressures on ΓL and ΓR, G1, G2 and G3 are matrices relating the nodal acoustic pressures in Ω
to different modal pressures on the boundary ΓL, H1, H2 andH3 are matrices relating the nodal
acoustic pressures to different modal pressures on the boundary ΓR.
The azimutal scattering matrix is written as

∆ =
(
V −CK−1B−1

)(
U−CK−1A−1

)
(2.7)

where A, B, C, U and V are defined as

A =
[
E1 F2

]
B =

[
E2 F1

]
C = G1 +H1

U =
[
G2 H3

]
V =

[
G3 H2

] (2.8)

The total scattering matrix S2N×2N is achieved by repeating this operation for each m and by
gathering the azimutal matrices ∆2Nr×2Nr .

3. Normalized acoustic impedance of the liner

In this study, a liner composed of a perforated plate and an absorbing porous material backed
by a rigid plate is used. The normalized acoustic impedance of the liner is obtained as follows

Z = Zporous material + Zperforated plate (3.1)

with

Zporous material = Zc coth(jkcdm) (3.2)

Zc and kc are the surface characteristic impedance and propagation constant of the porous
material, respectively, and dm is the material depth. The values of Zc and kc are estimated by
the Delany-Bazley model (Delany and Bazley, 1970) expressed as follows

Zc = Z0

[
1 + 9.08

(f
σ

)−0.754
− 11.9j

(f
σ

)−0.732
]

kc =
ω

c0

[
1 + 10.8

(f
σ

)−0.700
− 10.3j

(f
σ

)−0.595
] (3.3)

where f is the frequency, σ is the flow resistivity, Z0 = ρ0c0 is the characteristic impedance of
the air, ρ0 is the air density, c0 is the sound celerity in the air and ω is the pulsation (ω = 2πf).
For the perforated plate, the acoustic impedance model of Elnady and Boden (2003) is used

ZE = Re
{ ik

σpCD

[ t

F (k′sdp/2)
+

δre
F (ksdp/2)

]}
+ iIm

{ ik

σpCD

[ t

F (k′sdp/2)
+

δim
F (ksdp/2)

]}
(3.4)

with CD being the discharge coefficient, dp – pore diameter, t – plate thickness, σp – plate
porosity, δre and δim – correction coefficients

δre = 0.2dp + 200d
2
p + 16000d

3
p δim = 0.2856dp

F (ksdp/2) = 1−
J1(ksdp/2)

ks
d
2J0(ksdp/2)

F (k′sdp/2) = 1−
J1(k

′

sdp/2)

k′s
d
2J0(k

′
sdp/2)

k′s =

√
−iω
ν ′

ks =

√
− iω
ν

(3.5)
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with ν as the kinematic viscosity and

ν ′ = 2.179
µ

ρm
(3.6)

where µ is the dynamic viscosity and ρm is the material density.

4. Computation of the acoustic power attenuation

The acoustic power attenuationWatt which is defined by the ratio between the incoming acoustic
powerW in and the outcoming acoustic powerW out of the duct can be written as follows (Taktak
et al., 2010)

Watt(dB) = 10 log
W in

W out
= 10 log

2N∑
i=1
|di|2

2N∑
i=1

λi|di|2
(4.1)

where λi and di are respectively the eigenvalues and the components of eigenvectors of the
matrix H defined as follows

H2N×2N = S
′T∗
2N×2NS

′

2N×2N S′2N×2N = X2N×2NS2N×2NX
−1
2N×2N

X2N×2N =



[
diag (

√
Nmnkmn/(2ρ0c0k)

]
N×N

0N×N

0N×N
[
diag (

√
Nmnkmn/(2ρ0c0k)

]
N×N


 (4.2)

with

N00 = 1 Nmn = SJ
2
m(χmn)

(
1− m2

χ2mn

)
(4.3)

where S = πa2 is the cross section area, and

kmn =

√
k2 −

(χmn
a

)2
(4.4)

where kmn is the axial wave number associated to the mode (m,n) in the main duct.

5. Numerical results

The characteristics of the used liner are:

• The perforated plate: thickness e = 1mm, hole diameter dp = 1mm with a perforation
ratio σp = 2.5%.

• The porous material: thickness dm = 20mm and the flow resistivity σ = 26000 Nsm−1.
• The rigid wall plate.

The acoustic impedance computed using these characteristics according to the Delany and Bazley
(1970) model is then used as an input for computation of the numerical multimodal scattering
matrix and the acoustic power attenuation of the studied ducts. The effect of two geometrical
parameters is studied: the length and the radius of the section change.
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5.1. Duct having a diameter decrease

In this part, the case presented in Fig. 1 is treated: the duct presents a diameter decrease
characterized with length equal to c and radius equal to ρ. This part of the duct is lined with
the studied liner. In the following, the ffect of change of these parameters is investigated.

5.1.1. Effect of change in length

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of wall and lined ducts having a duct diameter decrease in order to determine the influence
of duct diameter decrease part length on its acoustic behavior. The duct has 0.05m radius and
length of 1m. The duct diameter decrease is 0.025m. Fourth configurations of the ducts are
studied:

• First configuration: the length of the duct is divided into three portions: b = 0.4m and
c = 0.2m, which makes the percentage of the duct diameter decrease portion equal to 20%.

• Second configuration: the length of the duct is divided into three portions: b = 0.3m and
c = 0.4m, which makes the percentage of the duct diameter decrease portion equal to 40%.

• Third configuration: the length of the duct is divided into three portions: b = 0.2m,
c = 0.6m, which makes the percentage of the duct diameter decrease portion equal to 60%.

• Fourth configuration: the length of the duct is divided into three portions: b = 0.1m,
c = 0.8m, which makes the percentage of the duct diameter decrease portion equal to 80%.

The reflection coefficients R00,00 with and without the liner have the same shape (Fig. 3),
except that in the treated length these coefficients are significantly attenuated. Note that all
R10,10 (Fig. 4) are equal to zero except for the forth configuration for values of ka ranging 2.5
to 3.8 when not treated. On the other hand, R20,20 reflection coefficients do not show a difference
for the treated or not treated length.

Fig. 3. Reflection coefficient R00,00 versus ka for several configurations. Duct diameter decrease case
(a) without liner, (b) with liner

The more the length of the duct diameter decrease increases, the more the transmission de-
creases and the transmission decreases as the attenuation increases. Note that all transmissions
T10,10 and T20,20 in the free driving material are equal to zero throughout the frequency range
studied (no transmission according to both directions of wave propagation) except for T00,00
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Fig. 4. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

Fig. 5. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

transmission submitting a response for values of ka ranging [0, 4]. For T00,00 (Fig. 5), all confi-
gurations exhibit harmony behavior for ka ranging from 0 to 4. Figure 6 presents the acoustic
power attenuation of the studied cylindrical duct versus ka for different studied configurations.
The results show that attenuation reaches a maximum near ka equal 2.5. The amplitude of this
maximum is about 4.8 dB, 4.3 dB, 4 dB and 3 dB for the fourth, third, second and first con-
figuration, respectively. These figures show more clearly that the length of the duct diameter
decrease increases more than the attenuation increases. In terms of materials without reflection,
the more the length of the duct diameter decrease increases, the more the reflections decrease.
The unreflective wave will be absorbed. For the treated length, the unreflective wave will be
partly absorbed and the rest part refracted. The more the length of the duct diameter decrease
increases (from the fourth to first configuration), the more the large part of the wave will be
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Fig. 6. Acoustic attenuation versus ka for several configurations. Duct diameter decrease with liner

absorbed. This seems logical as the more the length of the duct diameter decrease increases, the
more the surface of the material increases, and the absorption is greater.

5.1.2. Effect of the variation of the radius

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of wall and lined ducts having a duct diameter decrease in order to determine the influence
of the duct diameter decrease part radius on its acoustic behavior. The duct has 0.05m in radius
and length of 1m. The length of the duct is divided into three portions: the rigid length is equal
to 0.35m, the length treated is 0.3m, the rigid length is equal to 0.35m. Fourth configurations
of ducts are studied:

• First configuration: the radius of duct diameter decrease is 0.04m, which makes a radius
reduction of 20%.

• Second configuration: the radius of duct diameter decrease is 0.03m, which makes a radius
reduction of 40%.

• Third configuration: the radius of duct diameter decrease is 0.02m, which makes a radius
reduction of 60%.

• Fourth configuration: the radius of duct diameter decrease is 0.01m, which makes a radius
reduction of 80%.

The radius variation affects the amplitude of the reflection coefficients. The reflection modules
have a good harmony for all configurations for ka values [0, 4]. It is noted that configurations
3 and 4 (Fig. 7) show good attenuation in the case of treated conduct. The reflection module
R10,10 shows no change for the first configuration (with and without material), for configuration 3
against improved significantly in the case of the treated conduct going from ka = 0 to 2.6 (Fig. 8).
For a more increase of the duct diameter decrease, the transmission decreases (0.9 dB to 0.1 dB).
For the fourth configuration, the attenuation of the transmission is 65% near ka equal 0.75
(Fig. 9). The four configurations have a good harmony for ka ranging from 0 to 4. The modulus
of transmission T10,10 and T20,20 is zero for the second and third configuration, leading to say
that the length treated has no effect contrary to configurations 1 and 2 (Fig. 10) in with the
liner of conduct has a considerable effect.
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Fig. 7. Modulus of the reflection coefficient R00,00 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

Fig. 8. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

5.2. Duct with a diameter increase

In this part, the case presented in Fig. 2 is treated: the duct presents a diameter increase
characterized with length equal to c and radius equal to ρ. This part of the duct is lined with
the studied liner. In the following, the effect of changing these parameters is investigated.

5.2.1. Effect of change in length

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of rigid and lined ducts having a diameter increase in order to determine the influence of
duct diameter increase part length on its acoustic behavior. The duct is 0.05m in radius and
length of 1m. The duct diameter increase amounts to 0.1m. Fourth configurations of ducts are
studied:
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Fig. 9. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct diameter
decrease case (a) without liner, (b) with liner

Fig. 10. Acoustic attenuation versus ka for several configurations

• First configuration: the length of the duct is divided into three portions: b = 0.4m and
c = 0.2m, which makes the percentage of the duct diameter decrease portion equal to 20%.

• Second configuration: the length of the duct is divided into three portions: b = 0.3m and
c = 0.4m, which makes the percentage of the duct diameter decrease portion equal to 40%.

• Third configuration: the length of the duct is divided into three portions: b = 0.2m,
c = 0.6m, which makes the percentage of the duct diameter decrease portion equal to 60%.

• Fourth configuration: the length of the duct is divided into three portions: b = 0.1m,
c = 0.8m, which makes the percentage of the duct diameter decrease portion equal to 80%.

Figures 11 and 12 present the variation of the modulus of reflection coefficients R00,00 and
R10,10 versus ka, whereas Figs, 13 and 14 present the variation of the modulus of transmission
coefficients T00,00 and T10,10 versus ka for several studied configurations. One can observe that
the more the length of duct diameter decrease increases, the more transmission decreases and the
transmission decreases as the attenuation increases. This is presented in Fig. 15 which shows that
the attenuation has a maximum when the transmission is low. Indeed, the fourth configuration
has an attenuation of 2 dB for ka = 2.5. In the case without materials, there is no attenuation.
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Fig. 11. Modulus of the reflection coefficient R00,00 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner

Fig. 12. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner

Fig. 13. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner
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Fig. 14. Modulus of the transmission coefficient T10,10 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner

Fig. 15. Acoustic attenuation versus ka for several configurations (duct diameter increase with liner)

5.2.2. Effect of variation of radius

The scattering matrix coefficients and the acoustic power attenuation are calculated in the
cases of rigid and lined ducts having a diameter increase in order to determine the influence of
the duct diameter increase on its acoustic behavior. The duct has radius of 0.05m and length of
1m. The length of the duct is divided into three portions. The rigid length is equal to 0.35m,
the length treated is 0.3m and the rest rigid length is equal to 0.35m. Fourth configurations of
ducts are studied:

• First configuration: the duct diameter increase is 0.06m which makes an increase in radius
equal to 20%.

• Second configuration: the duct diameter increase is 0.07m which makes an increase in
radius equal to 40%.

• Third configuration: the duct diameter increase is 0.08m which makes an increasee in
radius equal to 60%.
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• Fourth configuration: the duct diameter increase is 0.09m which makes an increase in
radius equal to 80%.

Figures 16, 17 present the variation of the modulus of reflection coefficients R00,00 and R10,10
versus ka, whereas Figs. 18 and 19 present the variation of the modulus of transmission coef-
ficients T00,00 and T10,10 versus ka for several studied configurations. From these figures it can
be concluded that the more the duct diameter increases, the more transmission decreases and
the reflection increases. There is not much difference in the transmission in the case of conduct
treated materials (it falls slightly from 1 to 0.9). Figure 20 presents the acoustic attenuation of
the four studied cases. The fourth configuration is the more absorbent with a maximum of 2 dB
at ka = 2.5. This leads to say that the duct diameter decrease configuration is more absorbent,
therefore, more efficient than the configuration with the duct diameter increase. Indeed, the
configuration with the duct diameter increase section shows no great reflection (low values for
R00,00 and R10,10).

Fig. 16. Modulus of the reflection coefficient R00,00 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner

Fig. 17. Modulus of the reflection coefficient R10,10 versus ka for several configurations. Duct diameter
increase case (a) without liner, (b) with liner
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Fig. 18. Modulus of the transmission coefficient T00,00 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner

Fig. 19. Modulus of the transmission coefficient T10,10 versus ka for several configurations. Duct
diameter increase case (a) without liner, (b) with liner

Fig. 20. Acoustic attenuation versus ka for several configurations (duct diameter increase with liner)
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6. Conclusions

In this paper, effect of geometry and impedance variation on the Acoustic Performance of Porous
Material Lined Duct is studied. The main conclusions drawn from the study are as follows:

For the case of duct diameter decrease:

• The more the length of the duct diameter decrease increases, the more attenuation incre-
ases.

• In terms of materials, the more the length of duct diameter decrease increases, the more
reflections decreases and the unreflective wave is absorbed.

• For the treated length, the unreflective wave will be partly absorbed and the rest part
refracted. The more the length of duct diameter decrease increases, the more the wave is
absorbed.

• The more the length of the duct diameter decrease increases, the more the surface of the
material increases, and the absorption is greater.

• The radius variation affects the amplitude of the reflection coefficients. The more the duct
diameter decrease increases, the more the transmission decreases.

For the case of duct diameter increase:

• The more the length of the duct diameter increase increases, the more the transmission
decreases and the transmission decreases, the more the attenuation increases.

• With the treated length, the more the radius of the duct diameter increase increases, the
more reflection increases and the reflection increases, the more the transmission decreases.
There is not much difference transmission.

It is concluded from the results presented above that the duct diameter decrease configuration is
more absorbent, therefore, more efficient than the configuration with the duct diameter increase.
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7. Leroux M., Job S., Aurégan Y., Pagneux V., 2003, Acoustical propagation in lined duct
with flow. Numerical simulations and measurements, 10th International Congress of Sound and
Vibration, Stockholm, Sweden, 3255-3262



694 A. Masmoudi et al.

8. Sitel A., Ville J.M., Foucart F., 2006, Multimodal procedure to measure the acoustic scat-
tering matrix of a duct discontinuity for higher order mode propagation conditions, Journal of the
Acoustical Society of America, 120, 5, 2478-2490

9. Taktak M., Majdoub M.A., Bentahar M., Haddar M., 2012, Numerical modelling of the
sound propagation in axisymmetric lined flow duct, Archives of Acoustics, 37, 2, 151-160

10. Taktak M., Majdoub M.A., Bentahar M., Haddar M., 2013, Numerical characterization of
an axisymmetric lined duct with flow using multimodal scattering matrix, Journal of Theoretical
and Applied Mechanics, 51, 2, 313-325

11. Taktak M., Ville J.M., Haddar M., Gabard G., Foucart F., 2010, An indirect method for
the characterization of locally reacting liners, Journal of the Acoustical Society of America, 127,
6, 3548-3559

Manuscript received October 23, 2015; accepted for print January 2, 2017



JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

55, 2, pp. 695-705, Warsaw 2017
DOI: 10.15632/jtam-pl.55.2.695

A FINITE ELEMENT APPROACH TO DEVELOP TRACK GEOMETRICAL
IRREGULARITY THRESHOLDS FROM THE SAFETY ASPECT

Amin Miri
School of Civil Engineering, Sharif University of Technology, Tehran, Iran

e-mail: amin.miri.iust@gmail.com

Saeed Mohammadzadeh, Hoda Salek
School of Railway Engineering, Iran University of Science and Technology, Tehran

Riding quality and safety of rail tracks are directly influenced by track geometry; hence,
their degradation along time could reduce safety and cause serious accidents. Standards
propose thresholds for track geometrical parameters to keep track safety and riding comfort
at an acceptable level. In this study, a method is proposed to select or define a set of proper
thresholds for geometrical parameter irregularities according to desirable to safety level.
The impact of track geometry irregularities on the derailment index has been investigated
through the finite element model. The results suggest that twist and gauge shortage have a
greater effect on the derailment index compared to the vertical profile of the track. Having the
critical values of geometrical irregularities that result in derailment, safety factors of Iranian
and Euro code standards in determining their thresholds are calculated and compared. It
is shown that each standard has a unique set of safety factors that depend on speed and
geometrical parameters.

Keywords: maintenance and inspection, track geometry parameters, finite element,
Adams/rail software

Notations

Q,Y – vertical and lateral forces between rail and wheel flange, respectively
β – contact angle of rail and wheel flange
µ – coefficient of friction between rail and wheel flange
Z – alignment of modeled track
X – longitudinal coordinate of modeled tracks
I – alignment irregularity value
mo,mb,mw – mass of car body, bolster and wheel set, respectively
Iox, Ioy, Ioz – inertia of car body around x, y and z axis, respectively
Iwx, Iwy, Iwz – inertia of wheel set around x, y and z axis, respectively
KPV ,KSV – primary and secondary vertical dampers stiffness, respectively
KLS – lateral dampers stiffness

1. Introduction

Safety and ride comfort are two important characteristics of any railway network. These cha-
racteristics are closely related to the geometrical condition of track superstructure, meaning
whenever the track superstructure is at standard condition, so are the safety and ride comfort
of passing trains. To monitor geometrical conditions of railway tracks, track quality indexes are
proposed that are based on track geometrical irregularities.
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Whether a geometrical parameter is considered irregular or normal, it is assessed through
comparing the measured geometrical parameter with the pre-determined set of thresholds propo-
sed in standard guidelines and standards. Table 1 presents the geometrical parameter threshold
as stated in Iranian guideline and Euro code standard (Alert limit state) (Iran Ministry of Ro-
ads and Transportation, 2005; EN-13848-5, 2008). It is clear from Table 1 that for a certain
geometrical parameter at a certain speed, each guideline proposes different threshold values due
to different operational regime and characteristics of the networks in which they are applied.

Table 1. Iran and Euro-code thresholds (all values in mm)

V >230 200<V<230 160<V<200 120<V<160 80<V<120 V<80
Speed Track
[km/h] parameter

– – 12 16 16 18 Iran Vertical
16 20 20 23 26 28 Euro code profile

– – 6 8 10 12 Iran
Gauge +

28 28 28 35 35 35 Euro code

– – 2 2 2 2 Iran
Gauge -

5 7 7 10 11 11 Euro code

– – 5 5 5 5 Iran
Alignment

10 12 12 14 17 22 Euro code

– – 1.5 1.5 1.5 1.5 Iran
Twist

5 7 7 7 7 7 Euro code

The point to keep in mind regarding the thresholds is that maintenance operations are
dependent upon them. So proposing restricted values for thresholds would result in frequent
maintenance operations and higher maintenance expenditures, while loose thresholds may in-
crease the possibility of accidents due to excessive irregularities. In this regard, developing an
optimized set of thresholds would not only reduce expenses, but also guarantee safety of the
operation.

Although defining thresholds of track geometrical irregularities seems to be of great impor-
tance, the focus of studies is rather on track geometrical parameters. Some papers have propo-
sed novel track quality indexes based on track geometrical parameters (Madejski and Grabczyk,
2002; ORE, 1981; Miri and Mohammadzadeh, 2014). Others studied the effect of track geometri-
cal irregularities on the performance and conditional assessment of the track, such as initiation
and evolution of rail corrugation (Jin et al., 2005), effects of maintenance operations on track
quality (Ataei et al., 2014), proposing an inspection interval for track geometrical parameters
(Arasteh Khouy et al., 2013), and evaluating the probability of derailment (Mohammadzadeh et
al., 2011). Also, there are emerging technologies such as the performance-based track geometry
inspection system that relate geometrical parameters of track to vehicle performance in real time
(Li et al., 2006). In a recent study by Arasteh Khouy et al. (2014) a cost model is proposed to
specify the cost-effective maintenance limits for track geometry maintenance. The model con-
siders degradation rates of different track sections and takes into account the costs associated
with inspection, tamping, delay time penalties and risk of accidents due to poor track quality
to come up with the cost-effective intervention limit of the longitudinal level for tamping.

The aim of this paper is to propose a method that could be used to develop a set of track
geometrical irregularity thresholds from the safety point of view. Track geometrical parameters
considered in this paper include vertical profile, alignment, track gauge, cross level (also known
as “cant”) and twist, which are schematically presented in Fig. 1. To measure safety of proposed
thresholds for each track geometrical parameter, the derailment index is considered as the safety
indicator.
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Fig. 1. (a) Vertical profile, (b) alignment, (c) gauge, (d) cant and twist irregularities

Derailment occurs when car wheels run off the rail that supplies support and guidance of the
vehicle. Many papers have been published concerning this subject since it is crucial to railway
safety (Yadav, 2007; Wu and Wilson, 2006; Elkins and Wu, 2000; Nadal, 1908; Weinstock, 1984;
Karmel and Sweet, 1981). Derailment is divided into two main categories: sudden derailment
and flange climbing derailment, of which the second category is taken into account in this study.

Flange climb derailment is the case in which wheels climb to the top of the rail individually
and then run over it. In this condition, forces causing derailment are higher than resisting forces,
but not powerful enough to cause the first case (Yadav, 2007). Such derailment occurs as vertical
forces tend to decrease or as a result of increasing lateral forces which are combined with the
forwarding movement of the vehicle. In the case of the vertical profile, the vertical forces Q
would decrease and as a result, Y/Q increases and may reach the critical limit. This case is also
known as “unloading”.

There are different theories in the field of the derailment phenomenon such as Nadal theory
(Nadal, 1908), Weinstocks (Weinstock, 1984) and Kereszty (Yadav, 2007). According to Nadal
(1908), if the resisting forces are higher than the derailing forces, no derailment will occur.
Therefore, by analyzing forces applied to the flange – according to the condition stated above –
it could be concluded that

µ(Y sin β +Q cosβ) + Y cos β ¬ Q sinβ (1.1)

which could be restated as

Y

Q
¬ tan β − µ
1 + µ tan β

(1.2)

in which Y and Q are the lateral and vertical forces between the rail and wheel flange, respecti-
vely. β is the contact angle of the rail and wheel flange and µ is the coefficient of friction between
the flange and rail. For most wheel types, β is equal to 68◦ (Yadav, 2007). Also depending on
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the geometry and roughness of contact surface, µ varies between 0.25 and 0.27 (Yadav, 2007).
Using these values, equation (1.2) simplifies as

Y

Q
¬ 1.4 (1.3)

Fig. 2. Free-body diagram of wheel-rail contact forces

Considering the simplicity and comprehensiveness of Nadal theory, it is used as derailment
theory in this study. Different values have been stated as the critical limit of the Y/Q ratio.
According to UIC 518 and EN14363, in tracks with curve radii of more than 250 meters, the
Y/Q ratio shall not be greater than 0.8 according to the sliding mean over 2m of the track.
Also, 0.8 has been stated as the critical value for Y/Q ratio in various works (Elkins and Wu,
2000; Karmel and Sweet, 1981; Kik et al., 2002). In this regard, the critical value of the Y/Q
ratio is considered to be 0.8 throughout the paper.
Another important factor in developing thresholds of geometrical irregularities is the chord

length. Most guidelines and standards consider chord lengths of 10, 19, and 37 meters. Thro-
ughout this paper, a 10 meter chord is selected to control short wavelength defects that can
result in high wheel forces over a short portion of the track. These forces may not produce
excessive car body motion yet their action on the wheels and track may cause derailment, which
is in line with the purpose of this paper.

2. Methodology of research

The aim of this paper is to find the amplitude of track geometrical irregularities that result
in derailment. To do so, tracks with a length of 100 meters are modeled in Adams/Rail. Solid
elements are used to model the track, and the space between each sleeper is divided into two
distinct elements. Geometrical defects are simulated based on the definition of track geometrical
parameters using mathematical functions which are characterized by wavelength and amplitude
and applied to a 10 meter chord of the modeled tracks.
Next, a freight wagon (characteristics of the wagon are presented in Table 2) passes over the

modeled track with a geometrical defect, and dynamic analyses are carried out to determine
lateral and vertical forces. Hence, the derailment index is determined for a certain amplitude
of geometrical irregularity. Next, the amplitude of geometrical irregularity is increased and the
whole process repeats until the derailment index reaches the critical threshold of 0.8; so the
corresponding amplitude of geometrical irregularity that results in derailment is determined.
Since the speed is an effective parameter in the derailment phenomenon, the whole process is
carried out for speeds of 40, 80, and 120 km/h.
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Table 2. Characteristics of freight wagon used in simulations

Symbols Values Unit Name

mo 32 000 kg mass of car body

mb 1503 kg mass of a bolster

mw 1503 kg mass of wheel set

Iox 5.68 · 104 kgm2 inertia of car body around x axis

Ioy 1.97 · 106 kgm2 inertia of car body around y axis

Ioz 1.97 · 106 kgm2 inertia of car body around z axis

Iwx 810 kgm2 inertia of wheel set around x axis

Iwy 810 kgm2 inertia of wheel set around y axis

Iwz 112 kgm2 inertia of wheel set around z axis

KPV 6 MN/m primary vertical dampers stiffness

KSV 6 MN/m secondary vertical dampers stiffness

KLS 6 MN/m lateral dampers stiffness

3. Investigating the effects of alignment

The alignment of the track increases lateral forces on the rail which, according to Nadal theory,
could result in derailment if the irregularity is high enough. A polynomial function of the 4th
order is chosen to model the alignment, which is as follows

z = x4 − 2lx3 + l2x2 (3.1)

in which z is the alignment of the modeled track, x is the longitudinal coordinate of the modeled
track, and l is the alignment irregularity value. Figure 3 shows a 12mm left rail alignment in
a 100 meters track that starts from the point at 50 meters and continues up to the point at
60 meters. Dynamic analysis for this track is carried out and Fig. 4 demonstrates the results of
the front axle of front and rear bogies, at a speed of 80 km/h.

Fig. 3. Model of the alignment defect
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Fig. 4. Result of dynamical analysis of the modeled track with the alignment defect in Adams rail

Fig. 5. Derailment index (Y/Q) versus alignment irregularity for speeds of 50, 80, and 140km/h

Figure 5 presents the results of dynamic analyses of tracks with the alignment defect for
speeds of 50, 80, and 140 km/h. It is evident that as train speed increases, derailment occurs
at lower wavelengths of the alignment defect. For speeds of 50, 80, and 140 km/h, derailment
occurs at alignment irregularities of 27, 21, and 18, respectively. These values are close to the
thresholds stated in Euro code standard, but considerably higher than those stated in Iranian
standard.

4. Investigating the effects of the vertical profile

Vertical forces of the wheel on the rail could decrease in the presence of the vertical profile
irregularity which increases the Y/Q value and could result in derailment. The vertical profile
is modeled using the same geometrical function used to model the alignment defect. The results
of dynamic analysis are presented in Fig. 6. In a lower speed of 50 km/h, the derailment ratio
remains below the critical value of 0.8 for vertical profiles of up to 350mm. But at 140 km/h,
derailment occurs at a vertical profile irregularity of 40mm. Generally, it could be seen that the
derailment ratio is less sensitive to the vertical profile than to the alignment, since Y/Q remains
fairly below the critical value for higher vertical profile irregularities.
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Fig. 6. Derailment index versus vertical profile irregularity for speeds of 50, 80, and 140km/h

5. Investigating the effects of the track gauge

Track gauge variations can lead to large lateral wheel forces resulting in derailment. Both extra
and shortage of the gauge are undesirable, since an extra gauge may end up in wheels falling
off the rail, while shortage of gauge could result in wheels climbing on the top of the rail. A
trapezoidal function is used to model extra and shortage of the track gauge, as shown in Fig. 7.
Figures 8a and 8b present the results of dynamical analysis for the modeled tracks with extra
and shortage of the gauge, respectively.

Fig. 7. Geometrical function used to model track gauge irregularities

Fig. 8. Derailment index versus (a) extra gauge irregularity and (b) gauge shortage irregularity for
speeds of 50, 80, and 140km/h
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6. Investigating the effects of twist

To model the twist irregularity, sinusoidal waves with amplitudes of 1, 2 and 3mm and wave-
lengths of 2-6mm are used. The results of dynamical analysis of the modeled tracks with twist
defects are presented in Figs. 9a to 9c. As these figures suggest, derailment is sensitive to both
wavelength and amplitude of the twist. Keeping the amplitude constant, derailment occurs at
shorter wavelengths. On the other hand, an increasing amplitude results in higher Y/Q ratios.
The twist with an amplitude of 3mm results in derailment in speeds of 80 and 140 km/h regar-
dless of the wavelength, as shown in Fig. 9c. These results suggest that the twist is an influential
parameter affecting derailment.

Fig. 9. Derailment index versus twist with an amplitude of (a) 1mm, (b) 2mm and (c) 3mm for speeds
of 50, 80, and 140 km/h

7. Comments on the results

Critical amplitudes of track geometrical irregularities are concluded in Table 3 for speeds of
50, 80, and 140 km/h. Having the amplitude of track geometrical irregularities that result in
derailment, thresholds could be developed by applying the safety factor to the values in Table 3.
Moreover, by dividing the critical values in Table 3 to the thresholds stated in the guidelines,
it is possible to estimate the safety factors considered in the guidelines from the safety point
of view. Figure 10 presents the safety factors determined for Iranian and Euro code standards.
Alert limit state of Euro code is considered, since it is recommended based on safety issues
related to derailment (EN-13848-5, 2008).
According to Fig. 10, Iranian standard is very conservative in defining thresholds since all

safety factors are below 0.5, while Euro code considers logical safety factors. For example, Iranian
standard considers a safety factor of 0.1 for the gauge shortage for a speed of 50 km/h, while this
value is 0.8 in Euro Code standard. This shows that each standard considers a unique set of safety
factors that depend on many parameters, such as the network in which it is applied, maintenance
operations frequency and quality, rolling stock characteristics and operational regimes. Also, the
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Table 3. Critical values of geometrical irregularities that result in derailment

Parameter
Speed [km/h]
50 80 140

Alignment 27 21 18

Profile – 150 40

Gauge + 49.5 41 37

Gauge - −13.5 −13 −11.5
Twist (1mm) – 2.5 4.5

Twist (2mm) 3 5 –

Twist (3mm) 4.5 – –

Fig. 10. Safety factors of Iranian and Euro code standard thresholds from the safety point of view

safety aspect is not the sole determinant of the thresholds, and restricted thresholds could be
result from considering a plethora of factors for determining the thresholds.

According to Fig. 10, a single value is not considered as the safety factor for all geometrical
parameters. For a speed of 140 km/h, safety factors for the alignment, vertical profile, extra gauge
and shortage of gauge are 0.8, 0.6 and 0.9, respectively, according to Euro code. As expected,
the safety factor of a geometrical parameter varies with speed as well. For example, Euro code
takes safety factors of 0.8, 0.6, and 0.9 for the shortage of gauge irregularity at speeds of 50, 80,
and 140, respectively.

8. Conclusion

Track performance is highly dependent on the condition of geometrical parameters. Using a
predefined set of thresholds, it is possible to monitor geometrical irregularities of the track and
determine the quality index for a portion of the track. In this study, a method is proposed
which could be used to select or define a new set of thresholds from the point of view of safety.
To do so, geometrical irregularities are modeled in Adams/Rail finite element software and
dynamical analyses are carried out to determine the derailment index. Varying the amplitude
of geometrical irregularities, it is possible to determine the critical geometrical irregularity that
results in derailment of the train.

The results suggest that derailment is highly correlated to twist and gauge shortage. Ac-
cording to the results, the twist with an amplitude of 3mm results in derailment at speeds of
80 and 140 km/h regardless of the wavelength. On the other hand, derailment is less sensitive
to variations in the vertical profile irregularity, since no derailment occurs the vertical profile
irregularity of 350mm at a speed of 50 km/h.

Multiplying the critical values of track geometrical irregularities by safety factors, it is po-
ssible to develop a new set of thresholds from the safety aspect. The reverse could be done to
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determine safety factors of guidelines for developing thresholds, which is calculated in this paper
for Euro code and Iranian standards. It is observed that each standard considers a unique set of
safety factors to determine thresholds of geometrical irregularities. Iranian standard considers
very restrictive safety factors, while Euro code choses a logical approach. This is mainly due to
the fact that characteristics of the railway networks in which they are applied are different.

Considering high costs of maintenance operations and the importance of geometrical para-
meters to the safety of tracks, the selection of an optimized set of thresholds for a railway track
is crucial. Using the proposed method of this paper could lead to an optimum set of thresholds
that satisfies both financial and safety aspects at the same time. The same finite element model
could also be used to determine the thresholds from any other aspect, such as ride comfort.
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In this paper, the deep drawing process of an automobile panel in order to select the appro-
priate amount of parameters has been investigated. The parameters include friction between
the blank and die, blank width and length, blank thickness and gap between the blank and
blank-holder. A multi-layer artificial neural network (ANN) trained by finite element ana-
lyses (FEA) is applied in order to improve forming parameters and achieve a better quality.
As the FEA results are used to train the ANN, the FEA results have been verified by three
experiments. Finally, an appropriate amount of each parameter is predicted by the trained
ANN and a FEA has been done based on the ANN prediction to evaluate the accuracy
of the trained ANN. Moreover, it is shown that the ANN could predict results within a
10 percent error. In addition, the proposed method for prediction of the appropriate para-
meters (ANN) is confirmed by comparing with the Taguchi design of experiment prediction.
It is also shown that the model obtained by the former method has lower errors than the
latter one. In this study, the Taguchi model is used to evaluate the effect of parameters on
tearing and wrinkling. Based on the Taguchi design of experiment, while the blank length is
the most effective parameter on tearing, the maximum height of wrinkles on flanged parts
mainly depends on the blank thickness.

Keywords: deep drawing, finite element analysis (FEA), multi-layer artificial neural network
(ANN), Taguchi design

1. Introduction

Sheet metal forming is one of the most widely used industrial processes, which is fast and cost-
-effective. Deep drawing, which is widespread among other sheet metal forming processes, is
used for a wide variety of industrial purposes. In the deep drawing process (Fig. 1), the blank is
positioned on a die. Then, the blank-holder places the blank at a certain position and the punch
forms the blank with a downward movement. There are lots of parameters that affect the deep
drawing process and quality of the final product such as geometry of the forming tool, punch
and blank-holder force, friction, blank dimensions, and material properties (Singh and Agnihotri,
2015; Fereshteh-Saniee and Montazeran, 2003). These parameters affect the appearance of the
final product. Adjustment of each mentioned parameter might prevent forming defects such as
tearing, wrinkling, thinning, earing, and springback. Therefore, selection and optimization of
the process parameters is an effective way to form the blank with better appearance, in a cost
effective way and without any defects.
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Fig. 1. Schematic of the deep drawing process

Colgan and Monaghan (2003) tried to find effective parameters based on a statistical method
using orthogonal arrays. They conducted an experiment on four hundred steel parts with 1mm
thickness. The results showed that the punch radius and matrix radius were the main effective
parameters in final thickness. They reported that smaller punch edge radius needed more force
and it was shown that the lubricant type affected the punch force significantly. In addition, in a
recent research by Laurent et al. (2015) warm deep drawing of AA5754-O alloy was investigated.
They manufactured a warm die for their experiment and studied the influence of temperature
on springback. They conducted their experiments between room temperature and 200◦C. In
their research, Abaqus/Explicit was used to simulate the procedure in which an anisotropic
temperature-dependent model was utilized. Furthermore, they verified the simulation results
using an experiment.

Sezek et al. (2010) studied the effect of deep drawing factors such as die radius, friction
and blank thickness both numerically and experimentally. The results showed that the friction
coefficient and the blank-holder angle were main factors. They also concluded that the drawing
ratio was reduced by increasing the die angle and the results of experiment were close to the
simulation. Demirci et al. (2008) investigated deep drawing parameters for Al1050 alloy by both
FEA and experiment. They focused on the blank-holder force and thickness distribution in the
drawn part.

Chamekh et al. (2009) used trained ANN to investigate the anisotropy behavior based on
FEA results. A back propagation ANN was implemented in their study and the results of
FE were in good agreement with the results of ANN. They declared that the combination
of ANN and FE could be used to optimize the deep drawing process. Moreover, Forouzan and
Akbarzadeh (2007) utilized a back propagation ANN to predict some material properties such as
yield stress, elongation, ultimate stress and average of anisotropy for rolled AA3004 aluminum
alloy. The maximum percentage of error was estimated about 6.35 by trained ANN. Finally,
they inferred that mechanical properties and anisotropy of the material were predictable by
using their method.

El Sherbiny et al. (2014) investigated changes in thickness and residual stress in the deep
drawing process. Their paper analyzed the process by using FEA. The results of simulation
were verified by experimental results. In their article, geometrical parameters were radius of
the matrix edge, radius of the punch edge and the friction coefficient. They investigated the
effect of the mentioned parameters on the drawn blank in 8 sections. The maximum amount
of residual stress was also measured. Furthermore, Padmanabhan et al. (2007) investigated the
effect of three parameters including matrix radius, blank-holder force and friction coefficient in
deep drawing of symmetric parts. They combined the FE method with the Taguchi method.
The results showed that the most effective parameter in thickness distribution was the matrix
edge radius which was followed by the blank-holder force and the friction coefficient.
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Yagami et al. (2007) investigated the effect of blank-holder motion on formability factors
such as wrinkling and drawing of a copper blank during the deep drawing process. They de-
signed an algorithm that controlled the process and compared the results with finite element
simulation. The results illustrated that the wrinkles which were lower than 200 µm could be
omitted. Furthermore, the FE results reported improvement of the formability and reduction of
the ductile damage behavior. Additionally, Zein et al. (2014) analyzed a typical deep drawing
die and focused on improving finial dimensions using plastic return. First, they verified the FEA
with experiments. Then, they changed a single parameter while other parameters were kept con-
stant, and repeated the finite element simulation trying to optimize the main parameters such
as matrix edge radius, punch radius, blank thickness and clearance. Finally, optimum amounts
were suggested for main parameters.

Candra et al. (2015) investigated the variable blank-holder force during punch motion in order
to prevent tearing. In their research, they used FEA with a slab method. Although their results
contained slight errors, they inferred that the presented method assisted to prevent the sheet
from tearing during the deep drawing process. Fereshteh-Saniee and Montazeran (2003) studied
the drawing force using analytical, numerical, and experimental methods. They investigated the
effect of element type on the drawing force and strain alteration and studied the effect of friction
coefficient on the force-displacement diagram using the Finite Element Method. It was also
inferred that the Sieble equation could estimate the results more accurate than other analytical
methods and proved that the Sieble equation was more sensitive to the friction coefficient than
FEA. Finally, by comparing FE results with experimental results, it was determined that shell
elements estimated more accurate results than four-node elements.

Singh et al. (2011) conducted a research on optimum amounts for the matrix and punch
radius, friction coefficient and drawing ratio for St14 blank with 1mm thickness. They obtained
optimum amounts using 28 experiments, neural network and genetic algorithm coupling. In
an comprehensive study, Wifi and Abdelmaguid (2012) worked on a review article introducing
optimization methods for both single and progressive dies.

In this paper, by using artificial neural network trained by FEA results, an appropriate
amount of each parameter is selected in three steps. First, FEA is done and verified by three
experiments. Second, the ANN is trained based on the design of experiment data. Third, the
appropriate amount of each parameter is found using the trained ANN. These three steps are
shown in Fig. 2. The main parameters which are selected to be investigated are the friction
between matrix, blank-holder and blank, friction between punch and blank, blank width and
length, blank thickness and the gap between blank and blank-holder. In addition, outputs which
are defined as impact indicators are tearing and wrinkling.

2. Simulation of the deep drawing process

2.1. Finite Element modeling

As it can be seen in Fig. 3, four parts are modeled in the Finite Element software. These
parts include the blank, punch, matrix, and blank-holder. Due to symmetry of the matrix, half
of it has been modeled in Abaqus/Explicit. The punch, matrix, and blank-holder are assumed
to be discrete rigid parts and their displacements are controlled by reference points. The mesh
used in this simulation is R3D3 which means 3 points and 3 dimensional solid elements.

The blank is the only deformable part which is meshed by S4R shell elements. S4R means
four points with reduced integration. These meshes are suitable for simulation of sheet behavior
with respect to thickness variation (Abaqus v. 6.11).
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Fig. 2. Proposed steps in the investigation

Fig. 3. Defined parts used in FE simulation

2.2. Material properties

A deformable St14 blank is analysed in this article. The chemical composition of this mate-
rial is shown in Table 1. Its stress-strain curve is evaluated with INSTRON 4486 simple tensile
test machine under ASTM E8 standard and 0.8mm sheet thickness (Fig. 4a). Mechanical pro-
perties are demonstrated in Table 2. It should also be noted that values of anisotropy have been
calculated with the Hill criterion which is shown in formula as

R22 =

√
r90(r0 + 1)

r0(r90 + 1)
R33 =

√
r90(r0 + 1)

r90 + r0
R12 =

√
3r90(r0 + 1)

(2r45 + 1)(r0 + r90)
(2.1)

The values of R11, R13 and R23 are equal to 1.

Table 1. Chemical composition of St14 [wt%]

C Mn S P Al

0.037 0.222 0.03 0.05 0.061

Furthermore, to evaluate tearing, the FLD criterion is used. The FLD diagrams are found
from the library of Autoform software (Fig. 4b). It has been assumed that thickness differentials
have not affected the FLD (Hashemi et al., 2012).
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Table 2. Mechanical properties of St14

Parameters Value

Density, ρ 7800 kg/m3

Young’s modulus, E 210GPa

Poisson’s coefficient, ν 0.3

Yield Stress, σ 169.54MPa

Ultimate Stress, UTS 520MPa

r0 1.87

r45 1.3

r90 2.14

Fig. 4. (a) Stress-strain graph for St14, (b) FLD graph for St14

2.3. Validation of FEA results

Validation of FEA results is done in three steps. These steps are mesh independence and
include investigation of energy graphs and comparison between FEA and experiments. Regarding
the mesh independence, as can be seen in Table 3, several analyses with different mesh sizes
are done. Meshes are sized from 3mm to 14mm and the results showed that 8, 10 and 12mm
meshes lead to similar results. Therefore, for precise estimation and optimization of the analysis
time, a 10mm mesh has been used. In the second part of the validation, in which energy graphs
were scrutinized, kinetic energy and artificial energy graphs were compared with internal energy.
Finally, in the third part of the validation, FEA results were compared with three specimens
drawn in different circumstances.

Table 3. Independence of the mesh size

Mesh size Number of Number of Time STH
FLD

[mm] element node resolution [s] [mm]

3 97200 97844 26640 0.416 1.250

4.5 43254 43684 11435 0.652 0.919

5.5 28994 29346 6756 0.606 0.906

6 24400 24723 4192 0.679 0.815

8 13650 13892 2216 0.687 0.805

10 8760 8954 1354 0.701 0.793

12 6100 6262 856 0.727 0.707
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Regarding the third part of validation, Fig. 5 shows the drawing result for the first specimen
in which wrinkles occurs on the flanging part and wall of the specimen both in the experiment
and FEA. The input parameters for this experiment are 0.3mm gap between the blank-holder
and blank, 0.8mm blank thickness, 1200 × 1460mm blank size. Lubricant films between the
punch and blank and a piece of plastic between the matrix, blank-holder and blank are taken
into account used. It should be noted that the friction coefficient is selected based on the previous
studies (Colgan and Monaghan, 2003; Watiti and Labeas, 2010; Gao et al., 2010). In the second
experiment, shown in Fig. 6, all parameters except the gap between blank-holder and blank
remained constant. As the gap was closed for drawing the second specimen, tearing occurred
in FEA and the experiment. In FEA, the elements with the FLD criterion higher than 1 were
eliminated to show tearing. Finally, in the third experiment, increasing the gap up to 0.05mm
resulted in thorough drawing without tearing and severe wrinkling. As shown in Fig. 7 and
Table 4, thickness and wrinkling in the third drawing specimen are evaluated by FEA and
experimentally.

Fig. 5. Comparison between finite element analysis and experiment for the first sample

Fig. 6. Comparison between finite element analysis and experiment for the second sample

Table 4. Comparison of wrinkling length between experiment and FEA for the third sample

Wrinkling location Experiment FEA Error
based on Fig. 3 [mm] [mm] [%]

Wrinkling length (left) 1.75 1.90 8.21

Wrinkling length (right) 1.55 1.67 7.45
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Fig. 7. Comparison of thickness between finite element analysis and experiment for the third sample

Given the validation procedure, it can be concluded that FEA results are precise. Therefore,
these results could be used to train an ANN.

3. Modeling

3.1. Design of the experiment

After determination of six influential parameters in the final step of panel production, each
parameter is defined in three levels based on a multiple experiment and FEA. As it can be seen
in Table 5, these parameters include friction between the blank and die surface, blank width,
blank length, blank thickness and blank-holder gap.

Provided that the design of experiment was based on the full factorial design, 729 experiments
should be done which was time consuming. Therefore, the method of training an ANN has been
used to determine an appropriate amount of each parameter. The Taguchi method was utilized
to evaluate the effect of each parameter on tearing and wrinkling. Based on the number of
parameters and their levels in the Minitab software, it was determined that the L27 model
should be used for the Taguchi design of the experiment.

Table 5. Input parameters and selected levels

Parameters Factor number Level 1 Level 2 Level 3

Friction matrix/blank-holder and blank Factor 1 0.04 0.07 0.1

Friction punch and blank Factor 2 0.04 0.07 0.15

Blank width Factor 3 1150 1200 1250

Blank length Factor 4 1360 1460 1560

Blank thickness Factor 5 0.7 0.8 0.9

Blank-holder gap Factor 6 0.02 0.05 0.07

3.2. Training an artificial neural network

ANN is an effective method for solving problems in which relationships between parameters
are complex or defining them in one formula is difficult. In the deep drawing process, numerous
parameters exist and an analytical formula could not explain them. In the present research,
a network with 2 hidden layers is utilized. The first hidden layer has 10 neurons with the
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sigmoid transfer function, and in the second hidden layer a linear transfer function is used. The
neural network is a feed-forward network which uses the back propagation error algorithm and
the Levenberg-Marquardt training algorithm and in order to train it 109 data are used. The
network is selected based on testing a wide variety of networks with different numbers of layers
and available training algorithms.

As it is obvious in Fig. 8, there are six input parameters in the first layer and two outputs
including the value of the FLD criterion and maximum wrinkling height. Figure 9 illustrates the
training process with the best performance in the first epoch and the training process terminated
after six epochs. It can be seen that the precision of the network with respect to validation data
has been decreased after the first epoch. Figure 10 shows the regression graph of the trained
network. In this graph, values of R near 1 reveal network precision and, more importantly, the
similar R values for training data, test data and validation data indicate that this network does
not memorize the training data.

Fig. 8. Schematic of the applied artificial neural network

Fig. 9. Training process of artificial neural network
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Fig. 10. Regression graph of trained artificial neural network

4. Selection of appropriate amounts for input parameters

In this article, two methods are used for the selection of appropriate amount of the input
parameters in order to reach the best output amounts. The first method is to predict using a
trained ANN and the second one is the Taguchi DOE. It is attempted to reduce the maximum
height of wrinkling and keep the FLD criterion below 1 to prevent tearing.

5. Results and discussion

As for the Taguchi DOE, graphs which are called signal to noise ratio are obtained. Each of
these graphs demonstrates the influence of input parameters on the outputs. In fact, the more
differentials in a line, the greater effect of that parameter. In Figs. 11a and 11b, the influence
of inputs on the FLD criterion and the maximum wrinkling height are shown, respectively. In
Fig. 11a, it can be seen that the blank length is the most effective parameter and friction between
the matrix, blank-holder and blank is the least influential parameter among the FLD criterion
parameters. Moreover, in Fig. 11b, it is obvious that the blank thickness is the most important,
and the blank length is the least important parameter affecting the maximum wrinkling height
created on the flanging part of the product.

Regarding prediction of appropriate input parameters by the Taguchi DOE as shown in
Table 6, a test with 121331 code is suggested. This code shows the level of each parameter.
For example, the aforementioned code shows that friction between the matrix, blank-holder and
blank is in the first level which is 0.04mm, friction between the punch and blank is in the
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Fig. 11. Influence of input parameters on (a) FLDCRT and (b) maximum wrinkling length

second level which is 0.07mm, the blank width is in the first level which is 1150mm. Similarly,
the blank height is 1560mm, blank thickness is 0.09mm and the gap between the blank and
blank-holder is 0.02mm. The results which are shown in Table 6, show that there is a great
discrepancy between the Taguchi prediction and FEA, especially for the maximum wrinkling
height. Therefore, it could be concluded that the Taguchi DOE would not be a successful method
for prediction of input parameters.

Table 6. Comparison between the Taguchi prediction and the finite element for test num-
ber 121331

Outputs Taguchi Finite element Percentage of error

FLD Criterion 0.597 0.657 9.13

Wrinkling height 7.12 2.24 217.85

On the other hand, the trained ANN predicts the experiment with 231333 code as an appro-
priate combination of inputs (Table 7). This code shows that friction between the matrix/blank-
holder and blank is 0.07mm, friction between the punch and blank is 0.15, blank width is
1150mm, blank height is 1560, blank thickness is 0.9 and the gap between the blank and blank-
holder is 0.07mm. By comparing these results with the prediction of Taguchi, the trained ANN
has predicted the outputs with a less error. This error for the FLD criterion or the maximum
wrinkling height is less than 10%.

Table 7. Comparison between the artificial neural network prediction and finite element for test
number 231333

Outputs ANN Finite element Percentage of error

FLD Criterion 0.536 0.572 6.29

Wrinkling height 1.198 1.32 9.84

6. Conclusion

In this paper, a combination of an experiment, finite element analysis and artificial neural
network is used. In fact, based on a finite number of FEA results, which are validated by experi-
ment, an ANN with 2 hidden layers is trained and utilized to predict specified outputs (maximum
wrinkling height and tearing) quickly and accurately. First of all, it could be concluded that a
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trained neural network is able to predict outputs with an error of 0.1 (Mean Square Error).
The prediction by the trained ANN could be done by less than 10% and some acceptable error.
For this panel, the maximum wrinkling height predicted by the Taguchi DOE shows a great
numerical difference with FEA results. Moreover, the results show that by increasing the tra-
ining data up to 15% of full factorial DOE, the accuracy of the trained ANN prediction could
improve. Also, using the parameters predicted by the trained ANN leads to smaller wrinkling
which could be a sign of better quality. Finally, it is inferred that the blank length is the most
effective parameter and friction between the matrix, blank-holder and blank is the least impor-
tant parameter affecting tearing. That the blank thickness is the most effective parameter in the
maximum wrinkling height and the blank length is the least effective one.
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11. Laurent H., Coër J., Manach P., Oliveira M., Menezes L., 2015, Experimental and nu-
merical studies on the warm deep drawing of an Al-Mg alloy, International Journal of Mechanical
Sciences, 93, 59-72

12. Padmanabhan R., Oliveira M., Alves J., Menezes L., 2007, Influence of process parameters
on the deep drawing of stainless steel, Finite Elements in Analysis and Design, 43, 14, 1062-1067

13. Sezek S., Savas V., Aksakal B., 2010, Effect of die radius on blank holder force and dra-
wing ratio: a model and experimental investigation, Materials and Manufacturing Processes, 25, 7,
557-564



718 S.S. Najafabadi et al.

14. Singh C.P., Agnihotri G., 2015 Study of deep drawing process parameters: a review, Interna-
tional Journal of Scientific and Research Publication, 5, 2, 1-15

15. Singh D., Yousefi R., Boroushaki M., 2011, Identification of optimum parameters of deep
drawing of a cylindrical workpiece using neural network and genetic algorithm, World Academy of
Science, Engineering and Technology, 78, 211-217

16. Watiti V.B., Labeas G.N., 2010, Finite element optimization of deep drawing process forming
parameters for magnesium alloys, International Journal of Material Forming, 3, 1, 97-100

17. Wifi A., Abdelmaguid T., 2012, Towards an optimized process planning of multistage deep
drawing: an overview, Journal of Achievements in Materials and Manufacturing Engineering, 55,
1, 7-17

18. Yagami T., Manabe K., Yamauchi Y., 2007, Effect of alternating blank holder motion of
drawing and wrinkle elimination on deep-drawability, Journal of Materials Processing Technology,
187, 187-191

19. Zein H., El Sherbiny M., Abd-Rabou M., 2014, Thinning and spring back prediction of sheet
metal in the deep drawing process, Materials and Design, 53, 797-808

Manuscript received October 28, 2016; accepted for print January 5, 2017



JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

55, 2, pp. 719-726, Warsaw 2017
DOI: 10.15632/jtam-pl.55.2.719

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF
PE/CNT COMPOSITES

A.M. Fattahi, A. Najipour
Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

e-mail: a.fattahi@iaut.ac.ir

High density polyethylene/carbon nanotube composites have been produced for investiga-
tions. Four CNT volume fractions and two injection pressures were considered. According to
the Taguchi approach, eight experiments were designed. The effect of the carbon nanotubes
weight fraction and injection pressure on hardness and impact strength of nanocomposite
samples were investigated. The results showed that the effect of the carbon nanotube weight
fraction on hardness and impact strength of nanocomposite samples was much higher than
the effect of injection pressure. By adding 1%wt (weight) carbon nanotube into the polymer,
the impact strength and hardness of the samples improved by 74% and 47%, respectively.

Keywords: nanocomposite, carbon nanotube, polyethylene, injection molding, mechanical
properties

1. Introduction

Carbon nanotube composites hold a great potential as the materials to be used in the future.
Extraordinary properties of these fantastic materials lead to an exhaustive research. One of the
first investigations about polymer/carbon nanotube composites was carried out by Ajayan et
al. (1994). In their study, they dispersed randomly multi-walled carbon nanotubes in a liquid
epoxy resin by mechanical mixing. After that, a large number of theoretical and experimen-
tal researches using carbon nanotubes as reinforcing fibers have been performed to address the
exceptional mechanical and electrical properties of nanotube-based composites (Schadler et al.,
1998; Jin et al., 1998; Haggenmueller et al., 2000; Azizi et al., 2015a,b; Najipour and Fattahi,
2016; Safaei and Fattahi, 2016; Sahmani and Fattahi, 2016, 2017; Fattahi and Safaei, 2017). In
the last few years, nanocomposites have significantly advanced compared to composite materials
in convention dimensions due to changes in the composition and structure of the materials in
nanoscale and presenting unique and special properties. Improvement of mechanical and other
properties of such composites strongly depends on the particle content, particle shape and size,
surface characteristics and dispersion degree (Komarneni, 1992; Jordan et al., 2005). Conse-
quently, toughening of these composites could be caused by a number of mechanisms such as
crack-tip pinning, crack-surface bridging, debonding/microcracking and crack deflection. Ac-
cording to previous reports, mechanical and thermomechanical properties of composites filled
with micron-sized filler particles are inferior to those filled with nanoparticles of the same filler.
Carbon nanotubes exhibit exceptional mechanical (modulus= 1TPa, strength= 10 times that
of steel), thermal and electrical properties. Accordingly, it can be suggested that development
of these nano-level particles can offer tailorability of desired properties in a material. Incre-
asing economic need for fuel in different areas has increased the demand for using lighter new
materials such as polymers. On the other hand, because of lower strength of polymers compa-
red to metals, their reinforcement seems inevitable. Nylon 6 was the first polymer which was
used to produce nanocomposite by Toyota Company in 1990; but today thermosetting polymers
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such as epoxy and polyimide, polypropylene, polyethylene, and polystyrene are being used as
matrix materials in composites. Among the nanocomposites, most attention has been paid to
polymer based nanocomposites. One reason for the progress of polymer nanocomposites is their
unique mechanical, chemical and physical properties. Polymer nanocomposites generally have
high strength, low weight, high thermal stability, high electrical conductivity and high chemical
resistance. The second reason for the progress of polymer based nanocomposites and increased
research in this area is the discovery of carbon nanotubes in 1991. The strength and electrical
properties of carbon nanotubes are significantly different from those of graphite nanolayers and
other filling materials. Supreme mechanical and physical properties of carbon nanotubes along
with their low density have made carbon a perfect candidate for strengthening the composites.
The diameter of these nanotubes can range from 1 to 100 nm and their aspect ratio is bigger
than 100 or even 1000. Numerous works have been done on polymer based nanocomposites.
Among them the most significant works by Navidfar (2014) can be mentioned. He produced po-
lymethyl methacrylate/carbon nanotube composites using the injection method. Effects of CNT
weight fraction, injection temperature, and maintenance pressure on the mechanical properties
of the samples were investigated. According to his results, the increasing of the concentration
of carbon nanotubes in the nanocomposites slightly increased their hardness and the impact
strength. Among other works done in this area Shishavan et al. (2014) can be mentioned. They
mixed acrylonitrile butadiene styrene polymer with 0, 2, and 4%wt nanoclay, and the effects
of nanoclay and process conditions on the mechanical properties of nanocomposite were inve-
stigated. They found that by adding 4%wt nanoclay, the hardness of the samples was slightly
increased.

In the present study, the effect of the addition of multi walled carbon nanotubes and the
process conditions on the hardness and impact strength of high density polyethylene-carbon
nanotube nanocomposite samples with different carbon nanotube weight fractions is investigated.

2. Experimental research

2.1. Materials and equipment

In this study, high density polyethylene (HDPE) polymer produced in Ilam Petrochemical
Company was used as the matrix phase. Also multi-walled carbon nanotubes with 5-10 nm inner
diameter, 10-30 nm outer diameter and 90% purity, obtained from US Research Nanomaterials,
USA, were used as the reinforcement phase. Following primary manual mixing with certain
weight fractions, mixing was completed by fusion in a twin screw extruder (ZSK-25, Coperion
Werner & Pfleiderer, Germany) device at Iranian Petrochemical and Polymer Research Center,
and the nanocomposites were obtained as granules. Then the samples were prepared using a
plastic injection device NBM HXF-128 obtained from Neckou Behine Mashin Company and
were subject to mechanical hardness and impact tests. In order to conduct Rockwell hardness
tests on the samples, Zwick/Roell device (UK) which is shown in Fig. 1a, was used. To obtain
the impact strength of the samples, a Charpy impact tester device with pendulum weight of
2.036 kg and arm length of 39.48 cm, which is shown in Fig. 1b, was employed.

In this study, Taguchi approach (Montgomery, 2013) has been used to evaluate the tests
and draw final conclusions. Taguchi’s method is one of the most popular methods of statistical
analysis. The weight of carbon nanotubes in four levels and the pressure injection in two levels
were considered, and according to Taguchi’s approach, eight experiments were designed. The
parameters and levels are shown in Table 1. Also, Table 2 shows the tests designed in accordance
with the Taguchi method. In the experiments designed according to Taguchi’s method, there is
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Fig. 1. (a) Hardness test device, (b) impact test device

a loss function which is ultimately introduced as the signal to noise ratio S/N (Montgomery,
2013)

S/N = −10 log
(
1

n

n∑

i=1

1

y2i

)
(2.1)

where S/N is the signal to noise ratio, n is the number of observations on the particular product
and y is the respective characteristic. According the Taguchi method, the parameter with the
biggest S/N has the biggest effect on the experiment.

Table 1. Experimental parameters and their levels

Level 1 2 3 4

Carbon nanotube weight fraction [wt%] 0 0.5 1.0 1.5

Injection pressure [MPa] 60 80 – –

Table 2. Experiments designed according to Taguchi method

Sample number CNT weight fraction [wt%] Injection pressure [MPa]

1 0 60

2 0 80

3 0.5 60

4 0.5 80

5 1.0 60

6 1.0 80

7 1.5 60

8 1.5 80

In order to produce nanocomposite samples, first polyethylene and carbon nanotube with
different weight fractions, which are presented in Table 2, were mixed in a two screw extruder
device using the fusion mixing method at 170◦C, and the nanocomposites were produced as
granules. Then the granules were dehydrated in the feeding funnel of the injection device at
60◦C for 20 h and the samples were produced based on the designed experiments according to
ASTM D638 standard. Once the nanocomposite samples were prepared, hardness and impact
mechanical tests were conducted on the samples. Three samples were made, then hardness and
impact tests according to Rockwell and Charpy methods were done (see Fig. 2). The hardness
test according to the Rockwell M method with three replications in each experiment and the
Charpy impact test with three replications in each experiment were conducted for every sample.
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Fig. 2. Left – pure polyethylene samples and right – the produced samples (1%wt CNT): (a) hardness
test sample, (b) impact test sample

3. Results

Once the mechanical tests were done, the results obtained for the hardness and impact tests of
the samples were obtained and then were analyzed using Minitab software. Taguchi’s method
was used to evaluate the tests.

3.1. Impact test

In order to prepare the samples for the impact test, a crotch with 45◦ angle and 2mm depth
was created on the sample and then the sample was subject to the Charpy impact test. Some of
the tested samples are shown in Fig. 3. Once the impact test was done, impact strength results
were obtained according to Table 3.

Fig. 3. (a) Selected samples prepared for impact tests, (b) nanocomposite sample after the impact test

Table 3. Impact strength test results

Sample Impact strength [kJ/m2] Average impact
number Test 1 Test 2 Test 3 strength [kJ/m2]

1 105.455 111.766 133.128 116.783

2 199.720 172.644 154.208 175.524

3 232.168 178.364 200.776 203.776

4 175.385 170.112 181.075 175.524

5 232.168 302.462 228.168 254.266

6 276.364 221.486 264.950 254.267

7 201.385 238.350 198.866 212.867

8 199.720 252.665 2228.720 225.035
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Table 4. Signal to noise ratio S/N for impact strength data

Effect of CNT [wt%] Effect of pressure

Level
Impact strength S/N =

Level
Impact strength S/N =

[kJ/m2] −10 log
(
1

2

2∑
i=1

1
y2
i

)
[kJ/m2] −10 log

(
1

4

4∑
i=1

1
y2
i

)

1
y1 = 116.783 43.12

1

y1 = 116.783

45.55
y2 = 175.524 y2 = 203.776

2
y1 = 203.776 45.53

y3 = 254.266
y2 = 175.385 y4 = 212.867

3
y1 = 254.266 48.11

2

y1 = 175.524

46.23
y2 = 254.222 y2 = 175.385

4
y1 = 212.867 46.80

y3 = 254.266
y2 = 225.035 y4 = 225.035

∆ 48.11 − 43.12 = 4.99 46.23 − 45.55 = 0.68
Rank 1 2

Fig. 4. (a) Signal to noise diagram for the impact strength data, (b) diagram of the counter effects of
the parameters on the impact strength

By using these data as the input for Minitab software and analyzing them, the signal to noise
ratio data were obtained according to Table 4 and Fig. 4a, where ∆ is the difference between
the largest and smallest data and Rank shows the impact of the parameter with respect to size
of ∆. According to signal to noise results, carbon nanotube weight fraction had much more effect
of the impact strength of the nanocomposite samples compared to the injection pressure. By
increasing carbon nanotube weight fractions up to level 3 (1%wt carbon nanotubes), the impact
strength of the samples were increased almost by 74% (Appendix A), and then it was decreased.
This means that the optimum level for carbon nanotube weight fraction was level 3 with 1%wt
carbon nanotube in which the highest value for the signal to noise ratio and impact strength was
obtained. Increasing the carbon nanotube weight fraction to 1.5%, the signal to noise ratio and
impact strength values were decreased, which could be attributed to the agglomeration of carbon
nanotubes by increasing their weight fraction. Strong Van der Waals attractions along with their
high contact surface (length to diameter ratio of 1000) generally results in special aggregation
of carbon nanotubes and, therefore, prevents the transfer of their extraordinary properties to
the matrix. The most optimum state for the impact strength among the experiments was when
the carbon nanotube weight fraction was at level 3 and injection pressure was at level 2, which
corresponded to test sample 6. Also Fig. 4b shows the counter effects of the parameters on
the impact test. According to this diagram, when the injection pressure was at its lower level



724 A.M. Fattahi, A. Najipour

(60MPa), the highest impact strength was achieved when 1%wt carbon nanotube was chosen.
Also when the injection pressure was at its higher level (80MPa), the impact strengths of pure
samples and samples with 0.5%wt carbon nanotube were similar. Another conclusion which was
obtained from the diagram was that when the carbon nanotube weight fraction was at its third
level being 1%wt, the impact strengths of the samples produced at 60 and 80MPa were almost
similar. Also according to the results of the signal to noise analyses, the injection pressure had
less effect on the impact strength, which, through increasing the injection pressure from 60 to
80MPa, ingreased the impact strength of samples by only 5%.

3.2. Hardness test

Hardness tests of the samples were conducted according to the Rockwell M method, and the
obtained results are shown in Table 5.

Table 5. Hardness test results

Sample Hardness (Rockwell) Average hardness
number Test 1 Test 2 Test 3 (Rockwell)

1 43.0 44.3 42.3 43.20

2 37.2 35.6 42.5 38.43

3 63.3 61.0 61.4 61.90

4 56.0 53.4 54.8 54.73

5 63.7 62.9 62.9 63.17

6 54.2 55.7 59.9 56.60

7 61.3 61.7 63.7 62.23

8 52.5 52.4 49.8 51.57

By analyzing the results obtained from the hardness test using Minitab software, the signal
to noise analysis results were obtained and are presented in Table 6 and Fig. 5a.

Table 6. Signal to noise ratio for hardness data

Effect of MWCNT [wt%] Effect of pressure

Level
Hardness S/N =

Level
Hardness S/N =

(Rockwell) −10 log
(
1

2

2∑
i=1

1
y2
i

)
(Rockwell) −10 log

(
1

4

4∑
i=1

1
y2
i

)

1
y1 = 43.2 32.2

1

y1 = 43.2

34.8
y2 = 38.4 y2 = 61.9

2
y1 = 61.9 35.3

y3 = 63.2
y2 = 54.7 y4 = 62.2

3
y1 = 63.2 35.53

2

y1 = 38.4

33.9
y2 = 56.6 y2 = 54.7

4
y1 = 56.6 35.06

y3 = 56.6
y2 = 62.2 y4 = 51.6

∆ 33.53 − 32.2 = 3.33 34.8 − 33.9 = 0.9
Rank 1 2

According to the results obtained from the signal to noise analysis for the hardness test, the
carbon nanotube weight fraction had a more significant effect on the hardness of the samples
compared to the injection pressure. The addition of up to 1%wt carbon nanotubes to polyethyle-
ne resulted in a significant increase in the hardness of the samples almost by 47% (Appendix A),
and the highest values of the hardness and signal to noise ratio was obtained at level 3 (1%wt
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Fig. 5. (a) Signal to noise analysis diagram for hardness data, (b) diagram counter effects of the
parameters on the hardness test

carbon nanotubes). A further increase in the carbon nanotube weight fraction up to 1.5% sligh-
tly decreased the hardness of the samples which was attributed to agglomeration of the carbon
nanotubes as it was mentioned before. On the other hand, wt% by increasing the injection pres-
sure from level 1 to level 2, the hardness and signal to noise ratio of the samples were decreased.
The most optimum state regarding the hardness was achieved when the nanotube weight frac-
tion and injection pressure were at levels 3 and 2, respectively, which corresponded to sample 5.
Also Fig. 5b shows the counter effects of the parameters on the hardness test. According to
this diagram, the hardness of the nanocomposites were significantly higher (almost 47%) than
the pure samples and at either 60 or 80MPa injection pressure. The hardness of the samples
containing 1.5%wt showed the highest values. Also another conclusion from this diagram was
that at 60MPa injection pressure the hardness of the samples with 1.5%wt was higher than for
the samples containing 0.5%wt while at 80MPa injection pressure the order was opposite.

4. Conclusion

In this work, high density polyethylene-carbon nanotube nanocomposites were produced ac-
cording to the injection molding method. The effect of addition of carbon nanotubes at four
different levels of 0, 0.5, 1, and 1.5 and of two injection pressure levels of 60 and 80MPa on
hardness and impact strength of the nanocomposite samples was investigated. The results sho-
wed that the effect of the carbon nanotube weight fraction on the hardness and impact strength
of nanocomposite samples was much higher than the effect of the injection pressure. Addition of
1%wt carbon nanotube into the polymer significantly increased hardness and impact strength
of the samples; however addition of 1.5%wt carbon nanotube reduced the values, which was due
to agglomeration of carbon nanotubes in the polyethylene matrix.

A. Appendix

From Table 4, the average amount of impact strength at 0% and 1%wt CNT are 146.2 and
254.266 kJ/m2, then the impact strength increment is

254.266 − 146.2
146.2

· 100 ≈ 74 (A.1)
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From Table 6, the average amount of hardness at 0% and 1%wt CNT are 40.8 and 59.9 Rockwell,
then the hardness increment is

59.9− 40.8
40.8

· 100 ≈ 47 (A.2)
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The main aim of the paper is to present the procedure allowing one to determine correct
mechanical characteristics of a rubber material compressed within a wide range of strain
rates. In order to obtain a satisfactory wide spectrum of material data, a number of tests were
conducted both under low and high strain rates with the use of a universal strength machine
and split Hopkinson pressure bar set-up equipped with polymethyl methacrylate and 7075-
T6 alloy bars. During the investigations, the necessity of performing pre-compression tests
and the problem of specimen geometry were pointed out as key methodical requirements
to guarantee achieving valid experimental data both from quasi-static and high strain rate
tests.

Keywords: tire rubber, uniaxial compression test, SHPB test, strain rates, spectral analysis

1. Introduction

Nowadays, rubber is considered as one of the most important materials for many applications. Its
mechanical characteristics, including ability to reversible deformation under loading of mecha-
nical forces, result in the fact that various forms of rubber are very popular in many industries.
Elastomeric structures, due to their low stiffness modulus and high damping characteristics,
are used to absorb energy in dynamic (impulse or impact) loadings as isolation bearings, shock
absorbers, etc. For example, the automotive industry, often uses materials and rubber-based
composites to produce tires with high strength and durability. Nevertheless, development of the
pneumatic tire structure with a high operating standard is associated with carrying out a series
of experimental studies for determining stability and reliability of its implementation. Nume-
rical modelling using the Finite Element Method (FEM), which is found to be a very useful
and effective tool for deformation and stress state analysis in the tire structure (Helnwein et al.,
1993; Reid et al., 2007), is an alternative to experimental testing. Thus, for effective and correct
analyses, its numerical model should be developed with particular attention and care. There-
fore, an accurate assessment of mechanical properties of the tire rubber in various operational
conditions is essential in the tire numerical modelling (Malachowski et al., 2007).
It can be observed that mechanical properties of rubber and rubber-like materials have been

effectively determined and understood over the past decades. Such materials were examined using
static experimental tests (Gent, 1994; Szurgott et al., 2012; Sridharan and Sivaramakrishnan,
2013), as well as fatigue testing was performed by many authors (Kim and Jeong, 2005; Saintier
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et al., 2006; Zine et al., 2006). Static experimental tests for both tension and compression are
usually carried out on universal strength machines. During testing, the rubber material exhibits
nonlinear stress distribution and its behaviour considerably changes. When a rubber specimen
is compressed, its contact area increases drastically and a friction effect can be clearly observed,
manifested as a barrelling effect. Therefore, it is intended to reduce friction as much as possible
using lubricants or water (Nakajima and Takahashi, 2002).

Recently, behaviour of rubber under high-strain rates loading has been more thoroughly
investigated with compression, tension or shear characteristics taking into consideration (Giova-
nola, 1988; Lindholm and Yeakley, 1968; Nicholas, 1981; Roland, 2006; Song and Chen, 2003).
It resulted from the fact that many types of elastomers (e.g. rubber, polyuera) were applied
as blast/ballistic protection materials in combat vehicles (Auckland et al., 2013; Roland et al.,
2010). The specific properties of elastomers, such as: high toughness-to-density ratio, capability
to accommodate large deformations and their high damping characteristics, make them suitable
for employment in the dissipation of kinetic energy coming from impacts and shocks.

A device most commonly used for investigating the dynamic behaviour of solid materials at
high strain rates within the range of 102 to 104 s−1 is the Kolsky bar, more commonly known as
split Hopkinson pressure bar (SHPB) named after Bertram Hopkinson (Chen et al., 2000, 2011;
Song and Chen, 2005; Ellwood et al., 1982; Gray, 1994; Hopkinson, 1904; Hopkinson, 1872; Ja-
niszewski, 2012; Meyers, 1994). It is used to obtain stress-strain curves of investigated materials
for certain strain rates. The basic test using SHPB is a compression test, where a cylindrical
specimen is deformed between two flat surfaces of the bars (input and output, or incident and
transmitted). If the tested material is a soft material, such as an elastomer, the applicability
of the conventional SHPB technique needs to be carefully examined to meet methodical requ-
irements (stress equilibrium in the specimen, constant strain rate conditions during the test)
and to solve many technical and methodological problems. These problems arise mainly because
the transmitted signal may be too weak to be measured, which results from large mismatch of
impedance between the specimen and the metallic bars. The specimen thickness also influences
the attenuation of the transmitted signal since a stress wave propagates in soft materials with a
relatively low velocity. Due to these limitations, many modifications of the conventional SHBP
technique were developed.

The simplest approach is to increase sensitivity of the gauges recording the transmitted
pulse. Chen et al. (1999) used piezoelectric quartz gauges embedded on the aluminium bars. An
other method includes reduction of mechanical impedance differences between the bars and the
specimen using mainly three options: (1) modifying cross section of the specimen, (2) altering
cross section of the pressure bar, e.g. using a hollow transmission bar (Zhao et al., 1997) and
(3) changing the material of the pressure bars, e.g. by replacing metals bars with polymeric bars
(Casem et al., 2003). The latter is frequently chosen by many investigators.

The substitution of polymeric bars with metallic ones, however, causes many problems due
to the viscoelastic nature of the polymer material (Wang et al., 1994; Zhao et al., 1997). For
metal bars, it can be assumed that elastic wave signals, which are determined from the strain
measured by strain gauges, are not only known at the measuring points but everywhere along the
bar. Therefore, the transmitted wave can be shifted to the transmitted bar-specimen interface
to calculate the transmitted force and velocity, whereas the incident force and velocity can
be obtained from incident and reflected signals shifted to the incident bar-specimen interface.
Unfortunately, this procedure is not valid for polymeric bars because of the attenuation and
dispersion of the wave pulse during its propagation along the bar. Therefore, the correction of
the wave signals is necessary in the case of a viscoelastic SHPB.

There are two approaches to correction of the wave signals. The first method is based on a
theoretical viscoelastic constitutive equation and a characteristics theory of wave propagation
(Bacon, 1998). An alternative approach is to use spectral analysis to correct wave pulses (Cheng
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et al., 1998; Zhao et al., 1997; Duyle, 1989). In this paper, spectral analysis and a wave shifting
procedure are applied to a PMMA split Hopkinson pressure bar setup.

All the facts described above were included and taken into consideration in the authors’
experimental tests. The present paper describes – in a comprehensive way – the procedure of
determining correct mechanical characteristics of a selected rubber material deformed within
a wide range of strain rates. The paper is organized as follows: Section 2 is devoted to the
description of quasi-static compression testing of tire rubber. In this Section, the procedure
of performed tests under low strain rates and the stress-strain curves obtained are presented.
In Section 3, the study of rubber properties under high strain deformation rates is described.
Particular emphasis is placed on presenting the specificity of performing mechanical tests under
dynamic loading with the use of aluminium alloy and polymethyl methacrylate (PMMA) bars
system.

The genesis of the paper is related to the recent events including many world military opera-
tions, where the Improvised Explosive Devices (IED) are commonly used on the battlefield. IED
explosions can destroy wheels or even the suspension system which makes the vehicle unable to
drive (Borkowski and Motrycz, 2012). Its destructive effect results in tire tearing followed by
large deformation of other elements of the suspension system. Such problems are also simulated
using numerical methods (Baranowski et al., 2011; Baranowski and Malachowski, 2015). Howe-
ver, the authors found lack of material data of tire rubber in terms of tire numerical simulations
under dynamic loading conditions, especially blast waves. Possessing a wide range of the stress-
strain curves within a number of strain rates and a proper constitutive model, the modelling
and simulation of different problems will ensure that the obtained results are correct and close
to the real findings

2. Quasi-static tests

Quasi-static compression tests were carried out using MTS Criterion C45.105 electromechani-
cal universal test machine. The specimens were compressed with three different strain rates:
0.001 s−1, 0.01 s−1 and 1.00 s−1. Cylindrical specimens were prepared with a diameter-to-height
ratio according to ASTMD575-91 standard (D575-91 ASTM 2001). The specimens with 8.10mm
height and 17.60mm diameter were cut out from the tire using the water jet cutting technique.

Fig. 1. Stress-strain curves for one specimen with pre-compression tests (strain rate of 1.0 s−1)

Friction between the specimens and compressing grip surfaces was reduced using a lubri-
cant, however, a barrelling effect was not completely omitted, which was negligible. In Fig. 1,
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exemplary stress-strain curves from five compression tests of the same specimen are presented
for a chosen strain rate 1.0 s−1. In this case, an interesting phenomenon, which was also noticed
during the dynamic SHPB testing, was observed.
It can be observed that the curves from tests 1-4 differ from each other, whereas the curves

from tests 4 and 5 are similar. It is noticed that the specimen after “pre-compression” behaves
repetitively and gives nearly coincident stress-strain curves for the same conditions of the tests,
even for large deformation. Such a phenomenon can be caused by changes initiated in the material
structure. In all probability, during the first pre-compression tests, crosslinks and polymer chains
which transfer most of the force break up. In the next tests (#4 and #5), when the load is
applied and the crosslinks as well as chains are broken, only particles (molecules, globules)
accommodate the compression force (Fig. 2). Similar rubber structure phenomena were also
discussed in (Pouriayevali and Shim, 2012). The pre-compressed behaviour was confirmed in five
tests for a strain rate of 1.00 s−1, therefore, in two other cases, each specimen was loaded only
four times (the fourth curve was considered as the proper one). From the uniaxial compression
test at three quasi-static rates of strain, the engineering stress vs. engineering strain curves were
obtained, as presented in Fig. 3.

Fig. 2. Likely change of a rubber structure during compression (Pouriayevali and Shim, 2012)

Fig. 3. Average stress-strain curves calculated from the obtained results

The carried out tests revealed a strain rate dependency on the tested rubber material sam-
ples, which is clearly visible in Fig. 1. Comparison of the results from papers by Gent (1994),
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Pouriayevali and Shim (2012), Sridharan and Sivaramakrishnan (2013), Szurgott et al. (2012)
confirms the authors’ belief that the material mechanical data are correct and provide the ba-
sis for a theorem that the investigated material behaviour is different under dynamic loading
conditions with various strain rates. In fact, the next Section confirms it.

3. Dynamic SHPB tests

3.1. Experimental set-up

The rubber testing at higher strain rates was carried out with the use of a classical com-
pression SHPB arrangement (Fig. 4), which consists mainly of a loading device (an air pressure
gun), bar components (a striker, input and output bars), a striker velocity measurement sys-
tem (Micro-Epsilon optoCONTROL1200 with dynamic resolution 50µm) and a data acquisition
system.

Fig. 4. Scheme of SHPB apparatus used in investigations

The bars were 1200± 0.5mm long each, while the striker length was 200± 0.1mm. All three
bars had the diameter of 12.0mm. The input and output bars were supported by four linear
bearing stands which were mounted on an optical bench allowing precise alignment of the bars
system. For tire rubber testing, low impedance bar materials, i.e. PMMA and Al 7075-T6 were
used to avoid large mismatch between the material impedance and the impedance of the soft
material tested (Chen et al., 1999, 2000). However, the purpose of using pressure bars made
of different materials was to compare the two set-ups and to make recommendations for future
SHPB testing of soft materials.

For both bar materials, the wave signals in the incident and transmitted bars were captured
using a pair of strain gauges attached symmetrically to the opposite surfaces of the bars and in
their middle length. The strain gauges were connected to the opposite legs of the Wheatstone
bridge, which was a half bridge configuration. In the other legs of the bridge, the dummy resistors
were mounted, the resistance of which matched the strain gauges resistance. Typical electrical
strain gauges of 1.6mm gauge length were used (CEA-13-062UW-350, Vishay Micro Measure-
ments). The amplified signals of the strain gauges were recorded using a signal conditioning
unit with frequency band of 1MHz (SGA-0B V5 Wheatstone bridge with signal conditioning
amplifiers, ESA Messtechnik) and a data acquisition system (LeCroy WJ354A high-speed digital
oscilloscope).

The raw signals from the strain gauges conditioned with the applied measuring equipment
are shown in Fig. 5a for aluminium alloy bars configuration, and in Fig. 5b for PMMA bars
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set-up. As it can be observed in these figures, the wave signal profiles recorded in the alumi-
nium alloy bars differ significantly in comparison to profiles in the PMMA bars. In the case
of aluminium alloy set-up, the pulse generated by the impact of the striker on the incident
bar has a nearly rectangular profile with visible oscillations, called Pochhammer-Chree oscil-
lations, which are a result of geometry dispersion. It is an undesirable effect, which leads to
waveform distortion as the wave propagates over a distance. Nonetheless, dispersion effects for
the considered aluminum alloy bars configuration is not significant due to the large ratio of the
wavelength to bar diameter, and it may be neglected (waveforms of incident and transmitted
pulses are consistent). Unfortunately, it cannot be stated for the PMMA bars. In this case, the
viscoelastic nature of wave propagation in the PMMA rods is clearly evident by a longer time
(due to PMMA damping properties), attenuation (amplitude decreasing) and signals dispersion
(waveform changing). Therefore, numerical correction of the wave signals is necessary. In the
present paper, the correction procedure of viscoelastic wave signals for PMMA bars was adopted
from papers by Bacon (1998), Butt and Zue (2013), Cheng et al. (1998), Franz et al. (1984),
Zhao and Gary (1995) and was discussed in an other paper by Janiszewski et al. (2016). Briefly,
this procedure was as follows:

• use a proper time window to digitize the wave signal from each strain gauge position,
• apply the FFT to obtain a frequency spectrum for the digitalized wave signals,
• identify the attenuation factor ?n and wave number kn for each frequency component of
the wave,

• for a selected position of xc (e.g. front surface of specimen), construct a frequency spectrum
for the wave to be corrected or predicted from the measured wave signal,

• use the IFFT algorithm to obtain the corrected or predicted wave signal for the given
position.

Fig. 5. Raw wave signals measured by strain gauges: (a) incident and reflected signals for aluminium
alloy bars; (b) incident and transmitted signals for PMMA bars

To minimalize wave disturbances (oscillations) caused by dispersion and also to control
loading conditions to facilitate stress equilibrium in the specimen, pulse shapers were used, i.e.
small disks with 4.00mm in diameter and 0.30mm in thickness made of polyethylene sheet and
5.56mm in diameter with 0.30mm in thickness made of Cu-ETP copper sheet for PMMA and
Al 7075-T6 bars configuration, respectively. The wave shapers were placed on the impact end of
the input bar with the use of lubricant (molybdenum disulphide – MoS2), which was also added
between the specimens and the input and output bars. Application of the wave shapers was
revealed especially by an increase in the rise time of incident pulses and smoothing waveform
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(Fig. 6). Moreover, the copper pulse shapers applied in the aluminium alloy bar system facilitated
constant strain rate deformation in the specimen. One can also noticed that the rise time of the
transmitted signal in both cases (PMMA and Al 7075-T6 setups) was longer than the loading
time of the incident signals. This was due to the fact that its profile and shape depended on
high-strain rate behaviour of the specimen material, whereas properties of incident signal were
affected by the shaper (geometry, material) and material of the bars.

Fig. 6. Raw wave signals measured by strain gauges attached on: (a) aluminium alloy bars,
(b) PMMA bars

Geometry of the rubber specimen was chosen experimentally. At the first stage of those
works, the initial specimen length was selected to meet the main methodological requirement
of SHPB technique, i.e. the requirement of stress uniformity. The low wave velocity in the
rubber specimens make stress equilibrium much more difficult to obtain than in a metal sample.
Moreover, the problem is complicated by low strength of rubber, which for improperly long
specimen makes the amplitude of the transmitted pulse too weak to be precisely measured. For
the aluminium alloy bar set-up, special attention was paid to find a proper specimen length,
sufficient loading conditions (striker velocity) and suitable signal gain to obtain a required quality
of the transmitted signals for which the signal-to-noise ratio was higher than 25 dB. It was
observed that for specimens with a thickness greater than 3mm and for striker velocities less
than 5m/s, the transmitted signal was too weak and had poor quality, although the applied
signal gain was relatively high and equal to 500V/V. It should be mentioned though that the
signals recorded by strain gages glued on the PMMA bars were amplified only with gain 200V/V,
giving the voltage amplitude in the order of several volts, whereas for the same signal gain the
voltage amplitude recorded from the strain gage attached on the aluminium alloy bars was only
in the order of several dozen millivolts, depending on striker velocity.

The initial diameter of the specimen was also chosen for the assumed maximal testing con-
ditions: striker impact velocity of ∼ 15m/s, strain level of ε ≈ 1. The need to determine the
diameter of the sample results from the fact that during dynamic testing, elastomer materials
deform very easy with the extremely large strain, causing an “escape” of a certain part of the
sample material beyond the bar diameter (see Fig. 7). Therefore, by using a high-speed came-
ra, the deformation process of specimens with various diameters were monitored to assess the
correctness of the carried out tests.

Finally, it was assumed that for the comparison purpose, the dimensions of the specimens
were the same for both bar systems and were as follows: diameter 6mm; thickness ∼ 1mm
(Al 7056-T6) and ∼ 2mm (PMMA). Similarly to quasi-static testing, each rubber specimen was
pre-compressed dynamically four times, before the final test.
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Fig. 7. A sequence of images showing the deformation process of a rubber specimen with diameter 8mm
and length 1.2mm

3.2. Dynamic SHPB tests results

Verification of the rubber testing procedure at high strain rate loading was based on the
assessment of the stress equilibrium state in the specimen for both bars configurations. The stress
curves in Fig. 8 represent stress conditions on the front σ1 and rear σ2 (dotted line) ends of the
specimens for PMMA and aluminium alloy bars. In each case, the impact velocity of the striker
bars and specimen length were comparable, and they were about 6m/s and 1mm, respectively.
However, the stress equilibrium state was different for each experiment. The specimen tested
with the aluminium alloy SHPB deformed initially non-uniformly, and only after 60µs the stress
equilibrium was achieved. In the case of the experiment with the PMMA bars, non-equilibrium
of stresses was also observed on the specimen interfaces during the initial stage of deformation;
however, the non-equilibrium degree was significantly lower. It is, first of all, a result of differences
at the rates of strain. Despite a similar impact velocity and specimen length, the strain rate
during the experiment with the aluminium alloy bars was higher (ε̇ = 5700 s−1) since the sound
speed in aluminium alloy bars was considerably higher (Co = 5117m/s) than in the PMMA
bars (Co ≈ 1900m/s). Moreover, the rise times of the incident wave for both experiments were
very different: 12µs for the aluminium alloy and 76µs for the PMMA bars (Fig. 9). As it
was mentioned before, a long rise time for PMMA was, on one hand, a result of its damping
properties, however, on the other hand, it resulted from application of the wave shaper. It
should also be noted that loading duration of the specimen during the PMMA bar experiment
was considerably longer (≈ 290µs), whereas in the other case, it was only 126µs. It was due
to the significant difference between propagation velocity of a viscoelastic wave in the PMMA
bar in comparison to the wave velocity in the aluminium alloy bar. Moreover, a constant strain
rate was achieved for a relatively long time, as presented in Fig. 10. It should be stated that in
the authors’ opinion all aforementioned observations are in accordance to the findings by Chen
et al. (2000), Zhao et al. (1997), Roland (2006), Song and Chen (2003) and they also prove the
validity of the method used to correct the wave attenuation and dispersion effects.

Fig. 8. Comparison of stresses at the front σ1 and rear σ2 ends of rubber specimens tested with the use
of (a) PMMA bars and (b) Al 7075-T6 bars
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Fig. 9. Incident, transmitted and reflected pulses obtained for (a) PMMA bars and (b) Al 7075-T6 bars

Fig. 10. Strain-rate history in the rubber specimen during SHPB with (a) PMMA bars and
(b) Al 7075-T6 bars

During the quasi-static tests, each specimen was compressed several times. The first four
were pre-compression tests, whereas the fifth was the main one whose results were taken into
consideration. The same approach was followed in SHPB testing and the analogous results
were also obtained. One of the specimens was pre-compressed five times for confirming the
phenomenon, while the others were pre-compressed three times and tested only once. In Fig. 11,
five engineering stress vs. engineering strain curves for the same specimen are presented for the
PMMA (a) and aluminium alloy bars system, while in Fig. 12 chosen curves are collected for
the comparison purpose. In turn, the summary characteristics for 5 different strain rates are
presented in Fig. 13 for quasi-static and dynamic loading conditions.

Fig. 11. Stress-strain curves for one specimen with pre-compression in SHPB test with (a) PMMA bars
and (b) Al 7075-T6 bars

Observing the curves shown in Fig. 11, it can be concluded that the mechanical behaviour
of the rubber specimen varies significant during pre-compression tests No. 1, 2 and 3. Tests
No. 4 and 5 resulted in stress-strain curves with profiles similar to each other, as it was in
the case of quasi-static tests. The necessity of performing pre-compression tests is therefore an
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Fig. 12. Engineering stress-strain curves for tested tire rubber samples using SHPB with PMMA and
Al 7075-T6 bars

Fig. 13. Summary engineering stress-strain curves for tested rubber material samples

important methodological requirement to achieve valid experimental data from both quasi-static
and dynamic tests.

The curves shown in Fig. 12 obtained from the high strain rate experiments suggests that
the tested tire rubber is weakly sensitive to the rate of strain. For strains up to 0.3, the stress
level is almost the same, despite the fact that experiments were carried out with different strain
rates of 3800 s−1 and 5700 s−1, respectively. A difference between the curves appears only after
strains larger than 0.3, suggesting high strain rate sensitivity of the tested rubber. It may also
be caused by inertia and friction effects which increase the value of flow stress in principle.
However, it is commonly known that rubber and other elastomers are sensitive to the rate of
strain (Roland, 2006; Song and Chen, 200, 2005; Chen and Song, 2010). A clear evidence of
the strain rate sensitivity of the tested rubber is shown in Fig. 13 presenting a combination of
quasi-static and dynamic curves obtained during the testing.

4. Summary

The procedure of determining correct mechanical characteristics for the tire material with
rubber-like parameters has been presented in a comprehensive way. A uniaxial compression
test was carried out under quasi static and high strain rate loading conditions. The obtained
results provided evidence on the correctness of the applied testing procedures.
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During testing, a necessity of performing pre-compression tests to achieve valid experimental
data both from quasi-static and dynamic tests was highlighted. Moreover, it was proved that
high strain rate testing of soft materials with the use of polymeric bars provided several benefits,
such as an increased sensitivity of the experimental setup and reduction of mechanical impedance
mismatch. However, the use of polymeric SHPB technique required an additional analysis for
data reduction, temperature complications and additional restrictions compared to traditional
metallic pressure bars. In addition, some methodical requirements guaranteeing the validity of
high strain rate rubber testing were pointed out. Among them:

• use of low impedance Al 7075-T6 and PMMA material for bars to measure a weak signal,
omit the problem with impedance mismatch between the specimen and the bars,

• applying proper shaping of the incident pulse guaranting a uniform stress and constant
strain rate within a certain duration of loading,

• appropriate selection of specimen dimensions and experimental conditions to meet the
stress equilibrium requirement and to minimalize inertial and friction effects.

Soft material testing, especially with the use of SHPB technique, requires knowledge, time
and patience in preparing specimens, apparatus or data processing. Nevertheless, obtaining
proper results has great importance in the case of simulation of strongly dynamic problems. Some
data obtained during the experiments presented in the paper were used in parallel investigations
concerning tire modelling (Baranowski et al., 2016a,b).
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The new fracture criterion taking into account stress triaxiality, strain rate and anisotropy
is introduced in this paper. The model is capable to predict the influence of the loading
direction on the fracture strain. The equation is applied to estimate the fracture locus of
Ti6Al4V titanium alloy under quasi-static and dynamic loading regimes.

Keywords: titanium alloys, failure, fracture, anisotropy, Hopkinson bar

1. Introduction

In complex structures the fracture behavior depends on the multiaxial stress state which may be
defined with the use of the stress triaxiality coefficient. Stress triaxiality is defined as η = −p/q,
where p is the pressure stress and q is the Mises equivalent stress. In the basic approach, the
fracture criterion εf is independent of the stress triaxiality. However, Johnson and Cook (JC)
(1985) introduced a new definition of the fracture criterion as a monotonic function of the stress
triaxiality in the following form

εf = [C1 + C2 exp(C3η)]

(
1 +C4 ln

ε̇
pl

ε̇0

)
(1 + C5T̂ ) (1.1)

where C1, C2 and C3 are material parameters, C4 – strain rate sensitivity, C5 – temperature sen-
sitivity, ε̇0 – reference strain rate, T̂ – temperature function described in other papers (Johnson
and Cook, 1985).
The JC model given by Eq. (1.1) was applied for the analysis of fracture characteristics of

OFHC copper, Armco iron, 7075 T-651 aluminium alloy and 4340 steel (Johnson and Cook,
1985). Further studies of Bao and Wierzbicki (BW) (2005) showed that in the case of some
materials, like 2024-T351 aluminium alloy, fracture behavior is govern by two mechanisms, i.e.
shear bands and voids formation. The BW fracture criterion taking into account both void
formation due to tensile loadings and shear failure may be expressed in the following form (Bao
and Wierzbicki, 2005)

εf =





1

1 + 3η
D1 +D2 for −1/3 < η < 0

D3η
2 +D4η +D5 for 0 < η < 0.4

D6 exp(D7η) for 0.4 < η < 0.95

(1.2)

Comparison between the three mentioned fracture criteria is shown in Fig. 1. The curves present
JC model calibrated using data obtained for 2024-T351 alloy (Bao and Wierzbicki, 2005) and
BW fracture locus estimated for Ti6Al4V alloy (Giglio et al., 2012). It can be observed that
the BW criterion reveals two local minimums, the first corresponding to shear loadings (stress
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triaxiality equal to 0) and the second corresponding to pure tensile loadings (stress triaxiality
higher than 1). Comparing the JC and BW criteria, it can be stated that for tensile loadings
(stress triaxiality higher than 0.4) the fracture strain estimated using both equations gives a
comparable predictions, whereas for shear loading conditions the results may be substantially
overestimated by the JC fracture model. Depending on the specimen geometry and pre-notch
radius, various range of stress traixialities may be obtained (Bao and Wierzbicki, 2004, 2005;
Driemeier et al., 2010; Gruben et al., 2011).

Fig. 1. (a) Comparison of the fracture criterion estimated on the basis of simplified, Johnson and Cook
(1985) and Bao-Wierzbicki (2005) theory; (b) specimen geometry and dimensions applied to obtain
various stress triaxiality; the number of geometry in figure (b) corresponds to triaxiality marked

in figure (a)

Analysis of the ductile fracture locus of Ti6Al4V introduced by Giglio et al. (2012) proved
that in the case of this grade of the material, the BW fracture criterion, taking into account both
tensile and shear failure, must be considered. The results showed some discrepancies between
force-elongation curves obtained experimentally and numerically. One of the probable reasons
for these differences may be related to material anisotropy, usually observed for the Ti6Al4V
titanium alloy, which was not considered in the cited work (Giglio et al., 2012).
Summarizing, the fracture criterion for majority of ductile materials may be expressed in

form proposed by Johnson and Cook or Bao and Wierzbicki. However, in the case of materials
with texture introduced by the fabrication process, further studies are required to obtain more
accurate fracture models. A new approach should take into account especially the influence of
the loading direction on the elasto-plastic and fracture behavior. This works extends earlier
analysis (Giglio et al., 2012) of Ti6Al4V fracture criterion by introducing investigation of the
titanium alloy anisotropy and deformation strain rate on the fracture locus.

2. Experimental methodology

The material was delivered in form of a hot rolled Ti6Al4V titanium alloy sheet of 3 mm thick-
ness. The specimens were cut along three orientations with respect to the rolling direction, that
is, RD – along, 45D – 45 degree and TD – transverse to the rolling direction. Notched specimens
with gauge length equal to 2mm, 5mm and 10mm were given various stress triaxiality coeffi-
cients during tensile test (Fig. 1b). Additionally, shear specimens were designed and fabricated to
obtain shear loading conditions (Fig. 1b). The same geometry was applied for both quasi-static
and dynamic testing. The specimens were cut using electro-discharge machining (EDM). Ten-
sile tests were carried out at quasi-static and dynamic loading regime using, respectively, with
a servo-hydraulic testing machine and split Hopkinson tensile bar (Moćko et al., 2015, 2016).
Simultaneously, plastic deformation was recorded and analysed using a digital image correlation
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software to determine strain distribution. Stress triaxiality during tensile tests was calculated
using FEM simulation. Analysis was carried out using ABAQUS Standard software under quasi-
static loading conditions. Digital models of specimens consists of 24554, 13070, 30555 and 10866
mesh elements, respectively, for type A, R1, R5 and shear samples. For geometry of type A,
R1 and R5 C3D8R elements were applied, whereas for shear geometry C3D10M elements were
used. Values presented in Fig. 2 are an average value calculated from the mesh elements located
near the fracture surface.

Fig. 2. Comparison of experimental data with predictions of the proposed model at (a) quasi-static and
(b) dynamic loading conditions

3. Results and discussion

Fracture strain estimated using the digital image correlation method at various stress triaxialities
and strain rates is shown in Fig. 2. It can be observed that similarly to the BW model Ti6Al4V
titanium alloy loaded at the direction RD and 45D is clear to the observed maximum at the stress
triaxiality equal to 0.5. At stress triaxialities higher than 0.5, the void formation mechanism is
responsible for the fracture, whereas at stress triaxialities lower than 0.5, the failure of the
material is governed by shear band formation or a mixed mechanism. In the case of the loading
force transverse (TD) to the rolling direction, the local maximum observed at 0.5 for other
orientations is significantly diminished. An other observed phenomenon is the decreasing of the
fracture strain with an increase in the strain rate. It may be found that RD and 45D orientations
are more sensitive to the strain rate effect than TD orientation.
On the basis of experimental results, a new analytical model, including the strain rate and

anisotropic effect, has been developed. It is based on the original model proposed by Bao and
Wierzbicki (2005) taking into account only the stress state. In the original BW criterion, the
fracture strain is expressed as a function of stress triaxiality

εf = f(η) (3.1)

The experimental results show that in the case of a hot rolled titanium alloy sheet, the fracture

model should additionally take into account the effect of strain rate g(ε̇
pl
) anisotropy h(Θ) and

temperature T̂ (T ) as follows

εf = f(η)g(ε̇
pl
)h(Θ)T̂ (T ) (3.2)

The effect of strain rate may be expressed in form introduced by Johnson and Cook (1985)

g(ε̇
pl
) = 1 +A1 ln

ε̇
pl

ε̇0
(3.3)
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Anisotropic characteristics of Ti6Al4V titanium alloy are governed by two aspects: firstly, asym-
metric geometry of the HCP crystallographic structure and its slipping plane and, secondly,
texturing due to cold rolling processing. Results of material anisotropy on the fracture strain
may be determined using the following equation

h(Θ) = 1 +B1 exp
(
1− B2

Θ

)
for Θ > 0 (3.4)

where the loading angle Θ is estimated as an angle between the rolling direction and the loading
force direction.
Finally, the new fracture criterion taking into account stress triaxiality, strain rate and

loading direction with respect to rolling directions takes the form

εf =





( 1

1 + 3η
D1 +D2

)
A for −1

3
< η < 0

(D3η
2 +D4η +D5)A for 0 < η < 0.4

D6 exp(D7η)A for 0.4 < η < 0.95

(3.5)

where

A =
(
1 + C1 ln

ε̇
pl

ε̇0

)[
1 +B1 exp

(
1− B2

Θ

)]
(1 + C2T̂ )

In order to calibrate Eq. (3.5), initially coefficients of the BW fracture criterion D1-D7 are
estimated using the last square method. Subsequently, the strain rate sensitivity factor C for
the alloy loaded in the rolling direction has been determined. In the final stage of calibration the
parameters B1 and B2 describing anisotropic properties at quasi-static loading conditions have
been calculated. Values of the particular coefficients obtained using the mentioned procedure
are shown in Table 1. Comparison between the experimental data and predictions of the new
model are presented in Fig. 2. The influence of the anisotropy coefficients B1 and B2 on the
fracture strain is shown in Fig. 3. It can be observed that a good agreement between them has
been obtained.

Table 1. Coefficients of the new fracture criterion

B1 B2 C ε̇0 [1/s] D1 D2 D3 D4 D5 D6 D7

200 1.7 −0.18 10−4 0.164 0.18 1.5 −0.052 0.34 8 −5

Fig. 3. Influence of the anisotropy coefficients B1 and B2 on the fracture strain
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