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In this paper, analysis of a half-car model with linear and nonlinear semi-active dampers
is performed. Using Matlab-Simulink software, a response of the system to a harmonic
excitation of variable frequency and to an impulse excitation is found. The effect of both the
distribution of spring-supported mass and the asymmetry of the support on the frequency
characteristics of velocities and displacements at the mounting points of the dampers are
analyzed. Additionally, characteristics of forces generated by the semi-active dampers and
the response of the system when crossing an obstacle are determined.
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Notations

a0 – excitation amplitude
cb – sum of damping parameters of suspension
c1f , c2f , c1r, c2r – damping parameters of front and rear semi-active damper
cwf , cwr – damping coefficients of front and rear wheel
Ib – moment of inertia of body
kbf , kbr, kb – stiffness of front and rear spring, sum of stiffness
kwf , kwr – stiffness parameters of front and rear wheel
lf , lr – distance of axles from center of body mass
l – distance between both axles
mb,mwf ,mwr – mass of body (spring-supported mass), front and rear wheel

(non-spring-supported mass)
pmin, pmax, pmean – minimum, maximum and the mean value of the parameter p
t0 – delay time of kinematic excitation acting on rear wheel
uf , ur – control force of front and rear semi-active dampers
V0 – driving speed
vbf , vbr – dimensionless velocity of front and rear body points
wf , wr – kinematic excitation applied to front and rear wheel
xbf , xbr, xwf , xwr – dimensionless displacements of body points, front and rear wheel
yb – displacement of center of body mass
ybf , ybr, ywf , ywr – displacements of body points and front and rear wheel
α,α0 – dimensionless and dimensional scaling factors of Bouc-Wen force
β, γ,A, n – control shape parameters of hysteresis loops
δ – dimensionless amplitude of parameters c1f , c2f , c1r, c2r α0f , α0r
κc – ratio of stiffness of front spring to sum of stiffnesses
η – dimensionless excitation frequency
λ – mass distribution index of body
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φb – angle of rotation of body
ω, ω0 – excitation and reference frequency

1. Introduction

The primary cause of vibrations affecting the driver of a car are kinematic disturbances resulting
from road surface irregularities. Elimination of these vibrations is essential in order to improve
both the comfort and the safety of the passenger. When the vehicle is driving across a road with
large irregularities (obstacles), its wheels might get separated from the surface of the road, which
in turn decreases the efficiency of force transmission of the drive, braking and steering systems
of the car. An improved driving dynamics and better road traction on curves and bumps can be
achieved by using the so-called “hard suspension”. However, the cost is the reduction of comfort
of the passenger. The criteria for assessing the quality of shock absorbers should therefore include
both the minimization of car body vibration and appropriate wheel-road adhesion (Łuczko and
Ferdek, 2012).

In order to perform dynamical analysis, either a quarter-car (Gopala Rao and Narayanan,
2009; Huang and Chen, 2006) or a half-car (Ihsan et al., 2009; Sapiński and Rosół, 2008) model
can be used. The quarter-car model that consists of a non spring-supported mass (a wheel with
partial of suspension) and a spring-supported mass (1/4 car body) is a two-degrees of freedom
model and is usually used for testing of the performance of control algorithms. The half-car four-
-degrees of freedom model consist of two non-spring supported masses and a spring-supported
one (1/2 car body). It additionally includes rotation angle of the body and allows analysis of
the response to the excitation applied to both wheels of the vehicle.

Dampers used in the suspension system can be either passive, semi-active or active. Dyna-
mical properties of the dampers are usually defined by models with hysteresis characteristics,
such as Bingham (Prabakar et al., 2009), Bouc-Wen (Dominguez et al., 2008; Yao et al., 2002)
or Spencer model (Spencer et al., 1996).

Requirements set for the comfort and safety of driving can be fulfilled by using semi-active
suspension systems, introduced by Crosby and Karnopp (1973). In comparison to passive ones,
the semi-active systems allow the damping force to be adjusted depending on driving conditions.
Additionally, they require less power than similar active systems.

Several methods of control have been used, some of which can be found in the paper by Ah-
madian (2001). Liu et al. (2005) as well as Wu and Griffin (1997), when analyzing on-off control,
assume that the damping force should by high if the product of relative and absolute velocity is
more than zero. Fischer and Isermann (2004) analyzed the relation between parameters of the
car suspension system and the driving comfort as well as the safety indexes. They defined the
comfort index as the effective acceleration value while the safety index as the effective ratio of
the dynamic and static response. In the study by Sapiński and Martynowicz (2005), the results
were presented for the theoretical and experimental half-car model, in which the car suspension
was controlled by two separate magneto-rheological dampers (MR damper).

Some interesting options for control of a semi-active car suspension were presented by Ahma-
dian (2001). The most common model to be analyzed was the quarter-car one. In the steady-state
case, the response to the harmonic excitation was analyzed, while in the transient one (Ahma-
dian and Vahdati, 2006), the response to the unit step. To ensure a compromise between the
requirements for both comfort and safety, hybrid control with a MR damper is used (Goncalves
and Ahmadian, 2003) and a combination of sky-hook and ground-hook control. The damping
control algorithm was changed by a step function (on-off control) in order to simulate the be-
haviour of the damper between the constant reference point and a spring-supported (sky-hook
– comfort) or non spring-supported mass (ground-hook – safety).
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In the paper by Łuczko and Ferdek (2012), the effectiveness of damping of vibration of a
quarter-car model by both semi-active and passive dampers was compared. Several different
algorithms were proposed for semi-active dampers. The effect of these algorithms on the factors
corresponding to driving safety and comfort were analyzed.
In this paper, analysis of a half-car model of a car by semi-active suspension is performed.

The influence of parameters of the model on the efficiency of spring-supported mass damping is
considered.

2. Half-car suspension model

Figure 1 shows the analyzed half-car model of an automobile. Vibration of the system around
the static equilibrium position can be written using the following differential equations

mwf ÿwf = −cwf(ẏwf − ẇf )− kwf (ywf − wf ) + kbf (ybf − ywf)− uf
mwrÿwr = −cwr(ẏwr − ẇr)− kwr(ywr − wr) + kbr(ybr − ywr)− ur
mbÿb = −kbf (ybf − ywf)− kbr(ybr − ywr) + uf + ur
Ibφ̈b = lfkbf (ybf − ywf )− lrkbr(ybr − ywr)− lfuf + lrur

(2.1)

where ywf and ywr, are displacements of the front and rear suspension systems (i.e. the non-
-spring-supported mass mwf and mwr), ybf and ybr are displacements of the points connecting
the car body (spring-supported mass mb of inertia Ib) with the suspension systems.

Fig. 1. Half-car model

Additionally, two parameters are introduced which are respectively: position yb of the mass
center and rotation angle φb of the car body. They can be found using the following equations
(on the assumption of small displacements)

yb =
lrybf + lfybr

l
φb =

ybr − ybf
l

(2.2)

The function wf (t) and wr(t) = wf (t− t0) define the applied kinematic excitation, which corre-
sponds to the profile of the road. The delay time t0 is related to driving velocity V0 and distance
l = lf + lr between both vehicle axles. The parameters: kwf , kwr and cwf , cwr define stiffness
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and damping parameters of the front and rear wheel, while kbf , kbr are stiffneses of the front and
rear spring respectively. The definition of forces uf and ur which are generated by semi-active
dampers and applied to the non-spring-supported and spring-supported masses, are defined in
Section 2 of this paper.

Equations (2.1) can be written in a matrix form. In order to do so, the third and the
fourth equation of the system must be transformed (2.1), including additional relations (2.2).
By choosing the displacements ywf , ywr, ybf and ybr for coordinates of the vector y, vibration of
the system can be, after introduction of massM, damping C and stiffness matrix K, presented
in form of the second-order matrix equation

Mÿ +Cẏ+Ky = B̃u+ F̃w(t) (2.3)

where y = [ywf , ywr, ybf , ybr]T , u = [uf , ur]
T and w = [wf , wr]

T. The stiffness matrix is as
shown below

K =




kwf + kbf 0 −kbf 0
0 kwr + kbr 0 −kbr
−kbf 0 kbf 0
0 −kbr 0 kbr


 (2.4)

The damping matrix, after inclusion of passive dampers present in the vibroisolation systems,
has the identical structure as the stiffness matrix. As damping properties of the wheels are
usually omitted (cwf = cwr = 0) and the effect of passive dampers is already included in the
forces uf and ur, the matrix C is empty. The mass matrix can be presented in the form:

M =

[
Mw 0
0 Mb

]
(2.5)

where

Mw =

[
mwf 0
0 mwr

]
Mb =




mbl
2
r + Ib
l2

mblf lr − Ib
l2

mblf lr − Ib
l2

mbl
2
f + Ib

l2


 (2.6)

From Eqs (2.5) and (2.6), it can be seen that when the condition mblf lr − Ib = 0 is fulfilled,
the matrix M becomes diagonal, and with the matrix K given in (2.4), decoupling of vertical
vibration of the rear and front part of the vehicle, is possible. If the so-called “mass distribution
index” λ = Ib/mblf lr is close to 1, the excitation applied to one axle does not cause vibration

of the other one. The matrices B̃ and F̃ can be written as follows

B̃ =




−1 0
0 −1
1 0
0 1


 F̃ =




kwf 0
0 kwr
0 0
0 0


 (2.7)

In order to transform matrix equation of motion (2.3) in the first-order form suitable for
performing the numerical simulations, a modified state vector that includes velocities, is intro-
duced

x =

[
x1
x2

]
=

[
y
ẏ

]
(2.8)
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Motion of the system can be now written using the equation

ẋ = Ax+Bu+Fw(t) (2.9)

The relation between the matrix A and the matrices present in equation (2.3) is

A =

[
0(4×4) I(4×4)

−M−1K −M−1C

]
(2.10)

where 0(4×4) and I(4×4) are, respectively, an empty and singular matrix of 4× 4 size. The same
holds for the matrices

B =

[
0(4×2)

M−1B̃

]
F =

[
0(4×2)

M−1F̃

]
(2.11)

where the matrix 0(4×2) is an empty matrix of 4×2 size. Matrix equation (2.9) is well-suited for
analysis of active systems in which the control vector u is treated as the sought optimal control
vector.

3. Semi-active dampers

The analysis presented below is limited to testing the effect of several selected half-car model
parameters and two semi-active dampers on dynamical characteristics of the system. The forces
generated by a simplified model of the semi-active damper (denoted as SA1) after introduction
of the functions

uLin(ẏ1, ẏ2) =

{
cmax(ẏ1 − ẏ2) ẏ2(ẏ1 − ẏ2) ¬ 0
cmin(ẏ1 − ẏ2) ẏ2(ẏ1 − ẏ2) > 0

(3.1)

can be calculated from the equations

uf = u
Lin(ẏwf , ẏbf )

ur = u
Lin(ẏwr, ẏbr)

(3.2)

In SA1 damper model, the forces are proportional to the relative velocity, with higher energy
dissipation if the momentary power if less than zero (which means that energy is retrieved
from the spring-supported mass). For cmax = cmin, equations (3.1) and (3.2) define the passive
damper (PS).
The other type of a semi-active damper (SA2) is defined (Spencer et al., 1996) using the

Spencer model (Fig. 2). The mathematical description of the generated force is more complicated
in this case. Based on the study by Ferdek and Łuczko (2011), a concise force definition can be
presented

uf = u
Spencer(ywf , ẏwf , ẏbf )

ur = u
Spencer(ywr, ẏwr, ẏbr)

(3.3)

where

uSpencer(y1, ẏ1, ẏ2) = c2(ż1 − ẏ2) (3.4)

Additional parameters z1 and z2 can be obtained from the set of equations

k1(y1 − z1) + c1(ẏ1 − ż1)− α0z2 = c2(ż1 − ẏ2)
ż2 = Aż0{1− [γ + βsgn(z2ż0)]|z2|n}

(3.5)
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Fig. 2. Model of the semi-active Spencer damper

in which z0 = z1 − y1 and β + γ = 1(0 < β < 1, 0 < γ < 1). Equation (3.5)1 can be interpreted
as the equilibrium condition of forces acting on a massless middle element in the Spencer mo-
del (Fig. 2). The dimensionless variable z2, which is the solution of differential equation (3.5)2
proposed in a similar form by Bouc-Wen (Spencer et al., 1996), determined the appearance of
a hysteresis. Its shape depends on the parameters A, γ, β and n. The parameters β and γ have
impact on the characteristic only when A is small. In such a case, an increase in β causes the
width of the hysteresis to be slightly decreased. Most often, when forming the characteristic,
the value n = 2 is chosen, in rare cases n = 1 is taken. The parameter A is the one that
strongly influences the shape of the hysteresis. With a increase in the parameter A, the lower
and upper limits of the Bouc-Wen model characteristic are symmetrical. In the numerical cal-
culations, emphasis is put on the analysis of coefficients α0, c1 and c2 and their impact on the
solution. The parameters of A = 50 m−1, γ = β = 0.5 and n = 2 have been taken from the
literature.

The slope of the force characteristic in the high velocity range depends on the value
of a substitute damping coefficient cz = c1c2/(c1 + c2) with a relation close to linear.
For lower velocities, the slope and inflection point of the characteristic are related to the
parameter α0.

In the semi-active damper (e.g. magneto-rheological one), it is assumed that the parameters
α0, c1 and c2 of the Spencer model are linearly dependent on the control voltage. By taking a
control algorithm analogical to (3.1), it can be assumed that ck = p(ẏ1, ẏ2, c

max
k , cmink ), k = 1, 2

and α0 = p(ẏ1, ẏ2, α
max
0 , αmin0 ), with p defined using the formula

p(ẏ1, ẏ2, p
max, pmin) =

{
pmax

pmin
ẏ2(ẏ1 − ẏ2) ¬ 0
ẏ2(ẏ1 − ẏ2) > 0

(3.6)

4. Results of numerical calculations

In the numerical calculations, the emphasis is placed on analyzing the effect of a few selected
parameters of the system, with other parameters assumed as follows: lf = 0.94 m, lr = 1.66 m,
mb = 510 kg, mwf = mwr = 28 kg, Ib = λmblf lr (variable λ), kwf = kwr = 180000 N/m,
kb = 40000 N/m, k1 = 0.01kb, cwf = cwr = 0, A = 50 m

−1 and β = γ = 0.5. When analyzing
the effect of stiffness of the front and rear suspension system, it is assumed that kbf = κkkb,
kbr = (1−κk)kb, (0 < κk < 1), kb – is the sum of stiffness parameters. Similarly, when considering
the effect of energy dissipation, the parameters of PS damper are: cbf = κccb, cbr = (1 − κc)cb,
(0 < κc < 1). The value of cb = 2260 Ns/m has been chosen such that the dimensionless damping
factor, given by equation

ζ =
cb
2mbω0

=
cbf + cbr
2mbω0

(4.1)
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is ζ ≈ 0.25 – the recommended value for vehicle shock absorbers. The dimensionless angular
velocity ω0 (close to the two highest vibration modes of the system) present in Eq. (4.1) is
defined as follows

ω0 =

√
kb
mb
=

√
kbf + kbr
mb

(4.2)

When choosing the parameters of semi-active dampers, the same assumption is made re-
garding the parameters of front and rear dampers as well as the energy dissipation level. For
SA1 damper, it is assumed that the mean value of damping coefficients are: cmeanf = κccb,
cmeanr = (1− κc)cb, while the extreme values can be calculated from

pmax = (1 + δ)pmean pmin = (1− δ)pmean (4.3)

where p = cf or p = cr and 0 < δ < 1.

SA2 damper has a higher number of significant parameters. Formulas (4.3) need to be used
for the extreme parameters α0, c1 and c2 of the front and rear damper, while the mean values
cmean1f , cmean2f , cmean1r and cmean2r must be chosen such that the coefficient ζ has the desired value.
From literature (Prabakar et al., 2009; Spencer et al., 1996), it can be seen that cmean1f , cmean1r

values are an order lower from cmean2f , cmean2r ones. These are chosen as follows: c1f = 1.1κccb,
c2f = 11κccb, c1r = 1.1(1 − κc)cb and c2r = 11(1 − κc)cb. For the chosen values, the relation
czf + czr = cb, where cz = c1c2/(c1 + c2) is true and coefficient (4.1) is equal to ζ = 0.25.

The values of varying parameters are presented with analysis of the results of numerical
simulations. When presenting the results, the dimensionless parameters are introduced rela-
ting the displacements with the excitation amplitude a0, velocities with the value ω0a0, while
accelerations with ω20a0, and forces with kba0.

One of less known parameters of the system is the delay time t0 between the functions
describing motion of the front and rear wheel of the vehicle. In order to estimate it, it is assumed
that the angular frequency of the kinematic excitation ω is related for the given road profile
linearly with the velocity V0, or using the formula: ω = µV0. For motion with constant velocity
V0, the relation t0 = l/V0, where l is the distance between both axles, is also true. By additionally
assuming that the lowest vibration mode of the approximate frequency ω0 is related to a known
velocity Vr, the value of the parameter µ = ω0/Vr and the delay time t0 = ω0l/Vrω can be
calculated, e.g. for given: Vr = 20 km/h, l = 2.6 m and ω0 = 8.856 rd/s a value of t0 ≈ 4.15/ω
is found.

The frequency characteristics are ideal for the purpose of global evaluation of dynamical
properties of the system. In the simulations, the kinematic excitation is usually defined by the
harmonic function of a modulated angular frequency: (e.g. “Chirp Signal” in Simulink). If the
simulation time is high enough, an approximate frequency characteristic can be acquired by
graphing the maximal responses of the system.

In order to illustrate the effect of car body mass distribution, characteristics of maximal
dimensionless velocities vbf = ẋ3/ω0a0 and vbr = ẋ4/ω0a0 (in the points connecting the body and
the suspension) with relation to the dimensionless angular frequency of the excitation η = ω/ω0
are shown in Fig. 3. The analysis is limited to vibration comparison of systems with identical
shock absorbers (κk = κc = 0.5). The parameter defining the semi-active damper has been
chosen as δ = 0.5. The only modified value is the mass distribution ratio λ. The corresponding
inertia of the spring-supported mass is Ib = λmblf lr ≈ 795.8λ. The actual value of λ should be
close to one. Several exemplary values of this coefficient, calculated from the data presented in
the literature, are equal: λ = 1.01 (Feng et al., 2003), λ = 1.09 (Sam et al., 2008), λ = 1.16
(Lozia et al., 2008), λ = 0.823 (Prabakar et al., 2009). However, in some cases this value is
different, e.g. (Shamsi and Choupani, 2008) λ = 0.544, which is far from one.



328 U. Ferdek, J. Łuczko

Fig. 3. Effect of spring-supported mass distribution on the frequency characteristics: (a) velocity vbf ,
(b) velocity vbr

From the results presented in Fig. 3, it can be seen that the lower the coefficient λ becomes,
the larger are the maximal velocities, especially within the resonance regimes. Although this
model has four degrees of freedom, only two resonance regions can be seen on the presented
frequency characteristics. This is caused by close proximity of the paired natural frequencies of
the system. For example, when λ = 0.5, the natural frequency values of the linearized system
related to ω0 are equal to: 0.88 (dominant displacement of the front part of the vehicle), 1.44
(rear part), 8.97 and 9.16 (wheel vibration), while for λ = 2 these values are respectively: 0.67,
0.97, 9.14 and 9.21.

A consequence of such a distribution of frequencies is dislocation of the lowest frequency
region towards the lower frequency with an increase in λ and its slightly different disposition in
the velocity characteristics vbf and vbr. The location of the “second” region is less vulnerable to
a change in the parameter λ and is similar to Fig. 3a and Fig. 3b.

Although the obtained results are only for SA1 damping system, the conclusions are more
general, and essentially similar results are obtained for PS and SA2 systems.

In the case of SA2 system described by the Spencer model, the effectiveness of the damper,
depends on chosen values of cmean1f , cmean2f , cmean1r , cmean2r and δ, but mostly on the parameter
α0. Fig. 4 the shows the dimensionless displacement characteristics xwf = x1/a0 (non-spring-
-supported mass) and xbf = x3/a0 (spring-supported mass) for several values of the parameter
α = αmean0 /αmean0 kba0. At κc = 0.5 (symmetrical support), the relations are: c1f = c1r = 0.55cb,
c2f = c2r = 5.5cb and the mean value of the coefficient ζ is close to 0.25. By analyzing Fig. 4b,
one can see that the characteristic closest to the optimal is the curve obtained for α = 0.5.
Too high values of α cause the forces to be much higher for low velocities, and also shift the
inflation point location, which is undesirable especially in the range of high-frequency excitation.
From the graphs shown in Fig. 4a, it can be concluded that within the range of high oscillation,
which includes the third and fourth natural frequencies, the amplitudes of non-spring-supported

Fig. 4. Effect of the parameter α on the frequency characteristics of SA2 system: (a) displacement xwf ,
(b) displacement xbf
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masses (wheels) are significant. Additionally, within this range, the dynamic response values are
also large, and so the indexes related to the driving safety and comfort are lower, which means
that these semi-active dampers are not efficient.
In order to compare SA1 and SA2 dampers, the dimensionless force characteristics

Uf = uf/kba0 generated by both types of semi-active dampers are shown in Fig. 5. Only the
front part of the car suspension is presented. As before, it is assumed that κk = κc = 0.5,
(symmetrical model) with λ = 1, α = 0.5, ζ = 0.25 and δ = 0.5.

Fig. 5. Damper SA1 and SA2 characteristics: (a) ω = 1, (b) ω = 4

The characteristic of SA1 damper is relatively simple. Two of its branches are straight lines
of slopes equal to the given cminf and cmaxf values, while the lines linking the other two, should
be, in theory, vertical. The reason for this deviation is due to the approximation used for the
continuous switching step function (based on arctan). Such an approach is recommended for
discontinuous functions due to its accuracy and the time of numerical computation required,
and also in some cases for avoidance of undesirable effects caused by too frequent switching, e.g.
chattering.
The characteristic of SA2 damper in the range of high velocities is similar to the one described

above. The differences are visible within the range of low velocities. The average slope of the
characteristic is higher and depends primarily on the parameter α. The higher complexity of the
graph is also due to the other parameters of the half-car model. Less complex characteristics
can be obtained by analyzing a simpler model, such as a quarter-car model (Łuczko and Ferdek,
2012).
Figure 6 shows the frequency response of dimensionless displacements xbf = x3/a0 and

xbr = x4/a0 for passive PS and both semi-active SA1 and SA2 systems.

Fig. 6. Effect of the parameters κk and κc on frequency characteristics PS, SA1 and SA2:
(a) displacement xbf , (b) displacement xbr

The case of symmetrical mounting κk = κc = 0.5 (S systems, Fig. 6) and the asymmetrical
one defined by parameters: κk = κc = lr/lf ≈ 0.638 (NS systems) is considered. For selected
values of the parameter κk, the static deflections of the spring-supported mass under its own
mass are identical in both locations of the connection with the suspension systems, while the
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center of stiffness overlaps the center of mass. The values λ = 1, α = 0.5, ζ = 0.25 and δ = 0.5
have been assumed, while the other parameters of the Spencer model have been obtained using
appropriate equations with known parameters κk and κc. When showing the results, only the
region with the lowest natural mode (actually two lowest modes) are shown – the ones in which
the car body vibration is dominant.

As the parameters for models PS, SA1 and SA2 are chosen in such a way that the natu-
ral frequencies are the same for the identical parameter κk, the dislocation of the resonance
region is avoided. Such a dislocation is only visible between the curves obtained for κk = 0.5
(S systems) and κk = 0.638 (NS systems). The value of the parameter κk influences mostly
the two lowest natural frequencies. The complex natural frequencies (related to ω0) are equal:
η1 = −0.16 ± 0.83i, η2 = −0.29 ± 1.10i for S systems and: η1 = −0.195 ± 0.927i,
η2 = −0.217 ± 0.945i for NS ones.
The location of the resonance regions, as shown in Figs. 6a and 6b is directly related to the

distribution of the natural frequencies of S and NS systems. As the low values correspond to
the natural modes in which the displacement are dominant (and even more xbr), the resonance
frequency of S systems is lower than that in NS ones for characteristics of the displacement xbf
(Fig. 6a). The opposite effect is observed for the displacement xbr (Fig. 6b).

The vibration reduction level is indeed related to the parameter κk (at least within the
analyzed regimes). Using a more stiff front mounting, the comfort of the driver is only slightly
decreased but seems to be important when considering safety of the driver (this is not a subject
of analysis in this study). The systems with SA1 dampers reduce vibration by around 20%
when compared with passive ones, while the semi-active SA2 dampers are proved to be even
more effective, reducing the values of the displacement xbf and xbr twice in the fundamental
resonance.

Figure 7 shows the response of PS, SA1 and SA2 dampers (dimensionless displacements xbf
and xbr, velocities vbf and accelerations abf in function of the dimensionless time τ = ω0t) to
an impulse excitation defined by equation (Shekhar et al., 1999; Łuczko, 2011)

wf (t) =
e

4
a0

3∑

k=1

ωk(t− tk)]2 exp[−ωk(t− tk)]H(t− tk) (4.4)

where H() is the unit step function. Function (4.4) is supposed to simulate the vehicle crossing
the same obstacle at three different velocities V0 = θVr (where θ = 1/2, 1, 4), which in equations
(4.4) are represented by angular frequencies ω1 = 0.5ω0, ω2 = ω0 and ω3 = 4ω0. The values of tk

Fig. 7. Response of the system to an impulse excitation: (a) xbf , (b) xbr , (c) vbf , (d) abf
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are chosen in such a way that the vibration caused by the previous impulse would vanish before
the next one is applied.
When crossing the obstacle at a low speed (θ = 0.5 and θ = 1), the maximum displacements

(Fig. 7a and Fig. 7b) are to a small extent related with the type of a damper, although the
lowest ones are obtained for SA2 damper. The type of the used damper has a greater effect on
the character of damping of vibration caused by an impulse excitation. For PS and SA1 systems,
reduction of oscillatory vibration can be observed. In the case of SA2 systems, the damping is
much faster and similar in shape to an exponential function. For high values of velocity, when
crossing the obstacle (θ = 4), the displacements are definitely lower. This is however at the cost
of large acceleration values (Fig. 7d), for which the maximum values are practically independent
of the type of the used vibroisolation system. With an increase in driving velocity, the time delay
t0 is decreased while the displacements of both front and back parts of the body are similar.

5. Summary

Based on the analysis of selected results of numerical calculations, several conclusions can be
drawn:

• The algorithms for control of a semi-active on-off damper in which the switching is related
to the actual power, enable improvement the driving comfort, especially within the low-
-frequency excitation range.

• From the tested dampers, definitely the best one is SA2 damper with a nonlinear cha-
racteristic. If the parameters for the damper are optimal, the vibration amplituda can be
reduced twice as much within the range of fundamental resonance.

• Semi-active SA2 system is also effective when subjected to an impulse excitation which
simulates obstacles (bumps) in the road.

• An improper mass distribution (low values of λ) might be an additional cause for an
increased vibration level of the spring-supported mass.

• The introduction of an additional spring and damping elements to the front and back car
suspension in which the center of stiffness overlaps the center of mass, does not cause a
decrease in the indexes describing the driving comfort. It might be, however, beneficial
when considering the safety.

• Semi-active systems are less efficient than passive ones when the driving velocity (excitation
frequency) is high.
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The paper deals with an MR damper-based vibration reduction system with energy harve-
sting capability. The main part of the system creates an MR damper and a power generator
based on an electromagnetic transduction mechanism, which are integrated into a stand-
-alone device (so called energy harvesting MR damper). The main objective of the work is
to evaluate performance of the proposed vibration reduction system employed in a single
DOF mechanical structure. The material outlines the design structure and characteristics
of the energy harvesting MR damper, presents the vibration reduction system based on this
damper and explores experimental testing of the system implemented in a single DOF me-
chanical structure. To demonstrate that the devised system is feasible, performance figures
maps completed by experimental data are shown.

Keywords: MR damper, energy harvesting, vibration reduction system, control

1. Introduction

Developments of MR damper systems in the last decade have concentrated on energy harvesting
capability. Extensive research efforts have been made to develop MR dampers with self-powering
and self-sensing capability and to investigate their performance in automobile, railway vehicles
and civil engineering applications. Recent years have witnessed a growing number of scientific
articles and technical reports on the subject. For example, Cho et al. (2004) investigated an
MR damper-electromagnetic generator system whose performance is comparable to that of a
conventional MR damper-based system. Besides, Cho et al. (2005) showed that the developed
system could be well feasible in civil engineering applications. Hong et al. (2007) proposed an
MR damper-electromagnetic generator system and verified its effectiveness in a seismic pro-
tection application. Choi et al. (2007) devised such system to generate electricity and ran the
experimental testing. Choi and Werely (2009) investigated the feasibility and efficiency of a self-
-powered MR damper using a spring-mass electromagnetic induction device. Lam et al. (2010)
developed and investigated performance of an MR damper with dual-sensing capability to facili-
tate closed-loop vibration control. Wang et al. (2010) proposed an MR damper-based vibration
control system with energy regeneration and showed through of numerical simulations that the
system could be feasible when used on an elevated highway bridge. It is worthwhile to mention
that some MR damper-electromagnetic generator systems share the self-sensing capability, i.e. it
is possible to obtain information about relative velocity across the MR damper based on voltage
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delivered by the generator (Jung et al., 2009, 2010; Wang et al., 2010, 2013). Moreover, Chen and
Liao (2012) investigated an MR damper with the power generation feature, integrating energy
harvesting, dynamic sensing and MR damping technologies in a single device. Those authors
also investigated an MR damper prototype that had the self-powered and self-sensing capabi-
lities. Zhu et al. (2012) designed self-powered and sensor-based MR damper systems for use in
large-scale civil structures. Li et al. (2013b) put forward an innovative concept of a mechanical
motion rectifier converting bidirectional into unidirectional motion. Attention was also given to
regenerative vehicle MR shock absorbers enabling energy recovery from suspension vibrations
(Li et al., 2013a). Finally, Snamina and Sapiński (2011) studied the energy balance in a MR
damper-based vibration reduction system with the self-powering capability.

This study recalls two former papers by the author, see Sapiński (2011, 2014). The first work
demonstrated that the developed MR damper-based vibration control system with energy harve-
sting capability (comprising a commercially available linear MR damper and an electromagnetic
power generator prototype) was able to power-supply the MR damper whilst the generator
served as a “velocity-sign” sensor. The other study, whose purpose was to integrate the MR
damper and the power generator into a single device (also referred to as an energy harvesting
linear MR damper) showed that the device was able to recover energy from vibration and that
it displayed self-powering and self-sensing capabilities.

The primary objective of this paper is to evaluate the developed energy harvesting MR
damper-based vibration reduction system implemented in a single DOF mechanical structure and
to demonstrate its feasibility. This paper is organised as follows. Section 2 summarises the design
structure and characteristics of the energy harvesting MR damper. Section 3 briefly describes
the vibration reduction system based on an energy-harvesting MR damper whilst Section 4
deals with its implementation in a single DOF mechanical system. Section 5 summarises the
experimental testing of the proposed system under conditions when the MR damper is not
energised, while it was energised from an external power source and when it is energised using
harvested energy. Final conclusions are given in Section 5.

2. Energy harvesting MR damper

The system comprising an MR damper and a power generator integrated into a single device is
shown in Fig. 1. The power generator is connected to the MR damper via piston rod (1) and
placed inside housing (2). Three systems of permanent magnets (3) in the generator are fixed
on the rod separated by ferromagnetic spacers. In each system, the magnets are arranged in

Fig. 1. Energy harvesting MR damper: 1 – shaft, 2 – generator housing, 3 –magnets, 4 – coil housing,
5 – generator coil, 6 – switch cover, 7 – cylinder, 8 – piston, 9 – control coil, 10 –wire, 11 – cover, 12 – seal
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Fig. 2. Force vs.: (a) piston displacement, (b) piston velocity

accordance with their axial polarity whilst the systems of magnets have opposite polarisation
with respect to each other. The rod with the magnet systems moves inside generator coil (4)
placed inside ferromagnetic casing (5). The generator is separated from the damper by cover (6)
to which cylinder (7) is fixed. Inside the cylinder, piston (8) is placed. On its both ends there
are two rod sections attached: the solid section – from the generator end, the section with an
opening – on the opposite end. Inside the piston there is control coil (9), and power supply
cable (10) is led through the opening in the rod. The cylinder is closed with cover (11) and filled
with MR fluid. Covers (6) and (11) are provided with pilot sleeves and sealing rings (12). The
damper force vs piston displacement /piston velocity plots obtained for the applied kinematic
input (sine excitation with amplitude A = 10 mm and frequency f = 4 Hz) are shown in Figs. 2a
and 2b. The plots graphed with the continuous line represent the case when the generator coil
is not connected to the damper coil – the damper is not energised (NE case), and those graphed
with broken lines represent the case when the damper is energised using the harvested energy
and the damper coil is directly connected to the MR damper coil (EH DS case). Obviously, a
larger force will be registered in EH DS. case than in NE case.

3. Vibration reduction system

The structural design of the vibration reduction system is shown in Fig. 3. It comprises a spring
(with stiffness coefficient 126.4 N/mm) and the energy harvesting MR damper connected in

Fig. 3. Structure of the vibration reduction system
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parallel. The damper and the spring are fixed between two terminal plates and connected on
one end to a shaker and on the other end – to a mobile body mass comprising three horizontally
arranged plates (with mass 153 kg). Trolleys moving along linear guides enable its movement
along the horizontal axis. The energy harvesting MR damper is mounted in the vibration reduc-
tion system, on the shaker end, with a fixing grip and from the body mass end, via threaded
connection in the rod.

4. Evaluation tests

4.1. Test facility

The test facility shown schematically in Fig. 4 incorporates a shaker, an energy harvesting
MR damper, a spring and a body, two displacement sensors (Sensor 1, Sensor 2), force sensor
(Sensor 3) and the measurement – control system comprising a PC computer with the AD/DA
card supported by Windows and using the MATLAB/Simulink software. Recorded parameters
include the shaker core displacement (excitation signal) – z, body displacement – x, damper
force Fd, voltage in the damper coil /electromotive force (emf) produced in the generator coil
– u/e, current i in the damper coil and voltage controlling the transistor switch (not shown) –
uc. The measured quantities are converted into voltage signals in the range (−10,+10) V and
sampled with a frequency of 1 kHz.

Fig. 4. Schematic diagram of the test facility

4.2. Results

The system is investigated under conditions when the MR damper is not energised (NE
case) and when it is energised from the power generator (EH case). In the EH case, the damper
is powered either directly with voltage produced by the generator (EH DS case) or by using
the control system with an on-off algorithm (EH OO case) or a sky-hook algorithm (EH SK
case). Tests are performed under the applied sine excitations z with amplitude A = 4.5 mm and
frequency f in the range (1, 10) Hz. In further Sections, we show time patterns of registered
quantities obtained for f = 4 Hz, which corresponds to the near-resonance frequency of the
investigated system implemented in a single DOF mechanical structure.
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NE case

Figure 5 shows time histories of emf generated in the generator coil and of the damper force.
In this case, the damper force has the following components: force due to drag experienced
during the fluid flow in the piston slit, friction force in the sealing elements and the cogging
force in the generator. The maximal value of emf is found to be 10 V, and the maximal damper
force becomes Fd = 520 N. In earlier work, it was demonstrated that emf was linearly related
to piston velocity (Sapiński, 2014).

Fig. 5. Emf and force vs time

EH case

The equivalent electric circuit of the damper in the EH case is shown in Fig. 6. There is a Graetz
bridge between the generator coil and the damper coil. Rg and Lg stand for the resistance and
induction of the generator coil and Rd and Ld – resistance and induction of the damper coil.
Plots of voltage vs. time and current vs. time in this circuit and the generated damper force are
given in Fig. 7.

Fig. 6. Equivalent electric circuit of the energy harvesting MR damper with a Graetz bridge

The maximum voltage and current level in the damper coil is 2 V and 0.2 A. The plot of force
reveals the presence of a force component related to the current in the damper force (unlike NE
case). It appears that the maximal force value is reduced from 520 to 450 N, which is caused by
the presence of the cogging force in the generator, arising in the permanent magnet-ferromagnetic
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Fig. 7. Voltage, current and force vs. time

element systems (Sapinski, 2014), and the amplitude of piston displacement becomes 10 mm in
the NE case and 2.5 mm in the EH DS case. Plots of the force FMR generated by the MR damper
(Fig. 1) vs time for those two cases are compared in Fig. 8. It appears that the maximum force
value tends to increase with the an increase in the coil current and becomes 325 N in the NE
case and 520 N in the EH DS case.

Fig. 8. MR damper force vs. time

Control of the current level in the damper coil is effected using the on-off and sky-hook control
algorithms (Braun, 2002), utilising the information about velocity of the body ẋ and its relative
velocity (ẋ − ż) based on the measured displacements x and z. The controllers performance is
largely dependent on the quality of signals ẋ and ż. Because MR dampers are capable only of
dissipating energy, on-off and sky-hook algorithms had to be modified such that the current
level in the coil should be minimal in those time instants when energy should be supplied to the
system. Figures 9a and 9b show a schematic diagram of the system for controlling coil current
using the EH OO and EH SK algorithms. The current level in the damper coil depends on
whether the damper coil is connected to the generator coil or disconnected, which is effected
using a transistor switch K. The transistor switch K remains on as long as the voltage across its
controls uc should be 0 V. When voltage becomes 3.3 V, the transistor switch is off. A diode D0
is provided to release the energy accumulated in the damper coil (when the transistor switch K
is off).
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Fig. 9. Schematic diagram of the control system: (a) EH OO case, (b) EH SK case

The damper force generated in accordance with the on-off algorithm is expressed by (4.1)1.
To ensure the required force value, the current level in the damper coil should be governed by
formula (4.1)2

Fd =

{
Fmax ẋ(ẋ− ż)  0
0 ẋ(ẋ− ż) < 0 i =

{
imax ẋ(ẋ− ż)  0
0 ẋ(ẋ− ż) < 0 (4.1)

The operating principle of the vibration reduction system in the EH OO case is illustrated by
the plots of key parameters in function of time, shown in Figs. 10 and 11. When the energy in
the system is to be dissipated (ẋ(ẋ − ż)  0), the damper should deliver the maximum force,
Fd = Fmax. In order to achieve this, the transistor switch should be closed, producing the current
flow i = imax in the damper coil. When energy is to be supplied (ẋ(ẋ− ż) < 0), the transistor
switch K should be open (i = 0, Fd = 0).

Fig. 10. Absolute velocity, relative velocity and control vs. time

However, the force Fd 6= 0, because of the contribution of the damper force components
independent of the current level.

Frequent switching of the transistor switch K at instants when the signals and ẋ and (ẋ− ż)
become zero is caused by signal disturbances. This effect has only slight influence on the current
level in the damper coil, which can be also observed in the EH SK case.

The damper force generated in accordance with the sky-hook algorithm is expressed by
(4.2)1. To ensure the required force value, the current level in the damper coil should be given
by formula (4.2)2
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Fig. 11. Current level, control and force vs. time

Fd =

{
−cẋ ẋ(ẋ− ż)  0
0 ẋ(ẋ− ż) < 0 is =

{
b|ẋ| ẋ(ẋ− ż)  0
0 ẋ(ẋ− ż) < 0 (4.2)

where c is the damping coefficient, b – proportionality factor.

The value of the proportionality factor b = 0.0015 A·s/mm has been chosen experymentally.
The operating principle of the vibration reduction system in the EH OO case is demonstrated by
the plots of key parameters in function of time, shown in Figs. 12–14. The transistor switch K
is switched by comparing the current level i (measured with a current-voltage converter and
standard resistance) and the predicted value is, derived from the algorithm. The transistor
switch K is closed (uc = 0) when is  i.

Fig. 12. Absolute velocity, relative velocity and control vs: (a) time, (b) time (zoomed section)

Frequent switching of the transistor switch K is caused not only by velocity signal disturban-
ces (Fig. 12) as in the EH OO case, but also by the current level exceeding is (Fig. 13). At the
instant the damper coil is disconnected from the generator coil, the energy accumulated in the
damper coil is discharged by the diode D0 in a very short time, leading to rapid reduction of the
current level i. The sampling frequency directly affects the current level stability with respect to
the present value. An increase in the current during the subsequent switching of the transistor
switch is associated with the damper coil inertia and the instantaneous voltage produced by the
generator. Plots of the force Fd and current i in the EH SK case in function of time are shown
in Fig. 14.
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Fig. 13. Current and control vs. time

Fig. 14. Current level, control and force vs. time

The dependence of rms value of the damper force on frequency in each investigated case is
given in Fig. 15, showing an increase in the rms value of the force Fd with an increase in the
current level i. The efficiency of the investigated vibration reduction system is evaluated basing
on the transmissibility coefficient (Txz) expressed by the formula

Txz =

√
1

T

t+T∫
t
x(t)2dt

√
1

T

t+T∫
t
z(t)2dt

(4.3)

where T is the period of the signal.

The values of Txz(f) obtained in all analysed cases and in the predetermined frequency
range are compared in Fig. 16. It appears that the system performance is the best in the EH SK
configuration. In this case, the value of Txz for near-resonance frequencies approaches 1.17, for
other frequencies it is near to that obtained in the NE case. Even though Txz values for near-
-resonance frequencies are slightly lower in the EH OO and EH DS case (1.11 and 1.12), one has
to bear in mind that at higher frequencies, Txz tends to increase, which results in deterioration
of the system performance.
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Fig. 15. rms force vs. frequency

Fig. 16. Transmissibility vs. frequency

5. Conclusions

This study summarises experimental investigations of a MR damper based vibration reduction
system with energy harvesting capability employed in a single DOF mechanical structure. The
main purpose is to evaluate the performance of the engineered vibration reduction system and
to demonstrate its feasibility.

The system is investigated in four modes of its operation: when the damper is not energised
(NE case), when the damper is energised and directly power-supplied with voltage produced by
the generator (EH DS case), when the control system with an on-off algorithm is used (EH OO
case) and when the sky-hook control algorithm is applied (EH SK case). The experimental
results lead us to the following conclusions:

• the vibration reduction system supplied with harvested energy features a decidedly lower
transmissibility coefficient Txz at near-resonance frequencies;

• despite a slight increase of Txz in the frequency range (3, 4.5) Hz, the vibration reduction
system performs best in the EH SK case;

• the system performance in the EH OO and EH SK case is largely affected by the quality
of signals ẋ and (ẋ− ż), obtained after processing of the measured displacement signals x
and z;
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The research has been now undertaken to find out how to manage the harvested energy such
that it could be effectively utilised to power-supply the components of the vibration reduction
system (MR damper, sensors, control system).
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The paper proposes a concentric hydrodynamic journal bearing constructed by the boundary
slippage, which is opposed by conventional lubrication theory. Analysis for the carried load
and friction coefficient of this bearing is presented. The optimum condition for the maximum
load-carrying capacity of this bearing is examined. It is shown that the whole circumference
of the bearing should be taken as the lubricated area, while on most of the stationary surface
of the bearing there should be a hydrophobic coating covered so that the boundary slippage
would occur on this surface, In this condition, the load-carrying capacity of the bearing is
the highest but its friction coefficient is the lowest.

Keywords: hydrodynamics, boundary slippage, load, friction, bearing

1. Introduction

Conventional lubrication theory says that no hydrodynamic lubrication effect can be generated
between two sliding parallel smooth plane surfaces (Pinkus, 1961). It also denies a concentric
hydrodynamic journal bearing, where the lubricating film thickness is circumferentially constant.
However, in practice, a concentric hydrodynamic journal bearing is very useful because of its
high supporting precision, high lubricating film thickness, low viscous friction and low energy
consumption.
The boundary slippage has been found to be capable of improving the performance of a

hydrodynamic lubrication (Salant and Fortier, 2004; Zhang, 2008, 2010, 2013, 2014, 2015b;
Li et al, 2014). It was found that hydrodynamic lubrication can be generated between two
sliding parallel smooth plane surfaces because of the boundary slippage (Zhang, 2008). While,
in conventional bearing configurations, the artificial introduction of the boundary slippage can
increase the load-carrying capacity of the bearing but reduce its friction coefficient Zhang (2010,
2013, 2014, 2015b). In Zhang (2015b), the performance of a hydrodynamic journal bearing with
an eccentricity was found to be able to be significantly improved by the boundary slippage.
However, in that paper, a concentric hydrodynamic journal bearing was not addressed.
This paper proposes a concentric hydrodynamic journal bearing which is formed dependent

on the boundary slippage. Analysis of this bearing is presented. It has been found that a signi-
ficant load-carrying capacity can be generated depending on the design method applied. The
optimum condition for the maximum load-carrying capacity of the bearing is also analyzed. In
this optimum condition, the bearing also works with the lowest friction coefficient. The study
shows a potential application value of such a bearing in practice.

2. The bearing configuration

Figure 1 shows the configuration of the studied bearing. The bearing is formed by a rotating
shaft (with circumferential speed u) and a stationary sleeve. The two elements are concentric
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and the lubricating film thickness in the bearing is constant and equal to the bearing clearance
c(= R−r). The clearance of the bearing is filled with a fluid. The lubricated area of the bearing is
divided into two subzones, i.e. “I” and “II” subzones which are, respectively, the inlet and outlet
zones of the bearing. On the stationary (sleeve) surface in “I” subzone there is a hydrophobic
coating covered to yield a low fluid film-contact surface interfacial shear strength (τsa) at this
surface so that the boundary slippage would occur at this coated surface. The envelope angles
of “I” and “II” subzones are respectively φI and φII . On the other surfaces of the bearing,
the fluid film-contact surface interfacial shear strength is relatively high so that the boundary
slippage is absent on these surfaces. The radii of the shaft and sleeve are r and R, respectively.
The carried load per unit contact width and attitude angle of the bearing are respectively w
and γ. The coordinate system used in the analysis is also shown in Fig. 1.

Fig. 1. Configuration of the proposed bearing

3. Analysis

The analysis carried out by Zhang (2015b) is also applicable to the present bearing. The analysis
is based on the following assumptions:

(a) The lubricant film thickness is high enough so that the lubricant is continuum across the
film thickness;

(b) The lubricant film is Newtonian within the film;

(c) The lubricant is isoviscous and imcompressible;

(d) Contact surface deformations are negligible;

(e) The side leakage in the bearing is negligible and the lubricant is in laminar flow;

(f) The operating condition is isothermal.

Accordingly to Zhang (2015b), the following dimensionless parameters are defined:

W =
wc2

uηr2
P =

pc2

uηr
Qv =

qv
uc

F̄x =
Fxc
2

uηr2
F̄y =

Fyc
2

uηr2
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F̄f,h =
Ff,hc

2

uηr2
F̄f,s =

Ff,sc
2

uηr2
τ̄ =

τc2

uηr
kτ =

τsac

uη
DU =

∆u

u

Here, η is fluid viscosity, p is film pressure, qv is volume flow rate in the bearing per unit contact
width, Fx and Fy are respectively components of the carried load in the x and y coordinate
directions, Ff,h and Ff,s are respectively friction forces per unit contact width acting on the
sleeve and shaft surfaces, τ is shear stress, and ∆u is fluid film interfacial slipping velocity.

The pressure boundary conditions in the bearing are:

P |φ=0 = 0 P |φ=φI+φII = 0 (3.1)

When the eccentricity ratio ε is zero, a lot of the analytical results obtained by Zhang (2015b)
are applicable to the present bearing. The following Sections demonstrate those results.

3.1. “I” subzone

The dimensionless Reynolds equation in “I” subzone is:

dPslip
dφ
= 3− 3Qv,slip −

3kτ
2

(3.2)

Using the boundary condition in Eq. (3.1), integrating Eq. (3.2) gives dimensionless pressure
in “I” subzone:

Pslip =
(
3− 3Qv,slip −

3kτ
2

)
φ for 0 ¬ φ ¬ φI (3.3)

The dimensionless pressure on the boundary between “I” and “II” subzones is:

Pslip,max =
(
3− 3Qv,slip −

3kτ
2

)
φI (3.4)

3.2. “II” subzone

The dimensionless Reynolds equation in “II” subzone is:

dPslip
dφ
= 6− 12Qv,slip (3.5)

Using the boundary condition in Eq. (3.1), integrating Eq. (3.5) gives dimensionless pressure
in “II” subzone:

Pslip = (6− 12Qv,slip)(φ− φI − φII) for φI ¬ φ ¬ φI + φII (3.6)

According to Eq. (3.6), the dimensionless pressure on the boundary between “I” and “II” sub-
zones is:

Pslip,max = (12Qv,slip − 6)φII (3.7)

Equations (3.3) and (3.6) show that the pressure is respectively linearly distributed in “I”
and “II” subzones in the present bearing. Figure 2 schematically shows the pressure distribution
in the present bearing.
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Fig. 2. Illustration of the pressure distribution in the proposed bearing

3.3. Volume flow rate and condition for the bearing

Define ψφ = φII/φI , solving coupled equations (3.4) and (3.7) gives:

Qv,slip =
1 + 2ψφ − 12kτ
1 + 4ψφ

(3.8)

and

Pslip,max = P̄slip,max(φI + φII) (3.9)

where P̄slip,max = 6ψφ(1− kτ )/[(1 + ψφ)(1 + 4ψφ)].
From Qv,slip > 0, it is obtained that kτ < 2 + 4ψφ. From Pslip,max > 0, it is obtained that

kτ < 1. Therefore, kτ < 1 is the condition for the present bearing.
It is noted from Eq. (3.9) that for given values of kτ and φI + φII , when ψφ = 1/2, Pslip,max

reaches the maximum, and its maximum value is 2(1− kτ )(φI + φII)/3.

3.4. Carried load and attitude angle of the bearing

The dimensionless hydrodynamic force component in the x axis direction acting on the shaft
per unit contact width is:

F̄x,slip = −
φI+φII∫

0

Pslip cosφ dφ = P̄slip,maxf1(ψφ, φtot) (3.10)

where φtot = φI + φII and (also Zhang (2015a))

f1(ψφ, φtot) =
(
1 +
1

ψφ

)[ψφφtot
1 + ψφ

sin
( φtot
1 + ψφ

)
+ cosφtot − cos

( φtot
1 + ψφ

)]

− (1 + ψφ)
[
φtot sin

(
φtot
1+ψφ

)

1 + ψφ
+ cos

( φtot
1 + ψφ

)
− 1

] (3.11)

The dimensionless hydrodynamic force component in the y axis direction acting on the shaft
per unit contact width is:

F̄y,slip =

φI+φII∫

0

Pslip sinφ dφ = P̄slip,maxf2(ψφ, φtot) (3.12)
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where (also Zhang (2015a))

f2(ψφ, φtot) =
(
1 +
1

ψφ

)[ψφφtot
1 + ψφ

cos
( φtot
1 + ψφ

)
− sinφtot + φtot cosφtot + sin

( φtot
1 + ψφ

)]

+ (1 + ψφ)

[
sin
( φtot
1 + ψφ

)
− φtot
1 + ψφ

cos
( φtot
1 + ψφ

)] (3.13)

The dimensionless load per unit contact width carried by the bearing is:

Wslip =
√
F̄ 2x,slip + F̄

2
y,slip = P̄slip,maxfw(ψφ, φtot) (3.14)

where fw(ψφ, φtot) =
√
f21 (ψφ, φtot) + f

2
2 (ψφ, φtot) (Zhang, 2015a).

Figure 3 plots the values of fw against φtot for the given values of ψφ. It is shown that for
a given ψφ, the value of fw reaches the maximum when φtot = 2π. This means that for the
maximum load-carrying capacity of the bearing, φtot should be taken as 2π.

Fig. 3. Plots of fw against φtot for given ψφ values (Zhang, 2015a)

When φtot = 2π, the dimensionless load is:

Wslip = (1− kτ )G(ψφ) (3.15)

where G(ψφ) = 6ψφfw(ψφ, 2π)/[(1 + ψφ)(1 + 4ψφ)].
The attitude angle of the bearing is:

γ = arctan

[
f2(ψφ, φtot)

f1(ψφ, φtot)

]
(3.16)

3.5. Friction coefficient and interfacial slipping velocity

The dimensionless shear stress on the shaft surface is:

τ̄s,slip =





c

r

(
3− kτ
2
− 3Qv,slip

)
for 0 ¬ φ ¬ φI

c

r
(4− 6Qv,slip) for φI < φ ¬ φI + φII

(3.17)
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The dimensionless shear stress on the sleeve surface is:

τ̄h,slip =






kτ
c

r
for 0 ¬ φ ¬ φI

c

r
(6Qv,slip − 2) for φI < φ ¬ φI + φII

(3.18)

The dimensionless friction force on the shaft surface per unit contact width is:

F̄f,s,slip =

φI+φII∫

0

τ̄s,slip dφ =

φI∫

0

τ̄s,slip dφ+

φI+φII∫

φI

τ̄s,slip dφ

=
c

r

(
3− kτ
2
− 3Qv,slip

)
φI +

c

r
(4− 6Qv,slip)φII

(3.19)

The dimensionless friction force on the sleeve surface per unit contact width is:

F̄f,h,slip =

φI+φII∫

0

τ̄h,slip dφ =

φI∫

0

τ̄h,slip dφ+

φI+φII∫

φI

τ̄h,slip dφ

= kτφI
c

r
+
c

r
(6Qv,slip − 2)φII

(3.20)

The friction coefficients on the sleeve and shaft surfaces are respectively:

fh,slip =
F̄f,h,slip
Wslip

fs,slip =
F̄f,s,slip
Wslip

(3.21)

The dimensionless slipping velocity of the fluid film at the sleeve surface is:

DU =






3Qv,slip
2

− 1
2
− kτ
4

for 0 ¬ φ ¬ φI

0 for φI < φ ¬ φI + φII
(3.22)

where DU should be positive for 0 ¬ φ ¬ φI .

4. Results and discussion

Figure 4a plots the values of G against ψφ when φtot = 2π. It is shown that G significantly
increases with the reduction of ψφ when ψφ  0.1. While, for ψφ < 0.01, G is weakly influenced
by ψφ. According to Eq. (3.15), it means that for a given kτ the load-carrying capacity of the
bearing increases with the reduction of ψφ, especially when ψφ  0.1, while too low values
of ψφ have no benefits in increasing the load-carrying capacity. As the optimum value of ψφ
for the maximum value of Pslip,max is 0.5, in the engineering design, the value of ψφ may be
recommended to be chosen between 0.1 and 0.5.

Figure 4b plots values of γ against ψφ when φtot = 2π. The minimum value of γ is about
57o, and it occurs when ψφ is around 1.0. For ψφ < 0.1 or ψφ > 20, γ approaches 90

o.

Figures 5a and 5b plot respectively values of fs,slipr/c and fh,slipr/c against ψφ for different
kτ when φtot = 2π. It is shown that for given values of kτ and c/r, the friction coefficients fs,slip
and fh,slip both are linearly reduced with the reduction of ψφ. This indicates that a relatively
low value of ψφ has also benefit of giving a low friction coefficient to the bearing. The reduction
of kτ is shown to significantly reduce the friction coefficient, especially when ψφ is high.



A concentric hydrodynamic journal bearing with the boundary slippage 351

Fig. 4. Plots of (a) G, (b) γ against ψφ when φtot = 2π

Fig. 5. Plots of fs,slipr/c and fh,slipr/c against ψφ for different kτ when φtot = 2π

5. Conclusions

This paper proposes a concentric hydrodynamic journal bearing which is formed dependent on
the boundary slippage. The configuration of the bearing is presented. The lubricated area of the
bearing is divided into two subzones, which may respectively be the inlet and outlet zones. In
the inlet zone, on the stationary surface a hydrophobic coating is covered to yield a low fluid
film-contact surface interfacial shear strength so that the boundary slippage could occur on this
surface. On the other bearing surfaces, the boundary slippage is absent because of relatively
high interfacial shear strengths on these surfaces.

Analysis for the load-carrying capacity and friction coefficient of the bearing is presented.
Typical calculations have been carried out. It has been found that the optimum value of the ratio
of the circumferential length of the outlet zone to that of the inlet zone, i.e. the optimum value
of ψφ is 0.5 for the maximum hydrodynamic pressure building-up. However for this value ψφ,
the load-carrying capacity of the bearing is still not the maximum. The whole circumference of
the bearing should be taken as the lubricated area for achieving a high load-carrying capacity.



352 Y. Zhang

In this condition, the carried load of the bearing is found to be increased with the reduction
of ψφ, especially when ψφ  0.1. Nevertheless, for ψφ ¬ 0.01, the load-carrying capacity of the
bearing is weakly influenced by variation of ψφ. It is recommended that in engineering design
the value of ψφ should be chosen between 0.1 and 0.5. A low value of ψφ also has the benefit of
giving a low friction coefficient to the bearing.
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The paper deals with the design of optimized input shapers for non-vibrational control of
flexible mechatronic systems. The described method is based on a combination of advantages
from two approaches – precomputed control curves and on-line shapers. The strategy has two
steps. Primarily, an optimized precomputed curve is found as a solution to the point-to-point
control problem with respect to any requested optimization goals. Then it is transformed into
an on-line shaper with the re-entry property. The resulting shaper transforms any arbitrary
input signal to a non-vibrational one. In contrast to other techniques, the shaper length is
not determined from the system natural frequency. The shaper can be easily modified with
respect to position, velocity, acceleration or jerk control. The theoretical results are verified
by experiments using a laboratory crane.

Keywords: input shaper, command shaper, residual vibrations, re-entry

1. Introduction

The fast and precise positioning of mechatronic structures is a challenging problem when fle-
xibility has to be taken into account and residual vibrations appear. There are basically two
main control approaches – feedback and feedforward control. Application of shaped input si-
gnals belongs to the latter group. It is based on the input signal that is modified to achieve zero
residual vibrations. This principle has been effectively used in many applications such as the
robot manipulator (Chang et al., 2005), telescopic handler (Park et al., 2004), antisway crane
(Valášek, 1995) etc.

The first form of command/input shaping was the posicast control (Smith, 1957). The step
signal was broken into two smaller steps, one delayed in time with respect to the system na-
tural frequency. Superposition of the responses to these steps led to elimination of vibrations.
The method is very sensitive to modeling errors. Nevertheless, it was evolved using more step
changes (Sugiyama and Uchino, 1986) or precisely timed sine waves (Aspinwall, 1980). Other
approaches were based on an analysis using the Laplace transform (domain) synthesis (Bhat
and Miu, 1990; Singh and Vadali, 1993) or using the theory of time-delayed systems (Vyhĺıdal
et al., 2012).

Today, we can divide existing shaping techniques into two groups – precomputed curves and
on-line shapers (Singhose and Seering, 1997). The former ones solve the point-to-point control
problem when both initial and final states of the system are known in advance, but they cannot
be used in case the input is changing. Usually, they are based on a combination of precomputed
signals with a zero contribution to the system natural frequency and are used, e.g. for design
of cam profiles (Wiederrich and Roth, 1974) or in time optimal control (Lau and Pao, 2003).
Some of them are based on the differential flatness property of a nonlinear system and enable
generation of a trajectory following the control (Post et al., 2011). Shapers, on the other hand,
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act like filters of any arbitrary input signal and modify it not to excite vibration, Fig. 1. The
price for that is a delay in the settling time and/or an increase in the required power (Beneš,

Fig. 1. Comparison of the system response to the shaped and unshaped control input

2012). Shapers are capable of processing a new input signal even if the previous task has not yet
been finished. We call this behaviour re-entry property. Probably the most popular method in
this group is the patented “Input Shaping” (Singhose, 1997; Singer and Seering, 1990; Singhose
and Seering, 1991) based on the convolution of the input signal with a series of precisely timed
and scaled pulses.

The advantages and disadvantages of both existing groups are obvious. Precomputed curves
can be highly optimised but they do not have the re-entry property and, therefore, cannot be
used for on-line systems, e.g. a manually operated crane. Shapers are capable of dealing with
on-line control but usually they cannot be optimised to a greater extent because their time
length is determined as a multiple of the system natural period and the shape is usually limited
to pulses, steps and ramps.

Another problem is that the above mentioned approaches are designed and mostly applied
to linear systems. Their extension towards nonlinear systems is a great challenge. The crane
is in fact a non-linear system. Many on-line shapers assume that the influence of non-linearity
is small and they are successful (Post et al., 2011). The second approach is that non-linear
dynamics is decomposed into quasi-linear subsystems. The example is a rotary crane (der-
rick) decomposed into an equivalent portal crane tangential to the trajectory where separate
on-line shapers are used (Zavřel et al., 2004; Piazzi et al., 2002). The third approach is usage of
differential flatness that constructs the full relationship between the input and all outputs (Post
et al., 2011; Schindele et al., 2009; Zimmert and Sawodny, 2010; Osmic et al., 2014; Heyden
and Woernle, 2006). The fourth approach is the use of a non-linear quadratic regulator (NQR)
for stable solution of the trajectory (Kittnar et al., 2004). The fifth approach is control using
harmonic functions that constructs the missing control input for flexible modes (Neusser et al.,
2013). The third to fifth approaches heavily depend on the knowledge of the system model and
complete state measurement. If this is not fulfilled, the control quality is deteriorated. The first
and second approaches based on shapers show robustness to model uncertainties and are still
worth further developing.

Therefore, this paper describes a new approach to the shaper design which combines the
advantages of both groups of precomputed curves and on-line re-entry shapers. The completely
new result is an optimized on-line shaper with adjustable time length which makes it possi-
ble to minimize the required power of the used drives for the chosen reasonable positioning
time.
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2. Theoretical background

The state space representation of a system with the system matrix A, input matrix B, state
vector y and input vector u is written as

ẏ = Ay(t) +Bu(t) (2.1)

The solution to the point-to-point (PTP) control problem for (2.1) with the start time at t1,
the finish time t2 and known initial and final states y(t1), y(t2), respectively, can be derived in
the form (Lewis, 1992)

y(t2) = e
A(t2−t1)y(t1) +

t2∫

t1

eA(t2−τ)Bu(τ) dτ (2.2)

which can be transformed to

e−At2y(t2)− e−At1y(t1) =
t2∫

t1

e−AτBu(τ) dτ (2.3)

The expression on the right side of (2.4) can be rewritten as a sum of contributions from
particular inputs

e−At2y(t2)− e−At1y(t1) =
n∑

l=1

t2∫

t1

e−Aτul(τ) dτ bl (2.4)

where n is the total number of inputs, ul is the l-th input, bl is the corresponding column of the
B matrix.
Assuming the controllability of system (2.1), there is a unique transform to the Jordan

canonical form

ż(t) = Jz(t) +Du(t) J = P−1AP z = P−1y D = P−1B (2.5)

where J is a block diagonal matrix made of Jordan blocks, P is a regular transform matrix.
Then the solution to (2.3) can be expressed as

e−Jt2z(t2)− e−Jt1z(t1) =
t2∫

t1

e−JτDu(τ) dτ (2.6)

with

eJt = diag{eJit} eJit = epit




1 0 . . . 0 0
t 1 . . . 0 0
...

...
. . .
...
...

tri−1

(ri − 1)!
tri−2

(ri − 2)!
. . . 1 0

tri

ri!

tri−1

(ri − 1)!
. . . t 1




(2.7)

where pi is the pole of the Jordan block Ji with the order ri+1. Analogously to (2.4), the right
side of (2.6) can be rewritten as a sum of particular inputs ul

e−Jt2z(t2)− e−Jt1z(t1) =
n∑

l=1

t2∫

t1

e−Jτul(τ) dτ dl (2.8)

where dl is the l-th column of D matrix corresponding to the input ul.
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Note that the convolution integral on the right side resembles the finite time Laplace trans-
form as defined by Miu (1993)

U(s) =

t2∫

t1

e−sτu(τ) dτ (2.9)

therefore, the solution to the PTP control problem can be written as

n∑

l=1

Ul(s)|s=J dl = e−Jt2z(t2)− e−Jt1z(t1) (2.10)

or more generally for the system not in the Jordan form

n∑

l=1

Ul(s)|s=A bl = e−At2y(t2)− e−At1y(t1) (2.11)

where Ul(s) is the finite time Laplace transform of the l-th input. The solution ul(t) in the time
domain is the inverse finite time Laplace transform of Ul(s).
Note that general equation (2.11) enables calculation of the control input for any arbitrary

boundary states y(t1), y(t2). The rest-to-rest positioning without vibrations in the final position
is just one special application. Another application could be, e.g. smooth acceleration to a desired
velocity or even vibration elimination from a known non-zero initial state. Moreover, conditions
(2.11) are algebraic and, therefore, there is no need to solve differential equations. Finally, note
that there is no limitation in terms of the time length. It is not necessarily defined by a multiple
of the system natural frequency or by other constraints.
Now this approach will be applied to a simple model consisting of two masses m1, m2

connected by a spring k and a viscous damper c as shown in Fig. 2.

Fig. 2. Two-mass model

This system is described by the matrix equation

Mẍ(t) +Cẋ+Kx(t) = f(x) (2.12)

where x is a vector of coordinates, M, C, K are mass, damping and stiffness matrices, and f is
a vector of input forces (see Fig. 2) defined as

x =

[
x1
x2

]
M =

[
m1 0
0 m2

]
C =

[
c −c
−c c

]

K =

[
k −k
−k k

]
f =

[
f1
0

]
. . .

(2.13)

Non-vibrational conditions in the final position Xf of the PTP task are

x(t2) =

[
Xf

Xf

]
ẋ(t2) =

[
0
0

]
(2.14)
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Differential equation of the second order (2.12) can be rewritten as a set of first order
equations transformed to the Jordan canonical form and rewritten as




ẏ1
ẏ2
ẏ3
ẏ4




︸ ︷︷ ︸
ẏ1

=




0 1 0 0
0 0 0 0
0 0 p 0
0 0 0 p∗




︸ ︷︷ ︸
A




y1
y2
y3
y4




︸ ︷︷ ︸
y

+




0
1
1
1




︸︷︷︸
B

u (2.15)

where u = f1(m1 +m2)/(m1m2) and p, p
∗ are complex conjugated poles of flexible modes

p = −ξω + j
√
1− ξ2ω p∗ = −ξω − j

√
1− ξ2ω

ω =

√
k(m1 +m2)

m1m2
ξ =

c(m1 +m2)

2ωm1m2

(2.16)

Actually, the use of the Jordan form is not necessary, but here it is used for a better un-
derstating of the whole calculation process and also for the proof of the formula of Bhat and
Miu (1991).

Boundary conditions (2.14) are transformed to

y(t2) = [Xf , 0, 0, 0]
T (2.17)

The general solution to the PTP control problem is defined by equation (2.11). Assuming
that t1 = 0, t2 = T and zero initial conditions y(t1) = 0, the right side of (2.11) is

e−At2y(t2)− e−At1y(t1) = e−ATy(T )− e−A0y(0) = e(−AT )




Xf

0
0
0


− e

(−A0)




0
0
0
0




=




1 −T 0 0
0 1 0 0
0 0 e−pT 0
0 0 0 e−p

∗T







Xf

0
0
0


 =




Xf

0
0
0




(2.18)

The expression on the left side in (2.11) can be calculated as follows. Let us assume that the
finite time Laplace transform U(s) can be written as a Taylor series

U(s) = U0 + U1s+ U2s
2 + . . . (2.19)

then

U(s)|s=A = U0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ U1




0 1 0 0
0 0 0 0
0 0 p 0
0 0 0 p∗


+ U2




0 0 0 0
0 0 0 0
0 0 p2 0
0 0 0 p∗2


+ . . .

U(s)|s=A =




U0 U1 0 0
0 U0 0 0
0 0 U0 + U1p+ U2p

2 + . . . 0
0 0 0 U0 + U1p

∗ + U2p∗2 + . . .




(2.20)
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According to (2.11) U(s) is multiplied by the input vector b1 (note that there is only one input)

U(s)|s=A[0; 1; 1; 1]T =




U0 U1 0 0
0 U0 0 0
0 0 U0 + U1p+ U2p

2 + . . . 0
0 0 0 U0 + U1p

∗ + U2p∗2 + . . .







0
1
1
1




=




U1
U0

U0 + U1p+ U2p
2 + . . .

U0 + U1p
∗ + U2p∗2 + . . .


 =




dU(s)

ds

∣∣∣∣
s=0

U(0)
U(p)
U(p∗)




(2.21)

Using (2.18) and (2.21), the conditions for non-vibrational control input (2.11) can be for-
mulated in a component form as

dU(s)

ds

∣∣∣∣
s=0
= Xf U(s)|s=0 = 0 U(s)|s=p = 0 U(s)|s=p∗ = 0 (2.22)

The simple analytical formulation of necessary conditions for non-vibrational control (2.22)
used by Bhat and Miu (1991) is the result of description of the system in a canonical form.
Other state space representations usually need a numerical solution of (2.11). According to the
authors’ best knowledge, the step-by-step derivation of these conditions presented here has not
been published before.
Note that unlike other methods (Smith, 1957; Aspinwall, 1980; Sugiyama and Uchino, 1986)

using this formulation, the time length of the input signal T is not strictly defined as a multiple
of the system natural period and can be set arbitrarily. However, the solution u(t) from (2.22)
must be precomputed before the PTP operation and during the operation cannot be modified
as it is often required (see Section 6).

3. Control input synthesis

There is an infinite number of functions u(t) which satisfy equations (2.22). An algebraic method
for the synthesis of the control input called the Laplace transform (domain) synthesis technique
(Miu, 1993) assumes the control input as a linear combination of independent basis functions
φi(t) multiplied by weighting coefficients λi

u(t) =
2q+2∑

i=1

λiφi(t) (3.1)

where q is a number of flexible modes pairs. Then, according to (2.22)

[
dU(s)

ds

∣∣∣∣∣
s=0

, U(s)|s=0, U(s)|s=p, U(s)|s=p∗
]T
= Sλ = [Xf , 0, . . . , 0]

T

︸ ︷︷ ︸
y(T )

S =




dΦ1(0)

ds
· · · dΦ2q+2(0)

ds

Φ1(0) · · · Φ2q+2(0)
Φ1(p1) · · · Φ2q+2(p1)
...

. . .
...

Φ1(p
∗
q) · · · Φ2q+2(p

∗
q)




(3.2)
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where λ = [λ1, λ2, . . . , λ2q+2]
T and Φi(s) are finite time Laplace transforms of the basis func-

tions φi.

Using (3.2)1, the weighting coefficients λ can be obtained as

λ = S−1[Xf , 0, · · · , 0]T (3.3)

But such formulation does not take into account specific properties of the chosen basis
functions φi(t). Some choices lead to non-invertible matrix S, in some cases the solution does
not exist (Beneš, 2012).

The solution to (3.2)1 exists if the rank h of matrix S is equal to the rank of the augmented
matrix [S|y(t2)]

h = h(S) = h(S|y(t2)) (3.4)

Note that h(S) is not necessarily equal to 2q + 2 from (3.1) because the rows of S could be
linear dependent.

Therefore, instead of (3.1) the control input should be reformulated to the form

u(t) =
j∑

i=1

λiφi(t) j  h (3.5)

In the case j = h, there is one and only one combination of weighting coefficients λi, in the
case j > h the infinite number of solutions exists. For j < h, the solution to (2.22) does not
exist and j must be increased.

Equation (3.2)1 ensures that no vibration appears in PTP positioning. To meet other criteria,
more constrains could be added to this synthesis technique. These constrains can be formulated
both in s-domain and time domain. The common one is e.g. the time-domain continuity con-
straint (Miu, 1993), but this could be fulfilled using a proper set of basis functions, see (4.2).
Additional constraints can be used, e.g. for specifying states between the initial and final time
(trajectory tracking) or to increase robustness of the control to modelling errors. The increasing
of the robustness is based on placing multiple zeros in the system poles or on placing new zeros
near to the system poles. This strategy is similar to the idea of ZVD or EI shapers in Singhose
(1997), but as the time length can be still set arbitrarily this does not mean prolongation of the
input signal. Instead of an increase of the necessary time, we can increase the power used for
positioning. Or, probably more often, we can find the right balance between the signal length
and the required power regardless of the system natural frequency.

4. Optimization using free weighting coefficients

The situation j > h in (3.5) means that the first h coefficients can be expressed using non-
vibrational conditions (2.22) as a function of the rest of them, λi = fi(λh+1, . . . , λj), i = 1, . . . , h.
Then the free coefficients λh+1, . . . , λj could be used to meet additional conditions or as optimi-
zation parameters. This will be demonstrated using the simple model in Fig. 2. The optimization
goal is minimization of the required maximum power of the drive. Therefore, the cost function
for minimization is defined as

fc = max |u(t)| t ∈ 〈0, t2〉 (4.1)
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Consider the control input as a linear combination of sine waves in the form

u(t) =
2q+2∑

i=1

λiφi(t) =
4∑

i=1

λi sin(ωsit)

U(s) =
2q+2∑

i=1

λiΦi(s) =
4∑

i=1

λi
e−st2(−s sin(ωst2)− ω cos(ωst2)) + ωs

s2 + ω2s

(4.2)

with ωs = 2π/t2, which ensures the time domain continuity requirement automatically. The
supposed system parameters are m1 = m2 = 1kg, k = 100 kg·s−2, c = 0kg·s−1. The desired
rigid body displacement is Xf = 1m and t2 = 1 s. Then the matrix S is

S =




0.1592 0.0796 0.0531 0.0398
0 0 0 0

−0.0393 − 0.0391i −0.3001 − 0.2986i 0.1220 + 0.1214i 0.0585 + 0.0582i
−0.0393 + 0.0391i −0.3001 + 0.2986i 0.1220 − 0.1214i 0.0585 − 0.0582i


 (4.3)

and it has rank h(S) = 2. Since j = 4, we have two free parameters for optimization. Using
(3.2)1, we obtain

λ1 = 6.7239 − 0.5742λ3 − 0.3719λ4 λ2 = −0.8815 + 0.4818λ3 + 0.2437λ4 (4.4)

The basic non-optimal solution is that with λ3 = λ4 = 0

λbas = [6.7239,−0.8815, 0, 0]T (4.5)

Simple optimization of the parameters λi according to cost function (4.1) by e.g. fminsearch
in the Matlab environment results in

λopt = [5.6154, 0.0273, 1.7280, 0.3127]
T (4.6)

The plots for a standard basic solution (4.5) and optimized solution (4.6) are compared in
Fig. 3. The required power is reduced by about 25%.

Fig. 3. System response to the basic and optimized shape of the input force

There could be more than one optimization goal. Figure 4 shows a Pareto set when both the
required power and its derivative are minimized. The minimized derivative of the required power
is important for reduction of costs of power electronics. The depicted points represent various
combinations of λ3 and λ4. Other optimization criteria can be formulated, e.g. to increase the
robustness to model errors, etc.
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Fig. 4. Pareto set

5. Optimization using parametric basis functions

Besides searching for an optimal combination of weighting coefficients, different parametric basis
functions can be used. In such a case, the optimization is focused on these parameters. A control
function generated as a combination of damped sinusoids is used as an example

u(t) = λ1e
a1t sin

(2π
T
t
)
+ λ2e

a2t sin
(4π
T
t
)
+ λ3e

a3t sin
(6π
T
t
)
+ λ4e

a4t sin
(8π
T
t
)

(5.1)

where the coefficients ai < 0 are the optimization parameters. The goal of the optimization is
minimization of the required power.
The optimization leads to the following coefficients

a = [−0.0164,−37.9986,−0.0001,−42.3485]T (5.2)

with the corresponding

λopt = [5.9175,−101.8635, 1.1877, 75.6287]T (5.3)

The results are compared in Fig. 5 with basic non-optimal solution (4.5) which corresponds
to the setting a1,2,3,4 = 0. The required power is reduced by about 28%, which is even slightly
better than that in Fig. 3.

Fig. 5. System response to the parametrically optimized shape of the input force
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6. Re-entry online shaper from a precomputed curve

An approach described in previous Sections produces control inputs in the form of precomputed
curves. But these are not applicable when the system must be controlled on-line and the final
state is not known in advance. This could be for example a crane manually controlled by a
human operator. In such a case, we need a shaper which transforms any arbitrary input signal
to a non-vibrational one (Beneš et al., 2008). These shapers are usually based on the patented
“Input Shaping” (Singhose, 1997; Singer and Seering, 1990; Singhose and Seering, 1991) series
of pulses with time length fixed to the system natural frequency or even its multiples. Now a
more general technique will be described, which transforms an optimized control curve with an
arbitrarily set time length into a dynamic shaper.

The new approach (Beneš, 2012; Beneš et al., 2008) for such cases is as follows. The general
conditions for a control signal which does not excite vibrations are formulated in Section 2. Now
the signal which fulfils these conditions should be a product of the convolution of any arbitrary
input signal with the shaper. If the input signal is a unit pulse then the product of convolution
should be of the same shape as the corresponding precomputed curve, as shown in Fig. 6. In
other words, the shaper is a dynamic representation of a non-vibrational control curve. If the
control curve transforms the system from a zero initial state to a unit final state then we obtain a
shaper with the unit gain. The signal modified by this shaper transforms the system to the same
final state as the unshaped one but with zero residual vibrations. The procedure to synthetize
such a shaper is to find a differential equation and a corresponding dynamic block the solution
to which is the non-vibrational control curve from Section 2. This is a so called re-entry shaper,
and it can be re-entered during operation.

Fig. 6. Shaper convolution with the Dirac pulse

It is difficult to find a dynamic block corresponding to a certain general curve. Consequently,
it is a great benefit that our control signal is a linear combination of the basis functions. The
dynamic representation of the basis function is actually its finite time Laplace transform. For
example, the ramp shaper used in Fig. 6 is described as a transfer function

U(s) =
q

s2
(1− e−st1 − e−st2 + e−st3 + e−st4 − e−st5) (6.1)

where q is the ramp angle, ti are the switching times. The shape of the control curve is shown
in Fig. 7.

As the positive and negative parts of the ramp must be of the same length, the t5 is defined as

t5 = t4 + t3 − t2 − t1 (6.2)
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Fig. 7. Shape of the ramp control curve

Function (6.1) can be rewritten in a more compact form as

U(s) =
q

s2

5∑

i=0

Nie
−sti (6.3)

with

N = [1,−1,−1, 1, 1,−1] t0 = 0 (6.4)

For the two-mass model in Fig. 2 with the parameters m1 = m2 = 1kg, k = 100 kg·s−2,
c = 1kg·s−1 the non-vibrational conditions are (2.22). Applying these conditions to (6.3), we
obtain the following set of conditions

5∑

i=0

Niti = 0
5∑

i=0

Nit
2
i = 0

5∑

i=0

Nit
3
i = −

6Xf

q

5∑

i=0

Nie
ξωti cos

(√
1− ξ2ωti

)
= 0

5∑

i=0

Nie
ξωti sin

(√
1− ξ2ωti

)
= 0

(6.5)

Two of them, (6.5)1 and (6.5)2, result from U(s)|s=0 = 0. According to the definition of t5
in equation (6.2), constraint (6.5)1 is fulfilled automatically and, therefore, we have a set of four
equations (6.5)1-(6.5)5 with four unknowns t1, . . . , t4. For q = 5m·s−3, the solution is a vector
of the switching times

t = [0, 0.2228, 0.8922, 1.5136, 1.6136, 2.0123] (6.6)

Note that due to transformation between the input u(t) and the control force f1(t),
u = f1(m1 +m2)/m1m2, the defined value of q is a ramp with the slope qF = 10N·s−1.
Equation (6.3) can be used for the direct design of a re-entry shaper (Fig. 8). Transfer function

(6.3) is actually the description of the differential equation which reproduces the precomputed
curve. In this case, it is the ramp shown in Fig. 7.

Fig. 8. Re-entry shaper G(s), here Ti = ti



364 P. Beneš, M. Valášek

Fig. 9. Re-entry shaper – velocity control

The shaper created in this way represents velocity control, see Fig. 9. But it can be easily
transformed to control position, acceleration or jerk. The only modification which has to be done
is the change of the power of s in (6.1). If the denominator before the bracket is s3 then it acts
like acceleration control. If it is changed to s4 then we have jerk control. Finally, if it is only s1

then it acts like direct position control.
Note that we can use all methods described in the previous Sections, especially optimizations,

to design the best precomputed curve with respect to requested criteria. For example, the ramp
control function with limited both the slope and maximum value could be prepared to avoid
actuator saturation (Beneš, 2012). Then, using the finite time Laplace transform we can change
it to the form of the re-entry shaper.
This possibility to synthetize re-entry shapers of prescribed time lengths or optimized to

chosen goals is the main contribution of this paper. It eliminates the drawbacks of both previous
approaches (Bhat and Miu, 1990; Singhose, 1997).

7. Experiment – antisway crane

An antisway crane is one of the typical benchmarks for tests of non-vibration control strategies.
The laboratory model shown in Fig. 10 is controlled by simple buttons with 2 states (on/off).
But the rectangular input that goes from the buttons excites vibrations of the load. The goal
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Fig. 10. Crane – a laboratory model and its diagram

is to design an on-line shaper which modifies the signal from the buttons to a non-vibrational
one.

According to the approach described in previous Sections primarily the optimized control
curve is calculated and then it is transformed using the finite time Laplace transform to an
on-line shaper. The shape of the control curve in parametrical form (5.1) is used. The
optimization is focused on settling time minimization with respect to the crane model
parameters.

During the tests, the model was manually controlled by a human operator who performed a
set of various manoeuvres with varied cable length as well. The results of one of them are shown
in Fig. 11 (unshaped) and in Fig. 12 (shaped). The swinging in the final position was almost
completely eliminated when the shaper was used.

Fig. 11. Experiment – the system response without the shaper

Another test was focused on the re-entry property of the shaper. The operator randomly
switched between the right and left direction of the trolley without waiting for the end of the
previous manoeuver. The results for unshaped control are given in Fig. 13a and for control
with the shaper in Fig. 13b. Again, the swinging in the final position was eliminated by the
shaper.
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Fig. 12. Experiment the system response with the shaper

Fig. 13. Experiment a re-entry test (a) without the shaper, (b) with the shaper



Optimized re-entry input shapers 367

8. Conclusions

The presented approach to the design of input shapers combines the advantages of optimized
precomputed control curves with the ability of on-line control and the re-entry property. It is
capable of dealing with any optimization criteria or additional conditions. The length of produced
shapers can be set arbitrarily only with respect to the limits of available power.

The synthesis of control input is based on the modified Laplace domain synthesis technique
which takes into account the specific properties of chosen basis functions and their influence on
the solution. Additional constraints and optimization criteria are dealt with using free weighting
coefficients and/or parametric basis functions. The result of this part of the synthesis is an
optimized precomputed curve. Using the finite time Laplace transform, this profile is transformed
to the form of an on-line shaper. The shaper inherits the optimized properties of the precomputed
curve and, in contrast to common shaping techniques, its length is not strictly determined as a
multiple of the system natural frequency and can be set arbitrarily. It is important that the new
result reduces the required power of the drive for the chosen positioning time. In its basic form,
the resulting shapers represent velocity control, but they can be also easily modified to position,
acceleration or jerk control. The theoretical results have been were verified by simulations and
experiments.

Moreover, a detailed derivation of the necessary conditions for non-vibrational control (2.22)
by Bhat and Miu (1991) has been was achieved. According to the best knowledge of the authors,
it is published for the first time.
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Praha, ČVUT v Praze
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8. Kittnar Z., Valášek M., 2004, Nonlinear control of crane manipulator, Proceedings of Interna-
tional Congress on Mechatronics, Prague: CTU, Faculty of Mechanical Engineering, 109-115

9. Lau M.A., Pao L.Y., 2003, Input shaping and time-optimal control of flexible structures, Auto-
matica, 39, 893-900

10. Lewis F.L., 1992, Applied Optimal Control and Estimation, New Jersey, Prentice-Hall, Inc., ISBN
0-13-040361-X



368 P. Beneš, M. Valášek
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12. Neusser Z., Valášek M., 2013, Control of the underactuated mechanical systems by harmo-
nics, Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2013, Zagreb,
University of Zagreb, 329-339

13. Osmic S., Berner M.O., Schwung A., Jost M., Monnigmann M., 2014, Flatness-based
feedforward control for fast operating point transitions of compressor systems, Proceedings of 2014
IEEE Conference on Control Applications (CCA), 1753-1758

14. Park J.Y., Chang P.H., 2004, Vibration control of a telescopic handler using time delay control
and commandless input shaping technique, Control Engineering Practise, 12

15. Piazzi A., Visioli A., 2002, Optimal dynamic-invesrion-based control of an overhead crane, IEE
Proceedings Control Theory Applications, 149, 405-411

16. Post B.K., Mariuzza A., Book W.J., Singhose W., 2011, Flatness-based control of flexible
motion systems, Proceedings of the ASME Dynamic Systems and Controls Conference, 843-850

17. Schindele D., Menn I., Aschemann H., 2009, Nonlinear optimal control of an overhead tra-
velling crane, Proceedings of 18th IEEE Conference on Control Applications (CCA), 1045-1050

18. Singer N., Seering W., 1990, Preshaping command inputs to reduce system vibration, Journal
of Dynamics Systems, Measurements and Control, 112, 76-82

19. Singh T., Vadali S.R., 1993, Robust time-delay control, ASME Journal of Dynamic Systems,
Measurement and Control, 115, 303-306

20. Singhose W.E., 1997, Command Generation for Flexible Systems, s.l.: Massachusetts Institute of
Technology

21. Singhose W.E., Seering W., 1991, Generating vibration reducing inputs with vector diagrams,
Proceedings of 8th IFToMM World Congress, 315-318

22. Smith O.J.M., 1957, Posicast control of damped oscillatory systems, Poceedings of the IRE

23. Sugiyama S., Uchino K., 1986, Pulse driving method of piezoelectric motors, IEEE Journal,
637-640
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Loading conditions and complex geometry have led cylinder heads to become the most chal-
lenging parts of diesel engines. One of the most important durability problems in diesel
engines is due to cracks in the valves bridge area. The purpose of this study is thermo-
-mechanical analysis of cylinder heads of diesel engines using a two-layer viscoplasticity mo-
del. The results of the thermo-mechanical analysis indicate that the maximum temperature
and stress occurr in the valves bridge. The results of the finite element analysis correspond
with the experimental tests carried out by researchers, and illustrate cracks in cylinder heads
in this region. The results of the thermo-mechanical analysis show that when the engine is
running, the stress in the region is compressive, caused by thermal loading and combustion
pressure. When the engine is shut off, the compressive stress turns into tensile stress because
of assembly loads. The valves bridge is under cyclic tensile and compressive stress state and
thus is subject to low cycle fatigue. After several cycles fatigue cracks will appear in this
region. The lifetime of this part can be determined through finite element analysis inste-
ad of experimental tests. The viscous strain is greater than the plastic strain which is not
negligible.

Keywords: thermo-mechanical fatigue, finite element analysis, cylinder head and valve bridge
cracks

1. Introduction

Cylinder heads are important parts of internal combustion engines which are subject to high
thermo-mechanical stresses for because the sake of their working environment (Azadi et al.,
2012a; Gocmez and Pishinger, 2011; Li et al., 2013 ; Metzeger et al., 2014; Su et al., 2002;
Thalmair et al., 2006; Trampert et al., 2008; Zahedi and Azadi, 2012; Xuyang et al., 2013).
Therefore, selection of materials is of paramount importance since they must have sufficient
mechanical strength at high temperatures to be able to withstand cyclic stresses caused by heat
and pressure (Gocmez and Pishinger, 2011; Zahedi and Azadi, 2012; Takahashi and Sasaki,
2010).

High output capacity, low fuel consumption, low emission and reduction costs of maintenance
are among the restrictions making the design of cylinder heads a complicated task (Mirsalim
et al., 2009; Li et al., 2013). Thus, detailed analysis and design are essential. Escalation in
environmental concerns and fuel costs underlines the need for research on more efficient engines
with less energy dissipation and emission (Azadi et al., 2012b; Mirsalim et al., 2009). One way
to decrease the fuel costs is to reduce weight of vehicles. Hence, lighter alloys must be used
in the pursuit of this goal (Azadi et al., 2012a; Zahedi and Azadi, 2012). Recently, the use of
aluminum alloys has increased for economic reasons and for the improvement of engine power by
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weight reduction. Aluminum-silicon is a casting alloy which has extensive use in the automotive
industry, especially in cylinder heads of diesel engines. These materials have been replaced by
a variety of cast iron which were previously used in the manufacture of cylinder heads (Azadi
et al., 2012a). Thermal deformation is the greatest challenge faced by aluminum cylinder heads
(Takahash et al., 2002).

Cylinder heads are exposed to thermal and mechanical loads. The temperature difference,
which is a result of turning the engine on and off, begets thermo-mechanical fatigue (TMF)
loads on the cylinder heads (Azadi et al., 2012a; Li et al., 2013; Mirsalim et al., 2009; Farrahi
et al., 2014; Thomas et al., 2002; Thomas et al., 2004) and, consequently, reduces their lifeti-
me, especially in thinner regions (Remy and Petit, 2001). The crucial regions include the valves
bridge and areas near spark plugs and injectors (Gocmez and Pishinger, 2011; Shojaefard et al.,
2006; Ziehler et al., 2005). Cylinder heads endure out-of-phase TMF. Namely, the maximum
stress occurs at the minimum temperature and the minimum stress occurs at the maximum
temperature. When the engine shuts off and the temperature is low, the tensile stresses arising
from the assembly loads will be applied to the cylinder heads. As the engine starts and tem-
perature increases, the compressive stresses produced by thermal loading (σth) and combustion
pressure (σp) will be applied to them (Azadi et al., 2012b; Li et al., 2013). This type of loading
is displayed in Fig. 1. As the figure reveals, the changes in stress caused by thermal load are
very high. The fluctuating stresses come out of the engine which is heated and cooled (Mirsalim
et al., 2009; Challen and Baranescu, 1999; Chamani et al., 2009).

Plastic deformation is observed in structures like cylinder heads which bear high temperature
fluctuations and assembly loads. Classical models are used to obtain steady responses of these
structures. This approach is very expensive. Because many loading cycles are required to obtain
a steady response. Cyclic analysis is used in order to avoid the cost of transient analysis (Zahedi
and Azadi, 2012).

Fig. 1. The cyclic loading of a cylinder head (Challen and Baranescu, 1999)

Numerous papers have been presented on the analysis of stress and fatigue in cylinder heads.
Koch et al. (1999) measured experimentally strain of cylinder heads and compared it with simu-
lated results using a nonlinear isotropic/kinematic hardening model. A slight difference between
the experimental and simulated strain was observed from 55◦C to 120◦C. The simulated strain,
by increasing temperature from 110◦C to 210◦C was estimated larger than the experimental
strain due to plastic deformation of the cylinder heads.

Takahashi et al. (2002) examined creep in aluminum cylinder heads. There was concordance
between experimental and calculated strain. Creep strain increased as stress grew. Creep strain
at 250◦C significantly was higher than creep strain at 100◦C and 175◦C.
TMF of cylinder heads was studied by Thomas et al. (2002, 2004) using the energy model

and elasto-viscoplastic law. Their research proved a good agreement between experimental and
simulated results of the fatigue life of the cylinder heads and the location of crack initiation.

Thermo-mechanical analysis of cylinder heads and cylinders of AFV diesel engines was con-
ducted by Venkateswaran et al. (2011). Their research demonstrates that the cylinder heads and
engine blocks can tolerate more stress caused by pressure and thermal loads increase, and the
next generation of engines does not need further alteration.
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Su et al. (2002) predicted fatigue life of cylinder heads by finite element simulation via
the model of damage total (Sehitoglu damage model) and compared with experimental results.
Their research revealed that the difference between experimental and simulated results was less
than 30%.

Zieher et al. (2005) simulated the complete process of lifetime. They used an energy model
to predict the fatigue life of cast iron cylinder heads. Their research shows that the simula-
ted results of the number of cycles of crack initiation and the location of crack initiation are
in accord once with experimental results. The minimum lifetime was observed in the valves
bridge.

The analysis of high/low cycle fatigue of cylinder heads was performed by Ghasemi (2012)
using the thermo-mechanical analysis. His study verified that the cracks observed in the expe-
rimental test of low-cycle of cylinder heads acknowledged the simulated results of low-cycle
fatigue. The simulated results of low-cycle fatigue of cylinder heads after modification of cooling
systems indicate that high levels of damage parameters are do not observed.

Shoja’efard et al. (2006) experimentally measured stress in cylinder heads and compared it
with simulated results. Their research confirmed the concordance between the experimental and
simulated results at low temperature. The simulated stress at temperatures exceeding 200◦C
was estimated to be greater than the experimental stress due to inelastic material deformation.

Prediction of the fatigue life of cylinder heads of two-stroke linear engines was done by
Rahman et al. (2008) using finite element analysis (FEA) and the stress-life approach. Their
research refuted the possibility of failure in all spots. Compressive mean stress increases the
fatigue life and tensile mean stress lessens the fatigue life.

Gocmez and Pischinger (2011) investigated sophisticated interaction effects of thermal and
mechanical loads, geometry of cylinder heads and TMF behavior of the cylinder heads material.
They optimized the valves bridge based on the ratio of mechanical to thermal strain. Their
research indicates that the vertical temperature gradients are mainly determined by the thickness
of the valves bridge which plays a role in the distribution of temperature. Geometric dimensions
of the valves bridge and thermal conductivity were the most outstanding parameters in the
thermo-mechanical analysis of the cylinder heads.

Thalmair et al. (2006) established the TMF/computer aided engineering (CAE) process for
fatigue assessment of cylinder heads. Their research proved an acceptable agreement between
experimental and simulated results of the fatigue life of the cylinder heads. They predicted the
locations of fatigue cracks in the cylinder heads accurately.

Mirslim et al. (2009) calculated low cycle fatigue life by finite element simulation of cylinder
heads based on various criteria of the strain state. Their experiments show that by cutting the
valves bridge, one can increase the fatigue life of cylinder heads.

Trampert et al. (2008) studied the effects of thermo-mechanical loads on cylinder heads.
Their research indicated concordance between experimental and simulated results of the fatigue
life of the cylinder heads. Crucial locations in the analysis of fatigue were the same locations
of crack initiation in the experimental conditions. There was conformity between the number of
cycles of calculated failure and the experimental results of macroscopic observation of cracks.

Zahedi and Azadi (2012) compared the stress and low-cycle fatigue life of aluminum and
magnesium cylinder heads of diesel engines. Their research showed that the strain in magnesium
cylinder heads was greater in comparison with the aluminum ones, while the magnesium cylinder
heads had less stress. The fatigue life of the both cylinder heads was almost identical.

Azadi et al. (2012a) analyzed cracked cylinder heads of gasoline engines. Examining materials
and doing finite element analysis of the cracked cylinder heads stress, they determined the cause
of cracks and provided some solutions. Their research revealed that the main reason for cracks
initiation in cylinder heads was high stress and plastic strain caused by assembly loads of the
cylinder heads bolts.
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TMF analysis of gray cast iron cylinder heads was conducted by Li et al. (2013). An accep-
table agreement between experimental and simulated results of TMF life was proved. Improving
and optimizing the structure of cylinder heads doubled their fatigue life.

Xuyang et al. (2013) predicted TMF life of diesel engines cylinder heads. Their research
revealed that the discrepancy between experimental and simulated results was 3%. The energy
criterion accurately predicted fatigue life in the valves bridge compared with thermal shock
tests.

Metzger et al. (2014) predicted the lifetime of cast iron cylinder heads under thermo-
-mechanical loads and high-cycle fatigue. According to their study, the experimental and si-
mulated results of temperature matched. The mechanical analysis correctly anticipated the po-
sition and direction of cracks in the valves bridge. Comparing with experimental results, the
anticipation of fatigue life was rather conservative.

Aluminum cylinder heads must be adequately robust to tolerate gas pressure, assembly loads
and high temperature resulting from ignition to avoid cracking the valves bridge (Takahashi
et al., 2010). Thermo-mechanical loading cylinder heads can only be controlled through modern
cooling systems or protective coatings such as thermal barrier coating (TBC) reducing heat
stress and thereby reducing the temperature gradient (Bialas, 2008).

Azadi and colleagues studied the impact of TBC on cylinder heads. The results of their re-
search demonstrated the TBC reduced the temperature gradient and, consequently, the thermal
stress. Hence fatigue life of cylinder heads was augmented (Azadi et al., 2013; Moridi et al.,
2011a, 2011b; Moridi et al., 2014).

According to the introduction, due to lack of information on the behavior of hardening,
softening and viscosity of materials, the analysis of cylinder heads is mostly based on simple
models of material behavior like elastic-plastic, and the effects of viscosity and creep of cylinder
heads are less taken into consideration. Aluminum alloy has creep behavior at about 300◦C and
viscosity should also be taken into account (Su et al., 2002; Thomas et al., 2002, 2004; Koch
et al., 1999). The main objective of this study is to simulate thermo-mechanical behavior of
cylinder heads based on the two-layer viscoplasticity model. In some analyses, it is assumed
that temperature changes have no effect on the stress-strain curves, and the thermo-mechanical
analysis of cylinder heads is non-coupled. Since changes in temperature influence the stress-strain
curves, the thermo-mechanical analysis of cylinder heads in this study is coupled.

2. The material and its behavioral model

In this study, the cast alloy of aluminum-silicon-magnesium has been used to simulate the
thermo-mechanical behavior. The alloy is known as A356.0 or AlSi7Mg0.3 which is applied
in diesel engines cylinder heads (Farrahi et al., 2014; Moridi et al., 2011a, 2011b, 2014). The
chemical composition of A356.0 is 7.06 wt. % Si, 0.37 wt. % Mg, 0.15 wt. % Fe, 0.01 wt. % Cu,
0.02 wt. % Mn, 0.13 wt. % Ti, and Al remainder (Farrahi et al., 2014).

The two-layer viscoplasticity model divides the elastic and viscosity effects into two elastic-
viscous and elastic-plastic networks. As displayed in Fig. 2, this model was presented by Kichenin
et al. (1996). This model makes the cyclic stress-strain behavior of the material predictable with
reasonable accuracy (Deshpande et al., 2010).

This model consists of a network of elastic-plastic elements parallel to a network of elastic-
-viscous ones. Plastic deformation and creep can be seen in structures such as cylinder heads
which are under assembly loads and temperature fluctuations. The two-layer viscoplasticity
model is the best to examine the response of materials such as aluminum which remarkably
dependent behavior on temperature and is plastic at high temperatures (Metzeger et al., 2014;
Farrahi et al., 2014; Zahedi and Azadi, 2012; Deshpande et al., 2010; Thalmair et al., 2006).
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Fig. 2. The two-layer viscoplasticity model (Deshpande et al., 2010)

This model is in good agreement with the results of experimental and thermo-mechanical tests
on A356.0 alloy (Farrahi et al., 2014).

The material behavior of different aluminum-silicon casting alloys was described by the
nonlinear kinematic/isotropic hardening model in Abaqus software (Koch et al., 1999).

In the plastic network, a nonlinear kinematic/isotropic hardening model is applied which
predicts the behavior such as hardening, softening, creep and mean stress relaxation, and it is
a suitable model for the plastic behavior of materials (Farrahi et al., 2014; Deshpande et al.,
2010).

Kinematic hardening has both linear and nonlinear isotropic/kinematic models. The first
model can be used with the Mises or Hill yield surface while the second one can only be used
with the Mises yield surface, and it is the most accurate and comprehensive model to examine
some issues with cyclic loading including cylinder heads of engines. The kinematic hardening
model assumes that the the yield surface, proportional to the value of α, moves as the back stress
in yield zone but it does not deform (Lemaitre and Chaboche, 1990). Abaqus software uses the
Ziegler linear model (Lemaitre and Chaboche, 1990). To simulate this model, the following
equation is given:

σ̇ = C
1

σ0
(σij − αij) ˙̄εPL +

1

C
Ċαij (2.1)

where C is the kinematic hardening modulus, Ċ is the exchange rate of C in temperature and
˙̄εPL is the rate of equivalent plastic strain. In this model, σ0 (size of the yield surface) remains
constant. In other words, σ0 is always equal to σ0 (that is the yield stress in zero plastic strain)
and remains constant. The nonlinear isotropic/kinematic hardening model includes motion of
the yield surface proportional to the value of α in the stress zone, and also the changes in size
of the yield surface are proportional to the plastic strain (Lemaitre and Chaboche, 1990). This
model has been extracted from the Chaboche experience (Chaboche, 1986, 2008). In order to
introduce this model a nonlinear term is added to equation (2.1) to indicate size of the yield
surface (Lemaitre and Chaboche, 1990).

Abaqus software uses the nonlinear isotropic/kinematic hardening model given by the follo-
wing equation:

α̇ = C
1

σ0
(σij − αij) ˙̄εPL − γij ˙̄εPL +

1

C
Ċαij (2.2)

where C and γ are material constants. In order to introduce this model in to Abaqus software the
isotropic and the kinematics parts are required to be defined separately (Farrahi et al., 2014).
In order to define the isotropic part, equation (2.3) is used in which b and Q∞ are material
constants (Deshpande et al., 2010).

σ0 = σ0 +Q∞(1− exp(b ˙̄εPL)) (2.3)
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The overall back stress is computed from relation (2.4) (Lemaitre and Chaboche, 1990):

α =
N∑

K=1

αK (2.4)

In equation (2.4), if we consider N equal to 3, the hardening variable is divided into three
parts, which increases the accuracy of the model (Farrahi et al., 2014).
The Norton-Hoff law is used for the viscous network in order to consider the effect of strain

rate the equation of which is the following (Angeloni, 2011):

ε̇V = A(σV )
n (2.5)

where the ε̇V is viscous strain rate, A and n are material constants and σV is the viscous stress.
According to equation (2.6), the rate of the elastic modules in the two viscous and plastic

networks is express by f , where kv and kp are elastic moduli in the elastic-viscous and elastic-
-plastic networks, respectively (Deshpande et al., 2010)

f =
kv

kv + kp
(2.6)

3. The finite element model and material properties

Traditionally, optimization of engine components such as cylinder is was based on building a
series of physical prototypes, and performing a series of different experiments and tests. Unfortu-
nately, this method is time consuming, and building a prototype at the early stages of the design
is arduous. Many samples must be constructed and tested in order to achieve the precise design.
This process is costly. These problems are resolved using finite element analysis to evaluate the
effectiveness of various designs. This technique is accepted for the design and development of
geometrically complex components such as cylinder heads in a shorter period and with the least
cost. Cylinder heads are complex and challenging components of engines, for which the finite
element analysis plays a critical role in optimization (Shojaefard et al., 2006). TMF analysis
of each component needs the cyclic stress-strain distribution. Hot components of diesel engines
have complex geometry and loading, and the application of analytical methods for detection
of stress-strain distribution in them is impossible. Many researchers have used the finite ele-
ment method to obtain stress-strain distributions in of geometrically complex components (Sun
and Shang, 2010). Nowadays, simulation techniques are substituted to validation tests so as to
decrease the cost and time of production (Trampert et al., 2008).
The cylinder heads examined in this study are shown in Fig. 3.
The cylinder heads have three valve ports, each with an embedded valve seat, two valve guides

and four bolt holes used to secure the cylinder head to the engine block. The cylinder heads are
made of aluminum alloy (A356.0). The two valve guides are made of steel, with Young’s modulus
of 106GPa and Poisson’s ratio of 0.35. The valve guides fit tightly in the two cylinder heads
and their behavior is presumed elastic. The three valve seats are made of steel with Young’s
modulus of 200 GPa and Poisson’s ratio of 0.3. The valve seats are press-fit into the cylinder
head valve ports. This is accomplished by defining radial constraint equations (ABAQUS User’s
Manual, 2010).
The model consists of 65580 nodes and approximately 80000 degrees of freedom. The loading

of the cylinder heads loading is applied in two phases involving thermal analysis and mechanical
analysis.
The values of f , n, A and Q∞ are extracted from the experimental results of A356.0 by

Farrahi et al. (2014) and they are entered into the Abaqus software.
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Fig. 3. A meshed cylinder head (ABAQUS/CAE User’s Manual, 2010)

There are several methods to insert the values of C and γ into Abaqus software. One of them
is entering the yield stress at plastic strain using the midlife cycle (Farrahi et al., 2014). The
yield stress at plastic strain was extracted from the data by Farrahi et al. (2014) by means of
the results of conducted experiments on A356.0 and entered into the Abaqus software.

4. Results and discussion

4.1. Thermal analysis

Thermal stresses in the cylinder heads are the dominant stresses leading to low cycle fatigue.
Low cycle fatigue is caused by repeated start-up and shout-down cycle of the engine (Mirsalim
et al., 2009; Thomas et al., 2002, 2004; Ghasemi, 2012).

The main part of the cylinder heads stresses results from thermal loading and the rest is
caused by the combustion pressure and mechanical constraints (Fig. 1) see Mirsalim et al. (2009)
and Shojaefard et al. (2006). Therefore, thermal loading is the most important loading in the
thermo-mechanical analysis. Knowing the precise distribution of temperature, one may increases
the accuracy of thermal analysis (Mirsalim et al., 2009). Accurate prediction of temperature of
the engine is very crucial and increases the precision of the FEA results (Ghasemi, 2012). As
the accuracy of thermal analysis increases, the accuracy of mechanical analysis and fatigue life
estimation rises (Thomas et al., 2002, 2004). The combustion pressure causes high cycle fatigue
in the cylinder heads (Azadi et al., 2012a; Metzeger et al., 2014). Many researchers believe that
the combustion pressure has a secondary effect in the TMF (Takahash et al., 2002; Thomas
et al., 2002, 2004). In finite element simulation the valves bridge, where the greatest thermal
concentration exists, is subjected to thermal loading ranging from a minimum of 35◦C to the
maximum of 300◦C (Zahedi and Azadi, 2012). The temperature distribution when the cylinder
heads are heated to its peak value is shown in Fig. 4. Thermal loading has a considerable effect
on the fatigue life, and the temperature field identifies the critical regions (Trampert et al.,
2008). Crack initiation is due to changes in the temperature field (Thalmair et al., 2006).

Plastic deformation and creep are observed under such conditions. The two-layer viscoplastic
model is ideally suited to examination of the response of materials in these conditions (Metzeger
et al., 2014; Farrahi et al., 2014; Zahedi and Azadi, 2012; Deshpande et al., 2010). The cyclic
thermal loads are obtained by performing independent thermal analysis. In this analysis, three
thermal cycles are applied to obtain a steady-state thermal cycle. Each thermal cycle involves
two steps: heating the cylinder heads to the maximum operating temperature and cooling it
down to the minimum operating temperature using *CFLUX and *FILM options. The nodal
temperatures for the last two steps (one thermal cycle) are assumed to be a steady-state solution
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Fig. 4. Temperature distribution in the cylinder head

and the results are stored for use in the subsequent thermao-mechanical analysis (Zahedi and
Azadi, 2012). The maximum temperature occurred in the valves bridge.

The temperature in this region (node 50417) is shown in Fig. 5 as a function of time for a
steady-state cycle, representing the cycle of turning the engine on and off. The lower is tem-
perature of the flame and the gradient temperature of the parts of cylinder heads, the less is
the thermal stress. Thus, low cycle fatigue life, which is mainly affected by thermal fatigue, will
increase (Chamani et al., 2009).

Fig. 5. The temperature at node 50147 versus time

4.2. Mechanical analysis

Mechanical analysis has been carried out in two stages. In the first stage, the three valve
seats are press-fit into the corresponding cylinder heads valve ports. A static analysis procedure
is used for this purpose. The maximum principal stress distribution is depicted in Fig. 6 proving
thet the stress in the valves bridge is tensile.

Figure 7 demonstrates the vectors of the maximum principal stress at this stage in the valves
bridge. As can be seen, the maximum principal stress in the valves bridge is tensile.

The cyclic thermal loads are applied in the second step of the analysis. It is assumed that
the cylinder heads are securely fixed to the engine blocks through the four bolt holes, so the
nodes along the base of four bolt holes are secured in all directions during the entire simulation
(Zahedi and Azadi, 2012). Von Mises stress distribution at the end of the second stage is shown
in Fig. 8. The maximum stress and the maximum temperature occurred in the valves bridge.
As shown in Fig. 9, some regions of the cylinder heads entered into yield zone. As mentioned by
Azadi et al. (2012a), Metzeger et al. (2014), Takahashi et al. (2002), Shojaefard et al. (2006),
these regions are where the fatigue cracks initiate. These regions are also located in the valves
bridge.
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Fig. 6. The maximum principal stress distribution in the first stage of mechanical loading

Fig. 7. The maximum principal stress vectors in the valve bridges due to assembly loads

Fig. 8. Von Mises stress distribution at the end of the second stage of mechanical loading

Based on the works by Gocmez and Pishinger (2011) and Ghasemi (2012), the result of
loading in the yield surface and ultimate strength is the initiation and propagation of fatigue
cracks in less than 10.000 cycles. The equivalent plastic strain distribution is depicted in Fig. 10.

As stated by Li et al. (2013), Koch et al. (1999), the initiation of fatigue cracks in the cylinder
heads occurs where the stress is tensile because of the assembly loads, and the plastic strain is
due to thermo-mechanical loads. This region is also located in the valves bridge.

Based on the work by Metzeger et al. (2014), the first fatigue cracks can be seen at the
hottest spot of the cylinder heads (Fig. 4). The review of Fig. 4, 6-10 reveals that the results
of finite element analysis corresponds with the experimental tests. Cracked cylinder heads in
the experimental tests are shown in Fig. 11a and 11b. The location of cracks is in the valves
bridge. This region endures the maximum stress due to smaller thickness of the material and
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Fig. 9. Regions of the cylinder head entered into the yield zone

Fig. 10. The equivalent plastic strain distribution

Fig. 11. The cracked diesel engine cylinder head: (a) Takahashi et al. (2010), (b) Li et al. (2013)

high temperature caused by lack of proper cooling. Ergo, the cylinder heads will crack. Stress
functions are inverse to the thickness of the material. Namely, the thinnest locations withstand
the highest stress. If the valves bridge becomes wider, it will be cooled better and, consequently,
the temperature gradient and thermal stress will reduce. Thus, the fatigue life of cylinder heads
increases (Gocmez and Pishinger, 2011).

The finite element model predicts a large compressive stress field in the valves bridge as
shown in Fig. 8. Thermal expansion of hot spots in the cylinder heads are constrained by cool
regions which have less thermal expansion. As a result, compressive stress is created in the valves
bridge which corresponds to the results by Shojaefard et al. (2006). Figure 12 displays a diagram
of normal stresses (S11), plastic stress (PS11) and viscous stress (VS11) in the X direction for
point 1 of element 50152. These elements are in the valves bridge.

The cracking mechanism takes place when the engine is running and warm, reaching the
highest temperature. The engine experiences the maximum temperature in the tenth second of
operation (Fig. 5). The stresses are compressive because of the thermal loading and combustion
pressure at that moment (Fig. 12). Figure 13 demonstrates the vectors of the maximum principal
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Fig. 12. Normal, plastic and viscous stresses in the X direction for point 1 of element 50152 versus time

Fig. 13. The maximum principal stress vectors in the valve bridge when the engine is running (in the
tenth second)

stress in the valves bridge when the engine is running. As can be seen the maximum principal
stress in the valves bridge is compressive. The thermal loading and mechanical constraints ge-
nerate a compressive stress field, which may lead drive to a compressive yield surface (Fig. 9).
As the engine shuts off and its temperature gradually decreases to the room temperature, the
stress is tensile due to assembly loads (Fig. 12). Figure 14 shows the vectors of the maximum
principal stress in the valves bridge when the engine is shut off. As can be noticed the maximum
principal stress in the valves bridge is tensile.

The yielding regions of the cylinder heads cannot return to the primary condition. Hence,
tensile stress is created in this area and elastic regions. The stress field for the yield surfaces
is compressive at high temperature and turns into tensile stress at low temperature. This cor-
responds to the results by Li et al. (2013), Takahashi et al. (2002), Koch et al. (1999). The
valves bridge is under cyclic tensile and compressive stresses which correspond to the results by
Xuyang et al. (2013). According to Takahashi et al. (2002), changes in the cyclic compressive
and tensile stresses cause cracks in cylinder heads. As noted by Koch et al. (1999), after a few
cycles the aluminum alloy ages and drastically loses its strength. The aged material is unable
to resist high tensile stresses, then cracks in the cylinder heads appear. As seen in Fig. 12, the
describes viscous stress is low and the normal and plastic stresses are almost identical. Diagrams
of the equivalent plastic viscous strains for point 1 of element 50152 are displayed in Fig. 15.



380 H. Ashouri et al.

Fig. 14. The maximum principal stress vectors in the valve bridge when the engine shut off (in the
thirtieth second)

Fig. 15. The equivalent plastic and viscous strain for point 1 of element 50152 versus time

As can be observed, the viscous strain is greater than the plastic strain, and its amount is not
negligible. Thus, viscous properties must be considered in the thermo-mechanical analysis of
cylinder heads.

5. Conclusion

In this paper coupled thermo-mechanical analysis of cylinder heads in diesel engines is studied.
A two-layer viscoplasticity model is used for this purpose. This model makes the cyclic stress-
-strain behavior of the material predictable. Finite element analysis provides an accurate and
reliable prediction of temperature and fatigue for design of the cylinder heads. The obtained
FEA results show that the stresses inside the combustion chamber exceed the elastic limit.
The thermo-mechanical analysis indicats that the maximum temperature and stress occur in
the valves bridge. The results of the finite element analysis correspond with the experimental
tests carried out by researchers, and illustrate cracks of the cylinder heads in this region. The
finite element analysis proves that the stresses in the valves bridge are compressive when the
engine is running and become tensile when the engine is shut off. The valves bridge is subjected
to cyclic tensile and compressive stress, in which the plastic strain appears. Low-cycle fatigue
always occurs in this region and fatigue cracks appear after a few cycles. Changes in the cyclic
compressive and tensile stresses cause cracks in the cylinder heads. In order to prevent them
from cracking, it is recommended to modify the cooling system of engines as well as thickness
and geometry of the material in crucial parts. Since thinner regions endure high stress, cylinder
heads crack in these regions. TBC might also be used in the regions which not only boost the
engine performance, but also increase the fatigue life of cylinder heads. Since they reduce thermal
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stress, the fatigue life grows. Materials of high thermal conductivity can be used in these regions.
Materials of high thermal conductivity decrease the maximum temperature in this region, leading
to an increase in the fatigue life of the cylinder heads. Cutting the valves bridge approaches the
region to word cooling jackets of cylinder heads. Consequently, the temperature in the region
decreases and the fatigue life increases. Thermo-mechanical analysis can determine the optimum
cutting to achieve the desired lifetime. It is worth noticing that the amount of the material which
is cut is small. However, the increase in volume that is created in the combustion chamber can be
compensated by cutting the liner to avoid changes in the engine compression ratio. The viscous
strain is greater than the plastic strain, and it is of significant value. Thus, viscous properties
must be considered in the thermo-mechanical analysis of cylinder heads. Temperature is effective
on stress-strain curves, and the thermo-mechanical analysis of cylinder heads must be coupled.
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This paper proposes a model for estimating fatigue life under multiaxial stress states, based
on critical plane concepts, taking into account the effect of mean shear stress. The fatigue
life test results calculated on the basis of the proposed model are compared to the expe-
rimental ones related to 2017A-T4 and 6082-T6 aluminium alloy, S355J0 alloy steel under
constant-amplitude bending, torsion and proportional combinations of bending and torsion;
Ti-6Al-4V alloy under tension-compression, torsion and combination tension-compression
– torsion. For the results obtained, statistical analysis is performed by comparing the cal-
culation results proposed by Findley and Dang Van criteria with the experimental data.

Keywords: multiaxial fatigue, mean stress, stress model

Nomenclature

Aσ, Aτ – regression constant of the fatigue curve for bending/tension-compression and
for torsion, respectively

kσ, kτ1, kτ2 – normal, shear and compound (shear and normal) mean stress reduction co-
efficient

mσ,mτ – slope coefficient of the fatigue curve for bending/tension-compression and
for torsion

Ncal, Nexp – calculation and experimental fatigue life
α – crtical plane orientation angle
σ, τ – applied normal and shear stress
σ′f – fatigue strength coefficient

σa,f , τa,f – fatigue limit for bending/tension-compression and for torsion

Subscripts
a – amplitude, eq – equivalent, m – mean, η – normal to critical plane, η, a – amplitude in normal
critical plane, η,m – mean value in normal critical plane, ηs – shear plane, ηs, a – amplitude in
shear critical plane, ηs,m – mean value in shear critical plane.

1. Introduction

As design and structural requirements have grown, the industry demands from researchers faster
and more accurate methods for estimation of fatigue life in multiaxial load condition so as to
face the challenges related to computer-aided design due to complex geometry and load history.
It is necessary to reduce the multiaxial condition to an equivalent uniaxial stress state. Such
reduction is made possible by so-called fatigue criteria (Carpinteri et al., 2011, 2013; Kluger
and Łagoda, 2013; Macha, 1898; Karolczuk and Macha, 2008; Papuga, 2011; Kenmeugne et al.,
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2012). Although there are several approaches to life estimation of metallic materials reported in
the literature (Findley, 1959; Matake, 1977; Fatemi and Socie, 1998; McDiarmid, 1994), those
associated with the concept of critical plane have gained widespread usage. The main difference
between them relies upon the fatigue damage measure which is considered to determinate the
critical plane. Fatigue life depends on a combination of stresses acting in that plane. Depending
on the stress condition, environment, component geometry and stress amplitude, the fatigue
process is dominated by cracking in either the maximum shear or normal stress plane. However,
in such criteria, only the effect of the mean normal stress is assumed, and the effect of shear
stress is not or insufficiently taken into account.

In the recent years, alternative approaches to classical models based on the critical plane have
been proposed. Morel (2000) presented a critical plane model associated with the accumulated
plastic strain at the grain level (in the mesoscopic scale). Papadopoulos and Panoskaltsis (1996),
Papadopoulos et al. (1997) and Papadopoulos (2001) proposed a fatigue criterion where fatigue
strength is determined by a linear combination of the maximum hydrostatic stress σH,max and
amplitude of generalised shear stress 〈Ta〉 defined in the critical plane. In the Dang Van criterion
(Dang Van, 1983; Kluger and Łagoda, 2004), the mesoscopic scale of stress observation is ap-
plied. However, the above criteria do not take into account mean shear stress either. Additional
approaches were proposed by Carpinteri et al. (2014), Araujo et al. (2014).

The non-zero mean value of stress is often a result of the effect of deadweight of the working
element or the entire structure, and is also a result of initial tension of load-bearing elements
(such as V-belts in transmissions). The mean stress includes also residual stress resulting from
material connections. In the literature on high-cycle fatigue, the effect of the mean shear stress
is not examined (Findley, 1959; Matake, 1977; McDiarmid, 1994). Classic Sines approach (Sines,
1959) is often quoted to support that opinion. Sines (1959) concluded that application of the
mean torsion stress does not affect fatigue strength of metals subjected to cyclic torsion. Such an
assumption was based on the data collected by Smith (1939, 1942), who gathered independent
test results on the fatigue limit in torsion of various metals, including steels, aluminium alloys
and bronze. In the papers (Krgo et al., 2000; Kallmyer et al., 2001) on experimental tests related
to the Ti-6Al-4V titanium alloy, it was proven that the mean torsion stress leads to a reduced
fatigue life in comparison to symmetric loads. During the experimental tests of 2017(A)-T4
aluminium alloy (Kluger and Łagoda, 2013, 2014; Kluger, 2015) the effect of mean torsion stress
on fatigue life was discovered. It must be noted that not all materials exhibit sensitivityto the
mean torsion stress (e.g. 30NCD16 steel) (Niesłony et al., 2014).

This paper aims at presenting a stress-based model for estimation of fatigue life at compound
stress state taking into account the mean stress (for bending and torsion). Usefulness of the model
was verifiedby comparing calculation fatigue life and experimental test results of 2017A-T4 and
6082-T6 aluminium alloys (Kluger and Łagoda, 2014; Niesłony et al., 2014), S355J0 alloy steel
(Pawliczek, 2000) and Ti-6Al-4V titanium alloy (Krgo et al., 2000; Kallmyer et al., 2001) for
which sensitivity to mean torsion stress was discovered. The proposed model is very satisfactory
in terms of calculation time. Another beneficial feature is that the material parameters used can
be easily determined based on a set of experimental data of fatigue tests related topure bending
and torsion and static tests.

2. Fatigue tests

Experimental tests have been performed on 2017A-T4 (Kluger and Łagoda, 2013, 2014; Kluger,
2015) and 6082-T6 aluminium alloys (Niesłony et al., 2014; Kluger, 2015), S355J0 alloy steel
(Pawliczek, 2000) and Ti-6Al-4V titanium alloy (Krgo et al., 2000; Kallmyer et al., 2001). The
strength and fatigue properties of tested materials are listed in Table 1.
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Table 1. Strength and fatigue properties of the tested materials

Material E σUTS Rp0.2 σ′f σaf τaf Aσ mσ Aτ mτ
(EN) [GPa] [MPa] [MPa] [MPa] [MPa] [MPa]

2017(A)-T4 72 545 395 987 1421) 781) 21.8 6.9 20.3 7.1

6082-T6 72 385 365 651 1261) 741) 23.8 8.0 21.4 7.7

S355J0 213 611 357 880 271 175 23.8 7.1 32.8 11.7

Ti-6Al-4V 116 850 704 2479 4502) 2602) 19.6 5.5 15.3 4.1
1) for Nf = 10

7 cycles; 2) for Nf = 10
6 cycles

For aluminium alloys 2017(A)-T4, 6082-T6 and S355J0 steel, the results of tests under pure
bending, torsion and two combinations of proportional constant-amplitude bending and torsion
are analysed, whereas for Ti-6Al-4V titanium alloy under tension-compression, torsion and com-
bination tension-compression – torsion. The tests for 2017(A)-T4, 6082-T6 aluminium alloys and
S355J0 steel have been performed with a fatigue testing machine enabling control of bending and
torque moment. The tests for Ti-6Al-4V titanium have been performed with a fatigue testing
machine enabling control of strain. Stress amplitudes and their mean values are calculated as
nominal stresses (without plastic strains).

3. Comparison of the multiaxial fatigue models

3.1. Findley, Dang Van models

Findley (1959) proposed to calculate the equivalent shear stress amplitude τeq,a taking into
account the maximum value of normal stress σn,max on the plane with maximum value of the
equivalent shear stress τeq,a. The proposed equation is as follows

τeq,a = τns,a + kσn,max (3.1)

where k is the material constant including the influence of the normal stress. Findley assumed
that the principal stress directions under proportional loadings do not change. The parameter k
is determined on the basis of the fatigue limits for the alternating torsion τaf and bending σaf
from the following equation

σaf,b
τaf
=

2

1 + k√
1+k2

(3.2)

In the Dang Van criterion (Dang Van, 1983), the mesoscopic scale of stress observation is
applied. In this criterion it is assumed that the material fatigue does not occur when all grains
reach a stable elastic shakedown state. It means that after the initial loading period the material
is subjected to isotropic hardening, and the further relation between stress and strain is expected
in the elastic range. The Dang Van criterion defines the condition of crack initiation and it does
not allow oneto calculate the fatigue life. The condition of exceeding the stable elastic strain
state is dependent on the mesoscopic shear and hydrostatic stresses. However, it is very common
to use this criterion on the macroscopic level and in a such case the condition for crack initiation
is as follows

τns(t) + kσh(t) ¬ b (3.3)

where σh is hydrostatic stress; k, b are constants determined from uniaxial fatigue tests:

k = 3
τaf
σaf,b

− 3
2

b = τaf (3.4)

It is assumed that the critical plane is a plane with the maximum value of shear stress.
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3.2. New proposed model

The new fatigue life estimation model is based on the criterion by Macha (1989). The equ-
ivalent stress is a linear combination of normal and shear stresses and takes up the form

σa,eq = B(τηs,a + τηs,m) +K(ση,a + ση,m) (3.5)

where

ση,a = σa cosα
2 + τa sin 2α ση,m = kσσm cosα

2 + kτ1kτ2τm sin 2α

τηs,a = −
1

2
σa sin 2α+ τa cos 2α τηs,m = −

1

2
kσσm sin 2α+ kτ1kτ2τm cos 2α

(3.6)

and

kσ =

√
σmax
σ′f

σmax = σa + σm

kτ1 =
τa√
3τm + τa

kτ2 = 1 +

√
2σm

σm + τm

(3.7)

The share of individual components of stress in the fatigue process depends on B and K
coefficients. By analysing the stress condition for pure torsion and pure bending at constant-
-amplitude load conditions, a relationship is formulated which describes important factors for
the combination of individual components. The coefficients can be presented as follows (Kluger,
2015; Łagoda and Ogonowski, 2005)

B =
σa(Nf )

τa(Nf )
K = 2− σa(Nf )

τa(Nf )
(3.8)

In general, the values of B and K coefficients are dependent on the amplitude of normal
stress σa and the amplitude of shear stress τa for a specified number of loading cycles. The
values σa(Nf ) and τa(Nf ) are calculated from S-N fatigue curves for simple load states, respec-
tively: tension (bending), shear (torsion). If there are no clear divergences between S-N curves
(σa-Nf , τa-Nf ), in order to simplify the calculations, it may be assumed K(Nf ) = const and
B(Nf ) = const , e.g. for 10

5 or 106 cycles or mainly for the fatigue limit level. However, atten-
tion must be paid to make sure that the curves are parallel over the entire high-cycle range. For
aluminium alloys, a change of curve inclination coefficients is quite frequent and the effect of
such a phenomenon on calculation results must be analysed (Karolczuk and Kluger, 2014).
The plane with maximum shear stress τηs is assumed as the critical plane for the materials

being examined. Analysis criterion (3.5) for zero and non-zero mean stress carried out in (Kluger
and Łagoda, 2013; Kluger, 2015; Łagoda and Ogonowski, 2005) has shown that for elastic-
-plastic materials, the shear plane has to taken into account, whereas the normal plane for
brittle materials.
The normal mean stress reduction coefficient kσ reported in Eq. (3.7)1 depends on the applied

amplitude of normal stress σa, its mean value σm and the material constant σ
′
f . Along with an

increase in the mean stress, the values of kσ grow proportionally.
The value of the shear mean stress reduction coefficient kτ1 (see Eq. (3.7)3) depends on both

the applied amplitudeof shear stress τa and its mean value τm. The coefficient value is highest
at lower values of the mean shear stress. With such a notation of the kτ1 coefficient, the effect
of higher mean stress values, if they occur, is not amplified.
The compound (shear and normal) mean stress reduction coefficient kτ2 reported in Eq.

(3.7)4 depends on both the applied in the specimenmean value of normal and shear stresses. If
the mean stress from bending not occurs, the coefficient takes the value 1, i.e. it remains neutral
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and does not affect the equivalent stress (Eq. (3.5)). In the case of low values of the mean shear
stress, the coefficient increases.
The coefficients kσ, kτ1 and kτ2 are relationships developed on the basis of observations

related to fatigue tests on 2017A-T4, 6082-T6, S355J0 and Ti-6Al-4V.
The number of loading cycles to failure is calculated from the following relationship

Nf = 10
Aσ−mσ log σeq,a (3.9)

derived from the high-cycle fatigue curve S-N (Basquin) equation

logNf = Aσ −mσ log σa (3.10)

assuming σa = σeq,a.

4. Models verification

A statistical analysis is performed to assess the proposed model. The analysis involves the
determination of the mean scatter Em described through the following relationship (Karolczuk
and Macha, 2008)

Em =
1

n

n∑

i=1

E(i) (4.1)

where

E(i) = log
N
(i)
cal

N
(i)
exp

(4.2)

and the scatter coefficient is given by

Estd =

√√√√ 1
n

n∑

i=1

(E(i) − Em)2 (4.3)

where n denotes the number of specimens.
The entire scatter band is expressed with the relationship

Eeq = 10
√
E2m+E

2
std (4.4)

Figsures 1-12 show comparisons of the calculation fatigue life using the proposed model with
the Findley and Dang Van criteria against the experimental data for uniaxial and multiaxial
loadings with zero and non-zero mean stresses. The values of both mean scatter and total scatter
band are also reported. For material fatigue, the minimum confidence level 95% (Sutherland and
Veers, 2000) is generally adopted, i.e. 95% of the results fall within the range of the scatter band
with the coefficient equal to Eeq. Ideal consistency of the results is marked with the continuous
line, and the dashed lines represent the result scatter in the band with 2 and 3 coefficient (see
Figs. 1-12).
Figures 1-3 show the comparison between the calculated and experimental fatigue life for

2017A-T4 aluminium alloy. For loadings with the zero mean stress, all of analyzed models give
satisfactory results of the calculated fatigue life (close to 3). In the case of loadings with a
non-zero mean stress, the calculations based on the proposed model give the smallest scatter
(Eeq = 2.99). Other models of calculations give a very larges cattering of the results. Findley
and Dang Van models overestimate fatigue life calculation.
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Fig. 1. Comparison of the calculated and experimental fatigue lives for aluminum alloy 2017A-T4 using
the proposed model

Fig. 2. Comparison of the calculated and experimental fatigue lives for aluminum alloy 2017A-T4 using
Findley criterion

Fig. 3. Comparison of the calculated and experimental fatigue lives for aluminum alloy 2017A-T4 using
Dang Van criterion
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Fig. 4. Comparison of the calculated and experimental fatigue lives for aluminum alloy 6082-T6 using
the proposed model

Fig. 5. Comparison of the calculated and experimental fatigue lives for aluminum alloy 6082-T6 using
Findley criterion

Fig. 6. Comparison of the calculated and experimental fatigue lives for aluminum alloy 6082-T6 using
Dang Van criterion
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Fig. 7. Comparison of the calculated and experimental fatigue lives for steel alloy S355J0 using the
proposed model

Fig. 8. Comparison of the calculated and experimental fatigue lives for steel alloy S355J0 using
Findley criterion

Fig. 9. Comparison of the calculated and experimental fatigue lives for steel alloy S355J0 using
Dang Van criterion
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Fig. 10. Comparison of the calculated and experimental fatigue lives for titanium alloy Ti-6Al-4V using
the proposed model

Fig. 11. Comparison of the calculated and experimental fatigue lives for titanium alloy Ti-6Al-4V
(Findley criterion)

Fig. 12. Comparison of the calculated and experimental fatigue lives for titanium alloy Ti-6Al-4V
(Dang Van criterion)
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For 6082-T6 aluminium alloy, for which the results of the comparison are shown in Figs. 4-6,
the smallest scattering for the zero mean loading are obtained using Findley’s model
(Eeq = 3.71), but the other models gives similar results. The large scatter of the data is a
result of the very large scatter in the experimental results. The proposed model applied for fa-
tigue life calculation with a non-zero mean stress provides satisfactory results of the calculated
fatigue life for which the scatter band is less than 3. Other models of calculations give a very
large scattering of the results.

The comparison between the calculated and experimental fatigue life with the zero mean
stress for two other analyzed materials S355J0 (see Figs. 7-9) and Ti-6Al-4V (see Figs. 10-
-12) show that the Findley and Dang Van models overestimate fatigue life calculation. Similar
results are obtained for non-zero mean stresses. Only the proposed model applied for fatigue life
calculation with the zero mean stress provides satisfactory results of the calculated fatigue life
for zero and non-zero mean stresses.

The model presented is suitable for estimation of fatigue life of materials dependent on
the mean torsion stress (2017A-T4, 6082-T6, S355J0, Ti-6Al-4V) as is proven by a statistical
analysis. The share of the mean bending and torsion stress in the model is limited by the
reduction coefficients kσ, kτ1 and kτ2. The coefficients applied allow one to estimate fatigue life
also for the combination of bending and torsion. For non-proportional loads with zero mean
stresses, criterion (3.5) gives good results of the estimated fatigue life (Walat et al., 2012). Due
to the lack of other studies and limited number of experimental data, the suitability of the
model to estimate the fatigue life of non-proportional loads with a non-zero mean value cannot
be definitively determined. Only for one of the materials (steel 30NCD16), experimental studies
for non-proportional loads of a non-zero mean value of stress (Froustey and Lasserre, 1989) were
carried out. Unfortunately, this material is not sensitive to the mean shear stress.

The model proposed is very satisfactory in terms of calculation time. Another beneficial
feature of the model is that the material parameters used can easily be determined based on a
set of experimental data of fatigue tests related to pure bending and torsion and static tests.
The coefficients kτ1 and kτ2 depend on the load state only.

The results of experimental tests outside the scatter band with the coefficient equal to 3 can
be due to the fact that the material for tests is of commercial quality, without homogenisation
and normalisation after mechanical treatment.

5. Conclusions

• As a result of verifications of the presented model, satisfactory results of comparisons
between the calculation and experimental data have been obtained for 2017A-T4 and
6082-T6 aluminium alloys, S355J0 steel alloy and Ti-6Al-4V titanium alloy for all types
of load analyzed.

• Mean torsion stresses affect fatigue life of the materials analysed, and have to be taken
into account in the calculation process.

• The value of the shear mean stress reduction coefficient kτ1 depends on both the amplitude
of shear stress and its mean value. The coefficient is highest at lower values of the mean
shear stress.

• The compound (shear and normal) mean stress reduction coefficient kτ2 depends on values
of both mean normal and shear stresses. If the mean stress from bending does not occur,
the coefficient takes the value 1, i.e. it does not affect the equivalent stresses. In the case
of low values of mean shear stress, the coefficient increases.
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• The material susceptibility to the mean stress coefficient kσ depends on the amplitude of
the normal stress kσ and the fatigue life coefficient σ

′
f . Along with an increase in the mean

stress, the values grow proportionally.

• The reason for large scatter of the results for the other analyzed models could be the
disregarding of the effect of the mean shear stress.
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The paper deals with the multiobjective and multiscale optimization of heterogeneous struc-
tures by means of computational intelligence methods. The aim of the paper is to find opti-
mal properties of composite structures in a macro scale modifying their microstructure. At
least two contradictory optimization criteria are considered simultaneously. A numerical ho-
mogenization concept with a representative volume element is applied to obtain equivalent
macro-scale elastic constants. An in-house multiobjective evolutionary algorithm MOOP-
TIM is applied to solve the considered optimization tasks. The finite element method is
used to solve the boundary-value problem in both scales. A numerical example is attached.

Keywords: composite, numerical homogenization, multiobjective optimization, evolutionary
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1. Introduction

Composites are structural materials which are increasingly used and constantly gain in popula-
rity due to their properties. In particular, the favourable strength/weight ratio causes them to
displace traditional structural materials such as metals and their alloys in many areas of tech-
nology. Their properties depend on such parameters as the properties of constituent materials,
volume fraction of the constituents as well as shape and location of the reinforcement. Proper
manipulation of such parameters allows obtaining the desired behaviour of composite structures.
In order to obtain the best (for given criteria) properties, optimization methods have to be

applied. Since the application of conventional, typically gradient-based, optimization methods for
composites may encounter difficulties due to multimodality and discontinuity of the objective
function, it is reasonable to use global optimization methods, like bio-inspired optimization
algorithms, e.g. evolutionary algorithms, artificial immune systems or particle swarm optimizers
(Michalewicz and Fogel, 2004; De Castro and Timmis, 2002; Kennedy and Eberhart, 2001).
In real optimization problems, it is very often necessary to consider more than one criterion at

the same time. If the criteria are contradictory, the optimization task belongs to multiobjective
ones. The dedicated implementations of bio-inspired global optimization methods can be applied
to solve multiobjective optimization tasks. A survey of the state of the art of the multiobjective
evolutionary algorithms can be found in Zhoua et al. (2011).
Proper determination of the effect of micro-structure of heterogeneous materials on their

behaviour at the macro level allows the optimal design of heterogeneous materials. Multiscale
optimization allows designing materials in one scale level to obtain the desired properties of the
material on different scale(s). Different homogenization methods are typically applied to perform
calculations in more than one scale in a reasonable time (Kouznetsova, 2002; Buryachenko, 2007;
Zohdi and Wriggers, 2005).
There are numerous approaches to the multiscale modelling. Analytical or semi-analytical

methods are typically used to determine the equivalent material constants for inclusions or voids
of regular shape, e.g. circular, elliptical or spherical (Eshelby, 1957; Bensoussan et al., 1978).
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The applied in the present paper attitude is based on numerical homogenization methods
belonging to so-called upscaling methods. Simulation in this group of homogenization methods is
carried out hierarchically in different scales utilizing the representative volume element attitude.
The computational intelligence methods have been successfully applied by the authors to multio-
bjective optimization problems of composite structures at the macro scale only, see e.g. Beluch
et al. (2008). The application of computational intelligence methods for the single-objective mul-
tiscale identification of material constants in heterogeneous materials was presented by Beluch
and Burczyński (2014).

2. Multiscale modelling

Many structural materials like composites, porous materials or polycrystalline materials are non-
homogeneous on a certain observation level. In order to model such materials more precisely,
considerations in a macro scale only may be insufficient. Taking into account different scales
allows modelling different geometric and material properties of the structures. A macro-scale
model may contain various types of external loads (mechanical, thermal, electrical, etc.). Meso
and micro scales make it possible to consider such elements as discontinuities or imperfections,
like cracks, voids, inclusions or surface roughness (Nemat-Nasser and Hori, 1993; Vernerey and
Kabiri, 2014). A nano-scale level includes e.g. crystal lattice defects while an atom-scale le-
vel allows incorporating molecular mechanics effects (Burczyński et al., 2007). The number of
considered scales depends on the required accuracy of the model (Ilic and Hackl, 2009).

The proper determination of the influence of the micro-structure of heterogeneous materials
on their behaviour at the macro level allows optimal designing of them. An appropriate selection
of the component materials, geometry and volume ratio of constituents allows creating mate-
rials with desired properties, including those which cannot be obtained with the application of
homogeneous materials only (Takano and Zako, 2000).

The direct application of more than one scale in numerical calculations by means of nu-
merical methods such as the finite element method (FEM) (Zienkiewicz and Taylor, 2000) or
boundary element method (BEM) (Brebbia and Dominiguez, 1989) leads to systems with such
large numbers of degrees of freedom that they are very hard or even impossible to be solved.
In order to overcome this problem, different homogenization techniques are employed. In the
present paper, numerical homogenization techniques are applied to find the parameters of the
equivalent material for composite structures. The behaviour of heterogeneous media is described
by differential equations with discontinuous coefficients like elastic constants in linear-elastic pro-
blems. The aim of the numerical homogenization is to determine continuous, effective coefficients
of differential equations which are applied to a higher scale. A typical attitude in the numeri-
cal homogenization consists in the determination of constitutive relation between averaged field
variables, like stresses and strains (Ptaszny and Fedeliński, 2011).

2.1. Numerical homogenization of heterogeneous materials

Numerical homogenization techniques belong to upscaling methods which perform hierar-
chical simulation in particular scales and make use of the representative volume element (RVE)
concept (Hill, 1963). They allow obtaining macroscopically homogeneous, equivalent materials
which behave in the macro scale as microscopically heterogeneous ones.

RVEs are used for globally or locally periodical structures. RVE represents the structure
of the whole medium or its part, so it has to include all information required for a thorough
description of the structure and properties of the medium (Hashin, 1964).
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Numerical homogenization can be performed under certain conditions:

a) The principle of the scales separation requires that RVE size lRV E must be significantly
greater than the microstructure characteristic dimensions lmicro and considerably smaller
than the characteristic dimensions lmacro in the macro scale (Zohdi and Wriggers, 2005)

lmicro ≪ lRV E ≪ lmacro (2.1)

It is commonly assumed that the RVE is the smallest possible volume representing the
entire medium or its part. RVE should meet two conflicting criteria: be large enough to
be representative of the entire structure and as small and uncomplicated (geometrically
and materially) as possible in order to carry out its precise numerical analysis (Madi
et al., 2006). In the case of fully regular structures (commonly used for fiber-reinforced
composites), RVE may contain only one centrally placed core. Such an RVE is called a
unit cell.

b) Averaging is performed according to the relation

〈·〉 = 1|V |

∫

V

(·) dV (2.2)

where 〈·〉 is the averaged value of the field under consideration, V – RVE volume.
c) The condition specifying the equality of the average energy density in the micro scale and
the macroscopic energy density at the point of macrostructure corresponding to the RVE
(Hill condition) has the form (Kröner, 1972)

〈σijεij〉 = 〈σij〉〈εij〉 (2.3)

where: σij and εij are stress and strain tensors in the micro scale.

d) Appropriate boundary conditions, e.g. periodic boundary conditions (Kouznetsova, 2002):
periodic displacements and anti-periodic tractions on opposite faces of the RVE, as shown
in Fig. 1, are

u+i = u
−
i ∀r ∈ ∂V : n+i = −n−i

t+i = −t−i ∀r ∈ ∂V : n+i = −n−i
(2.4)

Fig. 1. RVE boundaries for periodic boundary conditions

In addition to the boundary conditions, strain boundary conditions from the higher scale are
imposed on every RVE (localization). If FEM is applied to solve the boundary-value problem in
both scales, the RVE is assigned to each integration point in the micro scale (Kuczma, 2014).
Averaged stresses, calculated according to Eq. (2.2), are obtained as a result of numerical

computations in the micro scale (homogenization). Averaged stresses are transferred to the
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higher scale in order to calculate homogenized material parameter values at the macro scale
taking into account the constitutive equation for the homogenized material. Assuming that the
considered composites can be treated as orthotropic materials in the plane strain state, the
constitutive equation in the Voight notation has the form (Gibson, 2012)



〈σ11〉
〈σ22〉
〈σ12〉


 =



Q11 Q12 0

Q22 0
· Q33






〈ε11〉
〈ε22〉
〈ε12〉


 =

E

(1 + ν)(1− 2ν)



1− ν ν 0

1− ν 0
· 0.5− ν






〈ε11〉
〈ε22〉
〈ε12〉




(2.5)

where Qij are the elements of the resultant elastic constants tensor Q, i, j = 1, 2, 3.

In the considered case, determination of the Q matrix elements requires performing of 3
independent analyses in the micro scale for each RVE. If the material is linear and fully periodic,
only one RVE has to be analysed for the whole structure.

Having determined the components of the Q matrix, the elastic constants of the equivalent
material are calculated according to Eq. (2.5).

3. Formulation of the optimization problem

In many engineering optimization problems, more than one optimization criterion have to be
taken into account simultaneously. Moreover, the considered criteria are often contradictory,
which leads to multiobjective optimization (MOO) tasks. MOO results in a set of trade-off
solutions instead of only one optimal solution in single-objective optimization tasks.

The aim of the two-scale multiobjective optimization of composite structures is to find some
of its properties in the micro scale (represented by the RVE) which optimize the behaviour of
the structure in the macro scale. To solve the boundary value problem in the macro and micro
scales, the commercial FEM software MSC Marc and MSC Nastran has been applied. In order
to combine MOOPTIM with FEM software, appropriate programming interfaces have been
developed. The block diagram of the multiobjective and multiscale evolutionary optimization is
presented in Fig. 2.

Fig. 2. A block diagram of the multiobjective and multiscale evolutionary optimization
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3.1. Definition of the multiobjective optimization task

A MOO problem can be treated as a search for a vector x ∈ D, whereD is a set of admissible
solutions being a subset of design space X (Deb, 2001)

x = [x1, x2, . . . , xn]
T (3.1)

which minimizes the vector of k objective functions

f(x) = [f1(x), f2(x), . . . , fk(x)]
T (3.2)

The vector x has to satisfy m inequality constrains gi(x)  0, i = 1, 2, . . . ,m and p equality
constrains hi(x) = 0, i = 1, 2, . . . , p.
There exist many attitudes to the multi-objective optimization problems (Laumann et al.,

2004). A priori methods are based on the transformation of a multiobjective problem into a
single-objective one (Collette and Siarry, 2003). The most popular methods from this group are:
i) weighted sum method in which each criterion has its own weight value; and ii) ε-constraint
method in which the optimization is performed for a chosen criterion while the remaining criteria
are treated as constrains. The advantage of the a priori methods is that single-objective methods
can be applied, but the drawback is that some very often unrealistic assumptions of the objectives
have to be made before the optimization starts.
The second group state interactive methods, which demand an interaction with the decision-

maker (DM) during the optimization to achieve additional information (Luque et al., 2011).
There exist many multi-criteria decision-making principles. For example, in Phelps and Koksalan
(2003), a pair-wise comparison of solutions is used to include DM’s preference. The guided
multiobjective evolutionary algorithm (G-MOEA) uses a modified definition of dominance (see:
Section 3.2) which has been modified based upon the DM’s preference information (Branke and
Deb, 2004).
Both aforementioned groups of methods result in one solution of the optimization process.

In the a posteriori methods, a set of compromise (trade-off) solutions is determined in the first
step of the optimization procedure. The DM is required to choose the most preferred solution
in the second step.

3.2. Pareto concept in multiobjective optimization of composites

An attitude belonging to a posteriori methods is employed in the present paper. The multio-
bjective optimization is performed using the Pareto concept of non-dominated solutions (Ehr-
gott, 2005). If the minimization problem is considered, a solution x is strongly dominated by
the solution x∗ if

∀i ∈ {1, 2, . . . , k} : fi(x
∗) < fi(x) (3.3)

The solution x is weakly dominated by the solution x∗ if

∀i ∈ {1, 2, . . . , k} : fi(x
∗) ¬ fi(x) ∧

∃j ∈ {1, 2, . . . , k} : fj(x
∗) < fj(x)

(3.4)

An example of domination areas for an arbitrary point (solution) A for a two-objective
minimization problem is presented in Fig. 3. The set of non-dominated solutions is called the
Pareto front.
In the present paper, a multi-objective optimization problem is solved by means of the

proposed multiobjective evolutionary algorithm MOOPTIM, which belongs to bio-inspires global
optimization methods (see: Section 4).
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Fig. 3. An exemplary Pareto front and domination areas for point A

The real-value coding of the design variables is applied in MOOPTIM. The vector of the
design variables (chromosome) has the form

x = [lRV E, Em, Ef ] (3.5)

where lRV E is the characteristic dimension of the RVE, Em, Ef – Young’s moduli for the matrix
and fibre materials, respectively.

3.3. Optimization criteria

The following optimization criteria have been considered simultaneously:

1. The minimization of the (dimensionless) structure cost C

argmin{C(x); x ∈ D} C(x) = ρfCfVf (x) + ρmCmVm(x) (3.6)

where ρf , ρm are fibre and matrix densities, Vf , Vm – fibre and matrix volumes, Cf , Cm
– fibre and matrix unit costs per kilogram.

2. The minimization of the complementary energy of the structure Πσ being a measure of
the averaged susceptibility of the structure (Burczyński, 1995)

argmin{Πσ(x); x ∈ D} Πσ(x) =

∫

Ω

W (σ) dΩ −
∫

Γ1

pu0 dΓ1 (3.7)

whereW (σ) is the stress potential related to a volume unit, Ω – a domain occupied by the
body, Γ1 – part of the boundary on which the function pu0 is defined, p, u0 – tractions
and displacements on Γ1.

4. Multiobjective evolutionary algorithm

An in-house multiobjective evolutionary algorithm MOOPTIM based on the Pareto concept is
used for solving optimization tasks (Długosz, 2010). Some ideas in MOOPTIM are inspired by
Deb’s NSGAII algorithm (Deb et al., 2002). Similarly as in NSGAII, the proposed algorithm
uses a non-dominated sorting procedure to classify individuals in the population and a crowding
coefficient to preserve diversity in the population. The main differences between MOOPTIM and
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NSGA II are: i) application of a different number and different types of evolutionary operators
and ii) selection mechanism.

Two types of mutation (uniform and Gaussian ones) and two crossover operators, in form of a
simple crossover and an arithmetical one, are used. As previously tested, the Gaussian mutation
operator has significant influence on the effectives of searching ability of the algorithm. This
operator requires an extra parameter, called the mutation range, which can take values from 0
to 1. It is observed that higher values of the mutation range usually improve the convergence of
the algorithm, especially for difficult optimization tasks (Długosz, 2013).

Instead of binary tournament selection in NSGA-II, in MOOPTIM, individuals are selected
on the basis of a non-domination level as well as the crowding coefficient.

A pseudo code of the algorithm is presented in Fig. 4. In the initialization step, besides
determining all settings of the algorithm, the populations Qi and Pi of the same size are gene-
rated, and the fitness functions are evaluated for the population Qi. In the main loop, after the
evaluation of the fitness functions values for Pi, the populations Qi and Pi are combined into
a set Ri. Next, the selection procedure is performed on the set Ri. The individuals from the
population Ri are selected to Pi+1 on the basis of the non-domination level and the crowding
coefficient. Individuals from Pi+1 are copied to Qi+1 and then, evolutionary operators modify
the individuals in the population Pi+1 to obtain new possible solutions.

MOOPTIM algorithm
begin

i← 0
randomly generate population Qi
evaluate objective functions for Qi
randomly generate population Pi
while (not termination condition) do
begin
evaluate objective functions for pi
join populations Qi and Pi (Ri = Qi + Pi)
use selection (choose Pi+1 from Ri)

copy Pi+1 to Qi
apply evolutionary operators for Pi+1

i← i+ 1
end

end

Fig. 4. The pseudo code of the MOOPTIM algorithm

MOOPTIM has been tested on several benchmarks typical for the multiobjective problems
like: SCH, ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, CONSTR, SRN, TNK (Deb, 1999; Zitzler and
Thiele, 1999). The results obtained using MOOPTIM in most cases are better in comparison
with the results obtained by means of NSGA-II. The advantage of using MOOPTIM (instead
of NSGA-II) especially appears in the case of functions difficult to optimize, i.e. having strong
multimodality, non-convex or a discontinuous Pareto front. Functionals defined for engineering
problems, which are solved by using FEM, are usually strongly multimodal and, sometimes,
design variables are discontinuous.

The ability of finding global solutions by the optimization algorithm for such problems is
essential. The application of the proposed algorithm to solve different optimization tasks has
shown its superiority on NSGAII in many cases (Długosz, 2010, 2013). Moreover, MOOPTIM
has been successfully applied in the optimization of parameters for porous microstructures in
two-scale thermoelastic problems (Długosz, 2014).
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5. Numerical example

A box beam structure of dimensions 200×80×60mm made of a composite material is considered
(Fig. 5). The thickness of each side is constant and equal to 2mm. The structure is fixed on one
end and loaded by a pair of nodal forces of value P = 300N each. The structure is divided into
700 Quad4 finite elements having linear shape functions.

Fig. 5. A box beam – dimensions, mesh and boundary conditions

Global periodicity of the structure is assumed and, as a result, the structure can be fully
represented by a RVE containing a single centrally positioned fibre (unit cell) of dimension equal
to 15µm. The volume fraction of the fibre can vary within the range 4%-45%, which is achieved
through different sizes of the RVE (RVE side length lRV E = 60-20 µm), as presented in Fig. 6.
Regardless of the fibre volume fraction, each RVE is divided into 820 Quad4 four-node finite
elements.

Fig. 6. Exemplary RVEs with mesh for fibre volume fractions: (a) 4% (RVEl = 60µm),
(b) 45% (RVEl = 20µm)

The matrix of the composite is an epoxy resin, while different types of fibres may be applied as
reinforcement. The fibres are characterized by some parameters, like Young’s modulus, Poisson’s
ratio, density and unit price. The selected parameters of the matrix and fibres materials are
collected in Table 1.

It is assumed that the fibre material cost is dependent on material Young’s modulus. Two
cases are considered:

i) the fibre material cost is approximated by a polynomial function of Young’s modulus, as
presented in Fig. 7. This attitude assumes the possibility of designing the fibre material
that has the desired properties;
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Table 1. Parameters of the composite constituent materials

No. Material
E ν Density Unit price
[GPa] [–] [g/cm3] [¿/kg]

1 E glass (fibre) 72 0.22 2.54 1.5

2 S-2 glass (fibre) 87 0.22 2.49 5

3 HS carbon (fibre) 230 0.2 1.8 25

4 IM carbon (fibre) 285 0.2 1.8 55

5 HM carbon (fibre) 400 0.2 1.8 175

6 Epoxy resin (matrix) 2.4 0.35 1.14 8

ii) the fibre material cost is taken from the database of material parameters (materials 1-5
from Table 1.

Each chromosome which is a design variable vector consists of two genes representing:

i) size of the RVE and Young’s modulus of the fibre (case i);

ii) size of the RVE and the fibre material number (case ii).

Two variants of the case i) are taken into consideration, as presented in Fig. 7:

i) only carbon fibres are considered (solid line);

ii) carbon and glass fibres are taken into account (dashed line).

Fig. 7. Young’s modulus of the fibre – unit cost diagrams for polynomial approximation

The results of the optimization in form of Pareto frontiers for cases i) and ii) are presented
in Fig. 8.
As revealed from Fig. 8, the best optimization results have been obtained for a wider search

space (glass and carbon fibres).
The design variables values, fibre volume fractions and fitness function values for exemplary

points 1-4 for carbon and glass fibres with different approximations are collected in Table 2.
The following parameters of MOOPTIM are assumed:

• probability of the Gaussian mutation pgm = 0.7;
• probability of the uniform mutation pum = 0.1;
• probability of the simple crossover psc = 0.1;
• probability of the arithmetic crossover pac = 0.1;
• number of chromosomes nch = 70;
• number of generations ng = 70.
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Fig. 8. Box beam – results of multiobjective optimization for case i)

Table 2. Multiobjective optimization results for the box beam

Design variable Fitness function
Point RVE length [µm]/fibre E of the fibre Structure unit Complementary

volume fraction [%] [GPa] cost [–] energy [Nm]

1 20/45 70 0.848 1541.43

2 20/45 204.6 1.754 1454.38

3 20/45 400 12.429 1431.94

4 58.0764/5.24 70 0.941 3736.95

The multiobjective optimization results for case ii) (the choice of the material from the
database) compared to the results obtained for case i) (carbon and glass fibres, polynomial
approximation, also shown in Fig. 8), are presented in Fig. 9.

Fig. 9. Box beam – results of multiobjective optimization for cases i) and ii)

The information obtained from the results for the approximated cost values may be used
to search for or for designing materials the cost of which is a function of selected parameters.
The multiobjective optimization in the case where materials are chosen from the database of
the available materials is more practical, but typically gives worse optimization results due to
narrower search space.
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6. Final conclusions

The multiscale and multiobjective optimization of heterogeneous structures has been performed.
Periodic fibre-reinforced composite structures have been examined. The RVE concept has been
employed to perform numerical homogenization. FEM calculations have been performed to solve
boundary-value problems in both scales. Two contradictory optimization criteria have been
considered to obtain the optimal behaviour of the macrostructure modifying the volume fraction
of the fibre and the fibre material in the micro scale. An in-house multiobjective evolutionary
algorithm MOOPTIM has been applied to solve the multiobjective optimization problems.

The proposed approach enables designing of composite microstructure based on the criteria
defined in the macro scale. The paper presents an example with a unchangeable (circular) shape
of the reinforcement. In that case, the optimization was to determine the reinforcement material
and its volume fraction in the RVE.

The optimization results have been presented in form of Pareto frontiers of non-dominated
solutions and in graphical form of optimal microstructures for selected non-dominated solutions.
Graphical presentation of the non-dominated solutions also carries information about the nature
of the conflict between the criteria. For instance, the frontier presented in Fig. 8 for variant i)
(carbon fibres) has two distinct areas merging at an approximately straight angle, while the
front for variant ii) (carbon and glass fibres) does not have clearly demarcated sub-areas. These
places at the Pareto front, where a small change in the value of one of the objective function
results in a large change in the value of other objective functions (area A in Fig. 8) require
particular attention in the design process.

The application of the MOOPTIM algorithm to the considered multiobjective problems
proves that the proposed algorithm is useful. The defining and using of the optimization criteria
other than those presented in this paper do not pose problems in the proposed approach.
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This paper addresses the problem of ventral hernia repair. The main goals are to find an
optimal surgical mesh for hernia repair and to define its optimal orientation in the abdomi-
nal wall to minimise the maximum force at the tissue-implant juncture. The optimal mesh is
chosen from a set of orthotropic meshes with different stiffness ratios for typical hernia pla-
cement in the abdominal area. The implant is subjected to an anisotropic displacement field,
different for the selected hernia placements. The assumed displacement fields correspond to
regular human activity. Proper implantation of the mesh may determine the success of hernia
repair and/or the postoperative comfort of patients. The proposed solution is based on FEM
simulations of different surgical meshes behaviour. In typical hernia placements, the optimal
orientation of the stiffer direction of the implant is perpendicular to the spine. However, the
presented results show some cases that an oblique direction may be the optimum one.

Keywords: biomechanics, surgical mesh, finite element modelling, optimisation

1. Introduction

Ventral hernia is a common medical problem researched by surgeons and engineers for many
years, but question about the main factors influencing hernia repair efficiency still remains open
(Muysoms et al., 2013). This problem refers to primary hernias as well as to incisional ones. It
is estimated that there is a 12% chance of incisional ventral hernia occurrence after abdominal
surgery and a 3.2% chance after laparoscopic operation (Bensley et al., 2013). Laparoscopic
ventral hernia repair is believed to be superior to an open operation (Qadri et al., 2010), however
the best treating scheme is not specified for the time being, and such problems as recurrences
or chronic pain happen (Sommer and Friis-Andersen, 2013). It is believed that the success of
ventral hernia repair depends mainly on selection of an appropriate implant and its fixation
(Muysoms et al., 2013). In the authors’ opinion, mathematical modelling and simulations can
provide information about the best course of the treatment, and then, a combination of medical
and mechanical knowledge may lead to an increase in hernia treatment efficiency.
This paper refers to laparoscopic repairs. The principle that the properties of surgical meshes

should match the properties of the abdominal wall and that implants should be oriented in the
human body in accordance with the mechanics of the abdominal wall has been reported in the
literature since 2001 (Junge et al., 2001). This issue was discussed e.g., by Kirilova et al. (2012),
Hernández-Gascón et al. (2013), Anurov et al. (2012). All these studies are limited to just one
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position of hernia orifice and two perpendicular orientations of implants. As the abdominal wall
is subjected to various strains during human activity, both in magnitudes and in orientations
in different locations (Szymczak et al., 2012), it is reasonable to find the best orientation of the
implant for different hernia locations in the abdominal wall. This problem was already addressed
in (Lubowiecka et al., 2014).

The main goal of this study is to investigate the influence of implants orientation on forces
in fasteners. The value of this force determines the success of hernia repair since its increase can
lead to the junction failure which is a common cause of the illness recurrence.The maximum
force on a fastener affixing an implant should be smaller than the allowable tearing force for
a selected tack (Tomaszewska et al., 2013). The proposed solutions are derived from structural
mechanics and optimisation methodology. In order to analyse the behaviour of the surgical
mesh, a mathematical model of the tissue-implant system, which is created during laparoscopic
hernia operation, is applied. The modelling of implant-tissue systems began with the cable
model (Szymczak et al., 2010). Next, two-dimensional finite element (FE) membrane models
with various boundary conditions were defined (Lubowiecka et al., 2010; Lubowiecka, 2015;
Tomaszewska et al., 2013). An FE model of the implant-hernia system was also proposed by
Guérin and Turquier (2013) and Hernández-Gascón et al. (2013). Some mechanical properties
of surgical meshes were recognized for their application in different material models including
an orthotropic linear or bilinear elastic material model (Lubowiecka et al., 2014) or a dense
net material model (Lubowiecka, 2015), a hyperelastic constitutive model (Hernández-Gascón
et al., 2013) and a beam model reflecting the implant material structure (Hernández-Gascón et
al., 2012).

The novel approach presented in this paper is formulating and solving the optimisation
problem, which results in the selection of the optimal orthotropic implant and its best orientation
in the anisotropic abdominal wall. We consider five possible hernia placements, where implants
are imposed to different fields of displacements caused by deformation of abdominal wall during
daily activities. The optimisation criterion is minimising the maximum forces on tissue-implant
junctures resulting from the patient’s body movements.

2. Materials and methods

2.1. Formulation of the optimisation problem

The force acting on a single fastener of a given type of mesh implant depends on the implant
mechanical properties, its orientation relative to the direction of the spine, and the layout of
the fasteners. In this model, a circular layout of point fasteners is assumed. To find the optimal
orientation for an implant, the minimisation of the force F (i, α, s) is defined as an objective
function

min
i∈I, 0¬α¬2π, s⊂S

max F (i, α, s) (2.1)

where i denotes the number of fasteners indicating their position, I stands for the fastener set,
α is the angle between the implant primary axis and the spine, and s indicates the implant
number from the set of implants S considered.

A three-stage process of minimising objective function (2.1) is proposed herein. During the
first stage, the maximum force Fmax(i, α, s) in the fastener is sought for a chosen implant s and
the implant angle of orientation as a solution of the sub-problem (according to Eq. (2.2). The
outcome of this step is the number i0 that indicates the fastener at which Fmax occurs

max
i∈I

F (i, α, s) (2.2)
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In the second stage, the angle specifying the implant orientation in relation to the spine is
sought. The problem is formulated as a minimisation of the maximum force obtained in the first
stage with respect to the angle α

min
0¬α¬2π

Fmax(i0, α, s) (2.3)

The minimisation procedure is conducted in a discrete manner; the implant orientation angle α
changes by the assumed increment ∆α. Thus the orientation angle of the implant α0 for which
the minimal force in tack i0 (selected in the first step), is identified.

In the last stage, steps one and two are repeated for each implant s from the considered set
of implants S

min
s⊂S

Fmax(i0, α0, s) (2.4)

Finally, the implant s0, its orientation α0 and the corresponding fastener number i0 are deter-
mined to solve the objective function. This finalises the optimisation procedure.

2.2. Modelling and simulation of the implanted surogical mesh

Four popular synthetic implants used in ventral hernia repair are considered in this study,
ProceedTM Surgical Mesh (Ethicon Endo-Surgery, Inc., USA), ParietexTM Composite (Covi-
dien, USA), DynaMesh

R
O

-IPOM (FEG Textiltechnik mbH, Germany) and Gore
R
O

Dualmesh
R
O

Biomaterial (W.L. Gore & Associates, Inc., USA). They are knitted structures made of polypro-
pylene and cellulose, polyester, polypropylene and polyvinylidene fluoride treads, respectively.
The latter material is in form of a smooth membrane made of expanded polytetrafluoroethylene.
A suggestion concerning proper orientation of the implant in the abdominal wall can be found
only in specification of DynaMesh

R
O

. The manufacturer recommends a craniocaudal orientation
of the mesh, but does not distinguish different hernia locations. The analysis refers to practi-
cal cases concerning the first few weeks following the operation, when the implant is not yet
encapsulated by a fibrous capsule and when most hernia recurrences occur. The correct mesh
orientation decreases the risk of possible postoperative fixation failure even when the mechanical
properties of the implant are changed due to tissue overgrowth (Oettinger et al., 2013).
Hernia with an orifice diameter of 5 cm is considered in this study. A standard clinical case is

taken into account, in which the implant is affixed to the tissue with point fasteners in a circular
order. The least favourable situation is applied with 4 cm spacing between fasteners. The circle
of joints has a diameter of 13 cm, and then a radial distance of 4 cm between the hernia orifice
edge and joints is preserved according to medical standards. There are 10 fasteners in such a
layout.
The mesh is modelled with a polygonal membrane structure (Fig. 1a), supported in 10 points.

The numerical model of the implant is defined within the Finite Element Method using the
MSC.Marc

R
O

commercial system. Eight-node membrane elements QUAD(8) with 3 translational
degrees of freedom at each node are used. The model is discretised by 960 finite elements with
mesh refinement around the tissue-implant joints (Fig. 1b).

The model is subjected to kinematic extortions related to displacements of the abdominal
wall when the patient moves. The range of extortions can be derived from a map of possible
strains of the external layer of the abdominal wall, which was discussed by Szymczak et al.
(2012). A summary of those results is presented in Fig. 2a. However, the strains on the internal
surface of the abdominal wall are 2.6-fold smaller than on the external surface (Podwojewski et
al., 2013). Thus the reduction factor of 2.6 is applied to the results described by Szymczak et al.
(2012). The values and directions of maximal strains of the abdominal wall are different in its
various regions, so the implant is subjected to various extortions when placed in different parts
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Fig. 1. (a) Scheme model of the implanted surgical mesh; b) Finite Element mesh

Fig. 2. (a) Directions and values (in %) of strains on the external abdominal surface in different
sections, according to Szymczak et al. (2012); (b) considered hernia cases

Table 1. Reduced abdominal strains in the radial direction at the fastener imposed in the model
supports [%]

[%] p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Case 1 9 3 3 6 7 7 6 3 3 9

Case 2 9 3 2 6 7 7 6 2 3 9

Case 3 12 4 3 7 9 9 7 3 4 12

Case 4 9 6 3 5 13 13 5 3 0 0

Case 5 9 5 3 7 13 13 7 3 5 9

of the abdomen. Thus, five hernia locations are considered as marked in Fig. 2b. For each case,
the extortions are estimated basing on the abdominal strains presented in Fig. 2a, scaled by a
factor of 2.6 and they are applied to the supporting points of the model (p1 to p10, see Fig. 1a).
The final values of the extortions applied to each supporting point are included in Table 1.

Mechanical properties of the meshes selected for the analysis differ significantly. Orthotropic
or isotropic, linear or bilinear elastic constitutive models have been identified for them, basing
on Biot stress and Biot strain experimentally measured in one-dimensional tensile tests. The
experiments are presented in (Tomaszewska et al., 2013). As one can notice, basing on the
data summarised in Table 1, in each hernia case the meshes are subjected to strains smaller
than 0.3. Thus, constitutive models of the meshes have been specified for the strain range 0-0.3.
The least squares method applied in the Marquardt-Levenberg algorithm is used for parameters
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identification. Finally, the obtained parameters of the constitutive models applied for each kind of
the implant are presented in Table 2. It has been observed that Dualmesh

R
O

is a nearly isotropic
material. The rest of the meshes considered here is distinctly orthotropic, but with different
orthotropy ratios calculated as E1/E2. E1 and E2 are the elastic moduli of the implants derived
for two perpendicular directions wherein E1 > E2. The directions of orthotropy, indicated by
E1 and E2, for the considered meshes are marked in Fig. 3.

Table 2. Parameters of linear or bilinear elastic orthotropic material models of the implants for
the strain range 0-0.3

Limit E [N/mm] E1/E2 Poisson’s
Mesh A stress for for for for εl [–] ratio

[N/mm] ε < εl ε > εl ε < εl ε > εl ν21 [–]

Dualmesh
(2.1) 8.4 28

1.1 N/A 0.3
(2.2) 6.1 26

DynaMesh
(2.1) 4.5 6.4 14

18 39
0.15

0.3
(2.2) 1.7 0.36 N/A

Parietex
(2.1) 3.7 1.6 21

1.8 10 0.15 0.3
(2.2) 2.0 0.87 2.1

Proceed
(2.1) 4.2 40

5.3 N/A 0.3
(2.2) 4.1 7.6

A – Direction of bigger (2.1) or smaller (2.2) stiffness of the mesh

Fig. 3. Directions of the higher and lower stiffness of the considered meshes

The accuracy of the implant model with a proposed polygonal shape has been successful-
ly verified against experiments on a physical model of the system subjected to impact loads
resulting from postoperative cough (Lubowiecka, 2015). The h-convergence analysis has been
performed within simulations.
According to the optimisation procedure described in Section 2.1, for each implant placed in

each hernia case, the reaction forces in the supporting points are calculated (stage 1). Nonlinear
static analysis in the range of large strains is performed. Twelve orientations of each implant in
each simulated hernia location are considered (α = 0-180 degrees with 15 degree intervals). The
angle α = 0 stands for the craniocaudal orientation of E1 direction of the considered implant as
marked in Fig. 1a.
The influence of the implant orientation on reaction forces is expressed by the value of the

coefficient D = (Fmax − Fmin)/Fm · 100%, where Fmax is the maximum reaction obtained for
the orientation αmax, Fmin is the maximum reaction obtained for the orientation α0 (stage 2 of
the optimisation). The smallest maximum reaction occurs for the optimal orientation α0 of the
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implant and αmax is the orientation corresponding to the largest maximum reaction that occurs
in the supporting points of the mesh. αmax is the least appropriate orientation. The larger the
value of theD coefficient, the greater is the effect of the implant orientation on the reaction force.
In the final step of the optimisation problem, the optimal solution described by the implant type
along with its optimal orientation is found (implant type along with its optimal orientation).

3. Results

The calculated values of the angles α0 and αmax along with D coefficients are presented in
Table 3. For almost isotropic Dualmesh

R
O

, D value does not exceed 5% in any area, but
for other meshes it is visibly higher. The largest values of D are obtained for DynaMesh

R
O

(36%-55%) and for ProceedTM (35%-53%). D value of ParietexTM is in the range of 26%-34%.

Table 3. The best and the worst orientations of implants

DynaMesh Parietex Proceed Dualmesh
Case αmax α0 D αmax α0 D αmax α0 D αmax α0 D

[deg] [deg] [%] [deg] [deg] [%] [deg] [deg] [%] [deg] [deg] [%]

1 15 75 36 15 90 28 30 90 36 15 75 4

2 15 75 42 15 90 26 30 90 35 15 75 5

3 15 75 47 30 90 29 15 90 47 15 90 4

4 165 75 55 90 60 34 0 75 53 165 75 3

5 15 90 48 15 90 33 15 90 50 15 90 4

Fig. 4. Maximum reactions Fmax in meshes depending on the orientation angle α for the following
implants: DynaMesh (DM), Parietex (Px), Proceed (P) and Dualmesh (DMG)

The values of all maximum reaction forces obtained in this study are presented in Fig. 4. The
distribution of all reactions in the worst and best orientation case is shown in Fig. 5. Finally, the
identified optimal orientations of three considered anisotropic implants for each hernia location
considered here are shown in Fig. 6. Dualmesh

R
O

is the only mesh investigated in this study that
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Fig. 5. Reactions F obtained in each support for all investigated orientations of the implant, the solid
line is for the best orientation, the dashed line is for the worst orientation of the mesh
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Fig. 6. Optimal orientation angles α0 (orientation of the direction of E1)

does not have distinct anisotropic properties. A single optimal orientation does not exist in such
a case, any orientation is acceptable.

4. Discussion

Figures 4-6 describe the effects of the implant material orientation on the reaction forces that
occur at the supporting points in the tissue-implant interface. These forces cannot exceed the
capacity of the tissue-implant juncture, otherwise the junction damage and recurrence of the
sickness occurs. The larger the range of junction forces between the most and least appropriate
orientations of the implant, the greater is the influence of the implant orientation on the forces
in the supporting tacks. This range is measured by D coefficient presented in Table 3. D values
of Dualmesh

R
O

are relatively small (3%-5%), so any orientation of this mesh can be applied
in practice. The largest D values are obtained for DynaMesh

R
O

(33%-55%) and for ProceedTM

(36%-53%), which means that surgeons should pay special attention to the proper orientations
of those implants. Values of D for ParietexTM are in the range of 28%-34%. Those results relate
to the orthotropy ratio of each mesh (Table 2). The largest forces for each implant can be found
in zone 4 (see Fig. 4). Also the influence of orientation (represented by D value) is the highest in
that zone. The results presented in Fig. 4 prove that the lowest maximal reactions are observed
for ParietexTM in each hernia case.

Variability of reaction forces in all fixation points for certain mesh orientations is shown in
Fig. 5. These results prove that in the optimal orientation, the reactions are relatively low and
they are the most evenly distributed on the supporting points comparing to other orientations.
It is visible that in the case of Parietex, which initially has a small orthotropy ratio, the change
of orientation from the worst to the optimal one causes reduction of the reaction forces but
does not change significantly the shape of the reaction distribution graph. Whereas for strongly
orthotropic meshes, like DynaMesh

R
O

and ProceedTM in their optimal orientations, the distri-
bution of forces is more even. Such even force distribution justifies regularly spaced fixing joints.
For an orientation different than the optimal, more joints (or stronger ones) should be used in
places where larger reaction forces occur than in places with smaller reaction forces.

In the majority of cases considered in this study, the optimal orientation of the stiffer direction
of an implant is the transverse direction (90 deg) of the abdominal wall (Table 3 and Fig. 6).
This observation corresponds to the results obtained experimentally by Anurov et al. (2012)
and numerically by Hernández-Gascón et al. (2013), who investigated only two orientations of a
surgical mesh in the central area of the abdominal wall. However, also a frequent solution of our
optimisation scheme is 75 deg especially for hernia located in zone 4. In this case when operating
with ParietexTM, the optimal orientation of its stiffer direction is 60 deg.

The study emphasises the importance of the proper orientation of surgical mesh when im-
posed to kinematic extortions related to abdominal wall movements. Thus we do not include
constrains on the implant deflection related to bulging in the optimisation procedure. Bulging
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is related to intraabdominal pressure load and does not take place when the implant undergoes
only kinematic extortions. However, in a more general procedure of finding an optimal implant,
additional constraints upon the maximum displacements could be included to avoid excessive
bulging of the implant.

5. Conclusions

This paper presents an investigation on the influence of orthotropic implant orientation on forces
on tissue-implant junctures caused by deformation of the anisotropic abdominal wall. Moreover,
it gives a study on the optimal choice of surgical orthotropic meshes and their orientation
in ventral hernia repair. Surgeons may consider these results when choosing an implant and
when determining its position in different areas of the abdominal wall, particularly when no
manufacturer’s recommendation exists. The most important findings are presented below.

• The implant ParietexTM best minimises reaction forces. Hence, according to our optimisa-
tion procedure, application of this mesh gives the optimal solution. However DynaMesh

R
O

has a better orthotropy ratio giving more even distribution of forces on all supporting
points.

• For optimal orientations of implants in the abdominal wall, forces acting on different
supporting points have the most similar values. Then, a regular distribution of supporting
points is the most justified. When the implant orientation is far from the optimal one, then
the reaction forces are very different in various fixation points, and there is no mechanical
justification for the regular joint distribution around the hernia orifice, and some fixation
regions should be strengthened.

• In zone 4, in the upper lateral part of the abdominal wall, the supporting points face the
largest forces (see Fig. 4) and the implant orientation has the greatest influence on those
forces.

• The orientation of orthotropic implants (DynaMesh RO, ParietexTM and ProceedTM) stron-
gly influences the forces on the supporting points (up to 55%, 34% and 53%, respectively).

• Placing the implant in the optimal orientation, as shown in Fig. 6, greatly reduces the
forces on the supporting points, which may determine the success of hernia repair or
postoperative comfort of patients. Although significant influence of the orientation of an
orthotropic implant in the anisotropic abdominal wall on hernia repair persistence seems to
be expected from the mechanical point of view, this fact is still underestimated in surgical
practice as confirmed by the newest medical conference reports and scientific papers, see
e.g., Oettinger et al. (2013), Li et al. (2014).

• Our results show not only an optimal mesh placement but also results for other orientations
(Fig. 4). On the basis of that, safer and less safe range of orientations can be established.
Information about this range can be useful in clinical practice. Surgeons should pay atten-
tion to the orientation of the implant, which currently is not a common practice, and try
to avoid orientations which may highly increase reactions in fasteners and, in consequence,
increase the risk of exceeding the capacity of tack and cause hernia relapse.

• Displacement of the fasteners during regular activity influences the level of junction for-
ces. As a result, the displacement of fasteners should be considered when analysing and
designing the fixation of implants. These results may serve as a basis for the formulation
of a relationship between the optimisation of mesh implantation and the recurrence rate of
hernias as well as they can be applied in the process of individualisation of the treatment
of abdominal hernias.
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A special type of new discrete design variables is introduced in order to find optimal stacking
sequences for laminated structures. Using the proposed new design variables, we demonstrate
how to find analytical (i.e. without any numerical optimization algorithm) optimal solutions
for laminates made of plies having three different fibre orientations: 0◦, ±45◦, 90◦. It is
proved that the definition of design variables enables us to distinguish two types of optimal
solutions, i.e. unimodal and bimodal ones. The form of optimal stacking sequences affects
the multiplicity (bimodal problems) or uniqueness (unimodal problems) of the solutions.
The decoding procedure between membrane and flexural design variables is also proposed.
The results demonstrate the effectiveness, simplicity and advantages of the use of design
variables, especially in the sense of the accuracy, repeatability of results and convergence of
the method.

Keywords: stacking sequence optimization, composite plates, buckling, first-ply-failure

1. Introduction

The superior mechanical properties of composite materials such as high stiffness, weight ratio and
anisotropic properties that can be tailored through variation of fiber orientations and stacking
sequence give the designer an added degree of flexibility. However, this additional tool should be
used by engineers in a proper manner, i.e. it requires an application of optimization methods.
For many design problems using the 2D approach (beams, plates, shells), most notably for those
where stiffness requires domination, there are multiple designs with similar performance. These
designs may have very different stacking sequences but very similar or almost identical values
of stiffnesses A and D. In such cases, it is important to produce all or most of the design
alternatives.

The effectiveness of optimal design, especially for composite structures, is strongly dependent
on the proper choice of two elements: i) definition of design variables, ii) application of an
appropriate optimization algorithm.

The simplest definition of design variables depends on direct application of real continuous
variables (i.e. fibre orientations θl and thicknesses tl in the l-th ply, l = 1, 2, . . . , N). Now, such
an approach is commonly used in finite element codes, such as e.g. ANSYS, ABAQUS etc. This
method is not very convenient for many engineering or analytical applications and is replaced by
the introduction of so-called lamination parameters (Miki, 1986; Fukunaga and Vanderplaats,
1991). The lamination parameters are usually determined for thin walled composite structures
(i.e. beams, plates or shells) with the use of the Love-Kirchhoff kinematical hypothesis. For an
arbitrary laminate, the structural stiffness is characterized by 12 independent parameters instead
of 2 ×N − 1 variables for the previous real continuous variables (θi and ti). In fact, analytical
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studies deal mainly with the use of four of them, i.e. ξ
{A}
[1] , ξ

{A}
[2] , ξ

{D}
[1] , ξ

{D}
[2] corresponding

to laminates in which the stiffnesses Bij , A16, A26, D16 and D26 are assumed to be equal
to zero.

The past few decades have seen an increased interest in general-purpose “black-box” optimi-
zation algorithms that exploit limited knowledge concerning the optimization problem on which
they are run. In particular, the two most popular black-box optimization strategies, evolutio-
nary algorithms and simulated annealing, mimic processes in natural selection and statistical
mechanics, respectively. Commonly, they are based on the standard use of the lamination para-
meters. In this case it is impossible to find a unique laminate configuration, and, in addition, the
correctness and accuracy of solutions can be verified by the comparison with other numerical
result only.

According to the definitions and classifications of IEEE NNC (1996) the four types of algo-
rithms constitute evolutionary computation methods (Genetic Algorithms – GA, Evolutionary
Programming – EP, Evolution Strategies – ES and Genetic Programming – GP) but in general
they are based on the Darwinian concept of evolution. In fact, now hybrids of the four me-
thodologies are becoming most popular. The distinguishing feature of traditional Darwinistic
evolution is selection, the survival of the fittest members of each generation. For composite
materials it is much better to look beyond that view in the sense of the above algorithms
and to explore a new view of evolution that includes natural selection plus self-organization –
see Kauffmann (1993). It is worth to emphasize that Grosset et al. (2006) formulated almost
the same conclusions and stated that it was necessary to abandon partially the Darwinistic
theory of evolution and finally introduced to the analysis of composites the concept of esti-
mation of distribution algorithms. They used a statistical framework to formalize the search
mechanisms.

However, it has become important to understand the relationship between how well an
algorithm performs and the optimization problem on which it is run. In this paper, we present
an analysis that contributes toward such an understanding by addressing questions like the
following: how we can best match design variables and algorithms to the problems, i.e., how
best we can relax the black-box nature of lamination parameters and the algorithms and have
them exploit some knowledge concerning the optimization problem?

In the present paper, we intend to solve the problem of optimal design of bi-axially com-
pressed rectangular multilayered composite plates having discrete fibre orientations in each in-
dividual ply and subjected to buckling and FPF constraints. Contrary to the identical problems
discussed in the literature, we look deeper into the physical problem considered herein. We de-
monstrate that the appropriate definition of design variables allow us to obtain unique, exact
and accurate solutions. Using the proposed new design variables we show how to find analytical
(i.e. without any numerical optimization algorithm) optimal solutions for laminates made of
plies having three different fibre orientations: 0◦, ±45◦, 90◦. For a higher number of different
discrete fibre orientations, we propose the application of an effective numerical algorithm based
on the evolution strategy, see Muc and Muc-Wierzgoń (2012). We explain also the discussed
in the literature problem of multiplicity of optimal solutions. We prove that the multiplicity
is an artificial result since it is caused by wrong coding of laminate configurations and wrong
interpretation of optimal solutions.

The numerical results, presented in the paper, are obtained for a graphite/epoxy resin
material having the following mechanical properties: E1 = 127.59GPa, E2 = 13.03GPa,
G12 = 6.41GPa, ν12 = 0.3, and the thickness of an individual ply in the laminate is equal
to 1.27mm. The ultimate allowable strains are following: εlocal1allowable = 0.008, ε

local
2allowable = 0.029,

γlocal12allowable = 0.015. A safety factor equal to 1.5 is used to calculate the strain allowables.
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2. Fundamental relations for 2D multilayered composite structures

Fig. 1. Global and local coordinate systems (x1 ≡ x′, y1 ≡ y, z ≡ z′)

Usually thin plies in the laminate (Fig. 1) can be considered to be under a plane stress with
all the stress components in the out-of-plane direction z being approximately zero. In the 3D
case the generalized Hooke law (the local coordinate system x1x2z associated with fibres) is
reduced to

σ′i(x1, x2, z) = C
′
ijε
′
j(x1, x2, z) i, j = 1, 2, 6 (2.1)

where

C ′11 = Q11 =
E1

1− ν12ν21
C ′12 = Q12 =

ν12E2
1− ν12ν21

C ′22 = Q22 =
E2

1− ν12ν21
C ′66 = Q66 = G12

and σ′ denotes the tensor of in-plane stress components, and ε′ the tensor of in-plane strain
components. Let us consider that the ply material axes are rotated by an angle θ with respect
to the global reference system (xyz) – Fig. 1. In the global system, writing the Hooke law

σi(x, y, z) = Cijεj(x, y, z) i, j = 1, 2, 6 (2.2)

and using the Tsai-Pagano invariant formulation, all components of the stiffness matrix C can
be written in the invariant form

C11 = U1 + U2 cos 2θ + U3 cos 4θ C12 = U4 − U3 cos 4θ

C22 = U1 − U2 cos 2θ + U3 cos 4θ C16 =
1

2
U2 sin 2θ + U3 sin 4θ

C26 =
1

2
U2 sin 2θ − U3 sin 4θ C66 = U5 − U3 cos 4θ

(2.3)

where

U1 =
1

8
(3Q11 + 3Q22 + 2Q12 + 4Q66) U2 =

1

2
(Q11 −Q22)

U3 =
1

8
(Q11 +Q22 − 2Q12 − 4Q66) U4 =

1

8
(Q11 +Q22 + 6Q12 − 4Q66)

U5 =
1

2
(U1 − U4)
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The above relations are developed for a single ply (lamina). The laminate can be built ofN layers,
see Fig. 2, so that the stresses in the l-th ply are related to the strains in the following way

σ
(l)
i (x, y, z) = C

(l)
ij εj(x, y, z) i, j = 1, 2, 6 l = 1, 2, . . . , N (2.4)

assuming that all ply strains are equal to the laminate strains. The stiffness matrix coeffi-

cients C
(l)
ij are defined with the use of Eq. (2.3) where the fibre orientations θ are replaced by

the symbol θl referring to the fibre orientations of the l-th layer. From the assumption that
the strains vary linearly through the laminate thickness, i.e. εi(x, y, z) = ε0i (x, y) + zκi(x, y)
(i = 1, 2, 6) one can find that relation (2.4) can be rewritten in the following form

Ni(x, y) = Aijε
0
i (x, y) +Bijκi(x, y)

Mi(x, y) = Bijε
0
i (x, y) +Dijκi(x, y)

i, j = 1, 2, 6 (2.5)

where the in-plane stress resultants Ni(x, y) and the stress couples Mi(x, y) are expressed as

Ni(x, y) =

t/2∫

−t/2

σ
(l)
i dz =

N∑

l=1

σ
(l)
i (zl − zl−1)

Mi(x, y) =

t/2∫

−t/2

σ
(l)
i z dz =

1

2

N∑

l=1

σ
(l)
i (z

2
i − z2i−1)

i = 1, 2, 6 l = 1, . . . , N (2.6)

where A, B, D are the extensional, coupling and bending stiffnesses, respectively, defined as
follows

Aij =
N∑

l=1

C
(l)
ij (zl − zl−1) Bij =

1

2

N∑

l=1

C
(l)
ij (z

2
l − z2l−1)

Dij =
1

3

N∑

l=1

C
(l)
ij (z

3
l − z3l−1)

i, j = 1, 2, 6 (2.7)

where zl and zl−1 are the location coordinates of the top and the bottom surface of the lamina l.
ε0i (x, y) are the components of the in-plane (membrane) strains, and κi(x, y) are the components
of the vector of curvature (i = 1, 2, 6).

3. Definition of design variables

In the 2D approach, topological variables defining the connectivity of particular structural ele-
ments in the structure (in the paper it denotes the stacking sequence of the individual layers in
the laminate) are understood in the sense of the sequence of layers having prescribed discrete
fibre orientations θl in each individual ply. Commonly, it is assumed that the thicknesses of
individual plies are identical, i.e. tl = t/N – see Fig. 2. In order to assure great flexibility and
generality in the formulation of various optimisation problems, different types of the above-
mentioned discrete design variables must be represented in a similar unified manner, i.e. each
design variable must be coded as a finite string of digits. Let us note that the angle-ply anti-
symmetric laminates are considered only, however, it can be easily extended for an arbitrary
laminate configuration. Using the classical method of coding, 1 represents 0◦2, 2 – ±45◦, 3 – 90◦2.
Each design variable s representing the fibre orientation (i.e. 1, 2 and 3) is coded as a binary
number and is called as a gene. The sequence {1, 2, 1, 3} is called a chromosome. Such a repre-
sentation is not very convenient for optimisation problems since there is a lot of design variables
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Fig. 2. Cross-section of the laminate (N = 6)

(increasing with the total number of plies N) and, in addition, various stacking sequences are
described by the identical values of the A, B, D matrices. Therefore, we propose to adopt he-

rein a special type of integer variables x
{A,D}
r (r = 1, 2, 3) introduced by Muc (1997) that are

completely different than those introduced by Miki (1986), Fukunaga and Vanderplaats (1991).
The new design variables represent triangles in the design space, see Fig. 3. However, there is

Fig. 3. Graphical representation of design variables

no unique mapping between the spaces xAr and x
D
r . For the assumed laminate configuration, the

B matrix is identically equal to zero, whereas the stiffnesses A and D can be written in the
following way

A11 = t(U1 − U3) +
4t

N
U2(x

A
1 − xA3 ) +

8t

N
U3(x

A
1 + x

A
3 )

A12 = t(U4 + U3)−
8t

N
U3(x

A
1 + x

A
3 )

A22 = t(U1 − U3)−
4t

N
U2(x

A
1 − xA3 ) +

8t

N
U3(x

A
1 + x

A
3 )

A66 = t(U5 + U3)−
8t

N
U3(x

A
1 + x

A
3 )

(3.1)

and

D11 =
t3

12
(U1 − U3) +

1

12

(4t
N

)3
U2(x

D
1 − xD3 ) +

1

6

(4t
N

)3
U3(x

D
1 + x

D
3 )
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D12 =
t3

12
(U4 + U3)−

1

6

(4t
N

)3
U3(x

D
1 + x

D
3 )

(3.2)

D22 =
t3

12
(U1 − U3)−

1

12

(4t
N

)3
U2(x

D
1 − xD3 ) +

1

6

(4t
N

)3
U3(x

D
1 + x

D
3 )

D66 =
t3

12
(U5 + U3)−

1

6

(4t
N

)3
U3(x

D
1 + x

D
3 )

where

x{A,D}r =

N/4∑

k=1

{1, [3k(k − 1) + 1]} cos(2θ)Ξ(αr)

Ξ(αr) =

{
1 where αr = θ

0 where αr 6= θ

αr = 90
◦ r − 1
2

r = 1, 2, 3

(3.3)

Let us note that using the above notation all terms in the stiffness matrix are uniquely repre-
sented by the set of four integer variables {xA1 , xA3 , xD1 , xD3 }. The terms having the index r = 2
are identically equal to 0 since they correspond to the plies having fibres oriented at 45◦. the
integer numbers xA1 , x

A
3 represent directly the number of plies with fibers oriented at 0

◦ and 90◦,
respectively, since the following relation is always fulfilled

xA1 + x
A
3 + x

A
2 =

N

4
(3.4)

where xA2 = N45/4, and N45 denotes the total number of plies oriented at 45
◦. With the aid

of Eqs. (3.1)-(3.4) it is possible to define feasible regions for our new design variables – the
triangles presented in Fig. 3. Two sets of variables {xA1 , xA3 } and {xD1 , xD3 } are not independent,
however, using their definition (Eq. (3.3)) it is possible to evaluate the ranges of their variations
demonstrated in Fig. 3 in the form of quadrilaterals

(xA1 )
3 =

xA1∑

k=1

[3k(k − 1) + 1] ¬ xD1 ¬
N/4∑

k=N/4+1−xA1

[3k(k − 1) + 1] =
(N
4

)3
−
(N
4
− xA1

)3

(xA3 )
3 =

xA3∑

k=1

[3k(k − 1) + 1] ¬ xD3 ¬
N/4∑

k=N/4+1−xA3

[3k(k − 1) + 1] =
(N
4

)3
−
(N
4
− xA3

)3

xD1 + x
D
3 ¬

(N
4

)3

(3.5)

Knowing the values of the {xD1 , xD3 } variables, one can derive from relations (3.1), (3.2) the
upper and lower bounds of the {xA1 , xA3 } variables that have to be integer numbers belonging to
the triangular domain shown in Fig. 3. However, in the optimisation procedure they are treated
as continuous variables since they are always normalised (by the division of them by N/4 and
(N/4)3, respectively) and they belong to the interval [0, 1]. The normalised variables are denoted
by the bar over the symbols, i.e. as {xA1 , xA3 }, {xD1 , xD3 }. The optimal solutions are completely
independent of the total number of plies N and, in addition, the definition of the appropriate
terms in the stiffness matrices A and D has an identical form, although they are functions of
different variables. Such a definition may be also very useful for the pseudorandom generation
of the design variables.
If the optimal solutions are found (in the sense of four variables {xA1 , xA3 }, {xD1 , xD3 }) the

decoding procedure is required to represent the above-mentioned variables by the appropriate
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stacking sequences. The decoding procedure can be easily conducted with the use of the symbolic
package Mathematica. The fundamental two operations are given below

a = Table[3 ∗ l ∗ (l− 1) + 1, l, N/4];
f = Subsets[a, L];

First of all, a list of values of the expression “3l(l − 1) + 1” is generated when the natural
number l runs from 1 to N/4 – see Eq. (2.3). Assuming N = 16, table “a” takes the form:
{1, 7, 19, 37}. Then a finite number of subsets “f” having exactly “L” elements is constructed
from the list “a”. For instance, for L = 2 the subsets “f” are following: {1, 7}, {1, 19}, {1, 37},
{7, 19}, {7, 37}, {19, 37}. If L = 2 defines the number of plies oriented at 0◦ (i.e. xA1 = 2) then
each of the subsets represents the laminates (in fact the upper part of the laminate where the
symbol 0◦ corresponds to the pair of plies having the 0◦ orientation): [0◦, 0◦,÷,÷], [0◦,÷, 0◦,÷],
[0◦,÷,÷, 0◦], [÷, 0◦, 0◦,÷], [÷, 0◦,÷, 0◦], [÷,÷, 0◦, 0◦]. According to definition (3.3), all laminates
have the same value xA1 = 2 but different values of x

D
1 equal to: 8, 20, 38, 26, 44, 56, respec-

tively. In addition, the first laminate can be characterized by two different values of xD3 , i.e.:
[0◦, 0◦, 45◦, 90◦]−xD3 = 37 or [0◦, 0◦, 90◦, 45◦]−xD3 = 19. In both cases, xA2 = xA3 = 1. The exam-
ple demonstrates evidently the non-uniqueness of the mapping presented in Fig. 3. However, as
four design variables are known (e.g. xA1 = 2, x

A
3 = 1 and x

D
1 = 8, x

D
3 = 19) the lamination

sequence can be derived uniquely – it corresponds to [0◦, 0◦, 90◦, 45◦]. Therefore, to decode the
lamination sequence from the set of the normalized design variables {xA1 , xA3 }, {xD1 , xD3 }, it is ne-
cessary to conduct the following operations: Step 1) to round the values {xA1 ∗(N/4), xA3 ∗(N/4)}
to the nearest integers, Step 2) to find the subsets “f” corresponding to xA1 ≈ xA1 ∗ (N/4), com-
pute the sum of each of the elements in the subsets “f” and find the nearest integer to the real
number xD1 ∗(N/4)3, Step 3) to repeat step 2 for the value xA3 ≈ xA3 ∗(N/4), creating new subsets
for the layers oriented at 90◦, but selecting empty spaces only (noted as ÷ in the laminate in the
above example), Step 4) to fill the rest of empty spaces in the laminate by the layers oriented
at 45◦. To verify the convergence, it is possible to increase the total number of layers N .
The decoding procedure is simple using symbolic packages. In many cases (one of them will

be discussed further), the optimal design is not represented by all design variables, and the
decoding method has to be slightly modified.

4. Buckling and the First-Ply-Failure of plates

Many experimental results on the buckling of composite material plates have been presented over
the last years. They are summarized in Muc (1988), Muc and Gurba (2001). In general, they tend
to indicate that the theory for composites is rather in good agreement with experiments. The
experiments demonstrate evidently that for thin-walled flat composite plates, the loss of stability
is not equivalent to the catastrophic failure of structures. The catastrophic failure in form of the
limit carrying capacity may occur for thicker plates and it is associated with the First-Ply-Failure
(FPF). For plates with a cutout, delaminations or stiffened, the failure mode may be in form of
bifurcation buckling, but the final damage is usually associated with other modes of failure. For
flat plates, the comparison between experimental and theoretical results is conducted with the
use of linear prebuckling theory according to experimental observations. For more complicated
plated structures, the nonlinear prebuckling and postbuckling analysis is required since the final
failure mode is associated, e.g., with local buckling modes or failure of a core for sandwiches.
Therefore, for flat bi-axially compressed rectangular plates, it is assumed that a critical multiplier
of loading corresponding to the global loss of stability λb can be expressed in the following form
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λb(s) =
(mπ/a)2

Px(1 + kβ2m)
[D11 + (D12 + 2D66)β

2
m +D22β

4
m] βm =

na

mb
k =

Py
Px
(4.1)

where a, b are geometrical plate dimensions, and m, n are numbers of half-waves in two perpen-
dicular directions corresponding to the plate co-ordinate system, and Px is the axial compressive
force in the x direction. s denotes the vector of design variables having 2 independent normali-
zed real variables {xAr , xDr } defined in the interval [0, 1] representing 3 different fibre orientations
and various stacking sequences in the laminate. Using the notation introduced in Eq. (4.1), the
critical multiplier of loading can be written as follows

λb = Ωm(Z1 + Z2x
D
1 + Z3x

D
3 ) (4.2)

where

xDr =
( 4
N

)3
xDr Ωm =

(nπ/b)2

Px(1 + kβ2m)β
2
m

t3

12

Z1 = U1(1 + β
2
m)
2 + U3(6β

2
m − 1− β4m) Z2 = U2(1− β4m) + 2U3(1− 6β2m + β4m)

Z3 = 2U3(1− 6β2m + β4m)− U2(1− β4m) r = 1, 2, 3

It is also worth to point out also that the validity of relation (4.1) is strictly limited by the
values of t/[Min(a, b)] ratio. For the ratio higher than 0.05, it is necessary to include transverse
shear effects employing, for instance, the Mindlin hypothesis.

It is well-known that buckling loads (4.2) are straight lines in the convex design space (Fig. 3).
Since for the known composite materials U1 is always greater than U3, the coefficient Z1 is always
positive, whereas Z2 and Z3 may be positive, equal to zero or negative. According to the classical
theory of mathematics for the prescribed mode of buckling (i.e. m and n) in the feasible domain
of design variables xD1 , x

D
3 , the maximal value of the parameter λb defined by Eq. (4.2) may

exist at the vertices of the triangle (points A, B, C – unimodal solutions) or along the lines
AB and BC (e.g. points D and E, bimodal solutions – degenerated solutions since one of the
variables xD1 or x

D
3 is equal to zero) – Fig. 4.

Fig. 4. Positions of the optimal buckling loads for three discrete fibre orientations

4.1. Unimodal solutions

The variations of the coefficients Z1, Z2 and Z3 with the geometrical ratios a/b are demon-
strated in Fig. 5. Their values correspond directly to the location of optimal fibre orientations
with respect to the a/b ratio, i.e. xD1 = 1, x

D
3 = 0 – orientation 0

◦; xD1 = 0, x
D
3 = 0 – orienta-

tion 45◦, xD1 = 0, x
D
3 = 1 – orientation 90

◦.
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Fig. 5. Variations of the coefficients in Eq. (4.2)

With the use of the introduced design variables, the analytical unimodal optima can also be
easily derived. They can be written in the following way:
— equivalent to the point A, Z2 > 0 and Z3 < 0

xD1 =
(N
4

)3
xD3 = 0 if βm ¬

√
−3ϕ+

√
8ϕ2 + 1

1− ϕ (4.3)

— equivalent to the point B, Z2 < 0 and Z3 < 0

xD1 = 0 xD3 = 0 if

√
−3ϕ+

√
8ϕ2 + 1

1− ϕ ¬ βm ¬
√
3ϕ+

√
8ϕ2 + 1

1− ϕ (4.4)

— equivalent to the point C, Z2 < 0 and Z3 > 0

xD1 = 0 xD3 =
(N
4

)3
if βm 

√
3ϕ +

√
8ϕ2 + 1

1 + ϕ
(4.5)

where ϕ = 2U3/U2.
In the above relations, the estimations are computed from the equalities:

— equivalent to Z1 = 0

λb
[
xD1 =

(N
4

)3
, xD3 = 0,m, n

]
= λb[x

D
1 = 0, x

D
3 = 0,m, n] (4.6)

— equivalent to Z3 = 0

λb[x
D
1 = 0, x

D
3 = 0,m, n] = λb

[
xD1 = 0, x

D
3 =

(N
4

)3
,m, n

]
(4.7)

where the first relation describes the equality of buckling loads for the laminates oriented at 0◦

and 45◦, and the second, the equality of buckling loads for the laminates oriented at 45◦ and 90◦.

4.2. Bimodal solutions

The bimodal solutions correspond to situations as the buckling load is identical for two
neighbouring buckling modes (e.g. m and m + 1) – see also Muc (1988) (continuous angle-ply
orientations). Let us note that the identical procedure is conducted in the buckling analysis of
isotropic structures although the solutions are not called the bimodal ones. For isotropic plates
constructing the classical “chain curve” for buckling loads versus the a/b ratio for different wave
numbersm, it is possible to find such values of the a/b ratio that correspond to two neighbouring
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Fig. 6. Optimal unimodal and bimodal solutions

buckling modes m and m+ 1 (e.g. for uniaxially compressed plates: a/b =
√
2 as m = 1 and 2,

a/b =
√
6 as m = 2 and 3 etc.). Figure 6 shows a part of the chain curve for laminated plates as

well as the optimal unimodal solutions – the lower bound envelope of buckling loads for different
values of m. The dot represents the classical bimodal solutions.

For laminated plates, the critical multiplier λb (Eqs. (4.1) or (4.2)) is not only a function
of the geometrical a/b ratio but also of the design variables s. Therefore, for the identical a/b
ratio, there may exists a finite number (discrete variables) of bimodal solutions. Some of them
may correspond to the higher values of buckling loads than for unimodal solutions. They will
be called the optimal bimodal solutions (Fig. 6).

The bimodal solution presented as the dot in Fig. 6 demonstrates that the unimodal optimal
solutions exist for two different modes of buckling m = 2 and m = 1, however, each of them
corresponds to different fibre orientations (±45◦ and 90◦, respectively). For uniaxial compression
(k = 0), the maximal buckling load occurs always for plies having fibres oriented at α2 = ±45◦.
For each buckling mode (considering separately the modes m = 1 and m = 2), the buckling load
at the vertex B is higher than at the vertices A and C, and it takes a lower value (for m = 1
and a/b < 1.445) than the corresponding buckling load at the vertex B for m = 2 – see Eq.
(4.4). If a/b = 1.445, the optimal unimodal fibre orientations switch from ±45◦ to 90◦ for m = 1.
However, the latter case does not satisfy the buckling criterion – it is not the lower bound with
respect to buckling modes since unimodal buckling loads for plies having the orientation 90◦ have
lower values for m = 2 than those for the lower buckling mode (m = 1). Of course, the unimodal
solutions for ±45◦ and m = 2 cannot be treated as optimal ones because this orientation gives
lower buckling loads for m = 1. Thus, the bimodal constraint becomes active.

For discrete design variables, it is possible to find two potential candidates for the optimum
considering each wave numbers of buckling, i.e. (m,n) and (m + 1, n). Such type of optimal
solutions is represented by the points D and E in Fig. 4. The identical analysis can be carried
out in the similar manner for the (m,n) and (m,n + 1) buckling modes. Of course, the points
D and E are not single candidates for the bimodal solutions. The equalisation of the buckling
load coefficients (Eq. (4.1)) for the neighbouring buckling modes (i.e. m, n and m+ 1, n) leads
to a finite number of solutions represented by a straight line in the design space (xD1 , x

D
3 ). Using

Eqs. (4.6) and (4.7), the bimodal solutions can be found at the boundaries of the triangle only
since those values offer the highest buckling load among them. The proof of this conclusion is a
trivial one since for each buckling mode the straight lines described by Eq. (4.1) create a family
of parallel lines (parametrized by the value of buckling load) whose maximum occurs at the
opposite vertices of the triangle – one vertex where the maximum occurs at the point B for the
mode (m+ 1, n), and the second maximum located at the point C for the mode (m,n).



Analytical discrete stacking sequence optimization... 433

The bimodal solutions can be found analytically from the following relations

xD1 = 0

λb(m,n) = Ωm[Z1(m)− xD3 U2(1− β4m) + 2xD3 U3(1− 6β2m + β4m)]
= λb(m+ 1, n) = Ωm+1Z1(m+ 1)

(4.8)

The relations are valid for a/b > 0.7. In the opposite case, the bimodal solutions are located
along the line xD3 = 0.

4.3. FPF constraints

For the assumed laminate configuration and considering the membrane state only in the
global coordinate system, the strain tensor is reduced to two nonzero components written in the
following way (see Eq. (2.5)):

ε01 =
λFPFPx(A22 − kA12)

A11A22 −A212
ε02 =

λFPFPx(kA11 −A12)
A11A22 −A212

ε06 = 0 (4.9)

The strains in the local coordinate system of the ply having the orientation αr take the following
form

ε′1 = ε
0
1 cos

2 αr + ε
0
2 sin

2 αr ε′2 = ε
0
1 sin

2 αr + ε
0
2 cos

2 αr ε′6 = (ε
0
2 − ε01) sin 2αr

(4.10)

For each individual ply, the above mentioned local strains are compared with the allowable
strains along the fibres εlocal1allowable , in the direction perpendicular to the fibres ε

local
2allowable and with

the shear strains γlocal12allowable , respectively. Thus, for each discrete fibre orientation αr we have
three inequality FPF constraints. However, one can easily find that each FPF relation may be
presented in the identical form

2t(U1 + U4)(tQ66 + F
A
2 )− (FA1 )2 = λFPFPx(p1 + p2FA1 + p3FA2 )

1

εlocalallowable

FA1 =
4t

N
U2

rmax+1∑

r=1

xAr cos(2αr) FA2 =
8t

N
U3

rmax+1∑

r=1

xAr cos
2(2αr)

(4.11)

where εlocalallowable denotes the appropriate allowable strains for the plies, and pi (i = 1, 2, 3) are
appropriate constants derived from equations (4.9) and (4.10). The curves described by Eq.
(4.11) represent ellipses in the design space {xA1 , xA3 }. It is obvious that with the aid of any of
numerical packages (Mathematica, Maple, Matlab, Mathcad) it is possible to compute values
of λFPF (Eq.14) for all values of x

A
1 , x

A
3 as well as the prescribed mechanical and geometrical

properties of the plate and the loading parameter k. Such a procedure can be easily conducted
for all components of strains, assuming different allowable values for tension and compression.
Finally, the results are collected in a table (called as FPFTable) that is parametrized by the
values of xA1 , x

A
3 and the failure mode (Eq. (4.11)).

5. Optimization problem

The optimisation problem is formulated as follows

max
s
(min
m,n

λb) (5.1)
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where λb denotes a critical multiplier of loading corresponding to the global loss of stability and
s denotes the set of design variables {xD1 , xD3 }.
The analysed problem may be subjected to various subsidiary constraints written in the

following form:
— Bimodal constraints

λb[m,n] ¬ λb[m+ 1, n] and λb[m,n] ¬ λb[m,n+ 1] (5.2)

— FPF constraints

λFPF ¬ λb (5.3)

Constraint (5.2) presents two conditions for each wave number in buckling independently, and
the values of buckling coefficients λb are derived from Eqs. (4.1) or (4.2).
The optimization analysis is carried out for the prescribed mechanical constants, the total

number of layers N , the loading parameter k and the geometrical ratio a/b. At the beginning,
the buckling loads are computed for all vertices of the triangle (Fig. 3); they correspond to the
fibres oriented in all plies at 0◦, 45◦ and 90◦, respectively. Those values are collected in a table
(called as UNITable) and parametrized by the values m and n (selected in the prescribed range,
let say from 1 to 5). Then, the optimization is divided into four procedures described below.

I. Unimodal optimum. There are two integer numbers m and n such that for all vertices of the
triangle, the values in the UNITable have the global minimum with respect to them. In
addition, condition (3.5)1 is satisfied (comparison with the values in the FPFTable). The
optimal values can be computed from relations (4.3)-(4.5). The laminate stacking sequence
is easily determined.

II. Bimodal optimum. There are two integer numbers m and n such that for all vertices of the
triangle the values in the UNITable have not the global minimum with respect to them, i.e.
the bimodal constraints become active and if condition (5.2) is not satisfied (comparison
with the values in the FPFTable) then the optimal normalised design variables {xD1 , xD3 }
are computed from relations (4.8). It is necessary to decode the results to obtain the
optimum in form of the laminate stacking sequence. To demonstrate it, let assume that
the plate is made of N = 64 layers, a/b = 0.5 and is biaxially compressed, i.e. k = 2, n = 1.
The optimum occurs for xD1 = 1963.307, x

D
2 = 3899.693, x

D
3 = 0. The domain of possible

variations of the number “L” is created with the help of inequalities (3.5), and let it be equal
to 7. For each generated subset “f”, the sum of the elements in the subset is computed in
the loop and compared with the rounded to two natural numbers real values of the optimal
solution (1963 or 1964). Having, for instance, the subset {91, 127, 169, 217, 331, 397, 631}
(the sum is equal to 1963) it is possible to recognize immediately that from the whole
laminate represented by the table “a” (N/4 = 16) the elements having the nonzero values in
the whole table, i.e. {÷,÷,÷,÷,÷, 91, 127, 169, 217,÷, 331, 397,÷,÷, 631,÷} are replaced
by the pairs oriented at 0◦, whereas the symbol “÷” by the pairs oriented at ±45◦. It
is worth to add that it is possible to find other 35 laminate configurations (subsets “f”)
that give the same sum 1963. There is multiplicity of the solutions since the optimum is
represented by two variables only.

III. Bimodal and FPF optimum. Similarly as in the previous case II, the bimodal optimum
becomes active, however, the FPF load is lower than the optimum bimodal solution (con-
dition (5.3) is satisfied) and the optimum exists inside the triangles plotted in Fig. 3. The
optimum can be found from the relation

λb[m,n] = λb[m+ 1, n] = λFPF (5.4)
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Using the appropriate relation for λb (4.2) and λFPF (4.9), it is possible to express the
above equality constraint conditions in the following form: xD1 = p(x

A
1 , x

A
3 ), x

D
3 = q(x

A
1 , x

A
3 )

where p and q are analytical algebraic functions. Inserting those results to the definition
of buckling loads (4.2), it is possible to find the maximal buckling load with respect to the
values xA1 , x

A
3 searching for the maximum by building the table for all possible variations

of the values xA1 , x
A
3 ((N/4)[(N/4) − 3] + 2 possible values inside the half of the triangles)

or using the Mathematica procedure “Maximize”. For the optimal values of xA1 , x
A
3 design

variables, it is possible to derive the optimal values of xD1 , x
D
3 and find the optimal stacking

sequences with the aid of the decoding procedure presented in Section 3. The discussed
problem of both FPF and bimodal active constraints occurs, e.g. for plates: a/b = 4,
k = 0.25.

IV. FPF optimum. If the FPF is the dominant failure mode (thick plates), the optimum can be
found directly from relation (4.9) searching for the maximum similarity as in the previous
case. Since the optimum is a function of the membrane parameters, one can observe again
the multiplicity of optimal laminate configurations.

6. Concluding remarks and further works

In the paper, the proposal of a new discrete design variables that are used in the buckling and
FPF optimisation problems is shown. It is demonstrated that in the buckling and FPF analysis
of plates, four types of solutions may exist, i.e.:

• Unimodal buckling solutions – unique determination of optimal stacking sequences.
• Bimodal buckling solutions – multiplicity of optimal stacking sequences (bending state
only).

• FPF and bimodal buckling solutions – unique determination of optimal stacking sequences
(flexural and membrane design variables).

• FPF – multiplicity of optimal stacking sequences (membrane state only).

In our opinion, the new set of design variables demonstrates a lot of the advantages in comparison
with the existing ones, i.e.:

• It allows us to derive unique analytical solutions.
• It explains the uniqueness and multiplicity of possible laminate configurations being a
representation of laminate discrete configurations.

• It shows a simple symbolic method for the derivation of multiple optimal configurations
from the used set of discrete design variables (the so-called decoding method).

The analysed example (buckling and FPF of bi-axially compressed plates) is relatively simple
since the optimisation problem is characterized by flexural and membrane properties only, given
by analytical formulae. The next step is connected with simultaneous application of the proposed
design variables to optimisation problems characterised by analytical solutions that include both
bending, membrane and coupling effects. Finally, we intend to include the proposed methodology
into numerical FE codes in the similar manner as described by Muc and Gurba (2001).
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EFFECT OF HEAT TRANSFER ON THERMAL STRESSES IN AN ANNULAR
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An approximate analytical solution is presented for thermal stresses in an annular convective-
conductive fin of a hyperbolic profile with temperature dependent thermal conductivity.
The classical thermo-elasticity theory coupled with the ADM based polynomial form of
temperature field is employed for an approximate analytical solution of thermal stresses. The
influence of thermal parameters, i.e. variable thermal conductivity, the thermo-geometric
parameter and the non-dimensional coefficient of thermal expansion on temperature and
sttress fields are investigated. The results for the stress field obtained from the ADM based
solution are compared with those available in literature and found to be in close agreement.

Keywords: thermal stresses, Adomian decomposition method (ADM), variable thermal con-
ductivity

Nomenclature

ra, rb – inner and outer radius, respectively
t – thickness of the fin
ha – fin thickness at base
h – convective heat transfer coefficient
C1 – profile function, hara
k(T ) – variable thermal conductivity
ka – thermal conductivity at ambient temperature
κ – parameter describing variation of thermal conductivity
β – dimensionless parameter describing variation of thermal conductivity,

κ(Ta − T∞)
T, Ta, T∞ – fin, base and ambient temperature, respectively
r, φ – polar coordinates
α – linear coefficient of thermal expansion
E – Young’s modulus
σr, σφ, εr, εφ – radial and tangential stress and strains, respectively
C,D1,D2, η,A,B – constants

ψ – thermo-geometric parameter,
√
2hr2a/(k∞ha

ξ, ξ1 – dimensionless radius of fin, ξ = (r − ra)/ra, ξ1 = ξ + 1
R – dimensionless outer radius, R = rb/ra
θ – dimensionless temperature, θ = (T − T∞)/(Ta − T∞)
σr, σφ – dimensionless radial and tangential stress, σr/E and σφ/E
χ – dimensionless coefficient of thermal expansion, α(Ta − T∞)
ν – Poisson’s ratio
Ac, dAs – cross sectional area of fin amd elemental surface area of fin, respectively
n – profile parameter
Ap, Bp – Adomian polynomials
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1. Introduction

The rapid heat dissipation from a surface to the surroundings is required in many engineering
and industrial applications such as heat exchangers, semiconductors, transformers, motors and
many other electrical, electronical and mechanical components. A fin is an extended surface
frequently used for direct heat dissipation from a hot surface to its surroundings (Kern and
Kraus, 1972; Kraus et al., 2001).

Thermal analyses of the fin with various geometries are presented by many researchers (Yeh,
1997; Mokheimer, 2002). However, most of the available works focus on straight fins for the-
ir ease in manufacturing and mathematical formulation. Several mathematical techniques like
Adomian’s Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variatio-
nal Iteration Method (VIM), and Deferential Transformation Method (DTM) can be found in
use by many researchers to obtain semi-analytical solutions to nonlinear heat equations for fins
(Miansari et al., 2008; Moradi, 2011). The improvement in heat transfer is shown mainly to be
associated with their surface modification. So, an enhancement in the heat transfer rate criti-
cally depends on the selection of correct fin shape. Radial shape is observed to outperform the
straight fin in respect of heat transfer ability (Behnia et al., 1998). A hyperbolic profile contains
even larger surface area to yield more heat dissipation from the surface to the surroundings.
Thus, a radial fin with a hyperbolic profile would be the most preferred shape for a better heat
transfer rate with less material involved.

Recently, the heat transfer in an annular fin with a hyperbolic profile was presented by Aksoy
(2013). Non-uniform temperature distributions during the heat transfer process induce thermal
stresses in the fin material. Thermal stresses are responsible for various mechanical failures, i.e.,
crack propagation, creep and fatigue failure that can reduce the fin life. The study of thermal
stresses in them is, therefore, important to prevent their early damage. So far, only few authors
(Chiu and Chen, 2002; Mallick et al., 2015) have reported the analysis of stresses developed due
to variation of the temperature gradient in an annular fin, and these papers mainly focus on
uniform thickness of the fins. A careful review of the published literature reveal that till date
no work reports theoretical studies for thermal stresses in an annular radial fin of a hyperbolic
profile with the consideration of variable thermal conductivity.

In this paper, a novel analytical approach is used to predict a near closed form solution
for thermal stresses in an isotropic homogeneous annular fin with a hyperbolic profile. A va-
riable thermal conductivity parameter is considered in the analysis. The temperature field is
obtained by solving a non-linear steady sate heat conduction-convection equation of a fin using
the Adominan Decomposition Method. The solution for the temperature field is expressed in a
polynomial form. The plane stress condition in a rotational symmetric geometry with respect
to its axis is considered in this study. A classical thermo-elasticity relation coupled with the
solution of the temperature field is employed to obtain the stress field. The study includes the
affect of various non-dimensional parameters such as thermal conductivity parameter (β), the
thermo-geometric fin parameter (ψ), the coefficient of thermal expansion (χ) and Poisson’s ra-
tio (ν) on the stress field. The results are compared with those given by Chiu and Chen (2002)
to resolve the accuracy of the present method. The analyses presented envisage an improved fin
design process.

2. Problem description and governing equations of heat transfer

An axisymmetric undeformed annular fin of a hyperbolic profile (Fig. 1) with variable thermal
conductivity (k(T)) is considered. The fin is exposed to a conductive-convective environment
at a constant ambient temperature and the tip of the fin is maintained to be well-insulated
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with a traction free condition. As thickness of the fin is relatively small compared to its radial
dimension, the temperature distribution and the stress field can be assumed to vary in the radial
direction only.

Fig. 1. Geometry of an annular fin with a hyperbolic profile

The profile function for fin tapering from the base to tip is given by

t = ha
( r
ra

)n
with n  1 (2.1)

where n is the profile parameter.
The steady state energy balance equation for the axisymmetric annular fin is expressed

(Mokheimer, 2002) as

d

dr

(
kAc

dT

dr

)
− hdAs

dr
(T − T∞) = 0 (2.2)

where k = ka[1 + κ(T − T∞)]. The notations used in Eq. (2.1) and Eq. (2.2) are defined in the
nomenclature.
The fin profile becomes hyperbolic when the profile parameter n = −1. Equation (2.2) can

be expressed in the following dimensionless form

d2θ

dξ2
+ βθ

d2θ

dξ2
+ β

(dθ
dξ

)2
− ψ2(1 + ξ)θ = 0 with 0 ¬ ξ ¬ R− 1 (2.3)

where

θ =
T − T∞
Ta − T∞

β = κ(Ta − T∞) ξ =
r − ra
ra

R =
rb
ra

ψ =

√
2hr2a
kaha

are non-dimensional parameters.
In order to evaluate the temperature distribution, the following non-dimensional boundary

conditions are employed

ξ =





0 that θ = 1

R− 1 that
dθ

dξ
= 0

(2.4)

3. Adomian Decomposition Method to solve the heat transfer equation

Adomian Decomposition Method (ADM) is adopted to evaluate the non-dimensional tempera-
ture field. In ADM, the nonlinear ordinary and partial differential equations are represented in
an operator form (Adomian, 1988)

Lu+Ru+Nu = g (3.1)
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where L is an n-th order invertible linear differential operator (L = dn/dξn), R is a linear
differential operator of an order less than L, and N represents a nonlinear operator that enables
Nu to be decomposed into an infinite series of Adomian polynomials.

Applying ADM, the governing equation for the temperature field (Eq. 2.3) can now be
expressed as

Lθ = ψ2θ + ψ2ξθ − β(NA) − β(NB) (3.2)

where

NA = θθ′′ =
∞∑

p=0

Ap NB = (θ′)2 =
∞∑

p=0

Bp

are the nonlinear terms. The Adomian polynomials An and Bn are estimated as follows
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(3.3)

where (·)′ and (·)′′ are d/dξ and d2/dξ2, respectively. An inverse operator L−1 can conveniently
be used as a two-fold identifying integral in both sides of Eq. (3.2). Applying the Maclaurin
series, yields

θ = θ(0)+ ξ
dθ(0)

dξ
+ψ2

(
L−1

∞∑

p=0

θp

)
+ψ2

(
L−1

∞∑

p=0

ξθp

)
−β

(
L−1

∞∑

p=0

Ap

)
−β

(
L−1

∞∑

p=0

Bp

)

(3.4)

The first two terms of the right-hand side of Eq. (3.4) can be defined by

θ0 = 1 + Cξ (3.5)

where C is the integral constant.

Considering a finite series of the order p, the higher order terms in Eq. (3.4) are obtained
recursively as

θp+1 = ψ
2

(
L−1

∞∑

p=0

θp

)
+ ψ2

(
L−1

p∑

0

ξθp

)
− β

(
L−1

p∑

0

Ap

)
− β

(
L−1

p∑

0

Bp

)
(3.6)

with p  0.
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In the present analysis, the estimation of the first four significant terms, i.e, n = 0 to 3, of
the temperature field is now expressed in the following form

θ1 = −βL−1A0 − βL−1B0 + ψ2L−1[(1 + ξ)θ0]
θ2 = −βL−1A1 − βL−1B1 + ψ2L−1[(1 + ξ)θ1]
θ3 = −βL−1A2 − βL−1B2 + ψ2L−1[(1 + ξ)θ2]
θ4 = −βL−1A3 − βL−1B3 + ψ2L−1[(1 + ξ)θ3]

(3.7)

The total temperature field can now be estimated from Eqs. (3.5) and (3.7) to yield a
polynomial form

θ =
m∑

i=0

Kiξ
i with 0 ¬ ξ ¬ R− 1 (3.8)

where Ki are constants. The estimation of Ki are shown in Appendix.

4. Thermal stress formulation

Using the plane stress assumption (σz ∼= 0), the stress-displacement relations in the axisymmetric
case (Timoshenko and Goodier, 1970) are

σr =
E

1− ν2
[(dur

dr
− αT

)
+ ν

(ur
r
− αT

)]

σφ =
E

1− ν2
[(ur

r
− αT

)
+ ν

(dur
dr
− αT

)] (4.1)

Following classical theory of elasticity, the equation of equilibrium in the polar coordinate
system for a variable thickness profile is given as

dσr
dr
+
σr
t

dt

dr
+
σr − σφ
tr

= 0 (4.2)

Equations (4.1) and (4.2) yield the equation of equilibrium in terms of the displacement field

d2u

dr2
+
1 + n

r

du

dr
+
(νn− 1)u

r2
− (1 + ν)α

(dT
dr
+
T

r
n
)
= 0 (4.3)

Introducing a new non-dimensional radius, ξ1 = r/ra, the following termo-elastic equation
of equilibrium is obtained

d2u

dξ21
+
1 + n

ξ1

du

dξ1
+
(νn− 1)u

ξ21
− (1 + ν)raα

[
(Ta − T∞)

dθ

dξ1
+ (Ta − T∞)n

θ

ξ1

]
= 0 (4.4)

The temperature field in Eq. (3.8) is now modified by the new non-dimensional radius ξ1
and can be expressed in an analogous form

θ =
m∑

i=0

Liξ
i
1 1 ¬ ξ1 ¬ R (4.5)

Equations (4.4) and (4.5) give together a new form of the equilibrium equation

d2u

dξ21
+
1 + n

ξ1

du

dξ1
+
(νn− 1)u

ξ21
= (1 + ν)raχ

[
m∑

i=0

(i+ n)Liξ
i−1
1

]
(4.6)

where χ = α(Tb − T∞) is a non-dimensional coefficient of thermal expansion.
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The complete solution to Eq. (4.6) consists of a homogeneous and a particular solution, and
is given as

u = D1ξ
η1
1 +D2ξ

η2
1 +

m∑

i=0

(1 + ν)χra
Li(i+ n)

n(1 + i+ ν) + i(i+ 2)
ξi+11 (4.7)

where D1, D2, and η1,2 = −(n/2)±
√
1− νn+ n2/4 are constants. The stress field Eq. (4.1) can

now be expressed in the non-dimensional form

σr =
[( du
dξ1
+ ν

u

ξ1

) 1
ra
− χ(1 + ν)θ

] 1

1− ν2

σφ =
[( u
ξ1
+ ν

du

dξ1

) 1
ra
− χ(1 + ν)θ

] 1

1− ν2
(4.8)

where σr = σr/E and σφ = σφ/E are non-dimensional radial and tangential stresses, respecti-
vely. The near closed form solution for the stress field is obtained by combining Eq. (4.7) and
Eq. (4.8)

σr = Aξ
η1−1
1 +Bξη2−11 − χ

m∑

i=0

iLi
n(1 + i+ ν) + i(i+ 2)

ξi1

σφ = −η2Aξη1−11 − η1Bξη2−11 − χ
m∑

i=0

i(n+ i+ 1)Li
n(1 + i+ ν) + i(i+ 2)

ξi1

(4.9)

where

A =
D1(η1 + ν)

ra(1 − ν2)
B =

D2(η2 + ν)

ra(1− ν2)
are constants estimated from the boundary conditions σr = 0 at ξ1 = 1 and R.

5. Results and discussion

A near closed form solution for thermal stresses in the isotropic annular fin with a hyperbolic
profile is derived. ADM is employed to obtain the non-dimensional temperature field represented
in a polynomial form. The integral constants C are evaluated using the minimum decomposition
error J = θi+1−θi, (J ¬ 10−4) approach. Figure 2 represents the values of the integral constant C
for different values of the variable thermal conductivity parameter. The accepted C values are
the x-values corresponding to the minimum decomposition error in each case. These constants
directly influence the variation of local temperature distribution. The determined values of C
for ψ = 0.2 and β = 0.3, 0 and −0.3 are −0.1737, −0.2167 and −0.2758, respectively.
With the best of literature search, this work is the first attempt to estimate thermal stres-

ses in an annular fin with a hyperbolic profile along with a variable thermal conductivity. Due
to this limitation, stress fields for the hyperbolic fin profile obtained from the present formu-
lation could not be compared. However, the present formulation for stress fields can be used
to obtain results for an annular fin of uniform thickness by setting n = 0 in Eq. (4.9). The-
se stress field results are compared with those by Chiu and Chen (2002) shown in Fig. 3.
The results in Fig. 3 take into account the same parameters, κ = ±0.00018, ξ1 = 1 to 3,
h = 50W/(m2K), k∞ = 186W/(mK) and t(= ha) = 0.004m and boundary conditions for cla-
rity of the comparison. Both temperature and stress fields in uniform thickness obtained from
Eqs. (4.5) and (4.9) visibly reveal close agreement.
Figure 4 illustrates the effect of various thermo-mechanical parameters on the non-

-dimensional temperature and stress field. Unless mentioned otherwise, the numerical values
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Fig. 2. Estimation of the integral constant using the minimum decomposition error approach

Fig. 3. Comparison of the results for (a) temperature distribution, (b) radial stress distribution and
(c) tangential stress distribution for an annular fin with uniform thickness. The results heve been
estimated from the present closed form solution for the fin with variable thickness by setting n = 0

of the non-dimensional parameters are taken to be β = 0, ψ = 0.2, χ = 1 and ν = 0.3 for all
the cases. In Fig. 4a, it can be seen that the steeper temperature gradient is associated with a
lower variable thermal conductivity parameter β. As a result, the mean temperature difference
between the base and fin tip is decreased with an increase in β. On the other hand, higher thermo-
geometric parameter ψ induces higher temperature gradient. Lower thermo-geometric parameter
indicates the fin as thermally thin with less thermal resistivity. Thus, the heat conduction inside
the body is much faster than the heat convection away from the surface. Furthermore, it can
be observed that the coefficient of thermal expansion χ and Poisson’s ratio ν do not affect the
temperature field. Nevertheless, the variation of stresses is influenced by all thermo-mechanical
parameters. The stress field in Eq. (4.9) can be seen to vary linearly with the coefficient of ther-
mal expansion. Consequently, the stress field can be changed with modification in the coefficient
of thermal expansion by n-times. Thus, the maximum of non-dimensional radial and tangential
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stress magnitudes: −0.0558 and −0.19523 increase to −0.1126 and −0.39046, respectively, by a
change in the coefficient of thermal expansion from 1 to 2 (negative value indicates compressive
stress) shown in Fig. 4b and 4c. The parameters β and ψ significantly influence the variation of
stress fields. The stress magnitude increases with an increment of ψ, and decreases with an in-
crease in β. Interestingly, the stress field is very marginally affected by Poisson’s ratio ν (Fig. 4).
This result is reasonable for axisymmetric plane stress assumptions in the analysis of the annular
fin with a hyperbolic profile.

Fig. 4. Effect of various thermo-mechanical properties on (a) temperature distribution, (b) radial stress
field, and (c) tangential stress field. Unless mentioned otherwise, β = 0, ψ = 0.2, χ = 1 and ν = 0.3

A comparison of the stress field between a fin of uniform thickness and that of a hyperbolic
profile keeping the same material volume condition are depicted in Fig. 5a and 5b. Except for
the profile geometry, all other parameters, i.e. V = 4.0212 · 10−5m3, κ = 0, h = 50W/(m2K),
k∞ = 186W/(mK) (Chiu and Chen, 2002) are maintained the same in both profiles. Herein,
the maximum value of σr and σφ (compressive) are found to be less in the hyperbolic profile
than in the uniform thickness condition. The σr variation with the length parameter indicates
a better symmetric distribution over dimensionless radius in the hyperbolic profile than that of
the uniform thickness profile.

Furthermore, the σφ (compressive) variation in the hyperbolic profile is significantly lower
compared to the uniform thickness case near to the base of the fin. A marginally higher σφ
(tensile) variation is observed in the hyperbolic profile near the fin tip. These results reveal that
the fin with the hyperbolic profile is much safer from the material failure view point than that of
the uniform thickness profile due to the lower stress level. Conversely, for the same stress field,
the fin with the hyperbolic profile is much more compact and requires less material.

Figure 6 shows the surface plot of the temperature and stress field along the radial direction
for variable β and ψ. The non-dimensional temperature surfaces (Fig. 6a) reveal that the tem-
perature difference (∆θ = θra − θ∞) from the base to tip gradually increases with a decrease
in variable thermal conductivity parameters. On the other hand, the reverse nature is observed
with the variation of the thermo-geometric parameter. The results obtained suggest that for a
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Fig. 5. Comparison of (a) radial stress field and (b) tangential stress field between the uniform and
hyperbolic annular fin. The volume and other properties are the same in both cases

Fig. 6. Surface domain for (a) temperature field, (b) radial stress field, and (c) tangential stress field
along the radial direction ξ1 with the variation of thermal parameters (i) β and (ii) ψ

specific surface geometry the heat transfer can be enhanced either by decreasing the thermo-
geometric parameter or by selecting materials with higher thermal conductivity. In addition to
the heat transfer enhancement, the investigation of material failure is also an important aspect
for the designer of the fin. The surface plots for σr and σφ distribution with the variation of
β and ψ are depicted in Fig. 6b and 6c, respectively. From the surface representation of stress
distribution, it is apparent that the maximum σr (compressive) and σφ (compressive or tensile)
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are achievable either with a lower value of β or by the use of a higher thermo-geometric parame-
ter ψ. The lower value of β induces high thermal resistance. As a consequence, poor heat transfer
through the fin material causes a higher value of the local temperature difference between two
neighbouring material points along the radial direction. Thus, a very low heat transfer can lead
to the excessively induced thermal stress that reduces the fin life. Therefore, a study of the
maximum limit of heat dissipation ability and the maximum limit of thermal stresses induced
is necessary for better design.

6. Conclusions

A method of analysis for the determination of thermal stresses in an annular fin with a hyperbolic
profile using variable thermal conductivity is presented. The ADM coupled with thermo-elasticity
approach is chosen to derive an approximate analytical solution for thermal stresses. In order
to validate the present analytical solution, the results are compared with the results available
in literature and found to be in very good agreement. The effects of various non-dimensional
parameters on the temperature field and stress fields are also investigated. Based on the present
study, the remarkable outcomes are:

i. ADM is useful and efficient to obtain a general closed form solution for the stress field in fin
of a hyperbolic profile as well as of a uniform thickness with variable thermal conductivity.

ii. The temperature field is influenced by the parameters β and ψ only, while, the stress
fields are governed by all non-dimensional parameters β, ψ, χ and ν. Notably, the effect
of Poisson’s ratio ν on the stress field is observable only in hyperbolic fin profile. And this
effect is very insignificant compared to the contribution of other parameters.

iii. The variation of radial stress with the length parameter exhibits better symmetric distri-
bution in the hyperbolic profile then that of the uniform thickness.

iv. The surface plot for the temperature field and stress field with different values of β and ψ
discloses the nature of thermo-parametric dependence on the temperature and stress field.

v. Improvement in heat transfer can be attained either by increasing the thermal conducti-
vity parameter or setting a lower thermo-geometric parameter. The lower value of local
temperature difference may induce higher thermal stresses in the part. So, an appropriate
combination of the heat dissipation limit and induced stress field can only be achieved
with an efficient design of the fin profile. The hyperbolic section of the fin appears to be a
better choice in all respects.

vi. The present method of analysis is expected to help understanding of the heat transfer
phenomena and thermal stress development in the hyperbolic fin.

Appendix

The Ki estimation (14 terms considered in this study) are given below

K0 = 1 K1 = C

K2 =
1

2
(−C2β + ψ2 + C2β2 − ψ2β − C2β3 + ψ2β2 + C2β4 − ψ2β3)

K3 =
1

6
(Cψ2 + ψ2 + 3C3β2 − 4Cβψ2 − βψ2 − 6C3β3 + β2ψ2 + 7Cβ2ψ2 + 7C3β4

− 8Cψ2β3 − ψ2β3)
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K4 =
1

24
(2Cψ2 − 5C2βψ2 − 6Cβψ2 + ψ4 − 15C4β3 + 28C2β2ψ2 + 10Cβ2ψ2 − 5βψ4

+ 32C4β4 + 4C3β4 + C2β3 − 53C2β3ψ2 − 16Cβ3ψ2 − β2ψ2 + 7β2ψ4)

K5 =
1

120
(−13C2βψ2 + Cψ4 + 4ψ4 + 38C3β2ψ2 + 56C2β2ψ2 − 20Cβψ4 − 18βψ4

+ 78C5β4 + 12C4β4 − 205C2β3ψ2 − 120C2β3ψ2 − 2Cβ3ψ2 + 96Cβ2ψ4 + 50ψ4)

K6 =
1

720
(6Cψ4 + 4ψ4 + 120C3β2ψ2 − 21C2βψ4 − 86Cβψ4 − 18βψ4 + ψ6 − 116C4β3

+ 30C5β4 − 272C3β3 − 91C4β3ψ2 − 156C3β3ψ2 − 20C2β3ψ2 + 193Cβ2ψ2

− 48C3β2ψ2 + 124C2β2ψ4 + 172Cβ2ψ4 + 16β2ψ4 + 22β2ψ2 − 8βψ4 − 12βψ6)

K7 =
1

5040
(10Cψ4 − 150C2βψ4 − 128Cβψ4 + Cψ6 + 9ψ6 − 1234C4β3ψ2 + 329C3β2ψ4

+ 1848C2β2ψ4 + 584Cβ2ψ4 − 82Cβψ6 − 112C3β3ψ2 − 151βψ6)

K8 =
1

40320
(−298C2βψ4 + 12Cψ6 + 28ψ6 + 5644C3β2ψ4 + 5822C2β2ψ4 − 243C2βψ6

− 2020Cβψ6 − 1310βψ6 − 240C4β3ψ6 + 42C3β2ψ8 + 172C2β2ψ8 + 36Cβ2ψ8

− 2Cβψ10 + ψ8)

K9 =
1

362880
(52Cψ6 + 28ψ6 + 6792C3β2ψ4 + 256C2β2ψ4 − 1055C2βψ6 − 3022Cβψ6

− 686βψ6 + Cψ8 + 16ψ8)

K10 =
1

1814400
(40Cψ6 + 298C3β2ψ4 − 3529C2βψ6 − 2692Cβψ6 + 10Cψ8 + 50ψ8)

K11 =
1

19958400
(−5053C2βψ6 − 28Cβψ6 + 80Cψ8 + 140ψ8)

K12 =
1

11975040
(−4C2βψ6 + 15Cψ8 + 7ψ8)

K13 =
1

7076160
Cψ8
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The present paper deals with a dynamic coupled response of functionally graded columns
with a quadratic cross-section subjected to an in-plane pulse loading. An Al-TiC metal-
-ceramic material is applied. It is assumed that functionally graded materials (FGMs) are
subject to Hooke’s law. The thin-walled structures are simply supported at the ends. This
study is devoted to the stability problem of rectangular dynamic pulse load. The effects of
temperature, wave propagation and damping are neglected. In order to obtain the equations
of motion of individual plates, the classic laminate plate theory (CLPT) has been modified
in such a way that it additionally accounts for all components of inertial forces. A plate
model is adopted for the structures. The problem of an interaction of the global mode with
the local ones is concerned (i.e., a three-modes approach). Attention has been focused on
some unexpected aspects related to dynamic interactive buckling of columns having two
axes of the cross-section symmetry. In the present study, a new approach to the description
of this phenomenon, based on Koiter’s theory, has been applied.

Keywords: FGM, dynamic response, interactive buckling, thin-walled structures, compres-
sion, pulse load

1. Introduction

The dynamic buckling or dynamic response takes place when a pulse load of a mean amplitude
and a pulse duration comparable to the fundamental natural flexural vibration period occurs
in compression of the thin-walled column. In this case, effects of damping can be neglected in
practice. When the amplitude of load is high, then the structure can vibrate very strongly or can
move divergently, which is caused by dynamic buckling. One can determine the critical ampli-
tude of load using various criteria. In the literature on this problem, a lot of criteria concerning
dynamic stability have been adopted. The most widely used is the Budiansky-Hutchinson crite-
rion (Kubiak, 2007, 2013), in which it is assumed that the dynamic stability loss occurs when
the maximum structure deflection grows rapidly at a small variation in the load amplitude.
Other criteria have been discussed in many papers: Ari-Gur and Simonetta (1979), Petry and
Fahlbusch (2000), Kubiak (2007, 2013), Teter (2011).

Dynamic global and local buckling instabilities of component functionally graded plates (the
so-called FG plates) of structures subjected to conservative loads have been taken into account.
The problem of an interaction of the global mode with the local ones is very interesting. The
concept of interactive buckling involves the general asymptotic theory of stability. Among all
versions of the general nonlinear theory, Koiter’s theory (van der Heijden, 2009) of conserva-
tive systems is the most popular one (Kołakowski et al., 1999; Teter and Kołakowski, 2004;
Kołakowski and Kubiak, 2005; Kołakowski and Królak, 2006).



450 Z. Kołakowski, A. Teter

In the present study, the classical laminate plate theory (CLPT) (Jones, 1999; Reddy, 2004)
is employed to obtain the governing equations of the thin FG plate equilibrium. In order to
obtain the equations of individual plates for the asymptotic analytical-numerical method, the
nonlinear theory of composite plates has been modified in such a way that it additionally accounts
for forces of inertia. The differential equations of motion have been obtained from Hamilton’s
Principle, taking into account Lagrange’s description, full Green’s strain tensor, the second
Piola-Kirchhoff’s stress tensor and all components of inertia forces. The study is based on the
numerical method of the transition matrix using Godunov’s orthogonalization (Kołakowski et
al., 1999; Teter and Kołakowski, 2004; Kołakowski and Kubiak, 2005; Kołakowski and Królak,
2006). A plate model of the column has been adopted in the study to describe global buckling,
which leads to lowering the theoretical value of the limit load. The solution method assumed
in this study enables analyzia of interactions of all buckling modes. The nonlinear equations of
dynamic instability are solved with the modified Runge-Kutta method.
The nonlinear analysis of Functionally Gradient plates and shells devoted to basic types of

loads is covered in the monograph by Hui-Shen (2009). The shear deformation effect is em-
ployed in the framework of Reddy’s higher order shear deformation theory (HSDT) (Reddy,
2000; Reddy, 2004). Reddy (2000) presents a comparison of applications of the first order shear
deformation theory (FSDT) and the classical lamination plate theory (CLPT) to functionally
graded plates. The discrepancy between both theories is of 2% in the calculated deflections of
the plates under analysis. The buckling and postbuckling problem of FG plates is discussed, for
example, in papers by Reddy (2000), Samsam Shariata et al. (2005), Kołakowski et al. (2015).
Due to the complexity of buckling problems of FG structures under compound mechanical and
thermal loads, the finite element method (FEM) is the only solution possible in many cases.
Therefore, in the literature, one can find many papers which present results of a solution to
different problems of FG structure buckling obtained with an application of the FEM, see for
example: Birman and Byrd (2007), Panda and Ray (2008), Na and Kim (2009), Kołakowski et
al. (2015).

2. Formulation of the problem

Long thin-walled prismatic columns of length l, composed of plane rectangular plate segments
interconnected along longitudinal edges and simply supported at both ends, are considered. All
materials the FG plates are made of are subject to Hooke’s law. The material properties are
assumed to be temperature independent. A plate model is adopted for the structures. Wave
propagation and damping effects have been neglected in the present study, as it is done in the
majority of works devoted to dynamic stability. In the present study, the classical laminate plate
theory (CLPT) (Jones, 1999; Reddy, 2004) is employed to obtain the governing equations of the
thin FG structure equilibrium (Kołakowski and Królak, 2006; Panda and Ray, 2008). For the
plate component, precise geometrical relationships are assumed in order to enable consideration
of both out-of-plane and in-plane bending of the plate (Kubiak, 2007, 2013; Teter, 2007, 2011;
Kołakowski et al., 1999; Teter and Kołakowski, 2001, 2004, 2005; Kołakowski and Kubiak, 2005;
Kołakowski and Królak, 2006)
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(2.1)

where u, v, w are components of the displacement vector of the plate in the x, y, z axis direction,
respectively, and the plane xy overlaps the mid-plane before its buckling.
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According to the rule of mixture, the properties of the functionally graded material
(E – Young’s modulus, ν – Poisson’s ratio, ρ – density) can be expressed as follows

E(z) = Em + (Ec − Em)
( z
h
+
1

2

)q
ν(z) = νm + (νc − νm)

( z
h
+
1

2

)q

ρ(z) = ρm + (ρc − ρm)
( z
h
+
1

2

)q (2.2)

where the indices m and c refer to the metal and ceramic material, respectively, and q is the
fraction exponent.
Using the classical laminate plate theory (CLPT) (Jones, 1999; Reddy, 2004), the stress and

moment resultants (N,M) are defined as (Jones, 1999; Teter and Kołakowski, 2005, Kołakowski
and Królak, 2006)

{
N
M

}
=

[
A B
B D

]{
ε
κ

}
(2.3)

where A, B, D are extensional, coupling and bending stiffness matrices, respectively, for the FG
structure. Their components are listed below

A11 = A22 =
h/2∫

−h/2

E(z)

1− ν2(z) dz A12 = A21 =
h/2∫

−h/2

E(z)ν(z)

1− ν2(z) dz

A66 =
h/2∫

−h/2

E(z)

2[1 + ν(z)]
dz A16 = A61 = 0

B11 = B22 =
h/2∫

−h/2

E(z)

1− ν2(z)z dz B12 = B21 =
h/2∫

−h/2

E(z)ν(z)

1− ν2(z)z dz

B66 =
h/2∫

−h/2

E(z)

2[1 + ν(z)]
z dz B16 = B61 = 0

D11 = D22 =
h/2∫

−h/2

E(z)

1− ν2(z)z
2 dz D12 = D21 =

h/2∫

−h/2

E(z)ν(z)

1− ν2(z)z
2 dz

D66 =
h/2∫

−h/2

E(z)

2[1 + ν(z)]
z2 dz D16 = D61 = 0

(2.4)

Due to the presence of the nontrivial submatrix B, the coupling between extensional and
bending deformations exists as it is in the case of unsymmetrical laminated plates (Jones, 1999;
Kołakowski et al., 2015). An extensional force results not only in extensional deformations, but
also bending of the FG plate. Moreover, such a plate cannot be subjected to the moment without
suffering simultaneously from extension of the middle surface.
The nonlinear problem of dynamic stability has been solved with the asymptotic perturba-

tion method. Let λ be a load factor. The displacement fields U and the sectional force fields N
(Koiter’s type expansion for the static buckling problem (van der Heijden, 2009)) have been
expanded into power series with respect to the dimensionless amplitude of the r-th mode deflec-
tion ζr (normalized in the given case by the condition of equality of the maximum deflection to
the thickness of the first component plate h1) (Kołakowski et al., 1999; Teter and Kołakowski,
2001, 2004, 2005; Teter, 2007, 2011; Kołakowski and Kubiak, 2005; Kołakowski and Królak,
2006; Kubiak, 2007, 2013; van der Heijden, 2009)

U = λ(t)U0 + ζr(t)Ur + ζr(t)ζq(t)Uqr + . . .

N = λ(t)N0 + ζr(t)Nr + ζr(t)ζq(t)Nqr + . . .
(2.5)

where the pre-buckling static fields are U0, N0, the first nonlinear order fields are Ur, Nr
(the eigenvalues and eigenvectors problems) and the second nonlinear order fields – Uqr, Nqr,
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respectively. The range of indexes is [1, J ], where J is the number of interacting modes. The
summation is supposed on the repeated indexes.
If the structure contains the geometric imperfections U

∗
(only linear initial imperfections

determined by the shape of r-th buckling modes i.e., U
∗
= ζ∗rUr), then the total energy of the

structures can be written in the form (Schokker et al., 1996; Kołakowski et al., 1999; Teter and
Kołakowski, 2004; Teter, 2007, 2011; Kołakowski and Kubiak, 2005; Kołakowski and Królak,
2006; Kubiak, 2007, 2013)

Π = −1
2
σ2(t)a0 +

1

2

J∑

r=1

arζ
2
r (t)

(
1− σ(t)

σr

)
+
1

3

J∑

p

J∑

q

J∑

r

apqrζp(t)ζq(t)ζr(t)

+
1

4
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r

brrrrζ
4
r (t)−

J∑

r

σ(t)

σr
arζ
∗
r ζr(t) +

1

2

J∑

r

mrζ
2
r,t(t)

(2.6)

Then, Hamilton’s principle leads to the following Lagrange’s equation (i.e. equations of mo-
tion)

ζr,tt +Ω
2
r ζr + ω

2
r

(
apqrζpζq + brrrrζ

3
r −

σ

σr
ζ∗r + . . .

)
= 0 for r = 1, . . . , J (2.7)

where ζr is the dimensionless amplitude of the r-th buckling mode, σr, ωr, ζ
∗
r – critical stress

instead of the load parameter λr of the r-th buckling mode, circular frequency of free vibrations
and dimensionless amplitude of the initial deflection corresponding to the r-th buckling mode,
respectively. In equations of motion (2.7), the inertia forces of the pre-buckling state and the
second order state have been neglected (Sridharan et al., 1984; Schokker, 1996; Warmiński and
Teter, 2012). The coefficients in equilibrium equations (2.7) are given in papers: Sridharan et al.
(1984), Kołakowski (1996), Schokker (1996), Kołakowski et al.) (1999), Teter and Kołakowski
(2004), Teter (2007, 2011), Kołakowski and Kubiak (2005), Kołakowski and Królak (2006),
Kubiak (2007, 2013), Warmiński and Teter (2012), Kołakowski and Mania (2013). In the former
parts of this paper, in relationships (2.7), λr has been replaced with σr, whereas λ with σ,
correspondingly.
The initial conditions have been assumed in the form

ζr(t = 0) = 0 ζr,t(t = 0) = 0 (2.8)

In equation (2.7), the quantity Ω2r depending on the values of σ/σr can take the following
values:

• if σ/σr < 1, then Ω2r = ω2r(1 − σ/σr) > 0, where Ωr can be called the equivalent angular
velocity. The linear general solution to equation (2.9) in the case of an ideal structure (that
is to say, for ζ∗r = 0) are trigonometric functions;

• if σ/σr = 1, then Ω2r = 0;
• if σ/σr < 1, then Ω2r < 0, where Ωr can be called the equivalent growing function and
then the linear general solution to equation (2.7) for ζ∗r = 0 are hyperbolic functions.

The nonlinear static stability (i.e., for ζr,tt in (2.7)) of thin-walled multilayer structures in
the first order approximation of Koiter’s theory is solved with the modified analytical-numerical
method (ANM) presented by Kołakowski and Królak (2006). The analytical-numerical method
(ANM) should consider also the second order approximation of the theory in the analysis of
postbuckling of elastic composite structures. The second order postbuckling coefficients were
estimated with the semi-analytical method (SAM) (Kołakowski, 1996) modified by the solution
method in Kołakowski and Mania (2013). In the semi-analytical method (SAM) for static pro-
blems, one postulates to determine approximated values of the coefficients brrrr in (2.7) on the
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basis of the linear buckling problem. This approach allows the values of the coefficients apqr
in (2.7) – according to the applied nonlinear Byskov and Hutchinson theory (Byskov and Hut-
chinson, 1977) – to be determined precisely. The natural frequencies have been determined
analogously as in Teter and Kołakowski (2003), whereas the problem of interactive dynamic
buckling (2.7) has been solved by means of the Runge-Kutta numerical method modified by
Hairer and Wanner.

In the present paper, we assume that the buckling modes are the same as the vibration modes,
so the solution to the eigenvalue problem is sought for various values of the m-th harmonic.
Values of the natural frequencies are determined taking into account all components of inertia
forces.

For static problems, Koiter and van der Neut (Kubiak, 2013) have proposed a technique in
which an interaction of the overall mode with two local modes having the same wavelength (i.e.,
a three-mode approach J = 3) has been considered. The fundamental local mode is henceforth
called “primary” and the nontrivial higher mode (having the same wavelength as the “primary”
one), corresponding to the mode triggered by the overall long-wave mode, is called “secondary”.
In total energy, the coefficients of the cubic terms ζ1ζ

2
2 , ζ1ζ

2
3 and ζ1ζ2ζ3 (where ζj is the amplitude

of the r-th buckling mode and the index is: 1 for the global mode, 2 for the primary local buckling
mode, and 3 for the secondary local mode) are the key terms governing the interaction. In the
analysis of the column with doubly symmetric cross-sections, the coefficients of ζ1ζ

2
2 and ζ1ζ

2
3

terms – the coefficients apqr of non-linear system of equations (2.7) – vanish.

In the paper by Kołakowski et al. (2015), nonlinear Koiter’s theory has been used to explain
the effect of the imperfection sign (sense) on local postbuckling equilibrium paths of plates
made of functionally graded materials (FGMs). In the case of the FG plate, nonzero first-order
sectional inner forces that cause an occurrence of nonzero postbuckling coefficients responsible
for sensitivity of the system to imperfections appear. It results in the fact that postbuckling
equilibrium paths of plate structures made of FGMs are unsymmetrically stable. This explains
differences in the plate response dependence on the imperfection sign (sense). On the other hand,
in Kołakowski and Mania (2015), an analysis of the influence of the imperfection sign on the
dynamic postbuckling equilibrium paths of the FG square plates has been continued.

In the numerical calculations of dynamic interactive buckling, a rectangular shape of the
in-plane pulse loading (i.e., σ(t) = σD for 0 ¬ t ¬ T1 and σ(t) = 0 for T < t1) equal to the
fundamental period of the natural frequency T1 = 2π/ω1 is considered.

The prebuckling solution to the FG plate consisting of homogenous fields is assumed as in
Kołakowski and Królak (2006)

u(0) =
( l
2
− x

)
∆ v(0) = y∆

A12
A22

w(0) = 0 (2.9)

where ∆ is the actual loading. This loading of the zero state is specified as a product of the unit
loading and the scalar load factor ∆.

Taking into account relationship (2.3), the inner sectional forces of the prebuckling (i.e.,
unbending) state for the assumed homogeneous field of displacements (2.9) are expressed by the
following relationships before the redistribution of forces in the plate due to plate deformations
(Kołakowski et al., 2015; Kołakowski and Mania, 2015; Kołakowski, 2016)
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A212
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∆ M
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(0)
xy = 0 M

(0)
xy = 0

(2.10)
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The assumed field of displacements and the field of inner forces, corresponding to it for the
prebuckling state, fulfil the equilibrium equations for the zero state as an identity.
In Kołakowski and Królak (2006), an unbending, prebuckling state, i.e., a distribution field

of the zero state according to (2.9), has been assumed. Dependence (2.3) for the zero state (i.e.,
prebuckling) takes the form

N0 =

{
N (0)

M (0)

}
=

[
A B
B D

]{
ε(0)

0

}
(2.11)

It results in an occurrence of the nonzero inner sectional forces (2.10) N
(0)
x , M

(0)
x , M

(0)
y in the

FG plate for the zero state. Special attention should be paid to the fact that nonzero magnitudes

of the sectional moments M
(0)
x andM

(0)
y appear due to the effects of deformations of the middle

surface (i.e., membrane deformations) resulting from the nontrivial coupling submatrix B and
deformations of the middle surface, and not due to an appearance of curvatures of the middle
surface. These moments affect obviously the values of critical loads and the values of postbuckling
coefficients (Kołakowski et al., 2015; Kołakowski and Mania, 2015).

3. Analysis of the results

Prismatic thin-walled beam-columns with quadratic cross-sections subjected to an axial pulse
compression have been considered. The columns are made of the same FGM subject to Hooke’s
law. A schematic view of the column and its dimensions are shown in Fig. 1.

Fig. 1. Thin-walled cross-section of the beam-column

Identically as in Kołakowski et al. (2015), Kołakowski and Mania (2015) two different ma-
terials the columns are made of have been considered, namely:

• isotropic material – steel – with the following material properties: Young’s modulus
E = 210GPa, Poisson’s ratio ν = 0.3, and density ρ = 7850 kg/m3;

• Al-TiC functionally graded material (FGM). The component material properties are given:
Al Young’s modulus: Em = 69GPa, TiC Young’s modulus: Ec = 480GPa, Al Poisson’s
ratio: νm = 0.33, TiC Poisson’s ratio: νc = 0.20, Al density: ρm = 2700 kg/m

3, TiC density:
ρc = 4920 kg/m

3. The fraction exponent q (2.2) is equal to 1.0.

Three variants of the beam-column structure have been considered, namely:

• variant I – isotropic column (the so-called reference variant);
• variant II – QCM FG column (ceramics inside the cross-section, metal outside);
• variant III – QMC FG column (metal inside the cross-section, ceramics – outside).

The isotropic beam-column (variant I) has symmetrical stable postbuckling local equilibrium
paths, whereas the FG column (variants II and III) has nonsymmetrical stable postbuckling local
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equilibrium paths (Kołakowski et al., 2015; Kołakowski and Mania, 2015). Due to the above
aspects, two variants of the FG beam-column – QCM and QMC – have been considered.

For each of these three structural variants, values of critical stresses σr: the global (Euler)
buckling mode σ1, the lowest primary local buckling mode σ2 and the secondary local buckling
mode σ3 have been determined, respectively. Moreover, numbers of halfwaves m corresponding
to the critical loads have been given. The global mode occurs at m = 1 and the local modes
at m > 1. Also, values of frequencies of free vibrations ωr and a period of free vibrations Tr
corresponding to the buckling modes under analysis have been defined as well.

An interactive dynamic response of beam-columns to the load whose duration corresponds
to the fundamental period of flexural free vibrations of unloaded columns T1 = 2π/ω1 has been
investigated.

The assumed time of the rectangular load pulse duration corresponds to the beam-column
quasi-static load for local modes (i.e., T2 > 2T1, T3 > 2T1). The tracing time of the struc-
ture dynamic response assumed as t∗ = 1.5T1 has been analysed. The dynamic load factor
DLF is defined as a ratio of the dynamic load to the minimal critical value of the static load,
DLF = σD/min(σ1, σ2, σ3) = σD/σ2.

In Budiansky and Hutchinson (1966), it has been shown for the two-mode approach that
when the frequencies of free vibrations differ at least twice, then in this case the dynamic
term corresponding to a higher frequency of free vibrations can be neglected in the equations of
motion. On the other hand, in Kołakowski (2016), attention has been paid to unexpected aspects
of interactive dynamic buckling in the case of beam-columns having one axis of symmetry of
the cross-section. Here, in order to show qualitatively different dynamic responses, a two- or
three-mode approach could be applied. It has allowed the uncoupling of the equations of motion
for the case of the inner combined resonance, when (ω1+ω2)/ω3 ≈ 1 (Nayfeh and Mook, 1979).
It is not possible to use this approach in the present study because the interaction occurs only

via the coefficient of the cubic term ζ1ζ2ζ3 in total energy (2.6) governing the mode interaction.
Therefore, an approach described in Budiansky and Hutchinson (1966) has been applied. The
secondary local buckling mode in the case of static issues is a supplementary mode that enables
one to account for the effect of the primary local mode on the global flexural buckling mode.

In the further part of the study, it has been assumed that when “complete” three dynamic
equations of motion (2.7) are considered, then the case is referred to as case I. When the
dynamic term is neglected for the primary local buckling mode (i.e., for r = 2), that is to say,
when ζ2,tt = 0 is assumed in equations (2.7) – it is case II, whereas when the term ζ3,tt = 0 is
neglected for the secondary local mode (i.e., for r = 3) – case III.

When the dynamic term is neglected in (2.7), which corresponds to case II, one of the equ-
ations is a static equation of the third order with respect to the amplitude of deflection ζ2,
which is solved on the basis of analytical formulae. Due to this, wrong conditions in the equ-
ations could be avoided and the numerical solution could be stabilised. It means that in the
formula for total energy of the system (2.6), the expression for kinetic energy 0.5m2ζ

2
2,t corre-

sponding to the primary local mode (case II) could be neglected. Analogously, in case III – the
expression for the energy 0.5m3ζ

2
3,t corresponding to the secondary local mode (i.e., ζ3) could be

omitted.

Further on in the study, the following index notations of dimensionless amplitudes of deflec-
tion have been introduced for the cases under consideration, namely: case I – ζr for r = 1, 2, 3;
case II – ζ̂r for r = 1, 2, 3; case III – ζ̃r for r = 1, 2, 3. In the calculations of dynamic stability,
the following values of imperfections have been assumed: ζ∗1 = 1.0, ζ

∗
2 = 0.2, ζ

∗
3 = 0.1. Contrary

to other works by the authors (e.g., Kołakowski, 1996, 2016; Kołakowski et al., 1999; Teter and
Kołakowski, 2001, 2004, 2005; Teter, 2001, 2007, 2011; Kołakowski and Kubiak, 2005; Koła-
kowski and Królak, 2006; Kubiak, 2007; Kołakowski and Mania, 2013; Kubiak, 2013), the most
unfavourable combination of initial imperfection signs ζ∗r (for r = 1, 2, 3) has not been assumed
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to make the effects of nonsymmetrical stable postbuckling equilibrium path and the influence of
the connection between the adjacent plates of the cross-section more visible.

Values of the critical dynamic load factors DLFcr have been determined from the Budiansky-
-Hutchinson criterion (Budiansky amd Hutchinson, 1977; Kubiak 2007, 2013) in which it is
assumed that the loss of dynamic stability occurs when the velocity with which the displacements
grow is the highest for a certain force amplitude. The values of DLFcr presented correspond
with some accuracy to the maximum values of deflections max(ζ1) within the applicability of
the assumed theory (i.e., the total maximum deflection of the column is at least a hundred times
as high as the cross-section wall thickness), and not to asymptotic values (Kubiak, 2013).

3.1. Variant I – isotropic columns

Variant I has been assumed as the reference one because in the case of an isotropic column,
the plates constituting the cross-section are characterized by the symmetry of cross-sectional
uniformity (i.e., coupling stiffness matrix B = 0 in (2.3)).

Table 1. Solutions to the eigenproblem for an isotropic column – variant I (reference)

r σr [MPa] m [–] ωr [rad/s] Tr [ms]

1 1185.6 1 761 8.256

2 72.28 16 3013 2.085

3 103.66 16 3609 1.741

First, the eigenvalues of the problem given in Table 1 have been determined, namely: values of
critical stresses corresponding to the global Euler buckling σ1, the lowest primary local buckling
mode σ2 and the secondary local buckling mode σ3, the frequencies of free vibrations and the
periods corresponding to them, as well as a number of halfwaves m of the eigenmodes along the
longitudinal direction. The ratios of frequencies of free vibrations are equal to: ω2/ω1 = 3.96,
ω3/ω1 = 4.74, ω3/ω2 = 1.197, (ω1 + ω2)/ω3 = 1.045, respectively. In Fig. 2a, absolute values of
the maximum amplitudes of global defections (for r=1) (i.e., ζ1, ζ̂1, ζ̃1) as a function of DLF
for cases I-III under consideration, whereas in Fig. 2b – for local deflections of the modes ζ2, ζ̂3
and ζ̃2 for cases I, II and III are shown, correspondingly.

Fig. 2. Maximum dimensionless global deflections as a function of DLF for an isotropic column
(variant I): (a) global modes, (b) local modes

Quantative differences in the component amplitudes of global deflections (i.e., ζ1, ζ̂1 and ζ̃1)
and the local ones (i.e., ζ2, ζ̂3 and ζ̃2) can be observed. As can be easily seen in these two figures,
the maximum values of the amplitudes of the global and local deflection for each case under
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investigation occur for the same values of DLF (i.e., DLF ≈ 1.69 for case I, DLF ≈ 1.44 for
case II, and DLF ≈ 1.56 for case III, respectively).
When DLF = 1.434, then the amplitude of dynamic load is σD = σ3 and, moreover,

σ3/σ2 = 1.434 (Table 1). When t ¬ T1, then for 1.0 ¬ DLF < 1.434 and Ω21 > 0, Ω
2
2 < 0,

Ω23 > 0, whereas for DLF > 1.434, Ω21 > 0, Ω
2
2 < 0, Ω

2
3 < 0, respectively.

The maximum value max(ζ1) is more than twice as high as max(ζ̂1) and max(ζ̃1), whereas the
differences between max(ζ̂1) and max(ζ̃1) are equal to approx. 20%. The differences between the
maximum values of local amplitudes (i.e., max(ζ2), max(ζ̃2) and max(ζ̂3)) are not so significant.
The value max(ζ2) is more than 30% higher than the max(ζ̃2) and max(ζ̂3). The maximum
values of global deflections are by one order of magnitude higher than for local deflections.

As can be seen in Fig. 2 for case II, the deflections ζ̂1 and ζ̂3 for DLF > 1.7 are many times
lower than the deflections in cases I and III.

For case II, the lowest value of DLFcr and the lowest value max(ζ̂1) ≈ 200 for DLF ≈ 1.44
have been obtained (Fig. 2a), which correspond to: σD ≈ σ3, σ3/σ2 = 1.434 and Ω23 ≈ 0.
When t ¬ T1 and for DLF = 1.56 in case III, we have max(ζ̃1) ≈ 250, Ω1 = 723, Ω2 = 2259

and Ω3 = 1081, and for DLF = 1.69 in case I, we have max(ζ1) < 500, Ω1 = 720, Ω2 = 2498
and Ω3 = 1518. When T1 < t ¬ t∗, we have (ω1 + ω2)/ω3 = 1.045.
The critical values of DLFcr, according to the Budiansky-Hutchinson criterion assumed in

this study, are equal for the individual cases to: case I – DLFcr = 1.44, case II – DLFcr = 1.31,
case III – DLFcr = 1.44.

The duration of the rectangular load pulse is equal to T1 = 8.256ms. At the response tracing
time T1 < t ¬ t∗, the system is not subject to load any longer and performs free unsteady
vibrations in the transient period. Thus, the values of maximum amplitudes are attained in this
time range for all the time functions described.

3.2. Variant II – QCM functionally graded column

Two variants of the FG column structure have been assumed. It has followed from two
aspects. The first one is such that it is possible to make such columns in two ways. The ceramic
surface is resistant to high temperatures. Variant II (i.e., QCM) protects the outer surface of the
cross-section against high temperature, whereas variant III (QMC) protects the inner surface.
The second aspect results from the fact that FG structures have nonsymmetrical stable postbuc-
kling equilibrium paths (Kołakowski et al., 2015; Kołakowski and Mania, 2015). Hence, the way
the component plates of the FG column are connected exerts an influence on the postbuckling
behavior of the structure. For FG columns, identical calculations have been conducted as for
variant I (the reference one). For variant II (QCM), the results of calculations of the eigenpro-
blem have been presented in Table 2. The ratios of frequencies of free vibrations are equal to:
ω2/ω1 = 3.57, ω3/ω1 = 4.27, ω3/ω2 = 1.196, (ω1 + ω2)/ω3 = 1.070, correspondingly.

Table 2. Solutions to the eigenproblem for a QCM functionally graded column – variant II

r σr [MPa] m [–] ωr [rad/s] Tr [ms]

1 1606.3 1 1273 4.935

2 79.81 16 4546 1.382

3 114.17 16 5437 1.155

Figure 3 show the absolute maximum values of global and local deflections versus DLF for
the three cases under consideration, respectively. Similarly as for variant I (i.e., the reference
one – isotropic), quantative differences in the values of global (i.e., ζ1, ζ̂1 and ζ̃1) and local (i.e.,
ζ2, ζ̂3 and ζ̃2) amplitudes can be seen easily.



458 Z. Kołakowski, A. Teter

Fig. 3. Maximum dimensionless global deflections as a function of DLF for variant II: (a) global modes,
(b) local modes

For each case, the maximum value of global and local deflection occurs for the same values
of DLF (i.e., case I – DLF = 1.82, case II – DLF = 1.51 and case III – DLF = 1.82). When
DLF = 1.4307, then we have σ3/σ2 = 1.4307. When t ¬ T1, then for 1.0 < DLF < 1.4307 we
have Ω21 > 0, Ω

2
2 < 0 and Ω

2
3 > 0, whereas for DLF > 1.4307, we have, Ω21 > 0, Ω

2
2 < 0 and

Ω23 < 0, correspondingly.

The maximum values max(ζ1) and max(ζ̃1) are twice as high as max(ζ̂1), and
max(ζ1)/max(ζ̃1) ≈ 1.5. The differences between the maximum values of local deflections, i.e.,
ζ2, ζ̂3 and ζ̃2, are not so high and they do not exceed 1.5 times. The values max(ζ1), max(ζ̂1),
max(ζ̃1) for global modes are higher by one order of magnitude than max(ζ2), max(ζ3), max(ζ̂3),
max(ζ̃2) for local modes.

In Fig. 3, for the duration of load (i.e., for t ¬ T1), we have Ω1 = 1224, Ω2 = 3235 and
Ω3 = 1251 for DLF = 1.51, whereas for DLF = 1.81 – Ω1 = 1213, Ω2 = 4125 and Ω3 = 2849,
respectively. For T1 < t ¬ t∗, we have (ω1 + ω2)/ω3 = 1.070.
The critical values DLFcr are equal to, respectively: case I – DLFcr = 1.56, case II –

DLFcr = 1.40, case III – DLFcr = 1.69. For DLF = 1.11, DLF = 1.27 and cases I and III,
the maximum values of global deflections max(ζ1) and max(ζ̃1) are attained at T1 < t ¬ t∗,
that is to say, after the load pulse duration. The values of local deflections max(ζ2), max(ζ3)
and max(ζ̂3) are approximately three times lower than global deflections. For the two values of
DLF under consideration in case II, the global deflections ζ̂1 grow monotonously in practice
and max(ζ̂1) is twice as high as max(ζ1) and max(ζ̃1). When DLF = 1.35, global deflections
increase monotonously during the whole response tracing time for all the three cases.

Similarly as for variant I, the maximum values of global deflations (i.e., max(ζ1), max(ζ̂1),
max(ζ̃1)) are attained when the load impulse finishes for the presented time functions.

3.3. Variant III – QMC functionally graded column

In Table 3, the calculation results of the eigenproblem for variant III (QMC) are presented.
The ratios of frequencies of free vibrations are equal to: ω2/ω1 = 3.53, ω3/ω1 = 4.24, ω3/ω2 =
1.199, (ω1+ω2)/ω3 = 1.069, respectively. As can be easily seen, the eigenvalues for both variants
of the FGM column (compare Tables 3 and 2) are very close to each other.

In Fig. 4, the absolute values of maximum amplitudes of global (i.e., ζ1, ζ̂1 and ζ̃1) and local
(i.e., ζ2, ζ̂3 and ζ̃2) deflections versus the coefficient DLF for the three cases under consideration
are presented. Analogously as for variants I and II, quantative differences for components of
global and local amplitudes can be observed. As can be easily seen in Fig. 4, the maximum value
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Table 3. Solutions to the eigenproblem for a QCM functionally graded column – variant III

r σr [MPa] m [–] ωr [rad/s] Tr [ms]

1 1616.6 1 1277 4.920

2 78.77 16 4516 1.391

3 113.27 16 5415 1.160

of global and local deflection occurs for the same values of DLF in cases II and III (case II –
DLF = 1.45, case III – DLF = 1.85). In case I, the amplitudes of deflections grow monotonously
for DLF < 2.0. For DLF = 2.0, we have max(ζ1) > 500 and max(ζ2) > 25. For DLF = 1.4383,
we have σ3/σ2 = 1.4383. When t ¬ T1, then for 1.0 < DLF < 1.4383, we have Ω21 > 0,
Ω22 < 0 and Ω

2
3 > 0, whereas at DLF > 1.4383, Ω21 > 0, Ω

2
2 < 0 and Ω

2
3 < 0, respectively. The

lowest values of maximum deflections are for case II, that is to say, for max(ζ̃1) and max(ζ̂3),
analogously as for variant II.

Fig. 4. Maximum dimensionless global deflections as a function of DLF for variant III: (a) global
modes, (b) local modes

In Fig. 4, under the dynamic loading (for t ¬ T1) for DLF = 1.45, we have Ω1 = 1231,
Ω2 = 3015 and Ω3 ≈ 0, whereas for DLF = 1.85 – Ω1 = 1218, Ω2 = 4157and Ω3 = 28488,
respectively. At T1 < t ¬ t∗, we have (ω1 + ω2)/ω3 = 1.069. The critical values of DLFcr are
equal to: case I – DLFcr = 1.56, case II – DLFcr = 1.69, case III – DLFcr = 1.40. When
t ¬ T1, then for the assumed values of DLF , we have Ω

2
1 > 0, Ω

2
2 < 0 and Ω

2
3 > 0. For the

three values of DLF under consideration and, simultaneously, for the three cases, the maximum
global deflection during the response tracing time (i.e., 0 ¬ t ¬ t∗) occurs for case II – max(ζ̂1).
When the time functions for variants II and III are compared, some insignificant differences can
be observed. The maximum values of global deflections (i.e., max(ζ1), max(ζ̂1), max(ζ̃1)) take
place for T1 < t ¬ t∗.

3.4. Comparison of all variants under analysis

For all variants under consideration (i.e., I-III), diagrams of amplitudes of global deflections
are similar for cases I and III, whereas significant differences can be observed for case II. It
corresponds to the case when the dynamic term ζ2,tt = 0 is neglected in (2.7), which has a
visible effect on the equations of motion. Moreover, for DLF > 1.45, we have Ω21 > 0, Ω

2
2 < 0

and Ω23 < 0. It means that the amplitudes of local deflections grow exponentially and become
dominating in a short time. A dynamic interaction of the global mode and the local ones results
in a very dramatic increase in the amplitudes of deflections.
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For the time functions under consideration for all variants and cases and the assumed valu-
es of load coefficients DLF , the amplitudes of global deflections attain their maximum values
after the pulse load finishes (e.g., for T1 < t ¬ t∗). For this time range, free unsteady vibra-
tions occur in the transient process. To the authors’ knowledge, the only phenomenon that can
explain this effect is the inner combined resonance which takes place accordingly to the theory
of vibration (Nayfeh and Mook, 1979) for steady processes, correspondingly, in the cases when
(ω1+ω2)/ω3 ≈ 1.0. The three cases under analysis comply with the above-mentioned condition.
A change in the tracing time of the dynamic response t∗ can exert an influence on the maximum
values of amplitudes of deflections. In the study, a long enough tracing time has been assumed,
as it is equal to t∗ = 1.5T1. However, shortening of this time (e.g., up to t∗ = 1.3T1) will not
exert any influence on the general conclusions drawn here.

4. Conclusions

Dynamic interactive buckling of thin-walled FGM columns with a square cross-section is discus-
sed. Three cases are considered. Case I corresponds to analysis of the dynamic response of the
FG structure for “complete” equations of motion (2.7), case II refers to the situation when the
dynamic effect is neglected for the primary local buckling mode (i.e., r = 2), whereas case III –
for the secondary local mode (i.e., r = 3). Such an approach has been pointed out by Budiansky
and Hutchinson (1966). When the structure has two axes of symmetry of the cross-section, the
interactive buckling occurs only via the coefficient of the cubic term ζ1ζ2ζ3 in total potential
energy (2.6). The solution method applied in this study has not been so efficient as in the case of
the trapezoidal cross-section with one axis of symmetry. In Kołakowski (2016), however, a quite
different approach to the solution of the problem has been assumed. Thus, the above conclusions
should be subject to further, thorough investigations.
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Modelling of SH-waves in an anisotropic fiber-reinforced layer provides a great deal of sup-
port in the understanding of seismic wave propagation. This paper deals with the propa-
gation of SH-waves in a fiber-reinforced anisotropic layer over a pre-stressed heterogeneous
half-space. The heterogeneity of the elastic half-space is caused by linear variations of density
and rigidity. As a special case when both media are homogeneous and stress free, the derived
equation is in agreement with the general equation of the Love wave. Numerically, it is ob-
served that the velocity of SH-waves decreases with an increase in heterogeneity-reinforced
parameters and decrease in initial stress.

Keywords: heterogeneity, fiber reinforced medium, SH-waves, initial stress, anisotropy

1. Introduction

The propagation of seismic waves in anisotropic elastic media is unlike in comparison to their
propagation in isotropic media. So, the study of seismic wave propagation in anisotropic elastic
layered media becomes important to understand the nature of these waves in some complex
media. Other types of layers which may be present in the interior of the Earth are reinforced
concrete media. The reinforced layers are comprised due to excessive initial stresses present in
the Earth. Fiber-reinforced composites are widely used in engineering structures, geophysical
prospecting, civil engineering and mining engineering. So the investigation of shear waves in
such media become obligatory with a vision to its application to geomechanics. The normal
feature of a reinforced concrete medium is that its constituents, namely steel and concrete
together, act as a single anisotropic unit as long as they persist in the elastic condition, i.e.,
the components are bound side by side so that there is no relative motion between them. There
are large numbers of fiber-reinforced composite materials which exhibit anisotropic behavior,
for example alumina, reinforced light alloys, fibreglasses and concrete. Spencer (1972) was the
first who represented fiber-reinforced anisotropic materials with constitutive equations. Later,
Belfield et al. (1983) presented the method of introducing a continuous self-reinforcement in
an elastic solid. Chattopadhyay and Choudhury (1995) discussed some important results of
propagation of seismic waves in fiber-reinforced materials. Chattopadhyay et al. (2012) studied
propagation of SH-waves in an irregular inhomogeneous self reinforced layer lying over a self-
reinforced half-space.
For seismologists, the propagation of seismic wave in elastic and reinforced layered media

is useful to understand earthquake disaster prevention, oil exploration and groundwater pro-
specting. The geotechnical study reveals that the material properties such as heterogeneity and
anisotropy of the Earth change rapidly beneath its surface, and these properties affect the propa-
gation of seismic waves. Also, the effect of initial stresses on shear waves, which is largely present
in the Earth due to a slow process of creep, temperature, pressure, and gravitation cannot be
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ignored. In order to understand the underground response of seismic wave propagation towards
the material properties and initial stresses of the Earth, researchers and seismologists generally
prefer heterogeneous elastic models in semi-infinite domains. Due to large applications, pre-
stressed Love/SH-waves in different media attract researchers’ interests even nowadays. Li et al.
(2004) investigated the influence of initial stresses on the Love wave propagation in piezoelectric
layered structure. Du et al. (2008) presented an emphasis on the effect of initial stress on the
Love wave propagation in a piezoelectric layer in the presence of a viscous liquid. Zakharenko
(2005) studied the propagation of Love waves in a cubic piezoelectric crystal. Qian et al. (2004)
developed a mathematical model to study the effect of Love wave propagation in a piezoelectric
layered structure with initial stresses. Wang and Quek (2001) discussed propagation of Love
waves in a piezoelectric coupled solid medium. Zaitsev et al. (2001) discussed propagation of
acoustic waves in piezoelectric conductive and viscous plates. The supplement of surface wave
analysis and other wave propagation problems to anisotropic elastic materials has been a sub-
ject of many studies; see for example Musgrave (1959), Crampin and Taylor (1971), Chadwick
and Smith (1977), Dowaikh and Ogden (1990), Mozhaev (1995), Nair and Sotiropoulos (1999),
Destrade (2001, 2003), Ting (2002), Ogden and Singh (2011, 2014).

SH-waves cause more destruction to the structure than the body waves due to slower atte-
nuation of the energy. Many authors have studied the propagation of an SH-wave by considering
dissimilar forms of asymmetry at the interface. Watanabe and Payton (2002) discussed SH-waves
in a cylindrically monoclinic material with Green’s function. Gupta and Gupta (2013) studied
the effect of initial stress on wave motion in an anisotropic fiber reinforced thermoelastic medium.
Sahu et al. (2014) showed the effect of gravity on shear waves in a heterogeneous fiber-reinforced
layer placed over a half-space. Recently, Kundu et al. (2014) analyzed an SH-wave in an initially
stressed orthotropic homogeneous and a heterogeneous half space. Chattopadhyay et al. (2014)
studied the effect of heterogeneity and reinforcement on propagation of a crack due to shear
waves.

The coupled effects of initial stress, heterogeneity and reinforcement on the propagation of an
SH-wave in a fiber-reinforced anisotropic layer overlying a pre-stressed heterogeneous half-space
are studied in this paper. The closed form of the dispersion equation for the shear wave by using
the method of separation of variables and Whittaker’s function is obtained. The effects of all
parameters under considered geometry are discussed graphically.

2. Formulation of the problem

Let H be thickness of a steel fiber reinforced (silica fume concrete) layer placed over a prestressed
heterogeneous half-space. We consider x-axis along the direction of wave propagation and z-axis
vertically downwards (Fig. 1). Let the rigidity, density in the lower half-space are µ2 = µ

′(1+ε1z)
and ρ2 = ρ′(1 + ε2z), respectively. Here ε1 and ε2 are heterogeneous parameters of the lower
half-space and having dimensions that are inverse of length.

3. Solution of the problem

3.1. Solution for the upper layer

The constitutive equations for a fiber reinforced linearly elastic anisotropic medium with
respect to a preferred direction (Belfield et al., 1983) are

τij = λekkδij + 2µT eij + α(akamekmδij + ekkaiaj) + 2(µL − µT )(aiakekj + ajakeki)
+ β(akamekmaiaj)

(3.1)
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Fig. 1. Geometry of the problem

where eij = (µi,j+µj,i)/2 are components of strain; are reinforced anisotropic elastic parameters
with the dimension of stress; λ is an elastic parameter. The preferred direction of fibers is given
by a = [a1, a2, a3], a

2
1 + a

2
2 + a

2
3 = 1. If a has components that are [1, 0, 0] then the preferred

direction is the z-axis normal to the direction of propagation. The coefficients µL and µT are the
longitudinal shear and transverse shear moduli of elasticity in the tender direction, respectively.

Equation (3.1) in the presence of initial compression simplifies as given below

τ11 = (λ+ 2α + 4µL + β − 2µT )e11 + (λ+ α)e22 + (λ+ α)e33
τ22 = (λ+ α)e11 + (λ+ 2µT )e22 + λe33

τ33 = (λ+ α)e11 + λe22 + (λ+ 2µT )e33

τ12 = 2µT e12 τ13 = 2µT e13 τ23 = 2µT e23

(3.2)

The equations of motion in the upper half-space are

∂τ11
∂x
+
∂τ12
∂y
+
∂τ13
∂z
= ρ1

∂2u1
∂t2

∂τ21
∂x
+
∂τ22
∂y
+
∂τ23
∂z
= ρ1

∂2v1
∂t2

∂τ31
∂x
+
∂τ32
∂y
+
∂τ33
∂z
= ρ1

∂2w1
∂t2

(3.3)

For the SH-wave propagation along the x-axis, we have

u1 = 0 v1 = v1(x, z, t) w1 = 0 (3.4)

Taking transverse isotropy and setting a2 = 0, we get from Eqs. (3.3)

τ12 = µT
(
P
∂u2
∂x
+R

∂u2
∂z

)
τ23 = µT

(
R
∂u2
∂z
+Q

∂u2
∂x

)

τ11 = τ22 = τ33 = τ23 = τ13 = 0
(3.5)

where

P = 1 + (µ∗ − 1)a21 Q = 1 + (µ∗ − 1)a23 R = (µ∗ − 1)a1a3 µ∗ =
µL
µT
(3.6)

In the absence of body forces, Eq. (3.3) becomes

∂τ21
∂x
+
∂τ22
∂y
+
∂τ23
∂z
= ρ1

∂2v1
∂t2

(3.7)

where ρ1 is density of the layer.
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Using Eqs. (3.5)-(3.7), we get

P
∂2v1
∂x2
+ 2R

∂2v1
∂x∂z

+Q
∂2v1
∂z2
=
ρ1
µT

∂2v1
∂t2

(3.8)

In order to solve Eq. (3.8), we take

v1(x, z, t) = ξ(z)e
ik(x−ct) (3.9)

Here, k is the wave number; c is the phase velocity of simple harmonic waves with a wave length
2π/k.
From Eq. (3.8) and Eq. (3.9), we get

Q
∂2ξ(z)

∂z2
+ 2Rik

∂ξ(z)

∂z
+
( ρ1
µT

ω2 − Pk2
)
ξ(z) = 0 (3.10)

Let the solution to Eq. (3.10) be

ξ(z) = Ae−iks1z +Be−iks2z (3.11)

where

sj =
1

Q

[
R+ (−1)j+1

√

R2 +Q
(c2

c21
− P

)]
j = 1, 2 (3.12)

where A and B are arbitrary constants and c1 =
√
µT /ρ1 is the shear velocity.

From Eq. (3.9) and Eq. (3.11), the equation of displacement of the upper reinforced medium
is given by

u2(x, z, t) =
(
Ae−iks1z +Be−iks2z

)
eik(x−ct) (3.13)

3.2. Solution for the lower half-space

The equation of motion for the lower half-space under initial stress P ′ acting along the x-axis
can be written as (Love, 1911)

∂σ11
∂x
+
∂σ12
∂y
+
∂σ13
∂z
− P ′

(∂̟3
∂y
− ∂̟3

∂z

)
= ρ2

∂2u2
∂t2

∂σ21
∂x
+
∂σ22
∂y
+
∂σ23
∂z
− P ′

(∂̟3
∂x

)
= ρ2

∂2v2
∂t2

∂σ31
∂x
+
∂σ32
∂y
+
∂σ33
∂z
− P ′

(∂̟3
∂x

)
= ρ2

∂2w2
∂t2

(3.14)

where σ11, σ12, σ13, σ21, σ22, σ23, σ31, σ32 and σ33 are incremental stress components, u2, v2
and w2 are components of the displacement vector, P

′ is initial pressure in the lower half-space
and ρ2 is density of the lower half-space. Here, ̟1, ̟2 and ̟3 are rotational components in the
lower half-space, which are defined by

̟1 =
1

2

(∂w2
∂y
− ∂v2

∂z

)
̟2 =

1

2

(∂u2
∂z
− ∂w2

∂x

)
̟3 =

1

2

(∂v2
∂x
− ∂u2

∂y

)
(3.15)

Using the SH-wave conditions u2 = w2 = 0, v2 = v2(x, z, t), Eq. (3.14) can be reduced to

∂σ21
∂x
+
∂σ23
∂z
− P ′

2

(∂2v2
∂x2

)
= ρ2

∂2v2
∂t2

(3.16)
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The stress-strain relations are

σ11 = σ22 = σ13 = σ33 = 0 σ21 = 2µ2exy = 2µ2
1

2

(∂v2
∂x
+
∂u2
∂y

)

σ23 = 2µ2eyz = 2µ2
1

2

(∂w2
∂y
+
∂v2
∂z

) (3.17)

The heterogeneity of rigidity and density of the lower half-space are

µ2 = µ
′(1 + ε1z) ρ2 = ρ

′(1 + ε2z) (3.18)

Now, substituting the heterogeneity of rigidity from Eq. (3.18) into Eq. (3.17), we have

σ21 = µ
′(1 + ε1z)

∂v2
∂x

σ23 = µ
′(1 + ε2z)

∂v2
∂z

(3.19)

Equation of motion (3.16) with the help of equations (3.18) and (3.19) can be written as

(
1− P ′

2µ′(1 + ε1z)

)∂2v2
∂x2
+
∂2v2
∂x2

− ε1
1 + ε1z

∂v2
∂z
=
ρ′

µ′

(1 + ε2z
1 + ε1z

)∂2v2
∂t2

(3.20)

To solve Eq. (3.20), we take the following substitution

v2 = V (z)e
ik(x−ct) (3.21)

Using Eq. (3.21) in Eq. (3.20), we get

d2V (z)

dz2
+

ε1
1 + ε1z

dV (z)

dz
+
[ρ′

µ′

(1 + ε2z
1 + ε1z

)
c2 −

(
1− P ′

2µ′(1 + ε1z)

)]
k2V (z) = 0 (3.22)

After introducing V (z) = Φ(z)/
√
(1 + ε1z) into Eq. (3.22) in order to cancel the term dV (z)/dz,

we have

d2Φ(z)

dz2
+
{ ε21
4(1 + ε1z)2

− k2
[(
1− P ′

2µ′(1 + ε1z)

)
− c2

c23

(1 + ε2z
1 + ε1z

)]}
Φ(z) = 0 (3.23)

where c is the phase velocity and c2 =
√
µ′/ρ′.

Introducing non-dimensional quantities

r =

√

1− P ′

2µ′(1 + ε1z)
− c2

c22

(ε2
ε1

)
s =
2rk(1 + ε1z)

ε1
ω = kc

in Eq. (3.23), we get

d2Φ

ds2
+
( 1
4s2
+

R

2s2
− 1
4

)
Φ(s) = 0 (3.24)

where R = ω2(ε1 − ε2)/(c22rkε21).
Equation (3.24) becomes the well known Whittaker’s equation (Whittaker and Watson,

1990).
The solution to Eq. (3.24) is given by

Φ(s) = DW r
2
,0(s) + EW− r

2
,0(−s) (3.25)

where D and E are arbitrary constants andW r
2
,0(s),W− r

2
,0(s) are the Whittaker functions. Now

considering the condition V (z) → 0 as z → ∞ i.e. Φ(s)→ 0 as s →∞ in Eq. (3.21), the exact
solution becomes

Φ(s) = DW r
2
,0(s) (3.26)
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The solution to Eq. (3.26) is given by

v2 = V (z)e
ik(x−ct) =

DW r
2
,0(s)√

1 + ε1z
eik(x−ct) (3.27)

Equation (3.27) is the displacement for the SH-wave in the half space.
Now, expanding Eq. (3.27) up to the linear term, we have

v2 = De
−rk(1+ε1z)

ε

√
2rk

ε1

[
1 + (1−R)2rk

ε1
(1 + ε1z)

]
eik(x−ct) (3.28)

4. Boundary conditions

The displacement components and stress components are continuous at z = −H and z = 0,
therefore geometry of the problem leads to the following conditions:
(1) At z = −H, the stress component τ23 = 0.
(2) At z = 0, the stress component of the layer and the half space is continuous, i.e. τ23 = σ23.

(3) At z = 0, the velocity component of both layers is continuous, i.e. v1 = v2.

5. Dispersion relation

The dispersion relation for SH-waves can be obtained by using the above boundary conditions.
Therefore, the displacement for the SH-waves in the in-homogeneous half-space using bounda-
ry conditions (3.1), (3.2) and (3.3) in Eq. (3.13) and Eq. (3.28) becomes (taking Whittaker’s
function W r

2
,0(s) up to linear terms in s)

A(R−Qs1)eis1kH +B(R−Qs2)eis2kH = 0
ik[A(R −Qs1) +B(R−Qs2)]

−D µ′

µT ζ
e
− kr
ε1

√
2kr

ε1

[kr
ε1
(1−R) + 1

][ (1−R)kr
1 + (1−R)krε1

− kr
]
= 0

A+B −De−
kr
ε1

√
2kr

ε1

[
1 + (1−R)kr

ε

]
= 0

(5.1)

Now eliminating A, B and D from Eqs. (5.1), we obtain



(R−Qs1)eis1kH (R −Qs2)eis2kH 0

ik(R−Qs1) ik(R −Qs2) − µ′

µT ζ
e
− kr
ε1

√
2kr
ε1
A
[
(1−R)kr
A − kr

]

1 1 −e−
kr
ε1

√
2kr
ε1
A


 = 0 (5.2)

where

A = kr

ε1
(1−R) + 1

On simplifying Eq. (5.2), we get

tan

[
kH

Q

√

R2 +Q
(c2

c21
− P

)]
=

µ′

µT

1√
R2 +Q

(
c2

c21
− P

)

[
r − 1−R
1 + (1−R)krε1

]
(5.3)

Equation (5.3) is the dispersion equation of the SH-wave propagation in a fiber-reinforced ani-
sotropic layer over a pre-stressed heterogeneous isotropic elastic half-space.
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• Case 1

If we take a1 = 1, a2 = a3 = 0 then ρ1 → µL/µT and µL → µT → µ1, then P → 1, Q → 1
and R→ 1, therefore Eq. (5.3) reduces to

tan

(
kH

√
c2

c21
− 1

)
=
µ′

µ1

1√
c2

c21
− 1

[
r − 1−R
1 + (1−R)krε1

]
(5.4)

This is the dispersion equation of a homogenous reinforced medium over a pre-stressed hetero-
geneous half space.

• Case 2

When the lower half-space is homogeneous, that is ε1 → 0, ε2 → 0, which implies that
r =

√
1− P ′

2µ′ − c2

c22
, therefore Eq. (5.3) reduces to

tan

[
kH

Q

√

R2 +Q
(c2

c21
− P

)]
=

µ′

µT

1√
R2 +Q

(
c2

c21
− P

)

√

1− P ′

2µ′
− c2

c22
(5.5)

This is the dispersion equation of an anisotropic reinforced medium over a pre-stressed homo-
genous half space.

• Case 3

When the lower half-space is stress free and homogeneous, that is ε1 → 0, ε2 → 0, P ′ → 0,
which implies that r =

√
1− c2

c22
, therefore Eq. (5.3) reduces to

tan

[
kH

Q

√

R2 +Q
(c2

c21
− P

)]
=

µ′

µT

1√
R2 +Q

(
c2

c21
− P

)

√

1− c2

c22
(5.6)

This is the dispersion equation of an anisotropic reinforced medium over a pre-stressed homo-
genous half space.

• Case 4

For a homogeneous reinforced medium over an homogeneous half space, we take ε1 = 0,
ε2 = 0, P

′ → 0, a1 = 1, a2 = a3 = 0 then ρ1 → µL/µT and µL → µT → µ1, then P → 1, Q→ 1
and R→ 1 therefore Eq. (5.3) reduces to

tan

(
kH

√
c2

c21
− 1

)
=
µ′

µ1

√
1− c2

c22√
c2

c21
− 1

(5.7)

Equation (5.7) is the classical dispersion equation of SH-waves given by Love (1911) and Ewing
et al. (1957).
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6. Numerical analysis and discussion

To show the effect of heterogeneity parameters, the initial stress parameter and steel reinforced
parameters on SH-wave propagation in a fiber-reinforced anisotropic layer over a heterogeneous
isotropic elastic half-space, we take the data assumed by Gupta (2014) and Gubbins (1990) as
shown in Table 1 and the values of parameters for figures in Table 2. We have plotted the non-
-dimensional phase velocity c/c1 against the dimensionless wave number kH on the propagation
of SH-wave in the fiber-reinforced anisotropic layer by using MATLAB software. The effects of
reinforced parameters a21, a

2
3, initial stress parameter ζ = P

′/(2µ′) and heterogeneity parameters
ε1/k, ε2/k are shown in Figs. 2-5. Figure 2a illustrates the effect of heterogeneity parameters in
the presence of reinforced parameters and stress parameter on the propagation of SH-waves.

Table 1. Data for the fiber-reinforced anisotropic layer and the elastic medium

Symbol Numerical value Units

µT 5.65 · 109 N/m2

µL 2.46 · 109 N/m2

λ 5.65 · 109 N/m2

α −1.28 · 1010 N/m2

β 220.09 · 109 N/m2

ρ1 7800 kg/m3

a23 0.75 –

a21 0.25 –

µ′ 6.34 · 1010 N/m2

ρ′ 3364 kg/m3

Table 2. Values of parameters for the figures

Figure a21 a23 ζ ε1/k ε2/k

2a 0.35 0.65 0.5 – –
2b 0 0 0.5 – –

3a 0.35 0.65 0 – –
3b 0 0 0 – –

4a – – 0.5 0.4 0.4
4b – – 0.5 0.4 0.4

5a – – 0 0.4 0.4
5b – – 0 0.4 0.4

6a 0.35 0.65 – 0.4 0.4
6b 0.35 0.65 – 0.4 0.4

It is clear from this figure that the phase velocity decreases with an increase in the hetero-
geneity parameters. Figure 2b represents the variation of dimensionless phase velocity with the
dimensionless wave number on the propagation of SH-waves for different values of heterogeneity
parameters in the absence of the reinforced parameter for the initially stressed half-space. It is
observed from these curves that as the heterogeneity parameters in the half-space increase, the
velocity of SH-wave decreases. From Figs. 2a and 2b, it is clear that the SH-wave propagation is
more influenced by the heterogeneity parameters in comparison to reinforcement in the upper
layer. It is also seen that for a large value of heterogeneity parameters, the curves of phase
velocities are significantly distanced from each other.
Figure 3a shows the effect of heterogeneity parameters in the presence of reinforced para-

meters on the propagation of SH-waves when the lower half is stress free. It is clear from this
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Fig. 2. Variation of the phase velocity against the wave number for different values of heterogeneity
parameters in the (a) presence of the reinforced parameters and (b) absence of the reinforced parameter

for the initially stressed half-space

Fig. 3. Variation of the phase velocity against the wave number for different values of heterogeneity
parameters in the (a) presence of the reinforced parameters and (b) absence of the reinforced parameter

for the stress free half-space

figure that the phase velocity decreases with an increase in the heterogeneity parameters. Fi-
gure 3b represents the variation of dimensionless phase velocity with the dimensionless wave
number on the propagation of SH-waves for different values of heterogeneity parameters in the
absence of the initial stress and reinforced parameter. It is observed from these curves that as
the heterogeneity parameters in the half-space increase, the velocity of SH-wave decreases.

Figure 4a shows the effect of reinforced parameters a21 and a
2
3on the propagation of SH-

-waves at constant stress and heterogeneity parameters. It is seen from the diagram that as
a21 increases as well as a

2
3 decreases, the velocity of SH-wave decreases. Figure 4b shows the

effect of reinforced parameters a21 and a
2
3on the propagation of SH-waves at constant stress and

heterogeneity parameters. It is seen from the diagram that as a21 decreases as well as a
2
3 increases,

the velocity of SH-wave decreases.

Figure 5a shows the effect of reinforced parameters a21 and a
2
3on the propagation of SH-

-waves at constant heterogeneity parameters in the absence of the initial stress. It is seen from
the diagram that as a21 increases as well as a

2
3 decreases, the velocity of SH-wave decreases.

Figure 5b shows the effect of reinforced parameters a21 and a
2
3on the propagation of SH-waves at

constant heterogeneity parameters in the absence of the initial stress. It is seen from the diagram
that as a21 decreases as well as a

2
3 increases, the velocity of SH-wave decreases.
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Fig. 4. Variation of the phase velocity against the wave number for different values reinforced
parameters at constant stress and heterogeneity parameters

Fig. 5. Variation of the phase velocity against the wave number for different values reinforced
parameters at constant heterogeneity parameters in the absence of the initial stress

Fig. 6. Variation of the phase velocity against the wave number for different values (a) tensile stress
(b) compressive stress in the presence of the heterogeneity parameter and reinforced parameters
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In Fig. 6a, the curves show the effect of tensile stress ζ = P ′/(2µ′) < 0 on the propagation of
the SH-wave in a fiber-reinforced anisotropic layer in the presence of the heterogeneity parameter
in the lower half-space and reinforced parameters in the layer. It is clear from this figure that
the phase velocity increases with an increase in the tensile stress. In Fig. 6b, the curves show the
effect of compressive stress ζ = P ′/(2µ′) > 0 on the propagation of SH-waves in a fiber-reinforced
anisotropic layer in the presence of the heterogeneity parameter in the lower half-space and
reinforced parameters in the layer. It is clear from this figure that the phase velocity decreases
with an increase in the compressive stress.

7. Conclusions

Two layers are considered in the problem analysed in this paper: a fiber-reinforced anisotropic
upper layer and a pre-stressed heterogeneous lower layer with exponential variation in rigidity
and density. The Whittaker function and the method of separation of variables are employed in
order to find the dispersion of SH-waves in the fiber-reinforced layer placed over a pre-stressed
heterogeneous elastic half-space. Displacement of the upper fiber-reinforced layer is derived in
a closed form and the dispersion curves are drawn for various values of heterogeneity, stress
and reinforced parameters. In a particular case, the dispersion equation coincides with the well-
-known classical equation of the Love wave when the upper and lower layer are homogeneous
and stress free. The above results may be used to study the surface wave propagation in a fiber
reinforced medium. This validates the solution.

From above numerical analysis, it may be concluded that:

• In all the figures, the dimensionless phase velocity of SH-waves decreases with an increase
in the dimensionless wave number.

• The dimensionless phase velocity of SH-wave shows a remarkable change with heterogeneity
and reinforced parameters.

• It is observed that the depth increases, the velocity of SH-waves decreases.
• The velocity of SH-waves decreases with an increase in the reinforced parameter of the
upper layer and the inhomogeneous parameter of the lower half-space. This is the property
of seismic wave propagation in the crustal layer.

• The phase velocity increases with an increase in the tensile stress but decreases with an
increase in the compressive stress of the lower half-space.
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The onset of convective instability is analysed in a rotating multicomponent fluid layer in
which density depends on n stratifying agents (one of them is heat) having different diffu-
sivities. Two problems have been analysed mathematically. In the first problem, a sufficient
condition is derived for the validity of the principle of the exchange of stabilities. Further,
when the complement of this condition holds good, oscillatory motions of neutral or gro-
wing amplitude can exist, and thus it is important to derive upper bounds for the complex
growth rate of such motions when at least one of the bounding surfaces is rigid so that exact
solutions of the problem in closed form are not obtainable. Thus, as the second problem,
bounds for the complex growth rates are also obtained. Above results are uniformly valid
for quite general nature of the bounding surfaces.

Keywords: multicomponent convection, principle of exchange of stabilities, oscillatory
motions, complex growth rate, concentration Rayleigh number, Lewis number

1. Introduction

When density of a fluid is determined by two stratifying agents, such as heat and salt diffusing
at different rates, the fluid at rest can be unstable even if its density increases downward.
This convective phenomenon is known as thermosolutal convection or more generally as double
diffusive convection. This phenomenon has, now, been extensively studied. For review on the
subject of double diffusive convection one may be referred to (Turner, 1973, 1974, 1985; Brandt
and Fernando, 1996; Radko, 2013; Sekar et al., 2013).

Although the subject of double diffusive convection is still an important area of research
(Sekar et al., 2013; Kellner and Tilgner, 2014; Nield and Kuznetsov, 2011; Schmitt, 2011), there
are many fluid systems where more than two components are present (Turner, 1985; Griffiths,
1979b). Examples of such systems include the solidification of molten alloys, Earth core, geo-
thermally heated lakes, sea water, magmas and their laboratory models. The presence of more
than one salt in fluid mixtures is very often requested for describing natural phenomena such as
contaminant transport, acid rain effects, underground water flow and warming of the stratosphe-
re. The subject of more than two stratifying agents has attracted many researchers (Griffiths,
1979a,b; Pearlstein et al., 1989; Rionero, 2013a,b, 2014; Lopez et al., 1990; Terrones, 1993; Po-
ulikakos, 1985; Shivakumara and Naveen Kumar, 2014). In double diffusive convection (Turner,
1974) or, more generally, in multicomponent convection (Turner, 1985; Griffiths, 1979a) insta-
bility may occur in two kinds: first in form of steady (or stationary) convection which is called
as ‘salt finger’ modes and the second in form of oscillatory motions of growing amplitude (or
overstability) which is called as ‘diffusive convection’. When a warm and saltier fluid lies above
a cold and fresh fluid then stationary convection is preferred, and when a cold and fresher fluid
lies above a warm and saltier fluid then oscillatory motions are preferred. The essence of these
researchers is that small concentrations of the third diffusing component with a smaller mass
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diffusivity can have a significant effect upon the nature of diffusive instabilities and diffusive
convection. The salt finger modes are simultaneously unstable under a wide range of conditions
when the density gradients due to components with the greatest and smallest diffusivity are of
the same signs even if the overall density stratification is hydrostatically stable. These resear-
chers also notice some fundamental differences between doubly and triply diffusive convection.
One is that if the gradients of two of the stratifying agents are held fixed, then three critical
values of the Rayleigh number of the third agent are sometimes required to specify the linear
stability criteria (in double diffusive convection only one critical Rayleigh number is required).
The other difference is that the onset of convection for the case of free boundaries may occur
via quassiperiodic bifurcation from the motionless basic state.

Now the triply diffusive convection despite its complexities has also been well studied. But,
to the author knowledge, not many investigations have been conducted on stability theory
when more than three components are present, which may be, perhaps, due to the complexities
involved in mathematical calculations and numerical computations. Some worth researches which
may be referred here are due to Terrones and Pearlstein (1989) who derived analytical results for
n components and numerical results for n = 5 using dynamically free boundary conditions. Later
Lopez et al. (1990) predicted that the results of triply diffusive convection may be extended
to multicomponent convection with n components for rigid surfaces also. Further significant
contributions to multicomponent convection are due to Ryzhkov and Shevtsova (2007, 2009)
and Ryzhkov (2013).

The establishment of nonoccurrence of any slow oscillatory motions which may be neutral or
unstable implies the validity of the principle of the exchange of stabilities (PES). The validity
of this principle in stability problems eliminates unsteady terms from linearized perturbation
equations which results in notable mathematical simplicity since the transition from stability to
instability occurs via a marginal state which is characterized by the vanishing of both real and
imaginary parts of the complex time eigenvalue associated with the perturbation. Pellew and
Southwell (1940) proved the validity of PES (i.e. occurrence of stationary convection) for the
classical Rayleigh-Benard instability problem. Prakash et al. (2014a) established such a criterion
for the triply diffusive convection problem.

To study the effect of rotation on a multicomponent fluid layer is an interesting topic. Prakash
et al. (2014b) derived a sufficient condition for the occurrence of stationary convection and upper
bounds (Prakash et al., 2015) for the complex growth rate of an arbitrary oscillatory motion of
neutral or growing amplitude in rotatory hydrodynamic triply diffusive convection. The further
extension of these results to the problem of the onset of convection in a multicomponent fluid
layer in the domains of astrophysics and terrestrial physics, wherein the liquid concerned has
the property of electrical conduction and the magnetic field and rotation are prevalent, is very
much sought after in the present context.

In the present work, we analyse the onset of buoyancy driven convection in a multicomponent
fluid layer in the presence of uniform vertical rotation. We generalize the existing results of
the rotatory hydrodynamic triply diffusive convection problem concerning the validity of the
principle of the exchange of stabilities (Prakash et al., 2014b) and arresting the complex growth
rate of oscillatory motion (when it occurs) (Prakash et al., 2015) which are important especially
when at least one boundary is rigid so that exact solutions in the closed form are not obtainable.
To the authors knowledge, no such results have been obtained so far for the hydrodynamical
systems with more than three components. The results derived herein are uniformly valid for any
combination of the rigid and free boundaries and the results of doubly diffusive (Banerjee et al.,
1981; Gupta et al., 1986) and triply diffusive convection (Prakash et al., 2014a,b,c, 2015) follow
as a consequence. Further, the importance of the results obtained herein lies in that these results
may be used for any rotatory hydrodynamic multicomponent system where no mathematical
calculation or numerical computation is possible.
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2. Mathematical formulation and analysis

A viscous finitely heat conducting Boussinesq fluid of infinite horizontal extension is statistically
confined between two horizontal boundaries z = 0 and z = d which are respectively maintained
at uniform temperatures T0 and T1(< T0) and uniform concentrations S10, S20, . . . , S(n−1)0 and
S11(< S10), S21(< S20), . . . , S(n−1)1(< S(n−1)0) in the force field of gravity and in the presence
of uniform vertical rotation (as shown in Fig. 1). It is assumed that the cross-diffusion effects of
the stratifying agents can be neglected.

Fig. 1. Physical configuration

The basic equations that govern the motion of the rotatory hydrodynamic multicomponent
fluid layer are as follows (Prakash et al., 2014b; Terrones and Pearlstein, 1989)
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∂Sn−1
∂t
+ uj

∂Sn−1
∂xj

= κn−1∇2Sn−1

(2.1)

where ρ is density; t is time; xj (j = 1, 2, 3) are cartesian coordinates x, y, z; uj (j = 1, 2, 3) are
velocity components;Xi (i = 1, 2, 3) are components of the external force in the x, y, z directions,
respectively; P1 is pressure; µ is viscosity; Ω is angular velocity; T is temperature, κ is the
coefficient of thermal diffusivity; S1, S2, . . . , Sn−1 are n − 1 concentrations and κ1, κ2, . . . , κn−1
are respectively the coefficients of mass diffusivity of S1, S2, . . . , Sn−1 with κ1 > κ2 > . . . > κn−1.
The above basic equations must be supplemented by the equation of state

ρ = ρ0[1+α(T0−T1)−α1(S10−S11)−α2(S20−S21)− . . .−αn−1(S(n−1)0−S(n−1)1)] (2.2)

where α,α1, α2, . . . , αn−1 are respectively the coefficients of volume expansion due to tempera-
ture variation and concentration variations for n−1 concentration components S1, S2, . . . , Sn−1.
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ρ0 is the value of ρ at z = 0. ν = µ/ρ0 is kinematic viscosity and
P1
ρ0
− 12 |Ω× r|2 is hydrostatic

pressure.
The basic state is assumed to be stationary, and the standard linear stability analysis pro-

cedure as outlined in the studies of Prakash et al. (2014b) is followed to obtain the following
non-dimensional stability equations
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(
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Pr

)
w = Raa2θ −R1a2φ1 −R2a2φ2 − . . .−Rn−1a2φn−1 +TaDζ
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and
(
D2 − a2 − σ

Pr

)
ζ = −Dw (2.4)

respectively.
Equations (2.3) and (2.4) are to be solved using the following appropriate boundary condi-

tions:
— w = 0 = θ = φ1 = φ2 = . . . = φn−1 on both the horizontal boundaries which are at

z = 0 and z = 1 (2.5)

— and on rigid boundary

Dw = ζ = 0 (2.6)

— or on free boundary

D2w = Dζ = 0 (2.7)

the meaning of the symbols involved in Eqs. (2.3) and (2.4) from the physical point of view are
as follows: z is the vertical coordinate, D = d/dz is differentiation w.r.t. z, a2 > 0 is square of the
wave number, Pr > 0 is the thermal Prandtl number which is a measure of relative importance
of heat conduction and viscosity of the fluid and varies from fluid to fluid. For air Pr = 0.7
(approximately), for water Pr = 7 (approximately), for mercury Pr = 0.044 (approximately)
and for glycerine Pr = 7250. The Prandtl number of some fluids (particularly water) depends
considerably on temperature. Le1 > 0,Le2 > 0, . . . ,Len−1 > 0 are the Lewis numbers for
n − 1 concentrations S1, S2, . . . , Sn−1, respectively, Ta > 0 is the Taylor number, Ra > 0 is
the thermal Rayleigh number, R1 > 0, R2 > 0, . . . , Rn−1 > 0 are the concentration Rayleigh
numbers for the n− 1 concentration components. A concentration Rayleigh number is the ratio
of the buoyancy forces (which drive free convective transport of solute) to dispersive/viscous
forces (which disperse solute and dissipate free convective transport). In the present problem,
these have stabilizing effect on the onset of instability. w is vertical velocity, θ is temperature
and φ1, φ2, . . . , φn−1 are respective concentrations of the n− 1 components. σ = σr + iσi is the
complex growth rate where σr and σi are real constants. For σr < 0, the system is always stable
while for σr > 0, the system becomes unstable. When σ = 0, the system is marginally stable
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ensuring the validity of the principle of the exchange of stabilities. When σr  0 and σi 6= 0,
the overstability of periodic motion is possible and oscillatory motions of growing or neutral
amplitude occur. It may further be noted that equations (2.3) and (2.4) describe an eigenvalue
problem for p and govern rotatory hydrodynamic multicomponent convection for quite general
nature of the bounding surfaces.

Theorem 1: If (w, θ, φ1, φ2, . . . , φn−1, ζ, σ), Ra > 0, R1 > 0, R2 > 0, . . ., Rn−1 > 0, Ta > 0,
σr  0 is a solution to Eqs. (2.3) and (2.4) together with boundary conditions (2.5)-(2.7)
and
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4
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2Le2n−1π4
+
Ta

π4
¬ 1

Proof:Multiplying Eq. (2.3)1 by w
∗ (the superscript ∗ henceforth denotes complex conjugation)

throughout and integrating the resulting equation over the vertical range of z, we have

1∫

0

w∗(D2 − a2)
(
D2 − a2 − σ

Pr

)
w dz = Raa2

1∫

0

w∗θ dz −R1a2
1∫

0

w∗φ1 dz

−R2a2
1∫

0

w∗φ2 dz − . . .−Rn−1a2
1∫

0

w∗φn−1 dz +Ta

1∫

0

w∗Dζ dz

(2.8)

Making use of Eqs. (2.3)2−6 and (2.4), we can write

1∫

0

w∗(D2 − a2)
(
D2 − a2 − σ

Pr

)
w dz = −Raa2

1∫

0

θ(D2 − a2 − σ∗)θ∗ dz

+R1a
2Le1

1∫

0

φ1
(
D2 − a2 − σ∗

Le1

)
φ∗1 dz +R2a

2Le2

1∫

0

φ2
(
D2 − a2 − σ∗

Le2

)
φ∗2 dz + . . .

+Rn−1a
2Len−1

1∫

0

φn−1
(
D2 − a2 − σ∗

Len−1

)
φ∗n−1 dz +Ta

1∫

0

ζ
(
D2 − a2 − σ∗

Pr

)
ζ∗ dz

(2.9)

Integrating the various terms of Eq. (2.9) by parts for an appropriate number of times and
utilizing boundary conditions (2.5)-(2.7), we obtain

1∫

0

(|D2w|2 + 2a2|Dw|2 + a4|w|2) + σ

Pr

1∫

0

(|Dw|2 + a2|w|2) dz

= Raa2
1∫

0

(|Dθ|2 + a2|θ|2 + σ∗|θ|2) dz −R1a2Le1
1∫

0

(
|Dφ1|2 + a2|φ1|2 +

σ∗

Le1
|φ1|2

)
dz

−R2a2Le2
1∫

0

(
|Dφ2|2 + a2|φ2|2 +

σ∗

Le2
|φ2|2) dz − . . . (2.10)
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−Rn−1a2Len−1
1∫

0

(
|Dφn−1|2 + a2|φn−1|2 +

σ∗

Len−1
|φn−1|2

)
dz

−Ta
1∫

0

(
|Dζ|2 + a2|ζ|2 + σ∗

Pr
|ζ|2

)
dz

Equating the imaginary parts of both sides of Eq. (2.10) and cancelling σi(6= 0) throughout from
the resulting equation, we have

1

Pr

1∫

0

(|Dw|2 + a2|w|2) dz = −Raa2
1∫

0

|θ|2 dz +R1a2
1∫

0

|φ1|2 dz

+R2a
2

1∫

0

|φ2|2 dz + . . .+Rn−1a2
1∫

0

|φn−1|2 dz +
Ta

Pr

1∫

0

|ζ|2 dz

(2.11)

Now, from equation (2.3)3 we derive that

1∫

0

(
D2 − a2 − σ

Le1

)
φ1
(
D2 − a2 − σ∗

Le1

)
φ∗1 dz =

1

Le21

1∫

0

|w|2 dz (2.12)

Integrating the various terms on the left hand side of Eq. (2.12) by parts for an appropriate
number of times and making use of the boundary conditions on φ1, it follows that

1∫

0

(|D2φ1|2 + 2a2|Dφ1|2 + a4|φ1|2) dz +
2σr
Le1

1∫

0

(|Dφ1|2 + a2|φ1|2) dz

+
|σ|2
Le21

1∫

0

|φ1|2 dz =
1

Le21

1∫

0

|w|2 dz

(2.13)

Since σr  0, it follows from Eq. (2.13) that

2a2
1∫

0

|Dφ1|2 dz ¬
1

Le21

1∫

0

|w|2 dz (2.14)

Now, since φ1, φ2, . . . , φn−1 and w satisfy the boundary conditions φ1(0) = 0 = φ1(1),
φ2(0) = 0 = φ2(1), . . ., φn−1(0) = 0 = φn−1(1), w(0) = 0 = w(1), we have from the Rayleigh-Ritz
inequality (Schultz, 1973)

1∫

0

|Dφ1|2 dz  π2
1∫

0

|φ1|2 dz

1∫

0

|Dφ2|2 dz  π2
1∫

0

|φ2|2 dz

...

1∫

0

|Dφn−1|2 dz  π2
1∫

0

|φn−1|2 dz

(2.15)
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and

1∫

0

|Dw|2 dz  π2
1∫

0

|w|2 dz (2.16)

respectively.
Utilizing inequalities (2.15)1 and (2.16) in inequality (2.14), we get

a2
1∫

0

|φ1|2 dz ¬
1

2Le21π
4

1∫

0

|Dw|2 dz (2.17)

In the same manner, we obtain from Eqs. (2.3)4−6 the inequalities

a2
1∫

0

|φ2|2 dz ¬
1

2Le22π
4

1∫

0

|Dw|2 dz

...

a2
1∫

0

|φn−1|2 dz ¬
1

2Le2n−1π4

1∫

0

|Dw|2 dz

(2.18)

respectively.
Now for the case of rigid boundaries, ζ(0) = 0 = ζ(1), again from the Rayleigh-Ritz inequality

(Schultz, 1973), we obtain

1∫

0

|Dζ|2 dz  π2
1∫

0

|ζ|2 dz (2.19)

Multiplying Eq. (2.4) by ζ∗ and integrating over the vertical range of z, we get from the real
part of the final equation

1∫

0

(|Dζ|2 + a2|ζ|2 + σr|ζ|2) = ℜ
1∫

0

ζ∗Dw dz ¬
∣∣∣∣∣

1∫

0

ζ∗Dw dz

∣∣∣∣∣ ¬
1∫

0

|ζ∗Dw| dz

¬
1∫

0

|ζ∗| |Dw| dz ¬
1∫

0

|ζ| |Dw| dz ¬

√√√√√
1∫

0

|ζ|2 dz

√√√√√
1∫

0

|Dw|2 dz

(2.20)

(using Schwartz inequality) which implies that

1∫

0

|Dζ|2 dz ¬

√√√√√
1∫

0

|ζ|2 dz

√√√√√
1∫

0

|Dw|2 dz

and thus using inequality (2.19) for the case of rigid boundaries and the result
∫ 1
0 |Dζ|2 dz =

π2
∫ 1
0 |ζ|2 dz for the case of free boundaries (Banerjee et al., 1995), we obtain

π2
1∫

0

|ζ|2 dz ¬

√√√√√
1∫

0

|ζ|2 dz

√√√√√
1∫

0

|Dw|2 dz
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which gives

√√√√√
1∫

0

|ζ|2 dz ¬ 1
π2

√√√√√
1∫

0

|Dw|2 dz

which implies that

1∫

0

|ζ|2 dz ¬ 1
π4

1∫

0

|Dw|2 dz (2.21)

Now using inequalities (2.17), (2.18) and (2.21) in Eq. (2.11), we obtain

[ 1
Pr
−
( R1

2Le21π
4
+

R2

2Le22π
4
+ . . . +

Rn−1
2Le2n−1π4

+
Ta

π4

)] 1∫

0

|Dw|2 dz

+
a2

σ

1∫

0

|w|2 dz +Raa2
1∫

0

|θ|2 dz < 0

(2.22)

which clearly implies (for σi 6= 0) that

R1Pr

2Le21π
4
+

R2Pr

2Le22π
4
+ . . .+

Rn−1Pr

2Le2n−1π4
+
Ta

π4
> 1 (2.23)

Hence if R1Pr
2Le21π

4 +
R2Pr
2Le22π

4 + . . .+
Rn−1Pr
2Le2n−1π

4 +
Ta
π4
¬ 1, then we must have σi = 0.

This proves the theorem.
The essential content of Theorem 1 from the physical point of view is that for the problem

of rotatory hydrodynamic multicomponent convection, an arbitrary neutral or unstable mode
of the system is definitely non-oscillatory in character and, in particular, ‘the principle of the
exchange of stabilities’ is valid if R1Pr

2Le21π
4 +

R2Pr
2Le22π

4 + . . . +
Rn−1Pr
2Le2n−1π

4 +
Ta
π4 ¬ 1. Further, the above

result is uniformly valid for quite general nature of the boundaries.

Special cases: It follows from Theorem 1 that an arbitrary neutral or unstable mode is non
oscillatory in character, and in particular PES is valid for:

1. Rayleigh-Benard convection (R1 = R2 = . . . = Rn−1 = Ta = 0) (Pellew and Southwell,
1940)

2. Rotatory Rayleigh-Benard convection (R1 = R2 = . . . = Rn−1 = 0) if Ta/π4 ¬ 1 (Gupta
et al., 1986)

3. Rotatory thermohaline convection (R1 > 0, R2 = . . . = Rn−1 = 0, Ta > 0) if
R1Pr

2Le21π
4
+
Ta

π4
¬ 1 (Gupta et al., 1986)

4. Thermohaline convection (R1 > 0, R2 = . . . = Rn−1 = Ta = 0) if
R1Pr
2Le21π

4 ¬ 1 (Gupta et
al., 1986)

5. Rotatory hydrodynamic triply diffusive convection (R1 > 0, R2 > 0, R3 = . . . = Rn−1 = 0,

Ta > 0) if
R1Pr

2Le21π
4
+

R2Pr

2Le22π
4
+
Ta

π4
¬ 1 (Prakash et al., 2014b)

6. Triply diffusive convection (R1 > 0, R2 > 0, R3 = . . . = Rn−1 = Ta = 0) if
R1Pr

2Le21π
4
+

R2Pr

2Le22π
4
¬ 1 (Prakash et al., 2014a)
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Proceeding in this manner, we can obtain conditions for stationary convection for all confi-
gurations with 3, 4, . . . , n− 1 concentration components, respectively.
Since the complement of the above result implies the occurrence of oscillatory motions, thus

it is important to derive the bounds for the complex growth rate of oscillatory motions. We
prove the following theorem in this direction.

Theorem 2: If Ra > 0, R1 > 0, R2 > 0, . . ., Rn−1 > 0, Ta > 0, σr  0 and σi 6= 0, then a
necessary condition for the existence of a nontrivial solution (w, θ, φ1, φ2, . . . , φn−1, ζ, σ)
to Eqs. (2.3) and (2.) together with boundary conditions (2.5)-(2.7) is that

|σ| < max
{√
(R1 +R2 + . . . +Rn−1)Pr,

√
TaPr

}

Proof: Rewriting equation (2.11) for ready reference, we have

1

Pr

1∫

0

(|Dw|2 + a2|w|2) dz = −Raa2
1∫

0

|θ|2 dz +R1a2
1∫

0

|φ1|2 dz

+R2a
2

1∫

0

|φ2|2 dz + . . .+Rn−1a2
1∫

0

|φn−1|2 dz +
Ta

Pr

1∫

0

|ζ|2 dz

Now since σr  0, it follows from Eq. (2.13) that
1∫

0

|φ1|2 dz ¬
1

|σ|2
1∫

0

|w|2 dz (2.24)

Similarly, from Eqs. (2.3)4 and (2.3)6, by adopting the same procedure, we get

1∫

0

|φ2|2 dz ¬
1

|σ|2
1∫

0

|w|2 dz

...

1∫

0

|φn−1|2 dz ¬
1

|σ|2
1∫

0

|w|2 dz

(2.25)

respectively.
Multiply Eq. (2.4) by its complex conjugate, integrating the resulting equation by parts for

an appropriate number of times and using boundary conditions (2.5)-(2.7), we have

1∫

0

(|D2ζ|2 + 2a2|Dζ|2 + a4|ζ|2) dz + 2σr
Pr

1∫

0

(|Dζ|2 + a2|ζ|2) dz

+
|σ|2
Pr2

1∫

0

|ζ|2 dz =
1∫

0

|Dw|2 dz

(2.26)

Since, σr  0, it follows from Eq. (2.26) that
1∫

0

|ζ|2 dz ¬ Pr
2

|σ|2
1∫

0

|Dw|2 dz (2.27)
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Now making use of inequalities (2.24), (2.25) and (2.27), in Eq. (2.11), we have

1

Pr

(
1− TaPr

2

|σ|2
) 1∫

0

|Dw|2 dz + a2

Pr

[
1− (R1 +R2 + . . . +Rn−1)Pr|σ|2

] 1∫

0

|w|2 dz

+Raa2
1∫

0

|θ|2 dz < 0

(2.28)

which clearly implies that

|σ| < max
{√
(R1 +R2 + . . .+Rn−1)Pr,

√
TaPr

}

This establishes the desired result.

The above theorem may be stated in an equivalent form as: the complex growth rate
of an arbitrary, neutral or unstable oscillatory perturbation of growing amplitude in a ro-
tatory hydrodynamic multicomponent fluid layer heated from below must lie inside a semi-
circle in the right half of the (pr, pi)-plane whose centre is at the origin and radius equals

max
{√
(R1 +R2 + . . . +Rn−1)Pr,

√
TaPr

}
. Further, it is proved that this result is uniformly

valid for quite general nature of the bounding surfaces.

Special cases: The following results may be obtained from Theorem 2 as special cases:

1. For rotatory Rayleigh-Benard convection (R1 = 0 = R2 = . . . = Rn−1 = 0, Ta > 0)

|σ| < TaPr

(Banerjee et al., 1981)

2. For thermohaline convection (R1 > 0, R2 = . . . = Rn−1 = Ta = 0)

|σ| <
√
R1Pr

(Banerjee et al., 1981)

3. For rotatory Thermohaline convection of the Veronis type (Turner, 1985) (R1 > 0,
R2 = . . . = Rn−1 = 0, Ta > 0)

|σ| < max
{√

R1Pr,
√
TaPr

}

(Gupta et al., 1983)

4. For triply diffusive convection (R1 > 0, R2 > 0, R3 = . . . = Rn−1 = Ta = 0)

|σ| <
√
(R1 +R2)Pr

(Prakash et al., 2014c)

Proceeding in this manner, we can obtain bounds for the complex growth rate for all configura-
tions with 3, 4, . . . , n− 1 concentration components, respectively.
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3. Conclusions

The present analysis generalizes the previous published results for rotatory hydrodynamic singly,
doubly and triply diffusive convection. The mathematical analysis carried out here yields a
sufficient condition for the validity of the principle of the exchange of stabilities in rotatory
hydrodynamic multicomponent convection. Since the complement of this condition implies the
occurrence of oscillatory motions, the bounds for the complex growth rate are also obtained as
the second problem. It is further proved that the results obtained herein are uniformly applicable
for quite general nature of bounding surfaces.
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In the paper, the possibility of application of various experimental methods to the analy-
sis of elastic-plastic states at different levels of material plastifying is presented. For tests
carried out on two-dimensional elements with different stress concentrators and loaded by
tensile stresses, three experimental methods have been selected: Moiré method, method of
photoelastic coating and the thermography method. On the basis of the tests results, the
range of the applicability of chosen methods and their suitability to the elastic-plastic strain
analysis at the development of material plastifying has been determined. The strain compo-
nents distribution obtained from the Moiré method and the method of photoelastic coating
has been compared. The possibility of increasing the accuracy of strain determination for
the Moiré method by additional tests at the grid rotated by an angle of 45◦ with respect to
the direction of tensile stress has been shown. The results of the investigations have been
discussed.

Keywords: mechanics of solids, experimental methods, elastic-plastic states

1. Introduction and the experimental method selection

The analysis of elastic-plastic states finds many basic applications in engineering design, espe-
cially nowadays, since the economical trend towards building more lightweight and cheaper
structures accepts partial material plastifying during exploitation.
Experimental studies on a great variety of non-linear problems are conducted in many rese-

arch centers all over the world. These problems, like non-linear material characteristics, partial
material plastifying, large deformation, material with imperfections, etc, always cause difficul-
ties associated with the modelling of constructional materials. In such circumstances, the widely
nowadays applied numerical methods as FEM still need final experimental verification. Especial-
ly the experimental methods which give information about the real object without any model
simplification can be very useful as a good verification tool of theoretical and numerical design.
The experimental methods most commonly used to research work on elastic-plastic problems

are: photoelasticity, especially the method of photoelastic coating (Pacey et al., 2005; Foust et
al., 2011; Lamberson et al., 2012; Diaz et al., 2010), Moiré methods (Min et al., 2006; Livieri and
Nicoletto, 2003; Guo et al., 2006), holographic interferometry (Lin, 2000; Balalov et al., 2007),
electronic speckle pattern interferometry method (ESPI) (Diaz et al., 2001; Schajer et al., 2005),
digital image correlation method (DIC) (Vural et al., 2011; Diaz et al., 2004; Tarigopula et al.,
2008), strain gauge technique (Rasty et al., 2007; Olmi, 2010), thermography (Pieczyska et al.,
2006; Connesson et al., 2011).
The selection of the experimental method to study plastic “in-plane” deformation depends

on several elements: the ability and accuracy of the method, the ease of its use in practice, the
character of the obtained results and the possibility of their work out, etc.
The greatest potential taking into account a variety of research techniques and a diversity

of the analyzed problems, create the photoelasticity and Moiré method.
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To study elastic-plastic states, much more suitable is the method of photoelastic coating
than a traditional photoelasticity which requires the use of optically active materials having
characteristics corresponding to material characteristics of the tested element also in the non-
linear range.

Similarly, among various Moiré techniques – the best applicability to study elastic-plastic
states has the classical geometric Moiré method. The frequently nowadays applied interferen-
tial Moiré method has a very high sensitivity (density of the grid is here of several thousand
lines/mm) and is used to the analysis of small areas. Its additional disadvantage is the necessity
of coherent (laser) light application.

Holographic interferometry, which bases on phenomena occurring during the coherent light
interference, can be used directly for measurement of displacement (or shape) of the structure.
It shows good accuracy (strain measurement with an accuracy of 0.1 · 10−4-1 · 10−4), but has
a high mechanical sensitivity, and the result analysis is labor-consuming. It requires also laser
light.

Making use of coherent light requires also one of the modern experimental methods – elec-
tronic speckle pattern interferometry (ESPI). It has a lot of advantages – non-contact measu-
rement, high sensitivity, resolution and accuracy; it gives surface images of displacement and
strain components. However, ESPI method has also very serious limitations – high susceptibility
on conditions in which experiment is performed, sensitivity to even slight movements. It is also
not suitable for large deformations and requires the researcher to have high skills and a lot of
experience.

The second modern experimental method, the digital image correlation method (DIC) also
allows non-contact measurement and gives surface images of displacement and strain compo-
nents. Compared to the ESPI method, it has a bigger measurement range, but lower resolution.
The surface of the element needs special preparation and the results require a lot of calculations.

In contrast to modern experimental methods, one of the oldest commonly known but still
most often used experimental technique is the strain gauge measurement. It enables one to get
strain values with a very high accuracy (∼ 1 · 10−6), but only in several points. That is why
it is usually used in combination with other experimental methods, after determining the most
loaded parts of a structure.

An auxiliary character has also usually the thermography method which is often used to
detect material defects. Its accuracy is difficult to determine and depends mostly on temperature
resolution of a thermovision camera and external conditions. However, the method allows one
to observe thermal processes taking place in the material, what is a great advantage, especially
concerning the elastic-plastic problems.

Taking into account advantages and disadvantages of various experimental methods and
abilities of their application regarding to the elastic-plastic states analysis, the simplicity of their
use in practice, equipment availability, etc., for further experimental testing, three methods have
been selected: a method of photoelastic coating, Moiré method and the thermography method.

All the three methods give information about deformation of the whole tested area (not only
at several points). They can be used to investigate real structure elements made of any material,
in working conditions, even under heavy loading causing partial material plastifying. Their
advantage is also excellent visualization of the process of progressive material plastifying. In
particular, the methods of photoelastic coating and thermography allow direct observation of the
process of formation and development of plastic zones, changes (expansion) of their boundaries
and the direction of propagation.

The first two methods are optical methods, although each of them gives information about
different physical quantities (method of photoelastic coating – strain, Moiré method – displace-
ment). They are also comparable in terms of the level of accuracy (measurement or determination
of strain with an accuracy ∼ 1 · 10−4). The third method – thermography is based on a quite
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different physical phenomenon (emission of infrared radiation from the surface of the tested
element), which allows, to a certain degree, verification of the results obtained from the first two
methods.

The additional advantage of the photoelastic coating method is the possibility of direct strain
measurement. The disadvantage is the dependence of the obtained results on the properties of
the tested material (using the analytical method of strain separation).

The Moiré method has a purely geometrical character (measurement of the displacements is
direct and does not depend on the properties of the tested material), determination of strain,
however, requires differentiation of the obtained displacement values.

The photoelastic coating method and the Moiré method are methods very often used in
worldwide research works, thus their choice seems to be the most evident and proper. Thermo-
graphy, though less precise and giving results more qualitative than quantitative, can provide
a useful and interesting complement to the first two methods, particularly for solving certain
elastic-plastic problems.

2. Experimental testing

The experimental investigation of elastic-plastic states has been performed on two-dimensional
models of structural elements weakened by different stress concentrators (holes) and subjected
to tensile stresses. The elements of this type and loaded in such a way are often used in modern
structures, particularly as different construction joints. The areas of the elements weakened by
cut-outs are parts of structures which require special and accurate checking (Wung et al., 2001;
Olmi, 2010; Foust et al., 2011). Shapes of stress concentrators have been designed on the basis
of literature data and engineering practice (single central holes of various shapes and groups
of circular holes of various configurations). The objects of discussion presented in the work are
three of the models – Fig. 1. The first two models with one central hole have the same area of
the most weakened cross-section in the x axis of symmetry (the effective cross-section) and differ
only in shape of the hole. The third model is weakened by five circular holes cut symmetrically
not only on the axis of symmetry x.

Fig. 1. Models of constructional elements
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The models have been made of a duralumin sheet 3mm thick, from which stripes of 100mm
in width and 450mm in length have been cut out. The length of the stripes was taken large
enough to compensate potential non-uniformity of tensile stresses distribution applied at their
ends.

The characteristic of the material (aluminum alloy EN-AW-2024) has been determined expe-
rimentally on the basis of a standard static uniaxial tensile test and it is shown in Fig. 2.

Fig. 2. Material characteristic

After mechanical working and special surface preparation, the models have been covered
with: a cross-type grid of 20 lines/mm (for the Moiré method) with a 2mm thick photoelastic
coating of strain constant: fε = 1.114 ·10−3 1/fringe order (for the photoelastic coating method)
and with a layer of graphite (for the thermography method). Next, different holes have been cut
out in the way which allowed avoiding creation of plastic strains as a result of machining.

The models have been loaded at their ends with uniformly distributed tensile stresses p.
As the measure of the loading intensity, the ‘loading factor’ s has been accepted. It has been
calculated as the ratio of the average tensile stresses at the cross-section weakened by the hole
on the axis of symmetry perpendicular to the stretching direction in relation to the offset yield
strength R0.2 = 182MPa (taken from the material characteristic).

The loading of the models has been increased step by step within the over-elastic range of
the material. At selected levels of loading, images of the Moiré pattern (for the displacement
u(x, y) and v(x, y)) and isochromatic pattern (for dark- and light-field polariscope) have been
registered. For the thermography method, the loading of the models increased continuously and
the temperature changes on the specimen surface have been recorded by a thermovision camera.

On the basis of the experimental data obtained from the Moiré method and the method of
photoelastic coating, quantitative analysis of the elastic-plastic strain and stress around the stress
concentrators has been made (Kozłowska, 2008, 2013). Due to low resolution of thermal images
obtained from the infrared camera, the thermograms have given only qualitative information
about deformation of the elements (Kozłowska, 2012).

3. Determination of the suitability of selected experimental methods to
elastic-plastic analysis in dependence on the material plastifying level

The experiment has been performed within a wide range of the loading – from the moment of
occurring first plastic deformations to the elements failure. But not at every level of loading all
of the selected methods have been equally useful.

As proved by an experiment, photoelastic coating method allows analysis of the plastic strain
starting from the beginning of their occurring in the material – level of about s ≈ 0.5 (tensile
stress p ≈ 45MPa) for the models with a single hole or s ≈ 0.3 (tensile stress p ≈ 44MPa) for
the model with five holes. At that loading level, the Moiré method is not very useful (to low
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number of Moiré fringes). Exemplary images of isochromatic and Moiré patterns at the discussed
loading level for the area around the stress concentrator of model III are shown in Fig. 3.

Fig. 3. Model III (s = 0.495) – isochromatic pattern: (a) dark-field polariscope, (b) light-field
polariscope; Moiré fringe pattern: (c) u(x, y) surface, (d) v(x, y) surface

For significant plastic deformation, for a loading level over s ≈ 1 (tensile stress p ≈ 91MPa)
for the models with a single hole or s ≈ 0.8 (tensile stress p ≈ 116MPa) for the model with five
holes, the method of photoelastic coating is no longer useful. It is so because the photoelastic
coating can crack (Fig. 4), come off the base (Fig. 5) or (in the best case) isochromatic fringes in
the most plastified areas become quite unreadable (Fig. 6). The Moiré method, however, at the
same loading level or even higher, enables proper analysis of elastic-plastic states (Figs. 4-6).

Fig. 4. Model II (s = 1.136) – isochromatic pattern: (a) dark-field polariscope, (b) light-field
polariscope; Moiré fringe pattern: (c) u(x, y) surface, (d) v(x, y) surface

Fig. 5. Model III (s = 1.136) – isochromatic pattern: (a) dark-field polariscope, (b) light-field
polariscope; Moiré fringe pattern: (c) u(x, y) surface, (d) v(x, y) surface

The discussed examples show an approximate range of the application of the Moiré method
and the method of photoelastic coating depending on the level of plastic deformation of the
material. This range may be changed to some extent because the sensitivity of these two methods
depends on the selection of the proper “measuring element”. Greater possibilities creates here
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Fig. 6. Model V (s = 0.778) – isochromatic pattern: (a) dark-field polariscope, (b) light-field
polariscope; Moiré fringe pattern: (c) u(x, y) surface, (d) v(x, y) surface

the Moiré method by changing density of the grids – for the geometric Moiré method, the number
of lines per millimeter may vary from a few to several tens (most commonly from 20 to 40).

The change in sensitivity of the method of photoelastic coating can be achieved by variation
of thickness of an optically active layer, but in a much smaller range. Usually, the thickness of the
applied photoelastic coating is 1 to 3mm, although you can find one of 0.25mm. A thicker layer
causes stiffening of the element and introduces too much of measurement inaccuracy (averaging
over the thickness). The upper limit of the capabilities of the photoelastic coating method is the
layer cracking or its coming off the base at higher loading levels.

This disadvantage does not applies to the Moiré method, because even if the grid is imprinted
to a photographic film and is affixed to the surface of the element, it forms a flexible thin layer,
very strongly connected with the base. In the case of a grid applied directly to the surface of
the element (e.g. etched), the problem of the grid coming off does not exist at all.

For the grids used in experimental testing (20 lines per millimeter), the range of measured
strain was ∼ 0.2% to 1.5%, while for the photoelastic coating of 2mm thick, the maximum
determined plastic strain was up to ∼ 0.9%.
The thermal images obtained from infrared camera did not give sufficiently precise informa-

tion about the temperature distribution on the surface of the tested element. The accuracy of
temperature measurement by an infrared camera, however, depended mainly on its resolution,
and that increases with the technical possibilities.

Even if the thermograms do not allow one to obtain the values of strain components, they
show directly the full development of plastic zones, from the beginning of their creation to the
failure of the element as e.g. in model III (Fig. 7)

Fig. 7. Thermograms (model III) for loading levels: (a) s = 0.989, (b) s = 1.172, (c) s = 1.304
(first cracks), (d) s > 1.355 (element failure)

The method of thermography has also no limitations resulting from the properties of the
layer covering model (graphite), as it is in the case of the photoelastic coating method (the
optically active layer) or even in the Moiré method, when the grid is affixed to the surface of
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the model. Thus, this method can be used, both as a preliminary tool to select an area of the
element to be tested with a more accurate method (the formation of plastic zones) as well as a
way to observe the mechanism of plastic material failure in the range already out of reach for
other experimental methods.

4. The accuracy of the determination of strain components by selected
experimental methods

Although the Moiré method and the method of photoelastic coating have different ranges of
the best suitability for quantitative analysis of the elastic-plastic strain and stress components,
there is a certain range of loading level for which both methods can be properly used.
To compare the accuracy of the Moiré method and the method of photoelastic coating, the

loading levels for which both methods give results freely allowing one to determine the strain
components have been chosen. The analysis of model II and III has been carried out at the
loading level s = 0.952, which corresponds to tensile stresses p = 87MPa. The average stress on
the x axis was then σav = 173MPa (average strain – εav = 0.38%). For model V the loading
level accepted for analysis, was s = 0.687 (tensile stress p = 100MPa), for which the average
stress on the axis of symmetry x – was σav = 125MPa (average strain – εav = 0.15%).
At the chosen loading levels, a quite significant plastification of the material already occurred

around the stress concentrators, on the one hand large enough to enable measurement by the
Moiré method, on the other hand, still allowing using the method of photoelastic coating.
The analysis of the elastic-plastic strain state for the models with one hole is shown on the

example of model III, for which the images of isochromatic and Moiré patterns around the stress
concentrator at the loading level s = 0.952 are presented in Fig. 8.

Fig. 8. Isochromatic pattern for model III – s = 0.952: (a) dark-field polariscope, (b) light-field
polariscope; Moiré fringe pattern – (c) u(x, y) surface, (d) v(x, y) surface

To compare the results obtained from the Moiré method and the method of photoelastic
coating, the strain components distribution on a horizontal axis of symmetry x perpendicular
to the loading direction (segment AB – Fig. 1) have been assumed. In addition, on the same
diagram it is also shown the distribution of strain εx and εy obtained from numerical (FEM)
calculations (Fig. 9).
For model V (with five circular holes), the images of isochromatic and Moiré pattern around

the stress concentrators at the loading level s = 0.687 are shown in Fig. 10.
To compare the results obtained from the Moiré method and the method of photoelastic

coating, the strain components distribution in the horizontal axis of symmetry x perpendicular
to the loading direction (segment AB – Fig. 1) has been assumed (Fig. 11). For this model,
FEM calculations have not been performed.
As follows from the presented diagrams, the strain components εx and εy distribution in the

axis of symmetry x (segment AB) for the chosen loading level obtained from the Moiré method
and the method of photoelastic coating are approximate. The differences between the calculated
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Fig. 9. Strain components distribution in the axis of symmetry x for model III – s = 0.952: (1) Moiré
method, (2) method of photoelastic coating, (3) FEM calculations

Fig. 10. Isochromatic pattern for model V – s = 0.687: (a) dark-field polariscope, (b) light-field
polariscope; Moiré fringe pattern – (c) u(x, y) surface, (d) v(x, y) surface

Fig. 11. Strain components distribution in the axis of symmetry x for model V – s = 0.687: (1) Moiré
method, (2) method of photoelastic coating

values of strain components do not exceed a few percent (6% to 8%). A higher divergence occurs
between the experimental results and numerical calculations, but even there it does not exceed
10% to 12%.

5. The influence of grid configuration on the accuracy of determination of strain
components distribution

The strain components obtained on the basis of the Moiré fringes at the traditionally affixed
grid (in accordance with the axes of symmetry of the model – the direction of tension) can be
determined accurately not in every part of the tested model. Where the surfaces of deformation
are not much diversified in the direction of the axis of the coordinate system (directions of
differentiation), the derivatives can be calculated with a certain error.
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As it has been said, the measurement sensitivity of the Moiré method may be increased by
changing density of used grids. It is not always convenient, when the increasing of the accuracy is
needed only in the part of the tested element. In such a case, an improvement of the measurement
accuracy may be achieved by performing additional tests with grids rotated with respect to the
direction of the basic grid by a certain angle.

Fig. 12. The grid affixed according to the direction of tensile stresses (a), grid rotated by
an angle of 45◦ (b)

In order to verify the possibility of increasing accuracy of determination of the elastic-plastic
strain distribution around stress concentrators, additional tests have been performed at the grid
rotated by an angle of 45◦ with respect to the direction of tensile stress (coordinate system x-y)
– Fig. 12.

An exemplary comparison of the strain components obtained by grids arranged in different
ways is shown for model V with five holes at the loading level s = 0.778, for which, the strain
state has been already determined using a traditionally affixed grid (Kozłowska, 2008).

The images of Moiré fringes at the grids affixed in different ways are shown in Fig. 13, where
one can see a larger number of Moiré fringes in selected areas at the rotated grid than at the
grid affixed in the direction of tensile stress.

Fig. 13. Moiré pattern for model V (s = 0.778) – grid affixed according to the direction of tension:
(a) u(x, y), (b) v(x, y); grid rotated by an angle of 45◦: (c) clockwise, (d) counter-clockwise

The analysis for the rotated grid has been carried out as in previous cases (because of the
double symmetry of the model and loading) for one-quarter of the tested area (Kozłowska, 2007)
– Fig. 14.

For strain analysis, the coordinate system x-y associated with an element under tension and
a traditionally affixed grid has been rotated by an angle of 45◦ to form a coordinate system x′-y′

associated with a rotated grid (Fig. 12).

On the basis of the displacement obtained from Moiré fringes at the rotated grid, the strain
components have been determined in the new coordinate system (x′, y′) by means of analytical
differentiation.
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Fig. 14. Moiré pattern for the analyzed area of model V (s = 0.778) – grid rotated by an angle of 45◦:
(a) clockwise, (b) counter-clockwise

Then the values of strain εx and εy in the basic coordinate system (x, y) have been calculated
by making use of formulas enabling converting the strain state described in one coordinate system
to another (rotated) one (1), where α = 45◦, Fig. 15

εx = εx′ cos
2 α+ εy′ sin

2 α+ γx′y′ sinα cosα

εy = εx′ sin
2 α+ εy′ cos

2 α− γx′y′ sinα cosα
1

2
γxy = (εx′ − εy′) sinα cosα+

1

2
γx′y′(sin

2 α− cos2 α)
(5.1)

Fig. 15. Strain state transformation

To compare the obtained results with those from the analysis of Moiré images at the grid
affixed according to the direction of the tensile stresses, the strain components distribution in
the horizontal axis of symmetry x has been assumed (Fig. 16). In the diagram, the correction of
strain components calculation resulting from the larger number of Moiré fringes (selected areas)
is shown.

The analysis of strain components for model V (model with five holes) shows that in its
horizontal axis of symmetry x, where the data obtained at the grid affixed traditionally are
relatively inaccurate (low number of Moiré fringes), the information found from the rotated grid
allows one to increase the accuracy of strain determination and to correct errors resulting from
differentiation of surfaces of deformation.
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Fig. 16. Strain distribution in the axis of symmetry x (model V – s = 0.778): (1) grid affixed according
to the direction of tension, (2) grid rotated by an angle of 45◦

6. Conclusions

The review of experimental methods used in mechanics of solids carried out in terms of elastic-
plastic analysis resulted in the selection of three of them for further investigations: the Moiré
method, the method of photoelastic coating and the method of thermography. The choice has
been dictated not only by their measuring capabilities in the over-elastic range of the material
characteristics, but also by the simplicity of their use in practice and the availability of the
equipment.

The main advantage of all three methods is the ability to conduct an experiment on real
structures in working conditions, also under loading causing partial plastifying of the mate-
rial and to obtain information about the strain state of the whole tested object. An additional
advantage of the chosen methods (especially the method of photoelastic coating and the ther-
mography method) is excellent visualization of the process of progressive material plastifying.
The advantage of the Moiré method is also the simplicity of measurements and the work out of
the experimental results.

The Moiré method and the method of photoelastic coating enable a relatively easy and quick
quantitative analysis of the strain state around stress concentrators on the basis of experimental
data. Thermographic tests have shown that this method allows rather getting a general view of
the distribution of plastic strain components than their precise quantitative determination.

The conducted tests and detailed analysis of experimental data enabled definition of the
range of applicability of each of the selected methods and determination of their capabilities in
terms of the accuracy of calculation of strain components at various stages of material plastifying.

The range of application of the method of photoelastic coating (for an 2mm thick optically
active layer used in the testing of duralumin elements) is up to the maximum plastic strain ∼
0.9%.

The Moiré method allowes testing of the elements in a wider range of the material plastifying.
For the used grids of 20 lines per millimeter, plastic strain can be measured up to ∼ 1.5%, while
determination of the strain less than ∼ 0.2% causes difficulties due to the low number of Moiré
fringes. The measurement sensitivity of the Moiré method can be locally increased by affixing
the grids at different angles. Such a possibility has been verified by additional tests performed
at the grid rotated by an angle of 45◦ to the axis of symmetry of the model. That gave an effect
similar to applying the rosette of strain gauges and showed that the accuracy of the elastic-
plastic strain distribution around stress concentrators could be increased in the areas where the
number of Moiré fringes is low.

The comparison of the strain components distribution in the horizontal axis of symmetry x
(perpendicular to the direction of tension) obtained from the Moiré method and the method of
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photoelastic coating for the range of material plastifying, for which both of them are applica-
ble, shows that the differences between results are about a few percent. The comparison with
numerical calculations (FEM) also shows good agreement of the results.
The quantitative analysis of strain and stress components in the whole area around stress

concentrators proves that the Moiré method is a little more useful. The method of photoelastic
coating is more labor-consuming due to the necessity of analytical strain separation (solving
of the system of partial differential equations, Kozłowska, 2013) and converting the obtained
results from irregular grid nodes to the rectangular grid.
The thermography method, although not enough accurate for quantitative strain analysis,

gives an opportunity of observing plastic zones developing in elements in the full range of loading
until their complete failure, so it seems to be useful for the study of elastic-plastic states in co-
operation with other experimental methods (e.g., Moiré method and the method of photoelastic
coating).
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In this research, a mathematical model is derived to enable analytical determination of
effective ultimate forces in the process of plasticization of the surface layer of wood. The
experimentally determined thermo-mechanical properties of the material subjected to the
process of plasticization are used in defining the structure of the model. The analysis of
plastic strain in the layer in consideration is based on a generalised model of an ideally
rigid-plastic medium, including certain modifications. Considering the anisotropic properties
of wood, the Azzi-Tsai-Hill (ATH) strength criterion is applied which takes into account
variation in the response of the loaded material depending on the direction. The article
presents also results of FEM analysis of the same process of hot rolling of wood.

Keywords: yield point, temperature, moisture content, porosity, orthotropy

1. Properties of porous anisotropic natural polymers

The focus is on designing machines and devices of newly developed techniques for modification
of the internal structure and surface characteristics of products made of various engineered
materials. These materials include wood, which is considered the oldest structural material,
through generally used metals to the cutting edge composites. The inspiration to undertake this
research are the machines designed to improve properties of natural wood veneered furniture
components by application of hot rolling technique. Wood has been used to analyse the complex
process of plasticisation of superficial layers of such materials with the objective to improve their
quality as well as their strength and functional performance.

The efficiency of plasticisation and densification of such materials depends on the desired
ultimate load values (Ashby and Jones, 1996). Hence, an extensive testing program has been
carried out to determine mechanical properties of wood and their dependence on temperature
and moisture content. The results were used to set up constitutive equations of plasticity and to
build models describing these processes. This was the basis to determine the effective ultimate
load values used to define the machine design criteria (Mackenzie-Helnwein et al., 2005; Malujda,
2006).

Properties of natural polymers are defined by specific and unique characteristics of the plant
tissue of which they are made (Forest Products Laboratory, 1999; Kokociński, 2004). Some of
them may be determined with organoleptic methods, others require highly specialised test appa-
ratus to measure often mutually dependent physical quantities (Malujda and Marlewski, 2011).
The values depend on several factors and phenomena which occur inside these materials exposed
simultaneously to mechanical and thermal loading. Considering the number and complexity of
characteristics of natural polymers such as wood, for the sake of clarity, a few important groups
of properties and physical quantities have been identified, as schematically illustrated in Fig. 1.
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Fig. 1. The main thermo-mechanical properties of wood dependent on temperature and moisture
content. Rm is the ultimate strength and Re is the yield point, both in the three orthotropic directions:

longitudinal L, tangential T and radial R

There is a number of important complex biochemical phenomena involved in plasticization
processes highly relevant to the desired modification of geometrical parameters of their surfaces
and internal structures. These phenomena have not been analysed in detail, as this would exceed
the scope of this study. However, it can be assumed that the effect of these phenomena on the
thermo-mechanical properties is reflected in the material functions determined experimentally
through tests carried out on a macroscopic scale (Sumelka et al., 2013).

The structural component of wood is cellulose, and it is the specific anatomical structure
of cellulose that is responsible for the completely different structure and appearance of wood
depending on the cutting direction. Skeleton-forming substances are based on cellulose and owe
it its strength.

2. Experimental motivation

2.1. Compression test

The test specimens were subjected to compression load in the direction parallel to the grain
and two perpendicular directions: tangential and radial. The specimens were made of beech
wood (Fagus silvatica). The dimensions of test specimens are presented in Fig. 2. Fig. 3 shows
the annual growth rings. The tests specimens were produced in sufficient number for the planned
tests.

Fig. 2. Dimensions of the compression test specimen

The specimens were made of selected wood logs to obtain representative and reproducible
results of testing as per Polish Standard PN-81/D-04107 (Kokociński, 2004). Specimens including
structural features such as snags were rejected.

The specimens were compressed in the respective directions (L, T , R) and the output results
enabled relating the determined strength to temperature and moisture gradients. The tests were
carried out at three temperatures: 20◦C, 50◦C, 80◦C and three moisture contents: 9%, 18%
and 27%. The highest test temperature was 80◦C because above that point chemical reactions
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Fig. 3. Specimens: (a) radial direction, (b) tangential direction, (c) longitudinal direction

take place in beech wood, which brings unrecoverable changes in the composition and structure
of wood. The moisture content was limited to 27%, which in the case of wood is the practical
limit for absorption of moisture from air. The testing program for one fibre direction is presented
in Table 1.

Table 1. Testing program for one fibre direction

Temperature
20◦C 50◦C 80◦C

Percent
moisture

9% 3 3 3
18% 3 3 3
27% 3 3 3

Before the test, the specimens were conditioned in a climatic chamber (Fig. 4b) to attain
the equilibrium moisture content. After subsequent storage in ambient conditions at the labo-
ratory, the moisture content of specimens was 9%. The threshold values of 18% and 27% were
achieved by placing the specimens in the desiccator above the saturated solution of NaCl and
water respectively (Fig. 4a). The moisture content was checked by weighing of samples during
conditioning until the desired value was obtained. The percent moisture at the point when the
sample weight has stabilised is called the saturation moisture content. The weight was checked
on a moisture balance with 0.001 g accuracy. Before each test, specimens of a specific percent
moisture were heated up to the specified test temperature. The compression tests were carried
out using a strength tester with 50 kN load cell and MTS mechanical extensometer resistant to
high temperature and moisture. The strength tester was integrated with the climatic chamber
placed within the MTS working space to maintain the specified ambient conditions. The strength
tester incorporating the climatic chamber is presented in Figs. 5 and 6.

Fig. 4. (a) Desiccator with specimens placed inside, (b) stationary climatic chamber

The stress-strain curves were obtained for each compression test on the basis of extensometer
displacement. The cross-sectional area of the specimen was determined before the test. The other
input parameters, namely temperature and percent moisture, were measured right after the test.



506 M. Dudziak et al.

Fig. 5. MTS strength tester incorporating climate chamber 1 – strength tester, 2 – climate chamber,
3 – load cell (measuring the applied force)

Fig. 6. Climatic chamber with holding jaws assembly designed for compression test: 1 – specimen placed
between holding jaws, 2 – extensometer, 3 – force/ specimen alignment fixture to ensure that the force

is applied perpendicular to the specimen cross-section

An example of a typical curve obtained from a compression test carried out on a specimen of
beech wood in the tangential direction is presented in Fig. 7.

Fig. 7. The stress-strain curve for beech compressed in the tangential direction

The yield point values Re in the respective orthotropic directions L, T , R were taken as
the wood strength criterion used to set up constitutive equations describing the plasticization
model of wood. For the compression test, those parameters were designated RLec, R

Rec, R
T
ec ,

respectively. Their values were determined by the point where the tangent “departs” from the
curve by more than 1% of the ultimate strength value. This point, in turn, was determined by
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solving a system of equations comprising an equation of a straight line tangent to the stress-strain
curve in tension and an equation of the actual stress-strain curve in compression (Fig. 7).
The results of each test type were recorded in single test record sheets and test logs which

included all the relevant strength test information. Table 2 presents an example of a single test
record sheet from a compression test carried out on a beech wood specimen with 9% moisture
at 20◦C. The test logs include the results obtained for the whole test series and accompany the
respective test descriptions. An example of such a test log is presented in Table 3.

Table 2. Single test record sheet (compression of beech in the tangential direction, 9% mois-
ture, 20◦C

Wood variety beech

Direction tangential

Moisture content [%] 9

Temperature [circC] 20

Cross-section area [mm2] 402

Young’s modulus E [MPa] 1282.857

Breaking force [M] 4894.27

Ultimate strength RTc [MPa] 12.175 Test No. 1

Shortening at RTc [mm] 0.407

Strain at RTc 0.016

Yield point RTec [MPa] 4.495

Shortening at RTec [mm] 0.09225

Strain at RTec 0.00369

RTec/R
T
c 0.369

Gauge length l0 [mm] 25

Table 3. One series of tests: beech – tangential direction

Test No.
1 2 3 avg.

Wood variety beech

Direction tangential

Moisture content [%] 9

Temperature [◦C] 20

Cross-section area [mm2] 402 406 404 404

Young’s modulus E [MPa] 1282.857 1244.392 1267.786 1265.01

Breaking force [N] 4894.27 5309.5 5239.05 5147.60

Ultimate strength RTc [MPa] 12.175 13.078 12.969 12.7406

Shortening at RTc [mm] 0.407 0.565 0.475 0.48233

Strain at RTc 0.016 0.023 0.019 0.01929

Yield point RTec [MPa] 4.495 3.541 4.21 4.082

Shortening at RTec [mm] 0.09225 0.073 0.08675 0.084

Strain at RTec 0.00369 0.00292 0.00347 0.00336

RTec/R
T
c 0.369 0.271 0.325 0.32152

Having all the results, it was possible to define the relation between strength and temperature
for the respective moisture content levels.
An example of the test results is presented in form of curves in Fig. 8. They relate the yield

point Re to the effect of temperature for three different moisture content levels in the tangential
direction.
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Fig. 8. Yield point RTec vs. temperature T for different moisture content levels (beech wood,
tangential direction)

2.2. Experimental determination of thermal conductivity

The thermal tester used in the determination of the thermal conductivity of wood was
designed specifically for testing materials of low thermal conductivity (Fig. 9a). As the first step,
specimens of the same density and thickness were prepared. The test set-up components were
aligned coaxially and then load was applied to the top of the heat sink. Then the whole set-up
was thermally isolated and the remaining parts, namely temperature sensors, power supply unit
and the measuring device were connected. The system was energised and the heat sink switched
on. Measurements were taken upon reaching the test temperature and thermal equilibrium.

The measurements were carried out on beech wood (Fig. 9b) in the three directions in relation
to the grain: L, T , R (longitudinal, tangential and radial) at test temperatures of 40, 60, 80,
100, 120, 140 and 150◦C to obtain arithmetic average of five measurement results for each test
point.

Fig. 9. (a) Experimental set-up for measuring thermal conductivity: 1 – thermal conductivity tester,
2 – amplifier, 3 – recording computer; (b) specimens of beech wood used for thermal conductivity

measurement tests

The measurement results for beech wood were used to derive the curves (Fig. 10) relating
the thermal conductivity coefficient λ to temperature for the three directions in relation to the
grain: L, T , R.

The relationship between the thermal conductivity and temperature is described with ap-
plication of an arctan approximation model λarctan, specially developed for this purpose by the
authors. This description is consistent with the approximation methods developed by several
researchers working in different research centres (Harada et al., 1998; Gu and Zink-Sharp, 2005;
Yang, 2001). Malujda and Marlewski (2011) demonstrated that the arctan approximation model
provided more accurate approximation that the methods proposed by other researchers.
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Fig. 10. Thermal conductivity vs. temperature for different fibre directions, approximation with the
arctan model

3. Analysis of plasticization of an anisotropic material

In anisotropic materials, specific directions can be found in which plastic properties reach the
extreme values. If these directions are oriented orthogonally one to another, we call it orthotropy,
and the material with such characteristics is referred to as an orthotropic material (German,
2001). Wood is an example of such an orthotropic material.
The problem of defining the yield criterion of the surface layer of wood is approached as a

two-dimensional problem (Fig. 11).

Fig. 11. Treatment to improve properties of the surface layer of the natural material by hot rolling:
1 – adjustable upper roller, 2 – layer of wood, 3 – chipboard, Rw – roller radius, s – roller/material
contact length, h – depth of the layer of wood, l – board width, ∆h – compression degree, directions:

L(1) – longitudinal, T (2) – tangential, R(3) – radial

Let us use the anisotropic yield criterion of Azzi-Tsai-Hill (ATH) to analyse the ultimate
stress-strain state of the analysed layer of wood, which considers its multi-directional reactions
resulting from the components of the complex stress state. Hill (1956) generalized the HMH yield
criterion to make it hold true for orthotropic materials. Wood is a natural polymer for which
the reference system of co-ordinates can be set up so that the directions of axes coincide with
the orthotropic directions L, T , R (Fig. 11). Having taken this assumption, the yield criterion
may be represented by

(M +N)σ211 + (L+N)σ
2
22 + (L+M)σ

2
33 − 2Nσ11σ22 − 2Mσ11σ33

− 2Lσ22σ33 + 2Pσ223 + 2Qσ231 + 2Rσ212 = 1
(3.1)
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where L,M ,N are the proportional limits with the values depending on the orthotropic direction
and P , Q, R are the respective shear strength proportional limits.

The yield criterion formulated in this way is the strength criterion of an anisotropic material,
and the critical strength is reached at the proportional limit. It is a characteristic feature of brittle
materials, such as wood, for which these limits coincide with the yield and elasticity limits, and
this has been confirmed by the results of experimental research.

The process of plasticization of natural materials having such complex properties as, for
example, wood has not yet been described by non-linear models. Thus, the engineers cannot
use a mathematical model whose structure is built of complex engineering constants, typical for
natural polymers.

Now, let us take the process of hot rolling of wood (Fig. 11) and try to derive constitutive
relations for natural materials by analytical method, assuming applicability of the theory of
plasticity taking into account the plastic compressibility mechanism and allowing for the effect
of heat and moisture (Bordia et al., 2006; Fujii et al., 2003; Malujda, 2006; Müllner et al., 2004;
Nairn, 2005).

The key parameter for the modelling of the process in consideration is the ultimate stress
corresponding to the lower limit of statically determined strength of the layer subjected to
loading (Ashby and Jones, 1996). At this point, having in hand the mathematical model, we
shall try to determine the ultimate load resulting in plasticization of the material. The value of
this load is of primary importance to the efficiency of the analysed process.

The establishing of a model can be defined as the identification of the process occurring
in the material. Therefore, it is necessary to carry out in-depth analysis of these elements of
the model which are critical to obtaining a satisfactory solution thereof. In the case of wood,
these are: complex thermo-mechanical properties, porosity and process parameters including in
particular the ultimate force F which depends on temperature and process duration (Malujda,
2006). Wood is a highly porous material and, for this reason, the ultimate stress depends not only
on the second but also on the first invariant of the stress tensor. This effect must be considered
in the final form of the yield criterion, similarly to the effect of direction in relation to the
grain (Tsai and Wu, 1971). For this reason, the Huber von Mises-Hencky yield criterion for
isotropic materials was used (German, 2001; Hill, 1956; Malujda and Talaśka, 2010), generalized
by Azzi-Tsai-Hill (ATH) to hold true for anisotropic materials.

Scalar functions of porosity, temperature and moisture are then fitted into this yield criterion
formula, generalised to hold true for anisotropic materials. Subsequent analyses are carried out
for the assumed physical model of the unsupported rigid-plastic medium.

Now, let us formulate the general yield criterion expressing the yield criterion for an aniso-
tropic and porous material allowing for the effect of temperature and moisture content expressed
generally as a function describing the yield surface

F (σ, fv, T, w) = 0 (3.2)

where σ is the stress tensor and the other terms are scalar functions of porosity fv, temperatu-
re T and moisture content w (Malujda and Talaśka, 2010). The structure of the yield criterion
formulated in this way is created by interrelated physical quantities which have direct effect on
the value of the ultimate yield force. Wood features porosity (Malujda and Talaśka, 2010), which
affects its yield point. This effect has been allowed for in the formulated mathematical model
by introducing the following scalar functions of porosity

A =
fv
1− fv

B = 1− fν (3.3)



Analysis of the process of wood plasticization by hot rolling 511

which, while meeting the following limit conditions:

if fv → 0, A→ 0, then B → 1
if fv → 1, A→∞, then B → 0

reduce criterion (3.2) to HMH criterion.
Introducing porosity functions (3.3) accorindg to equation (3.2), we obtain

A(σ1 + σ2)
2 + (σ1 − σ2)2 = BY 21 (3.4)

where σ1 and σ2 are the principal stresses in the orthotropic directions (L-T ).
In yield criterion (3.4), the complex ultimate stress-strain state is equated to the stress-

-strain state expressed by the non-zero main stress determined during a uniaxial compression
test as a function of temperature and moisture content Y1 = RLec . At the critical state, this
stress obtains a constant value at the strength limit of wood. The compressive yield strength
has been taken as the parameter defining the critical stress of a natural polymer, i.e. the stress
created by application of the ultimate force. This parameter is used as the basis for evaluating
the characteristics of composite materials, such as wood, and its value depends on temperature
and moisture content as well as on the direction of load application in relation to the grain.
In the first phase of pressure application to the thin layer of wood, permanent strains are

produced without a significant effect of heat. Nevertheless, they are necessary in order to obtain
the roller/ surface contact time sufficient to increase the temperature to approximately 120◦C
depending on the wood variety. As it has been demonstrated in the experimental research, this
process takes very little time, namely ca 0.04-0.1 s. During that time, heat penetrates into the
thin layer of wood by ca 0.1-0.12mm which is the key element of the process of improving the
material properties.
Hence, the process in consideration may be divided into two stages. The first stage concerns

permanent strains created upon exceeding the proportional limit and it is related to densification
of the structure of wood. In the second stage, smoothing and consolidation of the structure of
the heated surface layer takes place. The yield load is reduced as a result of a decreased strength
of wood resulting from an increase in temperature in the processing zone.
Introducing the orthotropy coefficients α = (Y1/Y2)

2 and β = (Y1/Y3)
2, established on the

basis of experimentally determined strength of wood Y1, Y2, Y3 into equation (3.4), gives the
following yield criterion

σ21 + ασ
2
2 − (1 + α− β)σ1σ2 +Aσ21 +Aσ22α+ 2A(1 + α− β)σ1σ2 = BY1 (3.5)

which is then rearranged to

σ21(1 +A) + ασ
2
2(1 +A)− (1− 2A)(1 + α− β)σ1σ2 = BY1 (3.6)

Some additional assumptions have been taken and simplifications have been made due to
complexity of the process of hot rolling of wood. This process concerns plasticization of a thin
layer of the processed material in the case when two dimensions are much higher than the third
one. The depth of this layer h is small (Fig. 11) as compared to the lateral dimensions and hence
the process is analysed in the in-plane strain state. The high value of the width do depth ratio of
l/h > 10 and porosity of the material structure allow us to consider the strain in the tangential
direction T (2) ignorable (dε22 = 0) (Bednarski, 1995). This is supported by the approach used
in real-life industrial applications. The second of the important simplifications is leaving out the
stress σ1 justified by the low value of the rolling resistance (ca 2% of the normal force) in the
rolling direction L(1) (Bednarski, 1995). This is due to a very small contact angle (large diameter
of the roller is required for process-related reasons) and hence it is justified to assume that the
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roller pressure p = F/(sl) (Fig. 11) is almost entirely directed on the component perpendicular
to the plane L(1)-T (2) (Fig. 11).
In the next step of building up the model, we shall use the associated plastic flow rule which

relates the strain increase deviator dεij to the plastic potential function F (σij) represented by
the following relationship

dεij = dς
∂F (σij)

∂σij
(3.7)

where ς is a coefficient determined from the increase of work of plastic strain.
Hence, with the assumed value of dεij = 0, the associated plastic flow rule is expressed by

the following formula

dε22 = dς
∂F

∂σ22
= 0 (3.8)

Differentiating equation (3.5)

∂F

∂σ2
= 2ασ2(1 +A)− (1− 2A)(1 + α− β)σ1 = 0 (3.9)

yields

σ2 =
(1− 2A)(1 + α− β)
2α(1 +A)

σ1 (3.10)

Substituting expression (3.10) described by equation (3.6) to get rid of σ2, we get

σ21(1 +A) + α(1 +A)
[ (1− 2A)(1 + α = β)

2α(1 +A)

]2
σ21

− (1− 2A)(1 + α− β)(1− 2A)(1 + α− β)
2α(1 +A)

= BY 21

(3.11)

Rearranging equation (3.11), we get the following relationship for calculating the stress σ1

σ21 =
B

(1 +A)− (1−2A)2(1+α−β)4α(1+A)

Y 21 (3.12)

Now let us use yield criterion (3.6) in order to determine the isotropic state stress

Ap2 +Aαp2 + 2A(1 + α− β)p2 + βp2 = BY 21 (3.13)

and thus, upon rearranging equation (3.13), we obtain

p2 =
B

A(3 + 3α− 2β) + βY
2
1 (3.14)

If A→ 0 then p→∞, where fv → 0 means incompressibility of the analysed material.
Finally, we get the following equation describing the yield criterion, expressing the ultimate

stress state derived through transition from the in-plane strain state to the equivalent in-plane
stress state

p =

√√√√√
[

B

(1 +A)− (1−2A)2(1+α−β)4α(1+A)

− B

A(3 + 3α− 2β) + β

]
Y 21 (3.15)

The above expression, describing the ultimate roller pressure applied to the processed layer of
wood allows for the porosity and anisotropic properties of the analysed material. Experimental
determination of the compressive yield strength in the longitudinal direction Y1 = R

L
ec takes into

account the effect of heat and moisture content.
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4. Analytical and numerical solutions of the model of the thin layer plasticization
process

In the obtained analytical model, functions of material characteristics are applied including the
arctangent thermal conductivity function. The relevant data are given in Table 1. Since all the
functions of material characteristics required for the determination of the critical stress according
to (3.15) depend on the temperature, the values calculated with equation (3.15) are compared
to the results of FEM analysis by determining the stress value for a given temperature at a
given point during the rolling process modelled with the FEM software. The process parameters
assumed as the input for calculations correspond to the values applied in wood improvement
processes in furniture manufacturing applications. Figure 12 illustrates geometry of the model
derived for the purpose of FEM analysis.

Fig. 12. Model derived for the purpose of FEM analysis: 1 – adjustable upper roller, 2 – lower roller,
3 – processed material, processed layer of wood showing nodes in the depth-wise direction

A 0.8mm deep surface layer of the processed material is sub-divided into twenty finite ele-
ments. The entire model comprising of the roller and processed material is “encases” with air
at temperature of 20◦C. The purpose is to imitate the real-life ambient temperature of the sur-
rounding air which is about 20◦C. The roller/material contact parameters are defined assuming
that the exchange of heat between these surfaces is close to ideal. The abutting surfaces of the
roller and the processed material are assumed to have the same temperature, namely 220◦C.
The duration of contact between each point located in the thin surface whose location is

defined by the co-ordinates of the node of a rectangular grid component, and the roller is
assumed at ca 0.06 s. This time corresponds to ca 6m/min linear speed of the roller (process
parameter). The thermo-mechanical properties of beech wood and geometric parameters of the
analysed wood improvement process are presented in Tables 4 and 5.
The curves in Figs. 13a,b,c represent the relation between the stress value and the depth

below the surface of the rolled material determined with the use of analytically determined
relationship (3.15) and FEM analysis. Figure 14 presents the relative percent difference between
the values calculated with equation (3.15) and the results of FEM analysis.

5. Conclusions

The processes of plasticization of natural polymers in real-life conditions are governed by seve-
ral parameters. The relevant factors include external mechanical loads, temperature, moisture
content and process duration. Consequently, the established constitutive relations have a more
general form.
The analysis of plastic strain in the analysed layer of wood is based on a generalised model of

an ideally rigid-plastic medium with certain simplifications and modifications. Taking account
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Table 4. Material characteristics – thermo-mechanical properties of beech

Physical quantity Designation Unit Value/function

Arctangent thermal conducti- λLarctan λLarctan = 133.806 arctan T
2 − 209.712

vity in the L, T,R directions λRarctan W/(m◦C) λRarctan = 57.723 arctan T
2 − 90.462

in relation to the grain λTarctan λTarctan = 12.67 arctan T
2 − 19.739

ELc−9% = −78.48T + 17809
ELc−18% = −21.514T + 11574
ELc−27% = −34.454T + 8530.9

EL,R,Tc−9% ERc−9% = −8.363T + 2047.2
Elastic constant EL,R,Tc−18% MPa ERc−18% = −7.757T + 2022

EL,R,Tc−27% ERc−27% = −1.3884T + 1114
ETc−9% = −4.0966T + 1256.5
ETc−18% = −5.775T + 1278.2
ETc−27% = −3.598T + 832.78
RLec−9% = −0.06T + 17.451
RLec−18% = −0.047T + 13.213
RLec−27% = −0.0312T + 9.5012

Y1 = R
L
ec RRec−9% = −0.0201T + 6.0151

Yield strength Y2 = R
T
ec MPa RRec−18% = −0.014T + 4.6398

Y3 = R
R
ec RRec−27% = −0.0102T + 3.4249

RTec−9% = −0.015T + 4.2452
RTec−18% = −0.0128T + 3.9331
RTec−27% = −0.0101T + 2.5629

Specific heat capacity
cpo kJ/(kgK) cpo = 0.1031 + 0.003867T

of dry wood

cp =
cpo+0.01wcpw
1+0.01w+Ak

w – moisture content (9%,18%,27%)

Specific heat capacity cpw – specific heat of water

allowing for the effect cp kJ/(kgK) Ak – coefficient

of moisture content Ak = −0.07592 (9%)
Ak = −0.17338 (18%)
Ak = −0.29238 (27%)

Density ρ kg/m3 810

Moisture content m % 9, 18, 27

the anisotropic properties of wood, the Azzi-Tsai-Hill (ATH) strength criterion is used as it
allows for the variation of reaction to the loading depending on the direction. The strength
criterion is based on the experimentally determined compressive yield strength allowing for the
effect of temperature and moisture content. The ultimate load determined in this way depends on
the established strength criterion as well as factors defining porosity and orthotropic properties
of the material which relate the yield strength values in the respective orthotropic directions.
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Table 5. Geometric parameters of the analysed wood improvement process

Physical quantity Designation Unit Value

Roller radius Rw m 0.1565

Thickness of layer before rolling h1 m 0.0008

Linear speed v m/s 0.1

Roller temperature T ◦C 220

Fig. 13. Stress depending on depth inwards the processed material with (a) 9%, (b) 18%, (c) 27%
moisture content

Fig. 14. Percent difference between the results of analytical and numerical calculations as a function of
depth of the layer of the plasticized material

The ultimate stresses determined with the above-mentioned model are used in simulations
and numerical calculations. The equations presented herein may be used to ensure the desired
properties and dimensions of products and to define input assumptions and design machines
used to realise the process in consideration and other similar processes.

According to the results of the process lasting ca 0.06 s, the calculated stresses generated by
the roller in the plasticized layer of wood decrease nearly two times. This is due to an increase
in temperature up to the range of 110-130◦C at which plasticization of the surface layer of wood
to ca 0.1mm in depth occurs.

It can be seen that an increase in the moisture content results in a decrease in the value of
stress. With the moisture content of 27%, the stress values are almost two times lower at the
same depth.
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The percent differences between the results obtained by FEM analysis and calculated using
the ultimate roller pressure formula are small. This confirms that the assumptions and simplifi-
cations made in the process of deriving constitutive relationships relating to the rolling process
are appropriate.
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In this paper, magnetohydrodynamic flow (MHD) of a nonofluid over a stretching cylinder
is investigated numerically. The Differential Quadrature Method (DQM) is applied for so-
lving the governing equations. The influence of relevant parameters such as the magnetic
parameter, the solid volume fraction of nanoparticles and the type of nanofluid on the flow,
heat transfer, Nusselt number and skin friction coefficient is discussed. Also, comparison
with the published results is presented. The results show that the Nusselt number increases
with growth in the volume fraction coefficient and Reynolds number but decreases with the
magnetic parameter.
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1. Introduction

Magnetohydrodynamics can be regarded as a combination of fluid mechanics and electro-
magnetism, that is, behaviour of an electrically conducting fluid in the presence of magnetic
and electric fields. The study of magnetohydrodynamic (MHD) flow has received a great deal of
research interest due to its importance in many engineering applications such as plasma studies,
MHD power generators, petroleum industries, cooling of nuclear reactors, boundary layer control
in aerodynamics and crystal growth (Harada and Tsunoda, 1998; Shang, 2001).
Many investigations have been done on the flow past a moving flat plate or a stretching

sheet in the presence of a transverse magnetic field, and a good amount of literature has been
generated on this problem (Ishak et al., 2006; Mahapatra and Gupta, 2001).
Examples of such technological applications are hot rolling, wire drawing, glass-fibre and

paper production, drawing of plastic films, metal and polymer extrusion and metal spinning
(Magyari and Keller, 1999). In all these cases, a study of the flow field and heat transfer can be
of significant importance since the quality of the final product depends to a large extent on the
skin friction coefficient and the surface heat transfer rate. The heat removal strategies in many
engineering applications such as cooling of electronic components rely on natural convection
heat transfer due to its simplicity, minimum cost, low noise, smaller size and reliability. In
most natural convection studies, the base fluid has a low thermal conductivity, which limits
the heat transfer enhancement. However, the continuing miniaturization of electronic devices
requires further heat transfer improvements from the energy saving viewpoint (Aminossadati
and Ghasemi, 2009). An innovative technique which uses a mixture of nanoparticles and the base



518 S.E. Ghasemi et al.

fluid was first introduced by Choi (1995) in order to develop advanced heat transfer fluids with
substantially higher conductivities. The resulting mixture of the base fluid and nanoparticles
having unique physical and chemical properties is referred to as a nanofluid. It is expected
that the presence of nanoparticles in the nanofluid will increase the thermal conductivity and,
therefore, substantially enhance the heat transfer characteristics of the nanofluid. Convectional
heat transfer fluids, including oil, water, and ethylene glycol mixture are poor heat transfer
fluids, since the thermal conductivity of these fluids plays an important role in determining the
coefficient of heat transfer between the heat transfer medium and the heat transfer surface (Ho
et al., 2008).

Mathematical modelling is a vantage point to reach a solution in an engineering problem,
so the accurate modelling of nonlinear engineering problems is an important step to obtain
accuratre solutions (Zolfagharian et al., 2014a,b,c, 2015; Misagh et al., 2014).

Most differential equations of engineering problems do not have exact analytical solutions, so
approximation and numerical methods must be used. Recently, some different methods have been
introduced to solving these equations, such as the Variational Iteration Method (VIM) (Ghase-
mi et al., 2012), Homotopy Perturbation Method (HPM) (Ghasemi et al., 2013; Mohammadian
et al., 2015), Parameterized Perturbation Method (PPM) (Ghasemi et al., 2015c), Differen-
tial Transformation Method (DTM) (Ghasemi et al., 2014a,c; Hatami et al., 2015), Homotopy
Analysis Method (HAM) (Ziabakhsh and Domairry, 2009; Ziabakhsh et al., 2010), Adomian De-
composition Method (Ghasemi et al., 2012), Modified Homotopy Perturbation Method (MHPM)
(Ghasemi et al., 2014d), Least Square Method (LSM) (Ghasemi et al., 2014c, 2015b; Darzi et al.,
2015), Collocation Method (CM) (Ghasemi et al., 2015a; Atouei et al., 2015), Galerkin Method
(GM) (Ghasemi et al., 2015d), and Optimal Homotopy Asymptotic Method (OHAM) (Vata-
ni et al., 2014; Valipour et al., 2015). Also, the Differential Quadrature Method (DQM) is a
numerical technique for solving differential equations. It was first developed by Bellman et al.
(1972). Afterwards, it was improved by Shu (2000). The magnetohydrodynamic natural convec-
tion boundary-layer flow on a sphere in a porous medium was studied numerically using the
Differential Quadrature Method (DQM) by Moghimi et al. (2011). The boundary-layer natural
convection flow on a permeable vertical plate with thermal radiation and mass transfer was
investigated when the plate moved in its own plane by Talebizadeh et al. (2011). They solved
the governing equations by means of an excellent analytical method called Homotopy Analysis
Method (HAM) and a higher-order numerical method, namely the Differential Quadrature Me-
thod (DQM). Hatami and Ganji (2014) applied the Differential Transformation Method with the
Padé approximation (DTM-Padé) and the Differential Quadrature Method (DQM) for the mo-
tion of a particle in a forced vortex. They showed that the results of the DQM were in excellent
agreement with the numerical forth-order Runge-Kutta solution.

Ghasemi et al. (2016a) applied the Differential Quadrature Method (DQM) to find an ac-
curate solution for blood flow analysis in femoral and coronary arteries. They showed that the
results of the DQM were in excellent agreement with the numerical Crank Nicholson Method
(CNM).

Application of the Differential Quadrature Method (DQM) for boundary layer flow over a
flat plate with slip flow and constant heat flux surface condition was studied by Moghimi et
al. (2013). Wang (1988) studied the steady flow of a viscous and incompressible fluid outside
of a stretching hollow cylinder in an ambient fluid at rest. Ishak et al. (2008) investigated the
flow and heat transfer of a viscous and incompressible electrically conducting fluid outside of
a stretching cylinder in the presence of a constant transverse magnetic field. The problem is
governed by a third-order nonlinear ordinary differential equation that leads to exact similarity
solutions of the Navier-Stokes equations.

The main aim of this paper is to simulate the problem of the flow of a nanofluid outside of
a stretching cylinder in the presence of magnetic field by DQM and to compare the obtained
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results with those of Ishak et al. (2008), which represent the influence of adding nanoparticles
to the base fluid. Also, the effects of some parameters such as the solid volume fraction of
nanoparticles, type of the nanofluid and the magnetic parameter on velocity and temperature
profiles are examined.

2. Formulation of the problem

Consider a steady laminar flow of an incompressible electrically conducting fluid (with electrical
conductivity σ) caused by a stretching tube of radius a in the axial direction in the fluid at
rest as shown in Fig. 1, where the z-axis is measured along the axis of the tube and the r-axis
is measured in the radial direction. It is assumed that the surface of the tube is at constant

Fig. 1. Physical model and coordinate system

temperature Tw and the ambient fluid temperature is T1, where Tw > T1. We also assume that
the uniform magnetic field of intensity B0 acts in the radial direction and that the effect of the
induced magnetic field is negligible, which is valid when the magnetic Reynolds number is small.
The viscous dissipation, Ohmic heating and Hall effects are neglected as they are also assumed
to be small. The fluid is a water based nanofluid containing different types of nanoparticles:
Cu, Al2O3 and TiO2. It is assumed that the base fluid and the nanoparticles are in thermal
equilibrium and no slip occurs between them. The thermo physical properties of the nanofluid
are given in Table 1

Table 1. Thermo-physical properties of water and nanoparticles (Oztop and Abu-Nada, 2008)

ρ [kg/m3] Cp [J/(kgK)] k [W/(mK)] β [1/K]

Pure water 997.1 4179 0.613 21

Copper (Cu) 8933 385 401 1.67

Silver (Ag) 10500 235 429 1.89

Alumina (Al2O3) 3970 765 40 0.85

Titanium Oxide (TiO2) 4250 686.2 8.9538 0.9

(see Oztop and Abu-Nada, 2008). On the above assumptions, the boundary layer equations
governing the flow, and the concentration field can be written in dimensional form as
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Subject to the following boundary conditions

u = 0 w =Ww T = Tw at r = a

w→ 0 T → T∞ as r →∞
(2.2)

where u and w are the velocity components along the r and z axes, respectively, Ww = 2cz
where c is a positive constant, and a is a constant. Further, ν, ρ, T and α are the kinematic
viscosity, fluid density, fluid temperature and thermal diffusivity, respectively. It is necessary to
mention that the magnetic term in Eq. (2.1)3 (in the r direction) is neglected because it does
not affect the flow dynamics in perpendicular situations and can be absorbed by the pressure
term.
The effective density ρnf , the effective dynamic viscosity µnf , the heat capacitance (ρCp)nf

and the thermal conductivity knf of the nanofluid are given as (see Aminossadati and Ghasemi,
2009)

(ρCp)nf = (ρCp)f (1− ϕ) + (ρCp)sϕ
knf
kf
=
ks + 2kf − 2ϕ(kf − ks)
ks + 2kf + ϕ(kf − ks)

ρnf = ρf (1− ϕ) + ρsϕ µnf =
µf

(1− ϕ)2.5
(2.3)

Here, ϕ is the solid volume fraction, µf is the dynamic viscosity of the basic fluid, ρf and ρs are
the densities of the pure fluid and nanoparticle, respectively. (ρCp)f and (ρCp)s are the specific
heat parameters of the base fluid and nanoparticle, kf and ks are the thermal conductivities
of the base fluid and nanoparticle, respectively. Following Wang (1988), we take the similarity
transformation

u = −caf(η)√
η

w = 2cf ′(η)z η =
(r
a

)2
θ =

T − T∞
Tw − T∞

(2.4)

where the prime denotes differentiation with respect to η. Substituting Eq. (14) into Eqs. (2.1)2
and (2.1)4, we get the following ordinary differential equations

1

(1− ϕ)2.5
1

1− ϕ+ ρs
ρf
ϕ
(f ′′′η + f ′′)− M

1− ϕ+ ρs
ρf
ϕ
f ′ − Ref ′2 +Reff ′′ = 0

θ′′η + θ′ + fθ′RePr
1− ϕ+ (ρCp)s(ρCp)f

ϕ

ks+2kf−2ϕ(kf−ks)
ks+2kf+ϕ(kf−ks)

= 0

(2.5)

where Re = ca2/(2νnf ) is the Reynolds number and M = σB20a
2/(4νnfρnf ) is the magnetic

parameter. νnf is the kinematic viscosity of nanofluid. Boundary conditions (2.2) become

f(1) = 0 f ′(1) = 1 θ(1) = 1

f(∞)→ 0 θ(∞)→ 0
(2.6)

The pressure can now be determined from Eq. (2.1)3 in the following form

p− p∞
ρcv

= −Re
η
f2(η)− 2f ′(η) (2.7)

The physical quantities of interest are the skin friction coefficient and the Nusselt number, which
are defined as follows

Cf =
τw

ρWw/2
Nu =

aqw
k(Tw − T∞)

(2.8)
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Furthermore, τw and qw are the skin friction and the heat transfer from the surface of the tube,
respectively, and are given as

τw = µ
(∂w
∂r

)

r=a
qw = −k

(∂T
∂r

)

r=a
(2.9)

where k is the thermal conductivity. Considering variables (2.4), we get

Cf
Rez

a
= f ′′(1) Nu = −2θ′(1) (2.10)

3. Differential Quadrature Method (DQM)

The differential qquadrature method (DQM) is a rather efficient numerical method for rapid
solution of linear and nonlinear partial differential equations (Bellman et al., 1972). Compared
with the conventional methods such as the finite element and finite difference methods, the DQM
requires less computer time and storage.

In this study, a polynomial expansion based differential quadrature, as introduced by Quan
and Chang (1989), is applied for solving the problem. Several attempts have been made by
researchers to develop polynomial based differential quadrature methods. One of the most useful
approaches is the one that uses the following Lagrange interpolation polynomials as test functions

gk =
M(x)

(x− xk)M (1)(xk)
k = 1, 2, . . . , N (3.1)

where

M(x) = (x− x1)(x− x2) · · · (x− xN ) M (1)(xi) =
N∏

k=1
k 6=i

(xi − xk) (3.2)

By applying the above equation at N grid points, the following algebraic formulations to compute
the weighting coefficients are developed

A
(1)
ij =

1
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N∏

k=1
k 6=i,j
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i¬j

A
(1)
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k=1
k 6=i

1
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A
(2)
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N∑

k=1

A
(1)
ik A

(1)
kj

(3.3)

where A(1) and A(2) denote the weighting coefficients of the first and second order derivatives of
the function f(r) with respect to the r direction. N is the number of grid points chosen in the
r direction. The differential quadrature approximation can be easily extended from the above
formulation to other coordinates. The first order derivatives in the two-dimensional formulation
are approximated by
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And the second order derivatives can be approximated by:
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where A(1) and B(1) denote the weighting coefficients of the first order derivatives; A(2) and
B(2) denote the weighting coefficients of the second order derivatives of the function f(r, z) with
respect to the r and z-directions, respectively; N and P are the number of grid points chosen
in the r and z-directions, respectively.

4. Results and discussion

Equations (2.5) along with their boundary conditions are solved numerically by using the DQM.
After applying this method, the influence of several non-dimensional parameters, namely the
Reynolds number Re, Prandtl number Pr, nanoparticles volume fraction ϕ and magnetic para-
meter M , have been investigated. Validating the numerical results obtained in this study, the
case when the volume fraction coefficient is zero (ϕ = 0) has been considered and compared
with the previously published results in Tables 2 and 3. These tables present numerical values
of the skin friction coefficient in terms of f ′′(1) and the Nusselt number Nu in terms of −θ′(1)
along with the results reported by Ishak et al. (2008), which show an excellent agreement with
the achieved results in the present study.

Table 2. Values of the skin friction coefficient for several values of M and Re at Pr = 6.2

M
Re = 1 Re = 5

Present work Ishak et al. (2008) Present work Ishak et al. (2008)

0 −1.17849 −1.1780 −2.41745 −2.4174
0.01 −1.18431 −1.1839 −2.41990 −2.4199
0.05 −1.20708 −1.2068 −2.42965 −2.4296
0.10 −1.23454 −1.2344 −2.44174 −2.4417
0.50 −1.42693 −1.4269 −2.53523 −2.5352

Table 3. Values of the Nusselt number for several values of M and Re at Pr = 6.2

M
Re = 1 Re = 5

Present work Ishak et al. (2008) Present work Ishak et al. (2008)

0 2.05857 2.0587 19.1185 19.1587

0.01 2.05715 2.0572 19.1184 19.1586

0.05 2.05158 2.0516 19.1179 19.1581

0.10 2.04487 2.0449 19.1174 19.1576

0.50 1.99806 1.9978 19.1129 19.1530

Figure 2 shows the effect of volume fraction coefficient ϕ on velocity distribution for Re = 5.
It is noticed that the Prandtl number Pr gives no effect to the velocity as can be seen from
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Eq. (2.5)1. The velocity curves show that the rate of transport is considerably reduced with an
increase of ϕ. In all cases, the velocity vanishes at some large distance from the surface of the
tube.

Fig. 2. Velocity profiles for various values of ϕ (Re = 5, M = 5, Pr = 6.2)

Figure 3 presents temperature profiles for various values of ϕ when Pr = 6.2 and Re = 5,
and the nanoparticle is Cupper. It is obvious that the temperature increases as ϕ increases,
but it decreases as the distance from the surface increases, and finally vanishes at a some large
distance from the surface. Consider that ϕ = 0 represents pure water like what is presented by
Ishak et al. (2008). It is clear that the heat transfer in the present case is more than the case
when the fluid is pure water.

Fig. 3. Temperature profiles for various values of ϕ (Re = 5, M = 5, Pr = 6.2)

Figure 4a exhibits the skin friction coefficient profiles Cf for various values of the Reynolds
number Re as M is constant. It is observed that the magnitude of the skin friction coefficient
increases as Re increases. Figure 4b represents the skin friction coefficient profiles Cf for various
values of M when the Reynolds number Re is constant. It can be seen that the magnitude of
the skin friction coefficient grows as M increases.

Furthermore, it is clear from both Figs. 4a,b that the skin friction coefficient increases with
an increase in the volume fraction coefficient. The same behavior can be observed for the Nusselt
number, i.e. growing Re increases the temperature gradient and, in turn, increases the Nusselt
number. And an increase in M decreases the Nusselt number, which is obvious from Figs. 5a,b.
Also, it is clear that the Nusselt number increases with an increase in the volume friction
coefficient.

After the velocity f ′(η) is obtained, the pressure p in terms of (p− p∞)/(ρcv) can be found
by using Eq. (2.7). The numerical results are shown in Fig. 6a forM = 2, ϕ = 0.1 and Re = 1, 5
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Fig. 4. Skin friction coefficient for various values of (a) Re and ϕ (M = 2, Pr = 6.2), (b) M and ϕ
(Re = 5, Pr = 6.2)

Fig. 5. Nusselt number for various values of (a) Re and ϕ (M = 2, Pr = 6.2), (b) M and ϕ
(Re = 5, Pr = 6.2)

Fig. 6. Pressure distribution obtained from Eq. (2.7) for various values of (a) Re (ϕ = 0.1, M = 2,
Pr = 6.2), (b) ϕ (Re = 10, M = 2, Pr = 6.2)

and 10. All curves show that p→ p∞ far away from the surface η →∞. Further, Fig. 6b shows
the pressure curve for different values of ϕ when Re = 10 and M = 2. It is clear from this figure
that bigger values of ϕ result in slower algebraic decay. In other words, if ϕ = 0.2, sufficient
decay of (p − p∞) takes place at higher values of η than the case when ϕ = 0.
Figures 7a and 7b represent f ′(η) and θ(η) curves, respectively, for different types of nano-

particles, namely, Cu, Al2O3 and TiO2 when ϕ = 0.1, M = 5, Pr = 6.2, and Re = 5. The figure
shows that by using different types of nanofluids, values of the velocity and temperature change,
i.e. we can say that the sheer stress and the rate of hate transfer change by using different
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types of nanofluids. This means that the nanofluids will be important in the cooling and heating
processes.

Fig. 7. (a) Velocity profiles and (b) temperature profiles for various values of nonoparticles (ϕ = 0.1,
Re = 5, M = 5, Pr = 6.2)

5. Conclusions

A steady two dimensional flow of an electrically conducting incompressible nanofluid due to
stretching cylindrical tube is studied in the present work. Similarity solutions are obtained
for a linearly stretching tube with a constant surface temperature, and the achieved ordinary
differential equations are solved numerically by applying the Differential Quadrature Method
(DQM). Effects of the volume fraction coefficient, magnetic parameter and Reynolds number
on the flow and heat transfer characteristics have been examined. It can be concluded that the
magnitude of the skin friction coefficient increases with the volume fraction coefficient, magnetic
parameter and Reynolds number, while it is constant with the Prandtl number. The Nusselt
number, also, increases with the volume fraction coefficient and Reynolds number but decreases
with the magnetic parameter.
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We construct an analytical solution to the anti-plane problem of an inhomogeneous bi-
-material medium with the interfacial crack considering sliding friction. The medium is
exposed to an arbitrary normal and shear loading in the longitudinal direction. Using the
jump function method, the problem is reduced to a solution to singular integral equations for
the jumps of displacements and stresses in the areas with sliding friction. Explicit expressions
for displacements, stress intensity factors and energy dissipation are obtained. Critical load
values for determination of the onset of slippage are investigated. The effect of friction and
loading parameters on the size of the slip zone, stress intensity factors and energy dissipation
is numerically analyzed.

Keywords: friction, interfacial crack, stress intensity factor, longitudinal shear, jump func-
tions

1. Introduction

Contact problems have received much attention in the literature as a result of their practical
importance. The study of contact phenomena considering friction is one of the most pressing pro-
blems in engineering (Arhipenko and Kriviy, 2008; Goryacheva, 2001; Comninou, 1977; Ostryk
and Ulitko, 2006; Sulym and Piskozub, 2004; Hills et al., 1993; Johnson, 1985; Kalker, 1977)
and others. To a greater or lesser extent, but contact phenomena are always accompanied by
friction at both macroscopic and microscopic levels. Mechanical, electrical, thermal, chemical
processes and vibration that can simultaneously occur due to friction significantly affect de-
gradation of materials, duration of their wave processes, reliability and durability of structural
elements, etc. The effect of friction can be both harmful and helpful, when causing dissipation
of the accumulated strain energy in the body and thus reduce stress.
However, the problem of contact interaction between adjacent surfaces of a crack has not

received sufficient attention. Major achievements in this area include the study of theory of
cracks at the interface of two media assuming the elimination of physically incorrect oscillating
features singularity by a widely used model of local contact directly near the vicinity of the
crack end (Comninou, 1977; Comninou et al., 1980; Comninou and Dundurs, 1980; Kundrat
and Sulym, 2003; Cherepanov, 1966; Herrmann and Loboda, 1999; Kharun and Loboda, 2003).
A wide class of problems on the effect of friction forces on the contact stresses between the
half-planes was examined by Martynyak and Kryshtafovych (2000), Aravas and Sharma (1991),
Weertman et al. (1983). Growth of cracks (in fact, the relative slip of materials) on the verge
of a hard fibrous inclusion considering friction between the components was studied by Brussat
and Westmann (1974).
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This paper proposes a novel technique for obtaining the analytical solution of the anti-
-plane problem (longitudinal shear) for a bi-material with a closed interfacial crack accounting
for friction between surfaces. Therefore, all characteristics of the stress-strain state, such as
displacements, stresses, energy dissipation, slip zone size, etc., are exactly calculated. Note that
the frictional slippage is essentially an incremental process and, therefore, the solution to the
contact problem depends on the load history. We assume that the magnitude and direction of the
external force factors that generate longitudinal shear change quasi-statically (so slowly that it
is not necessary to consider the inertial member) by a certain law, which may be different. Thus,
no incremental formulation is necessary for solving this problem because of quasi-statically way
of the initial step loading.

2. Formulation of the problem

Consider an infinite isotropic matrix consisting of two half-spaces with elastic constants Ek, νk
(k = 1, 2). The half-spaces are mutually pressed to the interface by external normal stresses
σyy(x) < 0. Here, Oxyz are the Cartesian coordinates and xOz is the contact plane of the
half-spaces.

We study the stress-strain state (SSS) of the body section by the plane xOy perpendicular
to the direction of its longitudinal shear. This section forms two half-planes Sk (k = 1, 2), and
the interface between them corresponds to the x-axis L. Under the action of the applied loads,
the cracks may slip at intervals forming the line L′ = ∪Nn=1L′n = ∪Nn=1[b−n ; b+n ] as indicated in
Fig. 1. The normal stress in the body is generated by uniform compression at infinity σ∞yy < 0
and two balanced concentrated forces Pk = ∓iP at the points zk ∈ Sk. The same traditional
notation for the axis z and a complex variable z = x+ iy should not cause misunderstanding in
the solution of the problem.

Fig. 1. Geometry and loading scheme of the problem

Suppose that the external loading increases or decreases monotonically and consists of a
uniformly distributed at the infinity shear stress σ∞yz = τ(t), σ∞xz = τk(t), concentrated forces
with magnitude Qk(t), screw dislocations with Burger’s vector bk(t) at the points z∗k ∈ Sk
(k = 1, 2), t denotes the time as parameter. Note that the positive direction of the forces and
Burgers vectors is chosen along the axis as opposed to implicitly accepted in some studies the
opposite direction. According to Eq. (20.5) (Sulym, 2007), stresses at infinity must always satisfy
the conditions τ2(t)G1 = τ1(t)G2, which provides straightness of the matrix interface at infinity.

Contact between the half-spaces is assumed mechanically perfect omitting L′ where it is
more complicated. The contact in L′ we assume mechanically perfect until the moment when
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relative sliding of the crack surfaces may start in some areas γn ⊂ L′n (Johnson, 1985; Pasternak
et al., 2010; Piskozub, 2014; Piskozub et al., 2014).
Thus, we formulate the problem of longitudinal shear with possible slip in the interfacial

cracks under the action of an inhomogeneous distribution of compressive normal stresses and
frictional forces on the surfaces of contact (line section L). These forces may cause in these
apriority unknown slip zones heat emission, energy dissipation, wear, etc.

3. The problem solution

The presence of such slip zones in the cracks can be simulated by jumps of traction and displa-
cement vectors at L′n (Piskozub, 2014; Piskozub et al., 2014; Sulym, 2007; Sulym and Piskozub,
2004; Piskozub and Sulim, 2008)

[[Ξ]] ≡ Ξ− −Ξ+ = fn(x, t) x ∈ L′n (3.1)

where Ξ(z, t) = [σyz, ∂t/∂x](z, t) is the state vector; f
n(x, t) = [fn3 , f

n
6 ](x, t) is the jump vector.

Hereinafter, the following notation is used: [[ϕ]]L = ϕ(x,−0) − ϕ(x,+0), 〈ϕ〉L = ϕ(x,−0) +
ϕ(x,+0); symbols “+” and “-” correspond to the threshold function on the top and bottom
edges of the line L.
Based on Hooke’s law, expression (3.1) results in

[[σyz ]]L′n ≡ σ
−
yz − σ+yz = fn3 (x, t)

[[∂w
∂x

]]

L′n
≡ ∂w−

∂x
− ∂w+

∂x
=
[[σxz
G

]]

L′n
≡ σ−xz
G1
− σ+xz
G2
= fn6 (x, t) x ∈ γn ⊂ L′n

fn3 (x, t) = f
n
6 (x, t) = 0 if x 6∈ γn

(3.2)

The boundary conditions at L′n provide that the slipping starts at some zones γn = [a
−
n ; a
+
n ] ⊂ L′n

when reaching the tangent stress σyz of a certain critical value τ
max
yz , moreover, this threshold

shear stress σyz can not exceed τ
max
yz . Confining with classic Amonton’s law of friction (Gory-

acheva, 2001; Hills et al., 1993; Johnson, 1985), consider the contact problem which states that
everywhere in γn, the shear stresses (friction force) are equal

σ±yz(x) = − sgn [[w]]τmaxyz (x) τmaxyz (x) = −ασyy(x)
σyy < 0 |w− − w+| 6= 0

(3.3)

where α denotes the coefficient of sliding friction. Outside the domains γn,there is no slippage,
and the magnitude of shear stresses does not exceed the maximum allowable level

|σyz(x)| ¬ τmaxyz (x) (3.4)

The sign (direction of action) of shear stresses is chosen depending on the sign of the difference
in the mutual displacement [[w]] at the source point of L′n.
The general case of normal pressing gives

τmaxyz (x) = 4α

(
−
σ∞yy
4
+
2∑

k=1

EjηkRe
Nk

x− zk

)
j = 3− k (3.5)

where

Nk =
Pk
ejk
− κkP k − Pk

ekj
κk = 4− 3νk

ηk =
1

8π(1− νk)
ekj = 2

Gk + κkGj
(1− ν1)(1 − ν2)
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Amonton’s law of friction in classical form (3.3) provides, of course, simplification of the
boundary conditions for the basic problem, but making use of more complex models of friction
(Johnson, 1985; Sulym and Piskozub, 2004; Comninou et al., 1980), taking into account the
wear, does not essentially complicate the process of solving

σ±yz(x, t) = ∓pkfn3 (x, t)− Cgn6 (x, t) + σ0±yz (x, t)
σ±xz(x, t) = ∓Cfn6 (x, t) + pkgn3 (x, t) + σ0±xz (x, t)

gnr (z, t) ≡
1

π

∫

L′n

fnr (x, t)

x− z dx pk =
Gk

G1 +G2
C = G3−kpk

σyz(z, t) + iσxz(z, t) = σ
0
yz(z, t) + iσ

0
xz(z, t) + ipkg

n
3 (z, t)− Cgn6 (z, t)

(3.6)

where z ∈ Sk, r = 3, 6, k = 1, 2.
The superscript “+” refers to k = 2; “-” – k = 1. The superscript “0” denotes the corre-

sponding values in the solid body model without heterogeneity (cracks) under the same external
loading (homogeneous solution). Hereinafter, the following notations (Piskozub et al., 2014; Su-
lym, 2007; Piskozub and Sulim, 2008) are used

σ0yz(z, t) + iσ
0
xz(z, t) = τ(t) + i[τk(t) +Dk(z, t) + (pk − pj)Dk(z, t) + 2pkDj(z, t)]

Dk(z, t) = −
Qk(t) + iGkbk(t)

2π(z − z∗k)
z ∈ Sk k = 1, 2 j = 3− k

(3.7)

Using (3.6), (3.7) and boundary conditions (3.2), (3.3) at the domains γn, the problem
reduces to a system of 2N singular integral equations

fn3 (x, t) = 0

gn6 (x, t) =
1

2C

(
〈σ0yz(x, t)〉 + 2 sgn [[w]]τmaxyz (x)

) (3.8)

whose solution is known (Sulym, 2007).

For a more detailed analysis of the problem solution, consider the partial case of the presence
of a single (N = 1) crack L′1 = [−b; b] with a symmetric zone of slippage γ1 = [−a; a] (a ¬ b)
that can occur when symmetric load acts about the vertical axis.

The solution to (3.8) in this case, after calculating the corresponding integrals, have the
exact form

f6(x, t) =
1

πC
√
a2 − x2

{
π[τ(t)− α sgn [[w]]σ∞yy ]x

+
2∑

k=1

pjIm

[
[Qk(t) + iGkbk(t)]

(√
z2∗k − a2x− z∗k

+
1

)]}

+
4α sgn [[w]]

C
√
a2 − x2

2∑

k=1

EjηkRe

[
Nk

(√
z2k − a2

x− zk
+ 1

)]
j = 3− k x ∈ [−a; a]

(3.9)

Here the function
√
z2 − a2 is the branch which satisfies the condition

√
z2 − a2/z → 1

z →∞. Similar arguments are used to select the branches
√
z2∗k − a2 and

√
z2∗k − a2, k = 1, 2.
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Thus, the expression for the jump displacement [[w]] is obtained by integration of Eq. (3.9)

[[w]](x, t) =

x∫

−a
f6(1)(x, t) dx = −

τ(t)− α sgn [[w]]σ∞yy
C

√
a2 − x2

+
2∑

k=1

pj
πC
Im{[Qk(t) + iGkbk(t)]I2(x, a, z∗k}

+
4α sgn [[w]]

C

2∑

k=1

EjηkRe[NkI2(x, a, zk)] j = 3− k |x| ¬ a

(3.10)

and

I2(x, a, z) =
π

2
+ arcsin

x

a
+ I(x, a, z)

I(x, a, z) ≡
√
z2 − a2

x∫

−a

dx√
a2 − x2(x− z)

= i sgn (Imz) ln
a(z − x)

a2 − xz − i
√
a2 − x2

√
z2 − a2

(3.11)

Introducing mode 3 stress intensity factor (SIF) by expression K3 = lim
r→0(θ=0)

√
πr(σyz), it is

easy to obtain the analytical form for SIF in the case of the crack slip zone [−a; a] ⊂ L′

K±3 (t) =
1

2
√
πa

a∫

−a

√
a± x
a∓ x [〈σ

0
yz(x, t)〉 + 2 sgn [[w]]τmaxyz (x)] dx =

√
πa[τ(t)− α sgn [[w]]σ∞yy ]

+
1√
πa

2∑

k=1

pjIm

[
[Qk(t) + ibk(t)Gk]

(√
z2∗k − a2

a∓ z∗k
± 1

)]

+ 4α sgn [[w]]

√
π

a

2∑

k=1

EjηkRe

[
Nk

(√
z2k − a2

a∓ zk
± 1

)]
j = 3− k

(3.12)

Now it is time to discuss the question about the apriority unknown size of the slip zone a.
While increasing the magnitude of shear load from zero to maximum, there are three phases
that are fundamentally different in view of slipping:

1) The combination of compressive and increasing shear load always fulfills condition (3.4).
There is no slippage at all, and the cracks have no effect on SSS of the matrix.

2) The magnitude of shear load at the time point t∗ becomes sufficient for the occurrence
of conditions (3.3) at least in a limited area γ1 = [−a; a] (a ¬ b). The magnitude of the
load when the slippage first appears, will be called the first critical. To determine this
critical value and the current size of the slip zone, one can put SIF (3.12) equal to zero
(Cherepanov, 1966; Piskozub, 2014; Piskozub et al., 2014).

3) The magnitude of shear load at the time t∗∗ makes the size of the slip zone coincide with
the crack size a = b. Further growth will not lead to an increase in the slip zone, but
singular stress occurs in the crack tip and, therefore, non-zero SIF exists. The magnitude
of the load, when the size of the slip zone coincides with the crack size for the first time,
will be called the second critical.

It is also possible that such a combination of the shear and compressing loading make condi-
tions (3.3) arise instantly along the whole L′ or along the L′, except for the area γ1. This shear
load value will be called the threshold value.
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The analytical form of solution for all SSS components allows obtaining an analytical expres-
sion for the work of friction forces at the slip zone γ1 for arbitrary loading

W d(t) = −
a∫

−a
|τmaxyz (x)[[w]](x, t)| dx = −

4α

C

a∫

−a

∣∣∣∣∣

(
−
σ∞yy
4
+
2∑

k=1

EjηkRe
Nk

x− zk

)

·
(
− [τ(t)− α sgn [[w]]σ∞yy ]

√
a2 − x2 +

2∑

k=1

pj
π
Im{[Qk(t) + iGkbk(t)]I2(x, a, z∗k)}

+ 4α sgn [[w]]
2∑

k=1

EjηkRe[NkI2(x, a, zk)]

)∣∣∣∣∣ dx j = 3− k

(3.13)

Suppose that the loading of the matrix is symmetric about the vertical axis: the focus points
of the applied concentrated force are zk = ±ih ∈ Sk and z∗k = ±id (k = 2, 1). Thus, simplifying
expressions (3.5), (3.9) and (3.10), one can write expressions for the most important components
of SSS

[[w]](x, t) = −
τ(t)− α sgn [[w]]σ∞yy

C

√
a2 − x2

+
2∑

k=1

p3−k
2πC

[
(−1)kQk(t) ln

√
a2 + d2 −

√
a2 − x2√

a2 + d2 +
√
a2 − x2

+Gkbk(t)
(π
2
+ arcsin

x

a

)]

+
2α sgn [[w]]

C
Pγ+ ln

√
a2 + h2 −

√
a2 − x2√

a2 + h2 +
√
a2 − x2

|x| ¬ a

K±3 (t) =
√
πa[τ(t)− α sgn [[w]]σ∞yy ]

+
1√
πa

2∑

k=1

p3−k

(
(−1)kQk(t)a√

a2 + d2
±Gkbk(t)

√
a2 + d2 − d√
a2 + d2

)
+
√
πa
4α sgn [[w]]Pγ+√

a2 + h2

W d(t) = −α
C

∣∣∣4π[τ(t) − α sgn [[w]]σ∞yy ]
[a2σ∞yy
8
− Pγ+(

√
h2 + a2 − h)

]

+ σ∞yy(
√
d2 + a2 − d)

2∑

k=1

(−1)kp3−kQk(t)

− 2Pγ+ ln
√
h2 + a2

√
d2 + a2 + hd+ a2√

h2 + a2
√
d2 + a2 + hd− a2

2∑

k=1

(−1)kp3−kQk(t)

− 8απ sgn [[w]]P 2γ+2 ln h
2 + a2

h2
+ 4σ∞yyαπ sgn [[w]]Pγ

+(
√
h2 + a2 − h)

∣∣∣

(3.14)

Substituting Pk = P = 0 in expressions (3.14), we obtain the known special case of the
half-spaces compressed only by a uniform load σ∞yy < 0 at infinity (Piskozub, 2014; Piskozub
et al., 2014). More interesting is the special case of normal pressing by the concentrated forces
Pk = ∓iP only. Below we analyze expressions (3.14) for various special cases of shear loading.
Hereinafter, τ∗, Q∗k denotes the first critical load values; τ

∗∗, Q∗∗k – the second critical load
values, τ∗∗∗, Q∗∗∗k – threshold load values.
1) Suppose that there are only tangential shear stresses at infinity τ(t) > 0. Given that with

an increasing load sgn [[w]] = −1, we get

K3(t) =
√
πa[τ(t)− α sgn [[w]]σ∞yy ] +

√
πa
4α sgn [[w]]Pγ+√

a2 + h2
(3.15)

From expression (3.15), we obtain the condition for the start of slipping

√
πa[τ(t) + ασ∞yy ]−

√
πa
4αPγ+√
a2 + h2

= 0 (3.16)
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Thus, the first critical value τ∗ and size of the slip zone a become

τ∗ = α
(4Pγ+

h
− σ∞yy

)
a(t) =

√
16α2P 2γ+2

[τ(t) + ασ∞yy]2
− h2 (3.17)

Substituting a = b in (3.17) gives us the second critical value and the condition of non-zero
SIF nascence

τ∗∗ = α
( 4Pγ+√

b2 + h2
− σ∞yy

)
(3.18)

Analysis of Eqs. (3.17) and (3.18) shows however that τ∗ > τ(t) > τ∗∗, which is devoid of
physical meaning. This fact is easily explained since in this case of loading τmaxyz (x) achieves its
own maximum at the point x = 0 ∈ L′1 and, therefore, the uniform growth of magnitude τ(t) will
exceed the value τmaxyz (0) at the last time point having generated the pre-slippage at the remotest
location. This case of loading leads to the following conclusion: geometry of the problem must
be changed by introducing into consideration two slip zones.
2) There is only one concentrated force Q2(t) growing from zero to Qmax and acting at

the point z∗2 = id in the upper half-space. And given the fact that with the increasing load,
sgn [[w]] = −1 using (3.14)1,2, we obtain

[[w]](x, t) = −
ασ∞yy
C

√
a2 − x2 + p1Q2(t)

πC
ln

√
a2 + d2 −

√
a2 − x2√

a2 + d2 +
√
a2 − x2

− αPγ+

2πC
ln

√
a2 + h2 −

√
a2 − x2√

a2 + h2 +
√
a2 − x2

|x| ¬ a
(3.19)

and

K3(t) =
√
πaασ∞yy +

√
a

π

p1Q2(t)√
a2 + d2

−
√
πa
4αPγ+√
a2 + h2

(3.20)

By equating SIF (3.20) to zero, we obtain the first critical value

Q∗2 =
παd

p1

(4γ+P
h
− σ∞yy

)
(3.21)

and the condition when slippage appears at the first time. The slip zone size is determined from
the equation

ασ∞yy +
p1Q2(t)

π
√
a2 + d2

− 4αPγ
+

√
a2 + h2

= 0 (3.22)

Without the component σ∞yy, one can obtain the exact solution

a(t) =

√
h2d2[Q2(t)2 −Q∗22 ]
h2Q∗22 − d2Q2(t)2

(3.23)

It is clear that there is no slippage when Qmax(1) < Q∗2. Substituting a = b in Eq (3.22) gives
us the second critical value and the condition of non-zero SIF nascence

Q∗∗2 =
πα
√
d2 + b2

p1

( 4γ+P√
h2 + b2

− σ∞yy
)

(3.24)

or when the component σ∞yy is absent

Q∗∗2 =
4παγ+P

p1

√
d2 + b2√
h2 + b2

= Q∗2
h
√
d2 + b2

d
√
h2 + b2

(3.25)
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So, taking Qmax  Q∗∗2 in general, we get the following scenario of changing the SSS:
• when Q∗2 ¬ Q2(t) ¬ Q∗∗2 , the jump of displacements [[w]](x, t) and the slip zone size a(t)
are defined from Eqs. (3.19), (3.23), thus expression (3.14)3 for calculating the energy
dissipation takes form

W d(t) = −α
C

∣∣∣4πασ∞yy
(a2σ∞yy
8
− Pγ+(

√
h2 + a2 − h)

)

+ σ∞yy(
√
d2 + a2 − d)p1Q2(t)− 2Pγ+p1Q2(t) ln

(h+ d)[4παγ+P − p1Q2(t)]
(h− d)[4παγ+P + p1Q2(t)]

+ 8απP 2γ+2 ln
16π2α2γ+2P 2(h2 − d2)

h2[16π2α2γ+2P 2 − p21Q22(t)]
− 4σ∞yyαπPγ+(

√
h2 + a2 − h)

∣∣∣

(3.26)

• when Q∗∗2 ¬ Q2(t) ¬ Qmax, the size a(t) in formulas (3.19), (3.20) and (3.26) should be
replaced by b instead of (3.23), then we have a = b and (3.20) defines a non-zero SIF.

To determine the threshold load, it is enough to direct a→∞ in formula (3.25)

Q∗∗∗2 =
4παγ+P

p1
(3.27)

For a more detailed analytical analysis, we suppose that the component σ∞yy is absent. Having
found that for the considered problem statement which provides a single sliding zone γ1 = [−a; a]
(a ¬ b), the condition h > d must consider the increasing load magnitude Q2(t)  Q∗2. Thus,
noting the correlation 1 ¬ (h

√
d2 + b2)/(d

√
h2 + b2) ¬ h/d, one can conclude that the size

of the slip zone will coincide with the crack size before the time when the ratio Q2(t)/Q
∗
2

reaches the value h/d. Taking the value h = d, we obtain the threshold case of the third phase:
Q∗2 = Q∗∗2 = Q∗∗∗2 . The choice of parameter values h < d requires changing the geometry of
the considered problem to the case with the arising slip zone along the L′, except for the area
γ1 = [−a; a] (a ¬ b).
Similar reasoning for such cases of shear loading as that for the concentrated force acting at

the point z∗1 = −id in lower half-space, a pair of mutually opposite or collinear balanced con-
centrated forces acting in different semi-spaces and simultaneously increasing from zero to Qmax
etc., provides similar to Eq (3.19)-(3.27) expressions for the components of SSS.
When the materials of the half-spaces are identical (G1 = G2 = G), it is enough to assume

in the above formulas C = G/2, p1 = p2 = 1/2. For smooth contact between the half-spaces one
should put α = 0 in the above formulas. This immediately gives an instant increase of the slip
size to the whole area L′ for any asymmetric shear loading.
Note that the superposition of the obtained above solutions for different kinds of loading can

not be used because of nonlinearity of the problem.

4. Numerical analysis

Using the above-mentioned approach, we determine the dependence of the slip zone size, shape
of the displacement jump, energy dissipation and SIF on the basic parameters of SSS (distance
and magnitude of the applied force, friction coefficient, ratio of elastic properties) in the most
illustrative example of loading No. 2. To apply formulas (3.20)-(3.27), we introduce dimensionless
values: size of the slip zone a/b, the coordinate and distance from the crack of the points of
application of the shear and pressing forces respectively x/b, d/b, h/b; Q2(t)/Q

∗∗∗
2 and Q2(t)/Q

∗
2

– the absolute and relative intensity of shear magnitude; [[w]](x)C/(2αγ+P ),W d(t)C/(8πγ+2P 2)
and K3

√
b/(4
√
παγ+P ) – the displacement jump, energy dissipation and SIF, respectively.
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The dependence of size a/b on the relative magnitude of the applied force Q2(t)/Q
∗∗∗
2 is

shown in Fig. 2a for different values d/b, h/b. It is noticeable that the growth rate of the size
increases when d/b approaches h/b. Growing distance from the crack position of the coordinate
h/b also leads to an increase in the rate of growth a/b.

Note that whileQ2(t)/Q
∗
2 ¬ 1, there is no slippage. The slippage area increases monotonically

and simultaneously with an increase in the load.

Fig. 2. (a) Dependence of the slip zone size on the coordinates of points of application of concentrated
forces; (b) influence of friction in the slip zone on SIF

When the loading force magnitude excesses the second critical value (phase 3), then non-zero
SIF in the vicinity of the crack tip appears. The calculated SIF is compared with the known
SIF for an interfacial crack in the absence of friction, and it is shown in Fig. 2b. The presence
of friction allows significant reduction of SIF (decline by 30%).

Fig. 3. (a) Shape of the displacement jump depending on the shear magnitude; (b) changes of the
energy dissipation vs. load and coefficient of friction

Figure 3a depicts the influence of different settings on the shape of the displacement jump. It
is noticeable that the highest sensitivity to the changing of the shape of the displacement jump
is observed when placing the shear force application point closer to the crack. Approaching the
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points of application of normal forces lessens the effect on the shape of the displacement jump,
but significantly changes its amplitude.

Figure 3b indicates the energy dissipation during the second phase of loading by solid lines
and by the dotted line – energy dissipation during the third phase of shear loading after reaching
the maximum size of the slip zone. One observes the tendency of increasing the dissipation of
energy when the coefficient of friction grows, or when approaching the point of force application
to the crack position, or when the points of application of clamping forces are withdrawn.

5. Conclusions

We build an effective solution to the problem of a bi-material with a closed interfacial crack
where sliding friction is possible. Different ways of loading of the solid body by arbitrary normal
compression and monotonically increasing loading in the longitudinal direction is taken into
account. This solution allows obtaining explicit expressions for displacements, stress intensity
factors and energy dissipation. The dependence of the contact zone size on the loading parameters
at different stages is analyzed. The critical load values for determination of the onset of slipping
are investigated. Upon reaching the second critical value of the load when the slip zone size
matches the size of the crack, the singular stresses in the vicinity of the ends of the crack and
non-zero values of stress intensity factors appear.

We numerically analyze the effect of friction and loading parameters on the size of the slip
zone, energy dissipation and stress intensity factors. It is discovered that the slip zone appears
and grows fastest when the pressing normal stresses are minimal. The growth rate of the slip
zone also promotes the increase of the distance of the application point of concentrated loading
factors from it. The growth of the coefficient of friction significantly reduces the intensity of
stresses at the vicinity of the ends of cracks at the third stage of loading. Energy dissipation for
the examined cases of loading is calculated. The energy dissipation becomes more intense when
the point of force application is closer to the sliding zone.
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In this research, investigations are focused on the study of railway vehicle wheel flange climb
derailment. A three dimensional nonlinear dynamic model of the wheel-set and suspension
system is developed. Having validated the model through field tests, the effect of friction
coefficient, wheel-set AOA, vehicle suspension system and running speed on the wheel flange
climb derailment are investigated. In addition, different rail lubrication methods are studied
and their effects on the wheel flange climb derailment are compared in the case of two
point contact for nonlinear wheel-rail profiles. The results are debated and recommendations
proposed to improve running safety against derailment.

Keywords:modified Nadal criterion, wheel flange climb derailment, wheel-rail angle of attack,
rail lubrication

1. Introduction

Due to ever growing demand especially for an increase in running speed and keeping up with
required running safety regulations, investigation on the derailment phenomenon and its me-
chanism have been of interest. More and more researches are done to find parameters affecting
this phenomenon, particularly the wheel flange climb derailment. Parameters influencing the
wheel flange climb derailment are often related to wheel-rail interaction geometry, dynamic and
tribo features according to available literature. To address the demand for running safety, efforts
were devoted to develop formulas that predict running safety criterion for wheel on an outer
rail at curves. A very famous one was the work published by Nadal which was developed later
by numerous researchers (Iwnicki, 2006). In the 19th century he developed a relation between
wheel-rail geometry properties and friction coefficient to predict the maximum ratio of wheel
lateral to vertical forces (L/V ) at which the wheel flange climb derailment occurs. He assumed
that in this condition, forces acting on the outer wheel are in equilibrium, hence the problem was
considered as a two dimensional problem with quasi-static presumption. The formula depends
on the coefficient of friction and the rail side-wheel flange contact angle.
Figures 1a to 1d show the wheel-set angle of attack (AOA) for different cases in addition to

the wheel-rail experiencing two point contact. With respect to Nadal’s formula, the wheel-set
AOA is not considered. That is why the effects of this parameter on the wheel flange climb
derailment with quasi static presumption are ignored just the same as the effect of the other
wheel on the inner rail at curves.
Regarding to Nadal limit as shown in Fig. 2, field tests showed different limit values for

derailment when the wheel-set AOA was considered. The difference is highlighted when the
wheel-set AOA contains negative values or does not have considerable positive values. Therefore,
improved Nadal theories have been introduced to present a better insight into the wheel-set
derailment criterion.
Reviewing the available literature, there have been efforts to study the effects of wheel-rail

geometry and dynamic features on the wheel flange climb derailment and, hence, mathematical
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Fig. 1. Wheel-set AOA in rail-wheel flange contact (Santamaria et al., 2009) in addition to
demonstration of the wheel-rail two point contact; (a) positive wheel-set angle of attack, (b) zero angle

of attack, (c) negative angle of attack, (d) wheel-rail two point contact

Fig. 2. Results of the wheel lateral to vertical forces ratio by field tests (Shust et al., 1997)

relations have been developed. Yokose (1965, 1966) investigated the effect of wheel-set AOA on
the wheel flange climb derailment. He suggested a mathematical model in which the lateral creep
force is derived as a function of the friction coefficient, wheel-set AOA and wheel flange angle.
Weinstock (1984) suggested a formula in which the effects of both wheels (the term friction
coefficient of the inner rail was added up to Nadal equation) of wheel-set on the wheel flange
climb derailment were considered. TCRP (TCRP report 71, 2005) performed investigations to
determine the parameters which affect the wheel flange climb derailment as well. Moreover,
Elkins and Wu (2000) also studied efficient parameters in the wheel derailment mechanism in
addition to introduction of new derailment criteria.

More recently, studies have been devoted to the development of mathematical models va-
lidated through field tests with the aid of commercial software or developed codes. Wilson et
al. (2011) compared and investigated different methods of safety against derailment and deba-
ted some issues on validation of derailment simulations. Also some researches were conducted
by Brabie and Andersson (2007), Yamashita and Sugiyama (2012) on simulation and study
methodology of wheel derailment.

A method suggested, in which the wheel-rail interaction can be improved especially in curves
in aspect of derailment, was the proposal for wheel-rail lubrication which has been investigated
by some researchers (Heavy haul conference, 2001; Eadie et al., 2002). Also some investigations
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on the effects of lower rail lubrication in improving running safety were performed by Ishida et
al. (2008). They investigated the effects of lubrication on the traction coefficient and change in
lateral forces exerted on the wheel-set in aspect of derailment safety in curves.
Many lubrication methods (friction management which can lead to change in slip-friction

coefficient diagram) have been proposed and utilized in various railway networks. Those common
methods include outer rail side lubrication, outer rail side-rail head lubrication, in addition to
the inner rail head and rail side lubrication. Iran railway network is currently using the outer-rail
side lubrication method with unknown efficiency with regard to practical service conditions and
numerous derailments in curves and turnouts which have been reported (reports are confidential).
Also the wheel-rail interaction for Iran railway network is exposed to two point contact due to
using S1002 and UIC60 standards for the wheel-rail profile with rail inclination 1:20. In this
case, not so considerable research works have been done.
Considering the scientific research studies which have been done to examine the wheel flange

climb derailment, further investigations are necessary to be performed in order to understand
the derailment mechanism and increase rolling stock transportation safety. Thus it is the pur-
pose of this research to develop a model validated through field tests to study the effects of
parameters affecting the wheel flange climb derailment. In this research, the effects of wheel-set
AOA and the wheel-rail coefficient of friction on the wheel flange climb derailment are studied.
In addition, a study on an appropriate wheel-rail contact algorithm is done. In the case of achie-
ving an improvement in the wheel-rail interaction in curves and considering various lubrication
methods currently in use in railway networks, it is necessary to compare the efficiency of various
lubrication methods in railway operation and choose the appropriate one. The large number of
parameters included in the wheel-rail tribo system in aspect of lubrication, affect the friction
coefficient. Therefore, in this research, the effects of change in the friction coefficient on running
safety are investigated for both rails.

2. Modeling

In the first step, it is required to find a proper wheel-rail contact algorithm among those suggested
and currently in use. Indeed, those algorithms should be compared to field tests as shown in Fig. 2
to determine the appropriate method to be used in the wheel-rail contact problem investigation.
A single 5 degree of freedom wheel-set with a frame is modeled in Universal Mechanism

software on elastic rails (Euler beams on foundation) which are shown in Fig. 3a,b. The frame
contains longitudinal, vertical, lateral, yaw and roll degrees of freedom. The roll movement of
the frame is considered in the case the effect of the other wheel in the wheel-set in addition
to different lubrication methods are investigated in curve. During the simulations, the frame
is laterally displaced (0.002m/s to 0.008m/s). Lateral displacement of the wheel-set at such
speeds will not result in applying impulsive loads to the wheel. Simulations are performed on
a straight track. A constant wheel-set AOA is applied to the wheel-set for investigation on the
wheel flange climb derailment criterion as a function of the wheel-set AOA (control parameter).

Fig. 3. Single wheel-set model with the frame and illustration of the suspension system; (a) top view,
(b) front view
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The wheel-rail contact algorithms studied in this research include FastSim, FastSim A, Mul-
ler, Minov, non elliptic and simplified. The L/V ratio (maximum value at which derailment
occurs) is gained as a function of the wheel-set AOA. the results are presented for rail inc-
linations 0.05 rad (1:20) and 0.025 rad (1:40) with the track gauge of 1435mm. the rails are
considered elastic with constant and continuous lateral stiffness of 18E+06N/m, vertical stiff-
ness 44E+06N/m with lateral damping of 1E+05N·s/m and vertical damping of 4E+05N·s/m.
the rail surfaces are considered even. In addition, the information about the S1002 wheel profile
rolling radius difference (RRD) and contact points distribution on UIC60 rail profile considering
both rail inclinations is shown in Fig. 4a and 4b in addition to Fig. 5a and 5b. These diagrams
show the nonlinear relation between wheel-set lateral displacement and wheel rolling radius in
addition to wheel-rail contact points. The information of loads on the wheel-set, wheel-set mass
and the suspension system is given in Table 1. The bushing elements including rotational and
torsion damping and stiffness on both wheel ends are not shown in Fig. 3 for simplicity.

Fig. 4. Wheel-rail contact points and wheel-set rolling radius difference with rail inclination
0.05 rad (1:20); (a) wheel rolling radius difference (RRD), (b) wheel-rail contact points distribution

Fig. 5. Wheel-rail contact points and wheel-set rolling radius difference with rail inclination
0.025 rad (1:40); (a) wheel rolling radius difference (RRD), (b) wheel-rail contact points distribution

Also in the case of investigation on the efficiency of various lubrication methods with the
wheel-rail two point contact in curves, the rail lubrication efficiency assessment in this research is
conducted for the inner rail head and outer rail head-rail side lubrication. The effect of lubrication
in curves for the outer wheel in the case of one point contact has already been investigated by
many researchers. Here, two different lubrication zones are considered for the rail. As it is shown
in Fig. 6, the angles βr and βs which are measured with respect to the vertical axis are used
to determine the transition zone boundaries. The distance between the two angles is equal to
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Table 1. Wheel-set and suspension system parameters

Parameter Value Parameter Value

Wheel-set mass 1500 kg Longitudinal stiffness 2E+05N/m

Mx 1200m4 Lateral stiffness 1E+07N/m

My 300m4 Vertical stiffness 5E+04N/m

Mz 1200m4 Wheel tape circle distance 1500mm

Vertical damping 4.5E+04N·s/m Lateral damping 2E+04N·s/m
Mk – moment of inertia about k axis, k = x, y, z

the transition zone between one friction zone to another. The friction coefficient variation in the
transition zone is considered to be linear. The friction coefficient at the right and left side of the
transition zones is constant with known values.

Fig. 6. A schematic view of the rail with three different friction coefficient zones (UM software, User
manuals)

As has been mentioned before, the investigations are performed on straight tracks while
the lab tests are often performed on rollers. In order to perform simulations, some aspects
of the research are necessary to be considered. Firstly, a significant change in gravitational
stiffness of the wheel-set is inevitable. This happens to be since the wheel-roller contact surface
normal vector may not be parallel to the vertical axis. Secondly, as a result of the use of rollers,
considering general normal (Hertz theory) and tangential wheel-rail contact algorithms, a change
in creep forces during wheel-roller interaction is inevitable (Iwnicki, 2006). For more information
about the effect of rollers on wheel-rail contact forces and dynamic behavior of the wheel-set
in curves (especially wheel-set gravitational stiffness) the papers by Iwnicki (2006), Yaschinski
(1990), De Pater (1993), Dukkipati (2000) are recommended. Thus in order to gain more realistic
results and avoid dealing with the mentioned problems, investigations are performed on a straight
path.

3. Results

The maximum L/V value is shown in Fig. 7 which demonstrates a gradual increase in the lateral
force to the maximum amount. Then, as the wheel flange climbs the rail, a sudden decrease in
the L/V ratio is observed. Moreover, from Fig. 7 it is seen that as the wheel flange climbs the
rail, the wheel flange will move on the rail head surface for a while before derailment occurs. In
addition, the RMS method is used for the case where there is perturbation in values at the top
of the diagram as shown in Fig. 7.

The maximum L/V ratios for different contact algorithms as a function of the wheel-set
AOA are shown in Fig. 8 and Fig. 9 for different rail inclinations. Comparing the results from
simulations to test results, the FastSim algorithm is appropriate to be used for numerical si-
mulation. Also, comparing the results from different rail inclinations, it is concluded that for
the rail inclination 1:40, the maximum L/V values will be larger compared to the case with rail
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Fig. 7. Diagram of the L/V forces ratio

Fig. 8. Comparison between wheel-rail contact theories with rail inclination 1:20

Fig. 9. Comparison between wheel-rail contact theories with rail inclination 1:40

Fig. 10. L/V values as a function of the coefficient of friction with rail inclination 1:20

inclination 1:20. Then the effects of the outer rail coefficient of friction on derailment considering
different angles of attack are studied. No lubrication for the outer rail has been considered, thus
the rail side and rail head friction coefficient values are similar. The results are shown in Fig. 10
and Fig. 11 for rail inclinations 1:20 and 1:40 using FastSim algorithm.
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Fig. 11. L/V values as a function of the coefficient of friction with rail inclination 1:40

With regard to the results for the positive wheel-set AOA, as the coefficient of friction
increases, the wheel L/V criteria would decrease. But the L/V limit diagram after 10mrad will
converge to a constant value for each coefficient of friction diagram. In the negative wheel-set
AOA, as the coefficient of friction increases, the wheel L/V values criterion would increase. It
is seen that the friction coefficient has different influence on the wheel flange climb derailment
criterion at positive and negative wheel-set AOAs, and the diagrams would cross each other
approximately at the zero angle of attack. This means that in such a case near the zero wheel-
set AOA, the friction coefficient variation will not have considerable effect on the L/V ratio.
The effect of the friction coefficient on the maximum L/V ratio at both positive and negative
wheel-set AOAs is different, which is related to the direction and magnitude of creep forces.

Also the effect of lateral stiffness (vehicle primary suspension system) on the wheel L/V ratio
as a function of the wheel-set AOA has been investigated as shown in Fig. 12. The coefficient of
friction and rail inclination are considered to be 0.28 and 1:20, respectively. It is seen that L/V
values are not very sensitive to the lateral suspension system. The differences are highlighted at
the negative wheel-set AOA. Therefore, it is concluded that in the case of the wheel flange climb
derailment, the suspension system affects the wheel flange climb criterion by making a change
to the wheel-set yaw angle (or AOA). This means that in the lab tests, the exact suspension
system, particularly the lateral one, would not be necessary to be used for the wheel flange climb
derailment investigation where the wheel-set AOA is controlled.

Fig. 12. L/V values as a function of the suspension system lateral stiffness

Next, the effects of vehicle running speed on the L/V ratio are studied. The simulations are
performed for rail inclination 1:20 on the condition that the lateral stiffness and coefficient of
friction would be constant. According to the results shown in Fig. 13, the running speed does
not affect L/V values considering an even rail surface. This means that for lab test applications,
the operational running speed is not necessary to be applied to the wheel-set in the case of wheel
flange climb derailment investigations.

In the next step, the effects of lubrication methods on wheel-rail interaction in curves are
studied. The results for the inner and outer rails are shown in Tables 2 and 3. Friction coefficient
values vary from 0.1 to 0.4 which have been reported from field measurements and tests per-
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Fig. 13. L/V values as a function of the dynamic system running velocity

formed in labs (Lewis and Olofsson, 2009). Simulations were performed for a curve with radius
of 300m and super elevation of 130mm with constant running speed of 16m/s. For the case of
investigations on the effects of the outer rail head lubrication on running safety, the outer rail
side and inner rail head friction coefficient was 0.3. Also for the case of inner rail head lubrica-
tion, the outer rail friction coefficient was 0.3. It is be noted that due to rail inclination of 1:20
during the wheel-set curving, two point contact exists between the outer wheel and the rail.

Table 2. L/V values for the outer rail as a function of the inner rail friction coefficient

Friction coefficient L/V value

0.20 0.22

0.25 0.28

0.30 0.33

0.35 0.37

0.40 0.41

Table 3. L/V values for the outer rail as a function of the outer rail-head friction coefficient

Friction coefficient L/V value AOA [mrad]

0.10 0.26 2.4

0.15 0.26 2.6

0.20 0.28 3.2

0.25 0.30 3.9

0.30 0.33 4.6

0.35 0.38 5.2

0.40 0.40 5.5

The results show that decreasing the inner rail head friction coefficient by means of lubrica-
tion will improve vehicle safety at curves. It is shown that the wheel-rail two point contact will
decrease the wheel-set steer ability since the resultant creep force for both points do not lie in
the same direction, and even they can be in opposite direction (TCRP report 71, 2005). There-
fore, in order to decrease the second contact point influence on the wheel-set steer ability, the
outer rail head friction modification has been investigated. The results show that as the friction
coefficient for the outer rail head increases, the risk of derailment would increase. In addition,
decreasing the friction coefficient results in an increase in running safety. In order to monitor
the wheel-set curving performance in much more detail, the wheel-set AOA has been monitored
as well. As shown in Table 3, decreasing the outer rail head friction coefficient will decrease
the wheel-set AOA. This will result in a better wheel-set steer ability in curves. Moreover, it
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is seen that the inner rail lubrication has better effect in comparison with the outer rail head
lubrication.

The important point in lubrication of the outer rail is that the high difference (rail head
friction coefficient is much larger than the rail side friction coefficient) between the flange and
wheel tread friction coefficient (while wheel flange lubrication is interested for the wheel-rail
wear purposes) will increase the risk of derailment, which can be seen in Table 3.

4. Conclusions

In this investigation, effects of the friction coefficient, wheel-set AOA, rail lubrication, lateral
suspension and longitudinal velocity on the wheel flange climb derailment are studied in order
to have a better insight into the derailment mechanism and parameters which affect this pheno-
menon. Thus, a model has been developed and validated by field test results. The main results
are presented as follows:

• As the wheel-set AOA sign changes from positive to negative values, the friction coefficient
would have different effects on the maximum L/V ratio. Moreover, it is shown that as the
wheel-set AOA reaches the zero value, the friction coefficient approximately loses its effect
on the maximum L/V .

• It is shown that the wheel-set running velocity and primary suspension system (in the case
the wheel-set AOA is controlled) would not have a noticeable effect on the maximum L/V .
Thus, conducting further research on wheel flange climb derailments at labs, it is not
necessary to apply the exact primary suspension and running speed.

• Derailment would not take place right after the wheel flange climb. The wheel flange
will continue moving on the rail head surface for a while. This will give a better insight,
particularly in cases where investigations on derailed trains are of interest. In the cases
where the wheel flange climb is the main cause of the derailment, it is very likely to see
the trace of the wheel flange on the rail head surface at the derailment area.

• It is shown that by means of the inner rail head lubrication, the vehicle safety would
improve. In addition, the outer rail head lubrication in the case of two point contact will
enhance safety of the vehicle. But the inner rail head lubrication has a better effect on
the wheel-set safety. Moreover, it has been found that a high friction coefficient difference
between the outer rail side and rail head will increase the risk of derailment. Therefore,
this must be considered while the outer rail lubrication at curves is of interest.

• Conducting research on the effects of the outer rail head lubrication on safety revealed
that in the case of two point contact, a considerable decrease in the wheel-set AOA and,
as a result, an improvement in the safety margin is possible.

For current railway conditions with two point contact for the outer wheel-rail in curve, in the
case of improving safety against derailment, low rail lubrication is suggested. In addition, the
method including simultaneous outer rail lubrication along with the inner rail lubrication is
proposed. It must be considered that in the case of outer rail side lubrication, the outer rail
head friction coefficient must be close to the rail side friction coefficient and moreover, traction
obligations must be regarded as well.
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In this research, multi-walled carbon nanotubes (MWCNTs) are used as the reinforcement
in an epoxy resin with weight percentages (0, 0.2, 0.4, 0.6, 0.8, 1)wt%, respectively, by using
both direct (nonhomogeneous) and homogeneous dispersion mixing processes to prepare
(epoxy/MWCNTs) nanocomposites. Tensile and drop weight impact tests are used to evalu-
ate mechanical properties of the composites. Results show that homogeneous dispersion has
a great effect on enhancing mechanical properties of multi-wall carbon nanotube reinforced
composites. Adding 0.2wt% of MWCNTs enhances and increases tensile properties, and
adding 0.6wt% of MWCNTs enhances impact properties.

Keywords: multi-wall carbon nanotubes, mechanical properties and nanocomposites

1. Introduction

CNT/polymer composites are increasingly used for engineering applications under hard working
conditions due to unique mechanical properties of CNTs, such as high elastic modulus, tensile
strength and strain to fracture, ability to withstand cross-sectional and twisting distortions
and compression without fracture combined with a low specific weight and high resistance to
degradation in order to ensure safety and economic efficiency (Du et al., 2007; Walter et al.,
1997).

Epoxy based Multi-Walled Carbon Nanotubes (MWCNTs) reinforced composites are syn-
thesized by Samal (2009) by the method of sonication. The variation of nature of the reinforce-
ment (aligned and randomly oriented MWNTS) has resulted in the improvement of mechanical
properties like flexural modulus, tensile strength and hardness. A small change in chemical tre-
atment of the nanotubes has a great effect in the mechanical and morphological properties of
the nanocomposites due to the effective load transfer mechanism and state of dispersion. The
change in properties has been verified by optical microscopy and scanning electron microscopy.
Apart from that the prepared composites have been treated under different temperatures (like
hot water, room temperature and liquid nitrogen temperature) and the change in mechanical as
well as morphological nature has been verified by SEM of fractographic surface, this proved the
elasticity and ductility of the composites.

Multi-walled carbon nanotubes (MWCNTs) were used by Nemaa et al. (2014) to enforce
the blend of epoxy/polysulfide and then tensile and wear behavior of this reinforcement were
evaluated. For achieving this goal, different weight percentages of MWCNT (0.2-0.6 wt%) we-
re dispersed in the epoxy resin, then polysulfide resin was added and mixed with two curing
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agents. Experimental results have shown significant difference between epoxy/polysulfide and
CNT/epoxy/polysulfide in mechanical properties. With 0.2-0.6% MWCNTs we observed an in-
crease in Young’s modulus from 245 to 273MPa, tensile strength from 30.5 to 38.9MPa and
fracture strain from 12.4% to 14.2%. For understanding the structure and morphology of na-
nocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and
field emission electron microscopy (FESEM).

Different types of Multi-Walled Carbon Nanotubes (MWCNTs) long and short were used
by Al-Rawi et al. (2014) as the reinforcement in an epoxy resin with weight percentages
(0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5) wt%, respectively, by using direct mixing proces-
ses to prepar (epoxy/MWCNTs) nanocomposites. The ultrasonic mixing process was used to
disperse the nanotubes into the epoxy resin system. The results show improvement of the mecha-
nical properties with an increase in the percentage weight less than 2% and then a decreament
with a further increase in the MWCNTs content. The results show that long carbon nanotubes
have mechanical properties better than short carbon nanotubes.

A systemic evaluation was done by Ci and Bai (2006), for different reinforcement roles of
carbon nanotubes in those nanocomposites with different matrix stiffnesses while the curing
process were controlled. Both mechanical tests and microscope observations indicated that such
a reinforcement would gradually reduce while increasing the stiffness of matrix. However, in
soft and ductile composites, carbon nanotubes show a significant reinforcement without fracture
strain growth. The interface interaction is poor between carbon nanotubes and matrix in the
stiff composite, and therefore, they have little contribution to the mechanical properties of the
composite.

In this research, Multi-Walled Carbon Nanotubes (MWCNTs) are used as the reinforcement
in an epoxy resin with weight percentages (0, 0.2, 0.4, 0.6, 0.8, 1) wt%, respectively, by using direct
and homogeneous dispersion mixing processes to prepare (epoxy/MWCNTs) nanocomposites.
Tensile and drop weight impact tests are used to evaluate the mechanical properties of the
composites.

2. Experimental part

Epoxy resin of a trade mark (Quickmast 105 base) is used as the matrix which is a liquid of
low viscosity as compared with other thermosets, and it is converted to solid state by adding a
hardener (Quickmast 105 hardener) at ratio of 3:1, the technical properties of Quickmast 105
according to the data sheet of DCP company are listed in Table 1; while the nanoparticle
reinforcements are MWCNTs manufactured by Henan Huier Nano Technology Co. Ltd. Their
technical properties are listed in Table 2.

Table 1. Technical properties of Quickmast 105 (provided by the supplier)

Compressive Flexural Tensile
Pot life

Specific
gravity

strength strength strength Viscosity
BS6319 BS6319 BS6319

> 72MPa > 50MPa > 20MPa 60min 1.1 3-5 poise
7 days 25◦C 25◦C 25◦C

1-2 poise
35◦C

To prepare a carbon nanotubes/epoxy composite, the nanotube powder (with a content of
0, 0.2, 0.4, 0.6, 0.8, and 1wt%) was added into the liquid epoxy in two ways:
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Table 2. Technical properties of multi-wall carbon nanotube (provided by the supplier)

Length of the Outer diameter Tube wall Number
carbon tube of tubes thickness of layer

3-12 nm 12.9 nm 4.1 nm 8-15

Tube thickness distribution TEM image

1. Nonhomogeneous dispersion: the resin and carbon nanotube solution was manually stirred
for 5min to form a homogeneous suspension. And then an epoxy hardener was mixed into
the carbon nanotubes/epoxy suspension, and softly stirred for about 2min. Finally, the
composite suspension was poured into the impact and dog-bone-like steel tensile mould
and left to be cured at room temperature for 7 days.

2. Homogeneous dispersion: the resin and carbon nanotube solution was manually stirred for
10min to form a homogeneous suspension. And then an epoxy hardener was mixed into
the carbon nanotubes/epoxy suspension, softly stirred for about 10min, and the mixture
was left for 2hrs to get homogeneous dispersion. Finally, the composite suspension was
poured one corner into the impact and dog-bone-like steel tensile mould (to avoid bubble
formation which causes cast damage) and left to be cured at room temperature for 7 days.

Samples without carbon nanotube addition (matrix samples) were also fabricated for compari-
son.

Mechanical tests were done according to ASTM D638 [3] for a tensile test and ISO 6603 [10]
for an impact test. Instron 5982 tensile test machine was used to measure tensile behavior of
the samples at strain rate of 2mm/s. The specimen was fixed straightly by using two jaws with
100 kN maximum load. The machine started to elongate the specimen at a constant rate, and
to continuously and simultaneously measure the instantaneous applied load and the resulting
extension. Instron Ceast 9350 instrumented with the Drop weight impact tester was used to me-
asure the resistance to failure of a material subjected to a suddenly falling object (weight=5.8 kg)
from a level of 700mm. The machine started to continuously and simultaneously measure the
instantaneous impact load and the resulting deformation and impact energy (absorbed energy).

3. Results and discussion

During the study, multi-walled carbon nanotubes (MWCNTs) were used as the reinforcement
in the epoxy resin with weight percentages (0, 0.2, 0.4, 0.6, 0.8, 1) wt%, respectively, by using
direct and homogeneous dispersion mixing processes to prepare (epoxy/MWCNTs) nanocom-
posites. Tensile and drop weight impact test were carried out used to evaluate the mechanical
properties of the composites. The relationships of stress-strain, impact force-time, impact force-
deformation, impact energy-time and impact energy-deformation were obtained from experi-
mental data as follows.
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3.1. Tensile test results

Figure 1 shows the stress-strain results of the composites used in this study with different multi-
-walled carbon nanotubes (MWCNTs) reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt%
for two mixing techniques, i.e. nonhomogeneous and homogeneous dispersion.

Fig. 1. Stress-strain curves of the composites with different percentages of multi-wall carbon nanotube:
0, 0.2, 0.4, 0.6, 0.8, and 1wt%

Fig. 2. Tensile stress, extension and energy at maximum load in the composites with different
percentages of MWCNTs reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt%

It can be seen that the dispersion has a great effect on the stress and strain values for all
composites. Such low reinforcing ability of the nanotubes in epoxy nanocomposites, which is so-
metimes observed, can be explained by a number of reasons: one is lack of interfacial adhesion,
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which is critical for load transfer in composites. Indeed, carbon nanotube surfaces are atomi-
cally smooth, which may limit the transfer of load from the matrix to nanotubes reinforcement
(Cooper et al., 2000; Bokobza, 2007). Another reason is poor dispersion of nanotubes in the
polymer matrix, which is also significant for fabrication of reinforced nanocomposites (Gojny
et al., 2004). Due to their high aspect ratio and huge surface area, CNTs have strong tendency
to agglomerate, which leads to inhomogeneous dispersion in the polymer matrix (Smutisikha,
2010).

Figure 2 shows tensile properties and results of the composites used with different percentages
of Multi-Walled Carbon Nanotubes (MWCNTs) reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8,
and 1wt%.

It can be seen that the content of MWCNTs (0.2-1 wt%) enhances and increases the tensile
properties and reaches the maximum values for 0.2% NT composite: tensile stress at maximum
load from 28.6MPa for epoxy resin to 41.4MPa, maximum load from 2.1 kN for epoxy resin to
2.9 kN, tensile extension at maximum load from 5.04mm for epoxy resin to 4.2mm and tensile
energy at maximum load from 5.9 J for epoxy resin to 10.6 J. Creating attractive polar forces,
and Van der-Waals bonding between chains and nanotubes leads to an increase in the constraint
between tubes/epoxy chains and epoxy chains, complicates epoxy chains which approach one
another, reduces free volume space. This effect of MWCNTs make the epoxy chains bear extra
loading (Park et al., 2004). A 0.4%wt of MWCNTs is better than that of epoxy, but lower than
other percentages due to formation of agglomerates of nanotubes in the polymer matrix that
reduce the reinforcing effects of the CNTs.

3.2. Impact test results

3.2.1. Impact force – time behavior

Figure 3 shows time histories of the impact force in the composites used with different
percentages of MWCNTs reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt% for two
mixing techniques, i.e. nonhomogeneous and homogeneous dispersion.

It can be seen that dispersion has a great effect on the force values for all composites which
is attributed to good dispersions of the nanotubes in the matrix and good reactions between the
epoxy and grafted nanotubes. The investigation of the fracture surface in nanocomposites reve-
aled that narrower crack-tips underneath the advancing cracks were more efficiently bridged by
the nanotubes in epoxy/MWCNTs resulting in an increased resistance against crack propagation
(Ajayan et al., 2006).

3.2.2. Impact force – deformation behavior

Figure 4 shows the impact force vs. deformation results of composites with different percen-
tages of MWCNTs reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt% for two mixing
techniques. It can be seen that dispersion has a great effect on the force values for all composites
which is attributed to the formation of a network structure which can take more mechanical
loading from the matrix when the matrix is under stress. This means that when the applied
loading is over the elastic deformation stress, the carbon nanotubes transfer the stress (Qi etal,
2006), which enhances the strength of the resin matrix.

3.2.3. Impact energy – time behavior

Figure 5 shows the impact energy vs. time of composites with different percentages of
MWCNTs reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt% for two mixing techniques.
It can be seen that dispersion has a great effect on the force values for all composites which is
attributed to the weak van der Waals bonding between the reinforcement and the matrix, which
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Fig. 3. Impact force vs. time in composites used with different percentages of MWCNTs reinforcement
in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt%

Fig. 4. Impact force vs. deformation of composites with different percentages of MWCNTs
reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt%
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is the main load transfer mechanism for CNT/polymer composites where the interfacial energies
normally amount to ∼ 50-350mJ/m (Nardin and Schultz, 1993).

Fig. 5. Impact energy vs. time of composites with different percentages of MWCNTs reinforcement in
the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt% fot two mixing techniques

3.2.4. Impact energy – deformation behavior

Figure 6 shows the impact energy vs. deformation of composites with different percentages of
MWCNTs reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt% for two mixing techniques.
It can be seen that dispersion has a great effect on the force values for all composites which is
attributed to the micromechanical interlocking, which can be marginal in CNT/polymer com-
posites if CNTs have atomically smooth surface. The van der Waals bonding is increased by
using small size reinforcement and close contact at the interface. CNTs are strong enough and
inter-connected or long enough to block the movement of polymer chains (Du et al., 2007; Lu,
1997; Meguid and Sun, 2004).

3.2.5. Effect of multi-wall carbon nanotube percentages on impact properties of the composites

Figure 7 shows a summary of the effect of adding multi-wall carbon nanotube percentages on
impact properties: energy, force and deformation of the composites in this study. It can be seen
that both energy and force values are increased up to 0.6% multi-wall carbon nanotube then they
decrease, which is due to critical CNT content in the matrix. This can be found when the CNT
strengthening effect on randomly oriented CNT/polymer composites are investigated. Below this
content, the strengthening effect for randomly oriented CNT/polymer composites increases with
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Fig. 6. Impact energy vs. deformation of composites with different percentages of MWCNTs
reinforcement in the epoxy: 0, 0.2, 0.4, 0.6, 0.8, and 1wt% for two mixing techniques

Fig. 7. Effect of adding multi-wall carbon nanotube percentages on impact properties: energy, force and
deformation of the studied composites

growing CNT content. Above this content, the strength of CNT/polymer composites decreases.
The work of Bai (2003) shows that the critical CNT loading percentage is about 0.5wt% for
CNT/epoxy composites. The same tendency was reported by Meguid and Sun (2004) in their
work on the tensile and shear strength of nano-reinforced composite interfaces. The excess of
CNTs increases the viscosity of polymers and can also cause some surface of the CNTs not be
completely covered by the polymer matrix due to the large specific surface area of the CNTs.
This makes uniform dispersion and load transfer more difficult. Moreover, it is very difficult
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for high quantity of polymers to intercalate among CNTs when the CNT content becomes high
(Du et al., 2007). Impact energy and force increases from 2.9 J and 0.92 kN for the epoxy to
its maximum value 25.5 J and 4.16 kN in 0.6% NT composites, and the impact deformation
decreases from 18.4mm for the epoxy to its minimum value 13.6mm in 0.6% NT composites.

4. Conclusions

• Homogeneous dispersion has a great effect on enhancing mechanical properties of multi-
-wall carbon nanotube reinforced composites.

• Adding 0.2 wt% of MWCNTs enhances and increases tensile properties to reach their
maximum values as follows: tensile stress at maximum load from 28.6MPa for epoxy resin
to 41.4MPa, maximum load from 2.1 kN for epoxy resin to 2.9 kN, tensile extension at
maximum load from 5.04mm for epoxy resin to 4.2mm and tensile energy at maximum
load from 5.9 J for epoxy resin to 10.6 J.

• The impact energy and force increase from 2.9 J and 0.92 kN for the epoxy to their ma-
ximum values of 25.5 J and 4.16 kN, respectively, in 0.6% NT composites. The impact
deformation decreases from 18.4mm for the epoxy to its minimum value 13.6mm in 0.6%
NT composites.
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During design of the envelope of a noncircular belt pulley one should take into account several
conditions resulting from kinematics and geometry of the uneven-running strand transmis-
sion. Design of proper values of pitches for a belt pulley, which enable good cooperation
between the belt pulley and the belt, should be carefully done. In available Polish literature
and catalogues offered by belt manufacturers, one can find only detailed dimensions of belts
with a trapezoidal profile. Information on other profiles is insufficient for full description of
geometrical features of belt pulley teeth as well as to design tools for machining belt pulleys.
Manufacturers of belt pulleys and belts give only necessary data to submit a purchase order.
The paper presents a digitization process (scanning) of geometry of the envelope of circular
belt pulleys with non-standard profiles; this scanning has been done with the application
of coordinate measuring machines. The obtained information on geometrical features of to-
oth profiles has been numerically analysed. As a result of this analysis, the mathematical
description has been obtained. Finally, noncircular belt pulleys with different tooth profiles
have been designed and manufactured.

Keywords: reverse engineering, tooth profile, numerical modelling

1. Reverse engineering: definition, historical notes and basic techniques

Many definitions of the reverse engineering exist nowadays. In (Eilam, 2005), it is said that it is a
process of extracting the knowledge or design information from anything a man made. Thus what
makes the difference between the reverse engineering and conventional scientific research is that
with the reverse engineering the artifact being investigated is man-made unlike in the scientific
research – there is taken into account a natural phenomenon. According to Schreve and Basson
(2005), the reverse engineering encompasses the set of activities aiming at (re)discovering the
functional, structural and behavioural semantics of a given artifact with the aim of leveraging
this information for the efficient usage or adaption of that artifact or the creation of related
artifacts. In (Ülker, 2013), the reverse engineering is defined as a process of duplicating an
item, i.e., its functionality and dimensions by physically examining and measuring the existing
parts to develop technical data (physical and material characteristics) required for competitive
procurement.

In (Eilam, 2005), the reverse engineering is dated back to the era of the industrial revolution,
the transition to new manufacturing processes. Then, in the years 1760-1840, new machines
entered to the manufactures, and the reverse engineering was a way of an espionage aiming at
acquiring information about modern machines, to have a commercial or military advantage of
having them. In fact, the espionage reverse engineering was practiced in the Antiquity: Egypt
built its power on Assyrian chariots copied around 1600 BC, in the 3rd century BC Romans
gained the domination on Mediterranean thanks to capturing Carthaginian quinquiremes. More
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recent examples of the analogous activities concern the Soviet piston-engine bomber Tupolev
Tu-4 (it was developed in late 1940’s as a copy of American Boeing B-29 aircrafts landed in
Vladivostok after completing combat missions to the Japanese mainland; see e.g. Fitzpatrick
and DiLullo (2006), also for juridical aspects of the reverse engineering) and decoding the Nazi
German encryption machine Enigma made by Polish and British cryptographers.
All four above examples concern directly military issues. In industrial practice, the reverse

engineering deals with recovering information on objects which disappeared or were damaged
(during the standard use or in experiments), with creation and completing of documentation for
an existing product or device, with product analysis, interoperability or re-designing.

Nowadays, the reverse engineering is applied in various branches of science and industry,
and it is still the most popular in recognition of the machine element shape (e.g. Baier et al.,
2012; Boyer and Petitjean, 2000; Kotlyar, 1991; Kumar, 2013; Kumar et al., 2014; Prautzsch
et al., 2002; Schreve and Basson, 2005; US Army Reverse Engineering, 2006). Obviously, the
reverse engineering comprises fitting, approximation and numerical optimization techniques, so
it is located within the applied mathematics. Thus, an reverse engineer can not be unfamiliar
with numerical methods and techniques (presented e.g. in Burden and Faires, 1985; Chapra and
Canale, 1990). In industrial applications, B-splines (including NURBS and Bézier splines) are
dominant representations of shape description – the reverse engineering very often applies these
techniques, see. e.g. Hoschek (2001), Sarfraz et al. (2013), Weiss (2001), Xia (2014), Yin and
Jiang (2010) as well as (Ray and Ray, 2013) and (Tsay and Fong, 2005) where genetic algorithms
are in use. It also concerns the search for the description of non-typical gears. Such gears are
discussed in many papers in both theoretical and implementation aspects – see e.g. Bär (2009),
Krawiec and Marlewski (2011), Laczik (2008), Liu and Chen (2008), Liu et al. (2013), Lovasz et
al. (2007), Telea (2012).
In this paper, we aim at simplifying and efficient describing the shape of a tooth which is

known by a point cloud only (the coordinates of these points are obtained with the digitalization
done by the CMM – coordinate measuring machine, see, e.g., Chajda et al. (2008). The tooth
shape is described by circles (determined by carefully chosen points) and an appropriate parabola
which joins the circles smoothly. This parabola can be presented as a Bézier arc (so it is the graph
of a Bernstein polynomial; these polynomials were found in 1912 and are still investigated, see e.g.
Farouki (2012), Pobegailo (2014), Prautzsch et al. (2002). This type of the description can not
be produced by the existing software (such as Rhinoceros from Robert McNeel & Associates,
ZAR products from HEXAGON Software, EXCEL-LENT from Excel Gear, Inc., MITCalc –
Worm Gear Calculation 1.16, GearTeq from Camnetics Inc., GearEngineer from DEPO).

2. Reverse engineering in design of belt pulleys with a noncircular envelope

Information on geometrical features of belt pulleys with non-standard profiles can be achieved by
methods of reverse engineering. In general, these methods consist of numerical discretization of
elements or machines, and conversion of the obtained graphical information (points or surfaces)
into two or three dimensional models (Marciniec et al., 2010). For the described example, the
process of reverse engineering consisted of four stages:

• scanning of the envelope profile of a circular belt pulley with the application of the CMM,
• numerical analysis of the obtained results,
• designing of the tooth profile geometry of belt pulleys,
• manufacturing of a prototype of the noncircular belt pulley.

During the measurements, the belt pulley was mounted on the table of the CMM, and the
measuring head was moved according to the assigned parameters. An essential restriction of this
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method is the possibility to scan cylindrical surfaces which are circumscribed for angles between
0◦ and 45◦. However, for the presented task, this range was sufficient owing to the repeatability
of belt pulley profiles. As a result of the measurement, the geometrical features of the belt pulley
were obtained in form of the Cartesian coordinates. The geometrical centre of the belt pulley
was taken as an origin of the coordinate system. This fact has improved the design process of
the geometry of noncircular belt pulleys during the next stage.

Fig. 1. Measurement of geometrical features of non-standard belt pulleys: (a) test stand, (b) belt pulley
measurement

The measurement of belt pulley profiles was performed by the CMM CNC DEA Global Image
Clima (Fig. 1). This machine was placed in an air-conditioned room, and this fact was essential to
ensure the correctness of the measuring procedure. The measurement consisted of a continuous
scanning with the use of a gauge plunger. Sampling density was equal to 100 points/mm, scanning
speed – 5mm/s, ball diameter of the gauge plunger SP 25M Reinshaw was equal to 1mm. The
measurements were performed for two variants. The first one consisted of automatic application
of the “offset” function – it took into account the ball dimension which was placed at the end
of the gauge plunger. In application of the second variant, a fragment of the envelope profile of
the belt pulley was obtained and the correction due to the ball radius was taken. The scanning
process allowed one to get a set of coordinates written in a txt file. On the basis of these
coordinates, the profile of the half of the belt pulley tooth was determined. The analysis of
curvatures of the obtained profile allowed one to restrict the number of coordinates which are
describing the profile to the value 36 (Table 1).

Table 1. Points coordinates accepted to the design of the tooth profile

j xj yj j xj yj j xj yj

1 −7.7752 55.1300 2 −7.5779 55.1470 3 −7.4664 55.1457
4 −7.4419 55.1429 5 −7.3921 55.1449 6 −7.3104 55.1346
7 −7.2542 55.1288 8 −7.1365 55.1013 9 −7.0037 55.0567
10 −6.9057 55.0085 11 −6.7908 54.9337 12 −6.7082 54.8588
13 −6.6734 54.8090 14 −6.6342 54.7239 15 −6.5970 54.6489
16 −6.5699 54.5646 17 −6.5449 54.4684 18 −6.5250 54.3727
19 −6.4728 54.1592 20 −6.4334 53.9815 21 −6.3991 53.8119
22 −6.3340 53.6141 23 −6.3032 53.5276 24 −6.2763 53.4198
25 −6.2224 53.2729 26 −6.1293 53.1231 27 −6.0630 53.0405
28 −6.0164 52.8889 29 −5.8621 52.6834 30 −5.6769 52.5085
31 −5.3631 52.2537 32 −5.0184 52.0408 33 −4.6800 51.8986
34 −4.1830 51.7606 35 −3.9972 51.7398 36 −3.7887 51.7423
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The obtained profile of the half of the tooth is presented in Fig. 2. This figure shows a square
with the coordinates 〈−8,−3〉 × 〈51, 56〉 and the points obtained as a result of the scanning
process. Five points which have a significant impact on the design process of the tooth profile
are distinguished by indexes (1, 10, 20, 34, 36).

Fig. 2. Points describing the half of the tooth profile of the belt pulley

3. Numerical determination of the tooth profile

The points obtained during the scanning process are called measuring points, and the points
which are laying on the nominal tooth profile are called nominal points.

The presented task consists in determination of mathematical description of the edge of the
perfect tooth – this description should be relatively simple. According to the accepted criterion of
the simplicity, the description should consist of a small number of equations and every equation
should describe a “simple” curve. The simple curve is a curve which can be simply descri-
bed on the basis of mathematical notation (without the application of any advanced computer
programs), e.g. low degree polynomial curves (straight line, parabola and n-degree polynomial
curves where n is a small natural number – it is generally accepted that n ¬ 4), second degree
curves (circle, ellipse and hyperbola), spirals (logarithmic spiral, spiral of Archimedes) and other
curves applied in mechanical engineering (e.g., cycloid, cardioid). The next research task is to
find and select the so-called transition curves such as Cornu’s spiral (also called as a clothoid).
These curves determine a standard way of transition from a circular arc to a straight segment
where the curve continuity is kept at the transition point.

Fig. 3. Four circles which are drawn through three successive measuring points: 1–2–3, 10–11–12,
20–21–22 and 34–35–36
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Taking into account the descriptions presented in literature concerning the analysis of the
measurement results of scanning (Filipowski, 2002; Filipowski et al., 2005) and information from
manufacturers of belt pulleys, we decided to approximate the analysed distribution of points by
arcs of tangent circles or polynomial curves of a low degree (line segments) in the case when the
tangency could not be modelled. Within the framework of the preliminary analysis, the circles
were drawn through every three successive measuring points. The examples of these circles are
presented in Fig. 3.
On the basis of the analysis of circles position and the measuring points, we can accept that

circle 10–11–12, i.e. drawn through the measuring point No. 10 and two successive points, is a
good approximation of the shape in its vicinity (in the range from point No. 8 to point No. 18).
Circle 34–35–36 is a satisfying approximation of the searched shape only in the vicinity of these
points. Figure 4 presents nine circles which are drawn through three successive measuring points.

Fig. 4. Nine exemplary circles which are drawn through three successive measuring points

Radii of all 34 circles (circle No. k passes through the points k, k + 1, k + 2, where
k = 1, 2, . . . , 34) are presented in Fig. 5. We can see that the variation of the radius r has
not any visible monotonicity (interval monotonicity). The interval monotonicity guarantees the
fulfillment of the condition of smooth transition between elements of the tooth profile.

Fig. 5. Radii r of circles No. k for k = 1, 2, . . . , 34. On the basis of Fig. 2, we can conclude that the
radius value r should be equal to 0 for point No. 16 or its vicinity; in the case of a perfect profile (when
it consists of two circles) the radius values r should be constant for k from 1 to ca. 15 and (higher than

the previous values) for k from ca. 17 to 34

The interval monotonicity characterizes circles (radius r is constant for any three points
laying on the circle), straight lines (r = 0), parabolas (these curves have only one point where the



566 P. Krawiec, A. Marlewski

increasing function becomes the decreasing function or vice versa), etc. For spirals, the radius r
is constantly increasing (or constantly decreasing), and for a standard cycloid, the radius r is
decreasing from the infinity first (it is decreasing to the value 0, but it does not achieve it) and
next it is increasing to the infinity. The lack of the monotonicity is not a result of the reading
quality of the results from the CMM (monotonicity disturbance caused by work precision of
the CMM is not high – in practice this disturbance is negligible and is a part of the so-called
device error), but is a result of teeth manufacturing. Due to the lack of the monotonicity, the
circles have been drawn through two nonadjacent points. An idea of this approach is visualized
in Fig. 6 generated by points

A = (6, 7) B = (7, 6.82842) S = (10, 4.21252) T = (10.6832, 4.10557)

The configuration of these points is intentionally similar to that exhibiting by measured 36
points (numbered from 1 to 36, see Fig. 3). They determine two circles which are tangent at the
point M . The centres of the these circles are

L = (6, 4) and R = (10.6832, 6.34164)

and radii of these circles are equal to 3 and
√
5 = 2.23606, respectively (all calculations have

been performed exactly with the assistance of program Derive 5 from Texas Instruments, Inc.,
and the results have been then rounded to six significant digits).

Fig. 6. Two tangent circles; the left circle is drawn through points A and B, and the right one passes
through points S and T

The left circle has its highest point A, and the point T is the lowest point of the right circle.
The application of this method does not allow one to find the tangent circles where one

circle is drawn through the selected points from the beginning of the list (e.g. through points
No. 1 and 10) and the other circle is drawn through the end points (e.g. points No. 20 and 36).
The tangent circles are not found either for the case when measuring points No. 1 and 2 have
not been taken into considerations. The reason of this practice is the following observation: the
ordinates of these two points are smaller than the ordinates of measuring point No. 3, so (by the
assumption: the reading from the CMM does not produce any significant errors) these points
lay on the other side of the tooth profile than the analysed one. These points are presented
in Table 1 with the measurement results, because the starting point and the end point of the
reading have been imprecisely indicated.
After successive searching, it turned out that the best fitting for the end points is the circle

with the lowest point No. 36, and it goes through point No. 26. The equation of this circle is

(x+ 3.7887)2 + (y − 54.4144)2 = 7.14017
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and, as seen in Fig. 7, on this circle the points numbered as P20, P21, . . . , P36 sit up to a high
accuracy. The tangent to the circle (see Fig. 8) at the point P20 has the equation

y = 14.6779 − 6.10928x

Fig. 7. Circle with the lowest point P36 which is drawn through the point P26

Fig. 8. Tangent line at the point P20 and three circles for which the highest point is P3. On the left side
of the point P3, one can see points No. 1 and 2, and these ones are not taken into account

Searching for a circle with the highest point P3 and a circle which passes really close to
successive points is finished when the circle is drawn through the point P12. Figure 8 shows
this circle and two other circles which pass through points No. 14 and No. 17, respectively. It is
clearly seen that these two other circles are worse approximations with respect to points which
are close to the point P3 than the circle which goes through the point P12. This circle, passing
through P3 and P12, is covered by the equation

(x+ 7.4664)2 + (y − 54.0003)2 = 1.31173

and the line which at P12 is tangential to this circle has the equation

y = 48.9341 − 0.883171x

The curve between the points P12 and P20 is found by an inverse search for the Bernstein
polynomial B2 of degree 2. Here, we know points the wanted polynomial passes through (the
points P12 and P20) and slopes of tangent lines at these points (respectively −0.883171 and
−6.10928), so we can find coefficients c0, c1 and c2 of the polynomial

x→ B2(t) := c0t
2 + 2c1t(1− t) + c2(1− t)2
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where the variable

t = 3.63901x + 24.4112

is introduced in order to transform the interval 〈x12, x20〉 = 〈−6.7082,−6.4334〉 in the standard
interval 〈0, 1〉 which is used to define the Bernstein polynomial B2. It results with the equation

y = −7.18927x2 − 97.6709x − 276.821

It describes the parabola which joins smoothly (i.e. with continuous derivatives at points P12
and P20) the arc P3P12 of the left circle and the arc P20P36 of the right circle.

As we see, the application the Bernstein interpolation (let us call so what we did: we jo-
ined two circular arcs by a parabola arc fitted in form of the Bernstein polynomial) resulted
with a polynomial curve (of the lowest possible degree here, 2). This is a non typical use of
the Bernstein polynomials (by their nature they serve to approximate points, and not to in-
terpolate them). A standard procedure to get a curve connecting two other curves is to deal
with an Hermite interpolating polynomial or with a spline function; in our case they have to be
found for the curvilinear segment with ends in P12 and P20, and we obtain a polynomial of the
third degree. Thus, our non-typical Bernstein interpolation produced a polynomial of a lower
degree (2); it means we obtained a description we looked for, namely the one of degree 2 only.
It is important because the lower degree the less sensitivity to data, and the data are measured
quantities (so they are always approximate values) as well as to the roundings executed in both
the calculation process and the final form (here it embraces 6 significant digits). Therefore, the
arc of the polynomial curve of the third degree satisfies the imposed requirements worse than
the polynomial curve y = B2(x) – especially in relation to the value y12. The obtained ap-
proximation satisfies (even in excess) the limits of manufacturing tolerances for the belt pulley
teeth.

To verify the correctness of the conducted scanning process, numerical data processing and
CAD modelling, a few of sets of noncircular belt pulleys were manufactured. Due to the low
manufacturing costs and relatively high manufacturing accuracy, the FDM (fused deposition
modelling) method of rapid prototyping was applied (Fig. 9).

Fig. 9. Noncircular belt pulleys with nonstandard tooth profiles manufactured with the use of the rapid
prototyping method

The manufactured belt pulleys were subjected to metrological analysis in the scope of geome-
trical features. The assessment of the correctness of the coupling between the belt and the belt
pulleys was also done with the test stand. The results of these analyses show that the presented
methodology can be applied with success to determine tooth profiles which are not defined in
standards.
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4. Summary

The reverse engineering presented in this paper starts with a cloud of points laying in the plane,
the coordinates of these points are obtained by the CMM (coordinate measuring machine), and
aims at producing a simple mathematical description of the object points. In the reported case,
the digitalized points are taken from a recently produced belt pulley which has not any geometri-
cal specification. The obtained description consists of three equations: for the arcs of two circles
and the parabola which smoothly joins them. This description is worked out via examination
of several other ones, and the paper shows how the final result has been obtained. This method
serves as an exemplary approach to the reverse engineering which can be applied in analogous
situations when, due to the definition of the shape, standard procedures are not applicable or
these ones give formulas which do not fulfil the requirement for the simplicity. A positive result
of the discussed procedure confirms that the reverse engineering can be successfully used to re-
trieve, as well as to design, the teeth geometry of non-typical gears. It also shows the specificity
of finding of an appropriate mathematical description; this process is inventory (it has to be
carefully fitted to the point cloud at hand) and time-consuming, it is troublesome to execute
it with no computer assistance. It also suggests that it is worthy to undertake research on the
automatization of forming of the mathematical description of profiles, and such a description is
necessary for numerical control of producing machines.
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Piezoelectric materials are materials which produce electric field when stress is applied and
get strained when electric field is applied. Piezoelectric materials are acting as very impor-
tant functional components in sonar projectors, fluid monitors, pulse generators and surface
acoustic wave devices. Wave propagation in porous piezoelectric material having crystal
symmetry 2 is studied analytically. The Christoffel equation is derived. The phase velocities
of propagation of all these waves are described in terms of complex wave velocities. The ef-
fects of phase direction, porosity, wave frequency and piezoelectric interaction on the phase
velocities are studied numerically for a particular model.

Keywords: piezoelectricity, porous, monoclinic

1. Introduction

Piezoelectric materials have widespread applications in many branches of science and technolo-
gy such as electronics, navigation, mechatronics and micro-system technology. In recent years,
piezoelectric materials have been integrated with structural systems to form a class of smart
structures and embedded as layers or fibers into multifunctional composites. The survey of lite-
rature can be found in many related texts and books (Arnau, 2008; Auld, 1973). A short survey
of the piezoelectric wave propagation and resonance were described by Auld (1981). Both, the-
oretical and experimental studies on wave propagation in piezoelectric materials have attracted
attention of scientists and engineers during the last two decades. Nayfeh and Chien (1992) made
a study on ultrasonic wave interaction with fluid-loaded anisotropic piezoelectric substrates and
derived an analytical expression for reflection and transmission coefficients for monoclinic ma-
terials. Zinchuk and Podlipenents (2001) obtained dispersion equations for the acousto-electric
Rayleigh wave in a periodic layer piezoelectric half-space in a study for a 6mm crystal class.
Porous piezoelectric materials (PPM) are widely used for applications such as low frequency

hydrophones, miniature, accelerometers, vibratory sensors and contact microphones. Experi-
mental studies (Qian et al., 2004; Praveenkumar et al., 2005; Piazza et al., 2006) related to
properties of porous piezoelectric materials and influence of porosity on its properties have been
made by different authors. Gupta and Venkatesh (2006) developed a finite element model to
study the effect of porosity on the electromechanical response of piezoelectric materials. Craciun
et al. (1998) and Gomez et al. (2000) made an experimental study on wave propagation in po-
rous piezoceramics. Vashishth and Gupta (2009a) derived constitutive equations for anisotropic
porous piezoelectric materials. Wave propagation in transversely isotropic porous piezoelectric
materials was studied analytically and numerically by Vashishth and Gupta (2009b).
In this paper, the wave propagation in porous piezoelectric materials having crystal sym-

metry 2 is studied. The constitutive equations are formulated for porous piezoelectric materials
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having crystal symmetry 2. The Christoffel equation is derived analytically and its solutions
are obtained numerically. The variation of phase velocities with the direction of propagation,
porosity, piezoelectricity and viscosity is studied numerically for a particular model.

2. Governing equations and their solution

The constitutive equations for anisotropic porous piezoelectric materials (Vashishth and Gupta,
2009a) are

σij = cijklεkl +mijε
∗ + ekijφ,k + ζkijφ∗,k σ∗ = mijεij +Rε

∗ + ζ̃iφ,i + e∗iφ
∗
,i

Di = eijkεjk + ζ̃iε
∗ − ξijφ,j −Aijφ∗,j D∗i = ζijkεjk + e

∗
i ε
∗ −Aijφ,j − ξ∗ijφ∗,j

(2.1)

where σij/σ
∗ are the stress components acting on the solid/fluid phase of a porous aggregate.

εij/ε
∗ are strain tensor components for the solid/fluid phase, respectively. φ/φ∗ and Di/D

∗
i

are electric potentials and electric displacement components for the solid/fluid phase of the
porous bulk material, respectively. cijkl are elastic stiffness constants. The elastic constant R
measures the pressure to be exerted on the fluid to push its unit volume into the porous matrix.
ekij/e

∗
i , ξij/ξ

∗
ij are piezoelectric and dielectric constants for the solid/fluid phase, respectively.

mij ; ζkij, ζ̃i; Aij are the parameters which take into account the elastic; piezoelectric; dielectric
coupling between the two phases of the porous aggregate.

The coefficient matrix for porous piezoelectric materials, having crystal symmetry 2 (Auld,
1973) is




c11 c12 c13 0 0 c16 m11 0 0 −e31 0 0 −ζ31
c12 c22 c23 0 0 c26 m11 0 0 −e32 0 0 −ζ32
c13 c23 c33 0 0 c36 m33 0 0 −e33 0 0 −ζ33
0 0 0 c44 c45 0 0 −e14 −e24 0 −ζ14 −ζ24 0
0 0 0 c45 c55 0 0 −e15 −e25 0 −ζ15 −ζ25 0
0 0 0 0 0 c66 m12 0 0 −e36 0 0 −ζ36
m11 m11 m33 0 0 m12 R 0 0 −ζ̃3 0 0 −e∗3
0 0 0 e14 e15 0 0 ξ11 ξ12 0 A11 A12 0
0 0 0 e24 e25 0 0 ξ12 ξ22 0 A12 A22 0

e31 e32 e33 0 0 e36 ζ̃3 0 0 ξ33 0 0 A33
0 0 0 ζ14 ζ15 0 0 A11 A12 0 ξ∗11 ξ∗12 0
0 0 0 ζ24 ζ25 0 0 A12 A22 0 ξ∗12 ξ∗22 0
ζ31 ζ32 ζ33 0 0 0 e∗3 0 0 A33 0 0 ξ∗33




(2.2)

The equations of motion for a fluid-saturated porous piezoelectric medium, in the absence of
body forces, are (Vashishth and Gupta, 2009a)

σij,j = ρ11üj + ρ12Ü
∗
j σ∗,i = ρ12üj + ρ22Ü

∗
j

Di,i = 0 D∗i,i = 0
(2.3)

where ui/U
∗
i are the components of mechanical displacement for the solid/fluid phase of the

porous aggregate. ρ11, ρ12 and ρ22 are dynamical coefficients.

For the propagation of plane waves, let us assume that

uj = Bj exp[iω(pkxk − t)] U∗j = Fj exp[iω(pkxk − t)]
φ = G exp[iω(pkxk − t)] φ∗ = H exp[iω(pkxk − t)]

(2.4)
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where i =
√
−1, pk are the components of the slowness vector p. These can be written as

pk = nk/V in terms of phase velocity v, where nk are components of the unit vector normal to
the wave surface. ω is the circular frequency of waves and t is the time. Making use of equations
(2.1)-(2.4), we obtain a system of equations in unknowns Bj , Fj (j = 1, 2, 3), G and H, which
is given as follows

(c11n
2
1 + c55n

2
3 − ρ11v2)B1 + (c16n21 + c45n23)B2 + [(c13 + c55)n1n3]B3

+ (m11n
2
1 − ρ12v2)F1 + (m11n1n3)F3 + [(e31 + e15)n1n3]G+ [(ζ31 + ζ15)n1n3]H = 0

(c16n
2
1 + c45n

2
3)B1 + (c66n

2
1 + c44n

2
3 − ρ11v2)B2 + [(c36 + c45)n1n3]B3 + (m12n21)F1

+ (m12n1n3)F3 + [(e36 + e14)n1n3]G+ [(ζ36 + ζ14)n1n3]H = 0

[(c13 + c55)n1n3]B1 + [(c36 + c45)n1n3]B2 + (c55n
2
1 + c33n

2
3 − ρ11v2)B3 + (m33n1n3)F1

+ (m33n
2
3 − ρ12v2)F3 + (e15n21 + e33n23)G+ (zeta15n21 + ζ33n23)H = 0

(m11n
2
1 − ρ12v2)B1 + (m12n21)B2 + (m33n1n3)B3 + (Rn21 − ρ22v2)F1
+ (Rn1n2)F2 + (Rn1n3)F3 + (ζ̃3n1n3)G+ (e

∗
3n1n3)H = 0

ρ12B2 + ρ22F2 = 0

(m11n1n3)B1 + (m12n1n3)B2 + (m33n
2
3 − ρ12v2)B3 + (Rn1n3)F1

+ (Rn23 − ρ22v2)F3 + (ζ̃3n23)G+ (e∗3n23)H = 0
[(e15 + e31)n1n3]B1 + [(e14 + e36)n1n3]B2 + (e15n

2
1 + e33n

2
3)B3 + (ζ̃3n1n3)F1

+ (ζ̃3n
2
3)F3 − (ξ11n21 + ξ33n23)G− (A11n21 +A33n23)H = 0

[(ζ15 + ζ31)n1n3]B1 + [(ζ14 + ζ36)n1n3]B2 + (ζ15n
2
1 + ζ33n

2
3)B3 + (e

∗
3n1n3)F1

+ (e∗3n
2
3)F3 − (A11n21 +A33n23)G− (ξ∗11n21 + ξ∗33n23)H = 0

(2.5)

The condition of existence of a non-trivial solution of the system leads to

x1V
8 + x2V

6 + x3V
4 + x4V

2 + x5 = 0 (2.6)

where x1, x2, x3, x4, x5 are coefficients which have been calculated symbolically.

On solving equation (2.6), we obtain 4 complex roots Vj (j = 1, 2, 3, 4). Corresponding to
these 4 complex roots, we get 4 complex wave velocities vj of four waves. Thus we obtain four
plane harmonic waves propagating along the given phase direction in the monoclinic porous
piezoelectric material. The wave with the largest phase velocity is termed as stiffened quasi-P1
wave, and the wave with the smallest phase velocity is termed as quasi-P2 wave. The other two
waves are termed as quasi-S1 and quasi-S2 waves.

3. Numerical discussion

The analytical expressions of the phase velocity of propagation and the attenuation quality
factor of stiffened quasi P1, P2 and S1, S2 waves are computed numerically for a particular
model Barium Sodium Niobate. Following Auld (1973), the elastic, piezoelectric and dielectric
constants for the monoclinic crystal are given in Table 1.
Figure 1 exhibits the variation of phase velocities of quasi waves in porous piezoelectric

materials saturated with a viscous fluid for the crystal class 2, respectively with the direction
of propagation (θ, φ). It is seen from these figures that the range of variation of the velocities
of four waves are different. The elevations and depressions of phase velocity surfaces from the
horizontal plane in the figures measure the extent of velocity anisotropy in the medium. The
effects of azimuth variation on the phase velocities of qP1 and qP2 waves are negligible for small
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Table 1. Elastic constants, piezoelectric constants and dielectric constants of Barium Sodium
Niobate crystal

Elastic constants Piezoelectric constants Dielectric constants
[GPa] [C/m2] [nC/(Vm)]

c11 = 150.4 e15 = 11.4 ξ11 = 10.8
c12 = 60.63 e24 = 15.4 ξ13 = 9.8
c13 = 65.94 e31 = −4.32 ξ22 = 14.8
c22 = 160.4 e32 = −6.32 ξ33 = 13.1
c23 = 75.94 e33 = 17.4 ξ∗11 = 0.038
c33 = 145.5 e36 = 0.8 ξ∗13 = 0.09
c44 = 40.86 ζ15 = 0.456 ξ∗22 = 0.055
c55 = 43.86 ζ24 = 0.356 ξ∗33 = 0.049
c66 = 50.37 ζ31 = −1.728 A11 = 0.018
m11 = 8.8 ζ32 = −0.2728 A13 = 0.04
m13 = 11.5 ζ33 = 0.696 A22 = 0.031
m22 = 16.8 ζ36 = 0.08 A33 = 0.015
m33 = 5.2 e∗3 = −3.6
R = 20 ζ̃3 = −7.5

values of θ but noticeable for large values of θ. The phase velocity of qP1 wave an increases
with increase in θ but the phase velocity of qP2 wave decreases with an increase in θ. The phase
velocity of qS1 wave first decreases with an increase in θ and attain local minima at θ = 30

◦

and after that it increases with θ. Contrary to this, V4 increases first and then decreases having
the minimum at 45◦ and then increases further.

Fig. 1. Variation of phase velocities of quasi waves with the propagation directions (θ, φ) for Barium
Sodium Niobate crystal of class 2; (a) qP1 wave, (b) qP2 wave, (c) qS1 wave, (d) qS2 wave

Figure 2a depicts the variation of phase velocities with the direction of propagation in PPM
saturated with a non-viscous fluid, for the crystal class 2. The waves are not attenuated in such
a medium. Figures 2b and 2c exhibit the variation of phase velocities in PPM saturated with the
viscous fluid in the low frequency range (LFR) and high frequency range (HFR), respectively.
It is observed that all waves slow down due to the viscous effects of the pore fluid. It is also
observed that the faster the wave is, the larger are effects of viscosity. It is also interesting to note
that the effects of viscosity are not significant in the HFR which reveals the fact that viscosity
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dominates in LFR. Comparison of Figs. 2b and 2c shows that the velocities of all the quasi waves
increase as the frequency shifts from LFR to HFR. The pattern of variation of phase velocities
with the phase directions remain unaffected in either case.

Fig. 2. Effects of viscosity of the pore fluid on the variation of phase velocities of quasi waves with the
direction of propagation (θ, φ) for Barium Sodium Niobate crystal of class 2; (a) without viscous effects,
(b) with viscous effects in the low frequency range, (c) with viscous effects in the high frequency range

The effects of electro-elastic interactions on the phase velocities of quasi waves are observed
for class 2 in Fig. 3. The phase velocity of qP2 wave increases due to piezoelectric interaction
while the effects are not significant in the case of other three waves.

Fig. 3. Effects of piezoelectricity on the variation of phase velocities of quasi waves with the direction of
propagation (θ, φ) for Barium Sodium Niobate crystal of class 2; (a) without effects of piezoelectricity,

(b) with effects of piezoelectricity

Figure 4 shows the variation of phase velocities of qP1, qP2, qS1 and qS2 waves with the
pore volume fraction in LFR and HFR, respectively, for class 2. It is observed that in the
LFR, the phase velocities of all waves decrease with an increase in porosity while they increase
monotonically by a very small amount with porosity in the HFR. The phase velocities of qP1,
qS1 and qS2 waves in the LFR become almost constant when the porosity is greater than 60%.
However, phase velocity of qP2 wave decreases even when the porosity is greater than 60%. Thus
the slowest wave is found to be more sensitive to the porosity of the medium.
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Fig. 4. Variation of phase velocities of quasi waves with porosity f for Barium sodium Niobate crystal
of class 2; (a) LFR, (b) HFR

4. Conclusion

In the present paper, wave propagation in a monoclinic porous piezoelectric material is studied
both analytically and numerically. The four complex roots of the obtained Christoffel equation
define the phase velocities of propagation of four stiffened quasi waves propagating in such
a medium. The variation of phase velocities of these waves with frequency, phase direction
and the porosity is observed numerically for a particular crystal Barium Sodium Niobate. The
phase velocities of all four waves increase with frequency. The phase velocities of all four waves
decrease with porosity in LFR which can be explained on the basis of percolation theory. The
electric-elastic interaction does not affect the behavior of phase velocities with porosity but the
magnitude of quasi P2 wave increases significantly.
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The present paper is concerned with the problem of scattering of the P-wave by two co-
-planer finite rigid strips placed symmetrically in an infinitely long orthotropic strip. Using
the Hilbert transform technique, the mixed boundary value problem has been reduced to
the solution of dual integral equations which has finally been reduced to the solution of a
Fredholm integral equation of the second kind. Solving this integral equation numerically,
stress intensity factors have been calculated at the inner and outer edges of the rigid strips,
and the vertical displacement outside the strips has been calculated and plotted graphically
to show the effect of material orthotropy.

Keywords: P-wave, Fourier transform, Hilbert transform, Fredholm integral equation, stress
intensity factor

1. Introduction

The dynamic interaction of rigid strips with an elastic isotropic or orthotropic medium is a
subject of considerable interest in mechanics. Dynamical analysis of this kind is of importance
to earth-quake engineering, machine, vibrations and seismology. The performance of engineered
systems is affected by inhomogeneities such as cracks and inclusions present in the material.
Cracks and rigid inclusions in an elastic material have become the subject of investigations.
Presently, the use of anisotropic materials is increasing due to their strength. The increasing use
of anisotropic media demands that the study should be extensive. A detailed reference of work
done on the determination of the dynamic stress field around a crack or inclusion in an elastic
solid was given by Sih (1977), Sih and Chen (1981), Chen (1978), Cinar (1983). However, in the
presence of finite boundaries, the problem becomes complicated since they involve additional
geometric parameters, describing the dimension of the solids. Forced vertical vibration of a
single strip was treated by Wickham (1977). Singh et al. (1983) solved the problem of diffraction
of a torsional wave by a circular rigid disc at the interface of two bonded dissimilar elastic
solids. In that paper, they discussed an iterative method to solve the Fredholm integral equation
of the second kind and described the stress intensity factor with the wave number. Mandal
et al. (1997, 1998) solved the problem of forced vibration of two and four rigid strips on a
semi-infinite elastic medium. Mandal et al. (1998) also treated the diffraction problem by four
rigid strips in an orthotropic medium. Interaction of elastic waves with a periodic array of the
coplanar Griffith crack in an orthotropic medium was discussed by Mandal et al. (1994). Das et
al. (1998) solved the problem of determining the stress intensity factor for an interfacial crack
between two orthotropic half planes bonded to a dissimilar orthotropic layer with a punch.
They reduced the problem to a system of simultaneous integral equations which were solved
by Chebyshev polynomials. The problem of two perfectly bonded dissimilar orthotropic strips
with an interfacial crack was studied by Li (2005). He derived the analytical expression for the
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stress intensity factor. Sarkar et al. (1995) solved the problem of diffraction of elastic waves
by three coplanar Griffith cracks in an orthotropic medium. Das (2002) solved the problem of
interaction between line cracks in an orthotropic layer. An elastostatic problem of an infinite
row of parallel cracks in an orthotropic medium was analyzed by Sinharoy (2013). Monfared and
Ayatollahi (2013) investigated the problem of determining the dynamic stress intensity factors of
multiple cracks in an orthotropic strip with a functionally graded materials coating. They solved
the problem by reducing it to a singular integral equation of the Cauchy type. The problem of
interaction of three interfacial Griffith cracks between bonded dissimilar orthotropic half planes
was studied by Mukherjee and Das (2007). Das et al. (2008) solved the problem of determining
the stress intensity factors due to symmetric edge cracks in an orthotropic strip under normal
loading. They derived an analytical expression for the stress intensity factor at the crack tip.
The problem of finding the stress intensity factors for two parallel interface cracks between a
nonhomogeneous bonding layer and two dissimilar orthotropic half-planes under tension was
studied by Itou (2012). Shear wave interaction with a pair of rigid strips in elastic strip was
analyzed by Pramanick et al. (1999). WU Da-zhi et al. (2006) considered the torsional vibration
problem of a rigid circular plate on a transversely isotropic saturated soil. Very recently Morteza
et al. (2010a,b) considered the vibration problem of a rigid circular disc on transversely isotropic
media. Diffraction of elastic waves by two parallel rigid strips in an infinite orthotropic medium
was analyzed by Sarkar et al. (1995).

In this paper, the diffraction of the elastic P-wave by two rigid strips embedded in an infinite
orthotropic strip is analyzed. Using the Hilbert transform technique, the mixed boundary value
problem has been reduced to the Fredholm integral equation of the second kind which has been
solved numerically by the Fox and Goodwin method (1953). Stress intensity factors at both
the edges of the strips have been calculated and shown graphically for different parameters and
materials. Finally, vertical displacement has been calculated outside the strips and shown by
3D-graphs.

2. Formulation of the problem

Let us consider an infinitely long orthotropic elastic strip of width 2h containing two coplanar
rigid strips embedded in it. The location of the strips are b ¬ |X| ¬ a, Y = 0, |Z| < ∞, with
reference to the cartesian co-ordinate axes (X,Y,Z). Normalizing all lengths with respect to a
and putting X/a = x, Y/a = y, Z/a = z, b/a = c, the locations of the rigid strips are defined
by c ¬ |x| ¬ 1, y = 0, |z| <∞ (Fig. 1).

Fig. 1. Geometry of the strips

Let a time harmonic wave given by u = 0 and v = v0e
i(ky−ωt), where k = aω/(cs

√
c22),

cs =
√
µ12/ρ with ρ being the density of the material, ω the circular frequency and v0 a constant,

travelling in the direction of the positive y-axis and be incident normally on the strips.
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The non-zero stress components τyy, τxy and τxx are given by

τyy
µ12
= c12

∂u

∂x
+ c22

∂v

∂y

τxy
µ12
=
∂u

∂y
+
∂v

∂x

τxx
µ12
= c11

∂u

∂x
+ c12

∂v

∂y
(2.1)

where u and v are displacement components and cij (i, j = 1, 2) are non-dimensional parameters
related to the engineering elastic constants Ei, µij and νij (i, j = 1, 2, 3) by the relations

c11 =
E1
µ12

(
1− ν212E2

E1

)
c22 =

E2
µ12

(
1− ν212E2

E1

)
= c11

E2
E1

c12 =
ν12E2
µ12

(
1− ν212E2

E1

)
= ν12c22 = ν21c11

(2.2)

for the generalized plane stress and

c11 =
E1
∆µ12

(1− ν23ν32) c22 =
E2
∆µ12

(1− ν13ν31)

c12 =
E1
∆µ12

(
ν21 +

ν13ν32E2
E1

)
=

E2
∆µ12

(
ν12 +

ν23ν31E1
E2

) (2.3)

where

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν13ν21ν32

for the plane strain. The constants Ei and νij satisfy Maxwell’s relation

νij
Ei
=
νji
Ej

(2.4)

Therefore, substituting u(x, y, t) = u(x, y)e−iωt and v(x, y, t) = v(x, y)e−iωt, our problem reduces
to the solution of the equations

c11
∂2u

∂x2
+
∂2u

∂y2
+ (1 + c12)

∂2v

∂x∂y
+ k2su = 0

c22
∂2v

∂y2
+
∂2v

∂x2
+ (1 + c12)

∂2u

∂x∂y
+ k2sv = 0

(2.5)

where k2s = a
2ω2/c2s .

Thus the problem is to find the stress distribution near the edges of the strips subject to the
following boundary conditions

v(x, 0+) = v(x, 0−) = −v0 c ¬ |x| ¬ 1 (2.6)

τyy(x, 0) = 0 |x| < c 1 < |x| < h (2.7)

u(x, 0) = 0 |x| < h (2.8)

τxx(±h, y) = 0 τxy(±h, y) = 0 (2.9)

Henceforth, the time factor e−iωt which is common to all field variables will be omitted in
the sequel.
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The solution to equations (2.5) can be taken as

u(x, y) =
2

π

∞∫

0

[
A1(ξ)e

−ν1|y| +A2(ξ)e
−ν2|y|] sin(ξx) dξ

+
2

π

∞∫

0

[
A3(ζ) sinh(ν3x) +A4(ζ) sinh(ν4x)

]
sin(ζy) dζ

v(x, y) =
2

π

∞∫

0

1

ξ

[
α1A1(ξ)e

−ν1|y| + α2A2(ξ)e
−ν2|y|] cos(ξx) dξ

+
2

π

∞∫

0

1

ζ

[
α3A3(ζ) cosh(ν3x) + α4A4(ζ) cosh(ν4x)

]
cos(ζy) dζ

(2.10)

where Ai(ξ) (i = 1, 2, 3, 4) are the unknown functions to be determined, ν
2
1 and ν

2
2 are the roots

of the equation

c22ν
4 +

{
(c212 + 2c12 − c11c22)ξ2 + (1 + c22)k2s

}
ν2 + (c11ξ

2 − k2s)(ξ2 − k2s) = 0 (2.11)

and ν23 , ν
2
4 are the roots of the equation

c11ν
4 +

{
(c212 + 2c12 − c11c22)ζ2 + (1 + c11)k2s

}
ν2 + (c22ζ

2 − k2s)(ζ2 − k2s) = 0 (2.12)

where

αi =






c11ξ
2 − k2s − ν2i
(1 + c12)νi

i = 1, 2

ζ2 − k2s − c11ν2i
(1 + c12)νi

i = 3, 4

(2.13)

From boundary condition (2.11), it is found that

A2(ξ) = −A1(ξ) (2.14)

Therefore, the displacements u, v and stresses τyy, τxy, τxx can be finally written as

u(x, y) =
2

π

∞∫

0

[
e−ν1|y| − e−ν2|y|]A1(ξ) sin(ξx) dξ

+
2

π

∞∫

0

[
A3(ζ) sinh(ν3x) +A4(ζ) sinh(ν4x)

]
sin(ζy) dζ

v(x, y) =
2

π

∞∫

0

1

ξ

[
α1e
−ν1|y| − α2e−ν2|y|]A1(ξ) cos(ξx) dξ

+
2

π

∞∫

0

1

ζ

[
α3A3(ζ) cosh(ν3x) + α4A4(ζ) cosh(ν4x)

]
cos(ζy) dζ

(2.15)
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and

τyy
µ12
=
2

π

{ ∞∫

0

[(
c12ξ − sgn (y)

c22α1ν1
ξ

)
e−ν1|y| −

(
c12ξ − sgn (y)

c22α2ν2
ξ

)
e−ν2|y|

]

·A1(ξ) cos(ξx) dξ +
∞∫

0

[
(c12ν3 − c22α3)A3(ζ) cosh(ν3x)

+ (c12ν4 − c22α4)A4(ζ) cosh(ν4x)
]
sin(ζy) dζ

}

τxy
µ12
= − 2

π

{ ∞∫

0

[
(ν1 + α1)e

−ν1y − (ν2 + α2)e−ν2y
]
A1(ξ) sin(ξx) dξ

+

∞∫

0

[(
ζ +

ν3α3
ζ

)
A3(ζ) sinh(ν3x)

+
(
ζ +

ν4α4
ζ

)
A4(ζ) sinh(ν4x)

]
cos(ζy) dζ

}
y > 0

τxx
µ12
=
2

π

{ ∞∫

0

[(
c11ξ −

c12α1ν1
ξ

)
e−ν1|y| −

(
c11ξ −

c12α2ν2
ξ

)
e−ν2|y|

]
A1(ξ) cos(ξx) dξ

+

∞∫

0

[
(c11ν3 − c12α3)A3(ζ) cosh(ν3x)

+ (c11ν4 − c12α4)A4(ζ) cosh(ν4x)
]
sin(ζy) dζ

}
y > 0

(2.16)

Boundary conditions (2.6) and (2.7) yield the following pair of dual integral equations

∞∫

0

1

ξ
[1 +H(ξ)]A(ξ) cos(ξx) dξ = p(x) c ¬ |x| ¬ 1

∞∫

0

A(ξ) cos(ξx) dξ = 0 |x| < c 1 < |x| < h

(2.17)

where

A(ξ) =
α1ν1 − α2ν2

ξ
A1(ξ)

H(ξ) =
( α1 − α2
α1ν1 − α2ν2

)ξ
d
− 1 → 0 as ξ → ∞

p(x) = − π
2c
v0 −
1

c

∞∫

0

1

ζ

[
α3A3(ζ) cosh(ν3x) + α4A4(ζ) cosh(ν4x)

]
dζ

d =
c11 +N1N2

N1N2(N1 +N2)

(2.18)

and

N21 =
1

2c22

[
−(c212 + 2c12 − c11c22) +

√
(c212 + 2c12 − c11c22)2 − 4c11c22

]

N22 =
1

2c22

[
−(c212 + 2c12 − c11c22)−

√
(c212 + 2c12 − c11c22)2 − 4c11c22

] (2.19)
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Using boundary conditions (2.9), A3(ζ) and A4(ζ) are expressed in terms of the function A(ξ)
as

M(ζ)A3(ζ) =
(
ζ +

α4ν4
ζ

)
i1(ζ) sinh(ν4h)− (c11ν4 − c12α4)i2(ζ) cosh(ν4h)

M(ζ)A4(ζ) = −
(
ζ +

α3ν3
ζ

)
i1(ζ) sinh(ν3h) + (c11ν3 − c12α3)i2(ζ) cosh(ν3h)

(2.20)

where

M(ζ) =
(
ζ +

α4ν4
ζ

)
(c11ν3 − c12α3) cosh(ν3h) sinh(ν4h)

−
(
ζ +

α3ν3
ζ

)
(c11ν4 − c12α4) sinh(ν3h) cosh(ν4h)

(2.21)

and

i1(ζ) =
2

π

∞∫

0

{ζ[c11ξ2 + c12(k2s + ν21)]
ν21 + ζ

2
− ζ[c11ξ

2 + c12(k
2
s + ν

2
2)]

ν22 + ζ
2

}A(ξ) cos(ξh)
ν21 − ν22

dξ

i2(ζ) = −
2

π

∞∫

0

(c12ν21 + c11ξ2 − k2s
ν21 + ζ

2
− c12ν

2
2 + c11ξ

2 − k2s
ν22 + ζ

2

)ξA(ξ) sin(ξh)
ν21 − ν22

dξ

(2.22)

3. Method of solution

In order to reduce dual integral equations (2.17) to a single Fredholm integral equation, let us
assume that

A(ξ) =

1∫

c

h(t2)

t
[1− cos(ξt)] dt (3.1)

where the unknown function h(t2) is to be determined.
Substituting A(ξ) from (3.1) into equations (2.17)2, we note that

∞∫

0

A(ξ) cos(ξx) dξ = π

1∫

c

h(t2)

t

[
δ(x)− 1

2
δ(x+ t)− 1

2
δ(|x− t|)

]
dt

so that equation (2.17)2 is automatically satisfied.
Again, the substitution of the value of A(ξ) from (3.1) into equation (2.17)1 yields

1

2

1∫

c

h(t2)

t
log

∣∣∣
x2 − t2
x2

∣∣∣ dt = p(x)−
1∫

c

h(t2)

t
dt

∞∫

0

ξ−1H(ξ) cos(ξx)[1 − cos(ξt)] dξ (3.2)

Differentiating both sides of equation (3.2) with respect to x and subsequently multiplying by
(−2x/π), we obtain

2

π

1∫

c

th(t2)

t2 − x2 dt

=
2x

π

1∫

c

h(t2)

t
dt

{
1

d

∞∫

0

1

ζ
[α3ν3A5(ζ) sinh(ν3x) + α4ν4A6(ζ) sinh(ν4x)] dζ

−
∞∫

0

H(ξ) sin(ξx)[1 − cos(ξt)] dξ
}

c ¬ |x| ¬ 1

(3.3)
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Using the Hilbert transform technique, the solution to integral equation (3.3) is given by

h(u2) +

1∫

c

h(t2)

t
[k1(u

2, t2) + k2(u
2, t2)] dt =

D√
(u2 − c2)(1 − u2)

(3.4)

where

k1(u
2, t2) =

4

π2d

√
u2 − c2
1− u2

1∫

c

√
1− x2
x2 − c2

x2

x2 − u2 dx

·
{ ∞∫

0

1

ζ
[α3ν3A5(ζ) sinh(ν3x) + α4ν4A6(ζ) sinh(ν4x)] dζ

}

k2(u
2, t2) = − 4

π2

√
u2 − c2
1− u2

1∫

c

√
1− x2
x2 − c2

x2 dx

x2 − u2
∞∫

0

H(ξ) sin(ξx)[1− cos(ξt)] dξ

A5(ζ) =
1

M(ζ)

[(
ζ +

α4ν4
ζ

)
i3(ζ) sinh(ν4h)− (c11ν4 − c12α4)i4(ζ) cosh(ν4h)

]

A6(ζ) = −
1

M(ζ)

[(
ζ +

α3ν3
ζ

)
i3(ζ) sinh(ν3h) + (c11ν3 − c12α3)i4(ζ) cosh(ν3h)

]

(3.5)

and

i3(ζ) =
2

π

∞∫

0

{ζ[c11ξ2 + c12(k2s + ν21 )]
ν21 + ζ

2
− ζ[c11ξ

2 + c12(k
2
s + ν

2
2)]

ν22 + ζ
2

} [1− cos(ξt)] cos(ξh)
ν21 − ν22

dξ

i4(ζ) = −
2

π

∞∫

0

(c12ν21 + c11ξ2 − k2s
ν21 + ζ

2
− c12ν

2
2 + c11ξ

2 − k2s
ν22 + ζ

2

)ξ[1− cos(ξt)]
ν21 − ν22

sin(ξh) dξ

(3.6)

In order to determine the arbitrary constant D, multiplying equation (3.2) by
x/
√
(x2 − c2)(1− x2) and integrating from c to 1 with respect to x, we obtain

1∫

c

h(u2)

u
du = − πv0

c log
∣∣∣1−c1+c

∣∣∣
− 4

π log
∣∣∣1−c1+c

∣∣∣

[ 1∫

c

xB1(x, t
2)√

(x2 − c2)(1− x2)
dx

+

1∫

c

h(t2)

t
dt

1∫

c

xB2(x, t
2)√

(x2 − c2)(1− x2)
dx

] (3.7)

where

B1(x, t
2) =

1

d

∞∫

0

1

ζ
[α3A5(ζ) cosh(ν3x) + α4A6(ζ) cosh(ν4x)] dζ

B2(x, t
2) =

∞∫

0

1

ξ
H(ξ) cos(ξx)[1 − cos(ξt)] dξ

(3.8)

Again, substituting h(u2) from equation (3.4) into equation (3.7) and simplifying, we obtain

D = − 2v0c

d log
∣∣∣1−c1+c

∣∣∣
− 8c

π2 log
∣∣∣1−c1+c

∣∣∣

1∫

c

h(t2)

t
dt

1∫

c

x[B1(x, t
2) +B2(x, t

2)]√
(x2 − c2)(1− x2)

dx

+
2c

π

1∫

c

h(t2)

t
dt

1∫

c

1

u
[k1(u

2, t2) + k2(u
2, t2)] du

(3.9)
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Eliminating D from equations (3.4) and (3.9) and simplifying, we obtain

√
(u2 − c2)(1− u2)h(u2) +

1∫

c

h(t2)

t
[ka(u

2, t2) + kb(u
2, t2) + kc(u

2, t2)] dt

= − 2v0c

d log
∣∣∣1−c1+c

∣∣∣

(3.10)

where

ka(u
2, t2) =

4

π2
(u2 − c2)

1∫

c

√
1− x2
x2 − c2

x2

x2 − u2
{ ∂

∂x
[B1(x, t

2) +B2(x, t
2)]
}
dx

kb(u
2, t2) =

8c

π2 log
∣∣∣1−c1+c

∣∣∣

1∫

c

x[B1(x, t
2) +B2(x, t

2)]√
(x2 − c2)(1 − x2)

dx

kc(u
2, t2) = − 8c

π3u

√
u2 − c2
1− u2

1∫

c

√
1− x2
x2 − c2

x2

x2 − u2
{ ∂

∂x
[B1(x, t

2) +B2(x, t
2)]
}
dx

(3.11)

Next, for further simplification, we put
√
(u2 − c2)(1 − u2)h(u2) = H(u2)

and make the substitution

u2 = c2 cos2 φ+ sin2 φ t2 = c2 cos2 θ + sin2 θ

into equation (3.10) which then reduces to the form

G(φ) +

π
2∫

0

G(θ)

c2 cos2 θ + sin2 θ
[k′a(φ, θ) + k

′
b(φ, θ) + k

′
c(φ, θ)] dθ = −

2v0c

d log
∣∣∣1−c1+c

∣∣∣
(3.12)

where

G(φ) = H(c2 cos2 φ+ sin2 φ)

G(θ) = H(c2 cos2 θ + sin2 θ)

k′a(φ, θ) = ka(c
2 cos2 φ+ sin2 φ, c2 cos2 θ + sin2 θ)

k′b(φ, θ) = kb(c
2 cos2 φ+ sin2 φ, c2 cos2 θ + sin2 θ)

k′c(φ, θ) = kc(c
2 cos2 φ+ sin2 φ, c2 cos2 θ + sin2 θ)

(3.13)

When h tends to infinity (h→∞), the medium becomes infinite. In this case, the expression
for p(x) given by equation (2.18)3 becomes p(x) = −(π/2c)v0, since A3(ζ) and A4(ζ) given by
equations (2.20)-(2.22) become zero.

A3(ζ) can be written as

A3(ζ) =
1

2M(ζ)

[(
ζ +

α4ν4
ζ

)
i1(ζ)(e

ν4h − e−ν4h)− (c11ν4 − c12α4)i2(ζ)(eν4h + e−ν4h)
]

where

M(ζ) =
1

4

[(
ζ +

α4ν4
ζ

)
(c11ν3 − c12α3)(eν3h + e−ν3h)(eν4h − e−ν4h)

−
(
ζ +

α3ν3
ζ

)
(c11ν4 − c12α4)(eν3h − e−ν3h)(eν4h + e−ν4h)

]
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Therefore,

A3(ζ) =
1

M1(ζ)

[(
ζ +

α4ν4
ζ

)
i1(ζ)(1 − e−2ν4h)− (c11ν4 − c12α4)i2(ζ)(1 + e−2ν4h)

]

and

M1(ζ) =
eν3h

2

[(
ζ +

α4ν4
ζ

)
(c11ν3 − c12α3)(1 + e−2ν3h)(1 − e−2ν4h)

−
(
ζ +

α3ν3
ζ

)
(c11ν4 − c12α4)(1− e−2ν3h)(1 + e−2ν4h)

]

As h→∞, M1(ζ)→∞ and therefore A3(ζ)→ 0. Similarly, A4(ζ)→ 0.
So in this case, dual integral equations (2.17)1 and (2.17)2 become

∞∫

0

1

ξ
[1 +H(ξ)]A(ξ) cos(ξx) dξ = − π

2c
v0 c ¬ |x| ¬ 1

∞∫

0

A(ξ) cos(ξx) dξ = 0 |x| < c |x| > 1

This problem has been analyzed in detail by Sarkar et al. (1995).

4. Quantities of physical interest

The stress τyy(x, y) for y → 0 in the neighbourhood of the strip can be found from equation
(2.16)1, and is given by

τyy(x, 0±) = ∓
2µ12c22
π

∞∫

0

A(ξ) cos(ξx) dξ c ¬ |x| ¬ 1 (4.1)

Now

∆τyy(x, 0) = τyy(x, 0+) − τyy(x, 0−) (4.2)

then

∆τyy(x, 0) = −
4

π
µ12c22

∞∫

0

A(ξ) cos(ξx) dξ (4.3)

Substituting the value of A(ξ) from equation (3.1) into equation (4.3), we get

∆τyy(x, 0) = 2µ12c22
h(x2)

x
(4.4)

Since

h(x2) =
1√

(x2 − c2)(1 − x2)H(x
2) x2 = c2 cos2 φ+ sin2 φ

equation (4.4) becomes

∆τyy(x, 0) =
2µ12c22G(φ)

x
√
(x2 − c2)(1− x2)

(4.5)
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So the stress intensity factors Nc and N1 at the two tips of the strip can be expressed as

Nc = lim
x→c+

[∆τyy(x, 0)
πc22µ12

√
x− c

]
=
2

π

G(0)

c
√
2c(1 − c2)

(4.6)

and

N1 = lim
x→1−

[∆τyy(x, 0)
πc22µ12

√
1− x

]
=
2

π

G
(
π
2

)

√
2(1 − c2)

(4.7)

Making c tend to zero, the two strips merge into one, and in that case

N1 =

√
2

π
G
(π
2

)

Now from equation (2.15)2 after substituting the value of A1(ξ) and using equation (3.1), we
get the vertical displacement outside the strip as

v(x, y) =
2

π

1∫

c

h(t2)

t
dt

{ ∞∫

0

(α1e
−ν1y − α2e−ν2y)

[1− cos(ξt)] cos(ξx)
α1ν1 − α2ν2

dξ

+

∞∫

0

1

ζ
[α3A5(ζ) cosh(ν3x) + α4A6(ζ) cosh(ν4x)] cos(ζy) dζ

} (4.8)

5. Numerical calculations and discussions

It is important to choose a numerical method of solving the Fredholm integral equation. The
Fox and Goodwin methods require that the definite integrals should be calculable by numerical
quadrature, using known formulae in the theory of finite differences, and Fredholm equations are
conveniently treated by solving simultaneous equations. The methods enable accurate solutions
to be obtained without a prohibitive expenditure of time and energy. The choice of an interval
is of course rather arbitrary. We want to keep to a minimum number of linear equations, but
the interval must not be large that the finite-difference equations are meaningless. Since the
differences are examined, the method guards against the possibility of obtaining wrong results
from this case. It also ensures that neither too few nor too many differences are retained in the
quadrature formulae.
The method of Fox and Goodwin (1953) has been used to solve integral equation (3.12)

numerically for different values of the dimensionless frequency ks, material strip width 2h and
separating distance of the strips c. The integral in (3.12) has been represented by a quadrature
formula involving values of the desired function G at pivotal points in the range of integration,
which leads to a set of algebraic linear simultaneous equations. The solution of the set of linear
algebraic equations gives the first approximation of the required pivotal values of G which has
been improved by the use of the difference correction technique. After solving integral equation
(3.12) for different values of engineering elastic constants of several orthotropic materials listed
in Table 1, the stress intensity factors (SIF), kc and k1 at both ends of the strip given by
equations (4.6) and (4.7) has been plotted against ks for different values of h and c and for
different materials. Instead of the real part of SIF, its mod value is taken because both shows
the same type of results.
In Fig. 2a and 4a, Nc (SIF, at the inner edge of the strip) and N1 (SIF, at the outer edge

of the strip) have been plotted against ks for h = 2.0 and h = 2.5 and for different strip lengths
(c = 0.2, 0.4, 0.6) for material type I. In Fig. 3a and 5a, Nc and N1 have been plotted against
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Table 1. Engineering elastic constants

E1 [Pa] E2 [Pa] µ12 [Pa] ν12

Type I E-type glass-epoxi composite 9.79 · 109 42.3 · 109 3.66 · 109 0.063
Type II Stainless steel-aluminium composite 79.76 · 109 85.91 · 109 30.02 · 109 0.31

ks for c = 0.4 and c = 0.6 and for different material strip widths (h = 2.0, 2.5, 3.0) for material
type I. The same set of parameters stated above for the graphs of Nc and N1 have been plotted
in Figs. 2b, 4b, 3b, 5b for material type II. For a particular value of material strip width h
(=2.0, 2.5), the value of Nc decreases initially and, after increasing again, it decreases with an
increase in ks for material type I (Fig. 2a), whereas for material type II, it is slowly decreasing
with an increase in ks (Fig. 2b) for different values of strip length c (=0.2, 0.4, 0.6). It is also
observed that with an increase in c, the value of Nc increases. When strip length c is fixed, the
value of Nc is higher for higher values of h (=2.0, 2.5, 3.0) (Fig. 3a and Fig. 3b) for both types of
materials. Figure 4 and 5 show that N1 has initial decreasing tendency and then increases with
an increase in ks for both the materials. For fixed c, Nc is higher when material strip width h
is higher. In all the cases, it is seen that as the length of the strip increases the value of N1
decreases.

Fig. 2. Stress intensity factor Nc verses frequency ks

Fig. 3. Stress intensity factor Nc verses frequency ks

Finally, in Fig. 6 and 7 the vertical displacement v(x, y) has been plotted outside the strips
(0 < x < c, 1 < x < h) for fixed values of h = 2.5, ks = 0.4 and c = 0.6 for both the
materials. In Fig. 6, v(x, y) has been plotted for the inner side of the strip (0 < x < c) and
in Fig. 7 for the outer side of the strip (1 < x < h). In Fig. 6a and 7a, it is observed that
the vertical displacement v(x, y) increases initially with an increment of the values of x and y,
then it decreases for material I. But in the case of Fig. 6b and 7b, it is seen that the vertical
displacement v(x, y) increases slowly with an increase in the values of x and y, then it decreases
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Fig. 4. Stress intensity factor N1 versus frequency ks

Fig. 5. Stress intensity factor N1 versus frequency ks

Fig. 6. Displacement |v(x, y)| versus distances (x, y)

Fig. 7. Displacement |v(x, y)| versus distances (x, y)
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for material II. In all cases, the wave like nature has been observed, and finally the displacement
tends to zero as (x, y)→∞, which satisfies the radiation condition.

6. Conclusions

The diffraction of the elastic P -wave by two rigid strips embedded in an infinite orthotropic strip
is investigated on two types of materials by using the integral equation technique. The governing
differential equation with constant coefficients with the boundary conditions becomes a mixed
boundary value problem. Then, the mixed boundary value problem is transformed into a pair of
dual integral equations with an unknown constant A(ξ). To reduce the dual integral equations
(2.17)1 and (2.17)2 to a single Fredholm integral equation, we assume the unknown constant A(ξ)
in the form of equation (3.1), so that equation (2.17)2 can be automatically satisfied. Also, it
has been found that the normal stress component τyy(x, 0) at the two tips of the strip has a
square root singularity at x = c and x = 1. The form of (3.1) has a square root type singularity
in it, which can be utilized to find stress singularities at the tips of the strips.
From all the graphs of SIF, it can be concluded that the SIF decreases gradually with

an increment of the frequency (ks), after reaching the minimum value, it increases slowly. In
all suggested cases, it is noted that the maximum value of the SIF at both tips of the strip for
material II is little higher than that for material I. The SIF can be arrested within a certain range,
which is very important with respect to growth of the crack. Finally, the vertical displacement
v(x, y) has been calculated outside the strips for both the materials. It has been observed the
wave like nature from all the 3D figures, which finally decreases as the distance increases.
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An analytical solution of a 3D transversely isotropic thermoelastic problem of a uniform
heat flow disturbed by a penny-shaped rigid sheet-like inclusion (anticrack) with some small
conductivity is obtained by using the potential theory method. The behaviour of thermal
stresses near the edge of the disc is analysed from the standpoint of the mechanics of fracture
initiation.

Keywords: transversely isotropic space, circular anticrack, heat flow, singular integral equ-
ations, thermal stress singularities

1. Introduction

The study of thermal stresses in solids containing foreign inhomogeneities has great importan-
ce for the evaluation of the strength of materials and structures which operate under thermal
actions. The rapid development of high-strength composite materials has driven researches to
take into account the influence of anisotropy in thermomechanical fields for fractured bodies.
In addition to cracks, rigid lamellate inclusions (also called anticracks, for brevity) are objects
around which stress concentrations occur, which will stimulate failure of materials. Most of rese-
arch works discuss 2D problems dealing with these defects. Owing to mathematical complexity,
only few publications on the subject within 3D statement of thermoelastic anticrack problems
can be found in the literature (see Kit and Khay, 1989; Stadnyk, 1994, 2011; Podil’chuk, 2001;
Chaudhuri, 2003; Kaczyński and Kozłowski, 2009; Kaczyński and Monastyrskyy, 2013).
This work treats a rigid penny-shaped inclusion obstructing a uniform perpendicular heat

flow in a transversely isotropic space. It may be regarded as a sequel to our papers (Kaczyński
and Monastyrskyy, 2009; Kaczyński, 2014; see also extensive references therein) in which a clas-
sical condition of thermal insulation of the inclusion faces was assumed. The present contribution
focuses on the determination of a stationary temperature field with more general thermal con-
dition by taking into account certain conductivity of a rigid inclusion. The associated problem
of induced thermal stresses is reduced to a two-dimensional singular equation with the unknown
normal stress discontinuity across inclusion faces, a closed-form solution to which is found by
use of Dyson and Galin theorems. Relations for the evaluation of stresses near the inclusion edge
are presented and interpreted from a fracture perspective. Moreover, thermal and mechanical
fields for thermally conductive and insulated anticracks are compared.

2. Thermoelastostatics of transversely isotropic materials

Let us recall the basic relations of uncoupled thermoelasticity for homogeneous transversely
isotropic materials. Referring to a Cartesian coordinate system (X1,X2,X3) and denoting the
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temperature, fluxes, displacements and stresses by T , qi, ui, σij, respectively, the governing
equations for an infinite transversely isotropic thermoelastic solid whose isotropic plane is per-
pendicular to the X3-axis and, in absence of body forces and heat sources, are (Ding et al., 2006;
Kaczyński, 2014)

T,γγ + k
−2
0 T,33 = 0

qα = −k1T,α q3 = −k3T,3
1

2
(c11 + c12)uγ,γα +

1

2
(c11 − c12)uα,γγ + c44uα,33 + (c13 + c44)u3,3α = β1T,α

(c13 + c44)uγ,γ3 + c44u3,γγ + c33u3,33 = β3T,3

σ3α = c44(uα,3 + u3,α)

σ33 = c13uγ,γ + c33u3,3 − β3T

σ12 =
1

2
(c11 − c12)(u1,2 + u2,1)

σ11 = c11u1,1 + c12u2,2 + c13u3,3 − β1T
σ22 = c12u1,1 + c11u2,2 + c13u3,3 − β1T

(2.1)

Moreover,

k0 =

√
k1
k3

β1 = (c11 + c12)α1 + c13α3 β3 = 2c13α1 + c33α3 (2.2)

In the equations given above, k1(α1) and k3(α3) denote the coefficients of conductivity (of
thermal expansion) in the plane isotropy and along the X3-axis of rotational material symmetry,
respectively, and c11, c12, c13, c33, c44 are five independent elastic constants. Indices i, j run
over 1, 2, 3 while indices α, γ run over 1, 2. Summation convention holds unless otherwise stated.
Subscripts preceded by a comma indicate partial differentiation with respect to the corresponding
coordinates.

3. Formulation of the anticrack problem

Consider a transversely isotropic space weakened by a penny-shaped rigid inclusion (anticrack)
subjected to a uniform steady-flow of heat q0 in the direction of the negative X3-axis as shown
in Fig. 1. The anticrack region S on the mid-plane of transverse isotropy x3 = 0 is denoted as

r ≡
√
x21 + x

2
2 ¬ a.

We are faced with the boundary-value value problem: find the fields T and ui suitable smooth
on R3 − S such that Eqs. (2.1) hold, subject to the following boundary conditions:
— thermal conditions taking into account the thermal conductivity within the anticrack S

— mechanical conditions for (x1, x2, x3 = 0
±) ∈ S with a small constant ε characterizing the

rigid vertical translation

u1 = u2 = 0 u3 = ε (3.1)

— thermal and mechanical conditions at infinity

q1 = q2 = 0 q3 = −q0 (q0 > 0)

σij = 0
(3.2)
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Fig. 1. A transversely isotropic space with a penny-shaped conductive anticrack subjected to a
perpendicular uniform flow

4. Solution

By means of the superposition principle, it is convenient to represent the solution to the anticrack
boundary-value problem as a sum of two components, namely

T = T (0) + T̃ ui = u
(0)
i + ũi σij = σ

(0)
ij + σ̃ij (4.1)

where the components attached by 0 describe the basic state of the defect-free solid, and the
components with the tilde represent perturbations due to the anticrack.

The results for the first 0-problem are found to be given by Kaczyński (2014)

T (0) =
q0
k3
x3

u(0)α =
β3q0

k3(2c13 + c33)
xαx3 u

(0)
3 =

β3q0
2k3(2c13 + c33)

(x23 − x21 − x22)

σ
(0)
ij = 0

(4.2)

Attention will be next drawn to the corrective solution of the perturbed problem. The distur-
bing thermal field T̃ , decaying at infinity, is determined by solving quasi-Laplace equation (2.1)1
with applying the following model expressions related to the rigid disc S, given from Kaczyński
and Monastyrskyy (2009)

T̃,3(x1, x2, x3 = 0
+)− T̃,3(x1, x2, x3 = 0−) = 0

T̃ (x1, x2, 0
+)− T̃ (x1, x2, 0−)− k3R(x1, x2)T̃,3(x1, x2, 0+) = q0R(x1, x2)

(4.3)

where R(x1, x2) is interpreted as the thermal anticrack resistance.

From the potential theory (Kellogg, 1953), the solution is expressed as follows

T̃ (x1, x2, x3) =
∂ω̃(x1, x2, z0)

∂z0

∣∣∣∣∣
z0=k0x3

(4.4)

with

ω̃(x1, x2, z0) = −
1

2π

∫∫

S

ω(ξ1, ξ2) dξ1 dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2 + z20

(4.5)
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Using the well-known property of a simple layer potential, the satisfaction of Eq. (4.3)2 leads
to an integro-differential singular equation of the Newton type for the unknown density of the
potential of the single layer ω(ξ1, ξ2)

2ω(x1, x2)−
√
k1k3R(x1, x2)

2π
∆

∫∫

S

ω(ξ1, ξ2) dξ1 dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2

= q0R(x1, x2) (4.6)

in which ∆ ≡ ∂2

∂x21
+ ∂2

∂x22
stands for the two-dimensional Laplace operator. Assuming next that

R(x1, x2) = R̃(r) = R0
√
a2 − r2 R0 > 0 (4.7)

an analytical solution to Eq. (4.6) is achieved in the form

ω(x1, x2) = ω̃(r) =
2q̃

π
√
k1k3

√
a2 − r2 (4.8)

with

q̃ = q0
(
1 +

4

π
√
k1k2R0

)−1
¬ q0 (4.9)

Inserting Eq. (4.8) into (4.5) and after integration we arrive at the following elementary
formulas for the main thermal potential ω̃ for x3  0 (see Fabrikant, 1989)

ω̃(x1, x2, z0) = −
q̃

2π
√
k1k3

[
(2a2 + 2z20 − r2) sin−1

a

l20
− 2a

2 − 3l210
a

√
l220 − a2

]
(4.10)

and, in view of Eqs. (4.4) and (2.1)2, for the temperature T̃ and heat fluxes q̃i

T̃ (x1, x2, x3) = −
2q̃

π
√
k1k3

(
k0x3 sin

−1 a
l20
−
√
a2 − l210

)

q̃α =
2q̃a2

π

√
k1
k3

xα

√
a2 − l210

l220(l
2
20 − l210)

q̃3 =
2q̃

π

(
sin−1

a

l20
−
a
√
l220 − a2

l220 − l210

) (4.11)

Here

l1 = l1(x3) =
1

2

[√
(r + a)2 + x23 −

√
(r − a)2 + x23

]
l10 = l1(z0)

l2 = l2(x3) =
1

2

[√
(r + a)2 + x23 +

√
(r − a)2 + x23

]
l20 = l2(z0)

(4.12)

In the inclusion plane x3 = 0
± (making use of the relations l10|x3=0 = min(a, r), l20|x3=0 =

max(a, r)), we obtain

T (r, 0±) =





± 2q̃

π
√
k1k3

√
a2 − r2 0 ¬ r ¬ a

0 r > a

qr(r, 0
±) = −k1

∂T (r, 0±)
∂r

=





±2q̃
π

√
k1
k3

r√
a2 − r2

0 ¬ r ¬ a

0 r > a

q3(r, 0
±) = −k3T,3(r, 0±) =






q̃ − q0 0 ¬ r < a

2q̃

π

(
sin−1

a

r
− a√

r2 − a2
)
− q0 r > a

(4.13)
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It follows from these formulas that the rigid inclusion acts as an obstruction to the given
heat flow, producing thermal local disturbances such as the jump of temperature T across the
inclusion plane and the infinite increase of the heat fluxes in the interior vicinity of the inclusion
edge.

Now we pass to the non-trivial perturbed elastic problem, affixed by the tilde and connected
with the determination of the induced state of stress and deformation resulting from the known
disturbed temperature T̃ = (∂ω̃/∂z0)|z0=k0x3 . Because of the anti-symmetry of the temperature
and stress system, and bearing in mind Eqs. (3.1), (4.1) and (4.2), it reduces to that of the half
space x3  0 subjected to the following mixed boundary conditions

ũα(x1, x2, x3 = 0
+) = 0 (x1, x2) ∈ R2

ũ3(x1, x2, x3 = 0
+) =

β3q0
2k3(2c13 + c33)

(x21 + x
2
2) + ε (x1, x2) ∈ S

(4.14)

and

σ̃33(x1, x2, x3 = 0
+) = 0 (x1, x2) ∈ R2 − S

ũi = O(|x|−1) |x| =
√
x21 + x

2
2 + x

2
3 →∞

(4.15)

Moreover, having found the distribution of the normal stress σ̃33|S+ ≡ q(x1, x2) in the region S,
the unknown rigid translation ε can be calculated from the equilibrium condition

∫∫

S

q(x1, x2) dx1 dx2 = 0 (4.16)

A solution to this problem was given by Kaczyński (2014). Here only the main idea and final
results with some modifications will be presented.

An efficient approach is based on the construction of harmonic potentials that satisfy gover-
ning equations (2.1)3,4 and are well suited to the above-mentioned anticrack boundary conditions.

We take the following displacement representation expressed by potentials φ̃α ≡ φ̃α(x1, x2, zα),
zα = tαx3, α = 1 or α = 2

ũα =

(
φ̃1 + φ̃2 + c1

∞∫

z0

ω̃(x1, x2, z0) dz0

)

,α

ũ3 = mαtα
∂φ̃α
∂zα
+ c2k0ω̃ (4.17)

with the potentials satisfying the harmonic equations

(
∆+

∂2

∂z2α

)
φ̃α = 0 α = 1, 2 (no sum on α) (4.18)

Here the constants mα, cα, tα are given in Appendix A of Kaczyński (2014). Note that the
general case t1 6= t2, tα 6= k0 is considered.
Next we put

φ̃α = (−1)αf̃(x1, x2, zα) + aα
∞∫

zα

ω̃(x1, x2, zα) dzα α = 1, 2 (no sum on α) (4.19)

where

(
∆+

∂

∂x23

)
f̃(x1, x2, x3) = 0 (4.20)
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and choose the constants aα in order to satisfy a part of boundary conditions (3.1). In this
way, the perturbed anticrack problem reduces to the determination of a potential function f̃ in
the upper half-space, decaying at infinity and satisfying the following mixed conditions on the
X1X2-plane

∂f̃(x1, x2, x3)

∂x3

∣∣∣∣∣
x3=0+

=
1

m2t2 −m1t1
f0(x1, x2) (x1, x2) ∈ S

∂2f̃(x1, x2, x3)

∂x23

∣∣∣∣∣
x3=0+

= 0 (x1, x2) ∈ R2 − S
(4.21)

where

f0(x1, x2) = f̃0(r) = −β∗ω̃(r, 0) +Ar2 + ε =
β∗q̃a2

2
√
k1k3
+ ε+

(
A− β∗q̃

4
√
k1k3

)
r2 (4.22)

with the following constants

β∗ = c2k0 − aαmαtα a1 =
c1(1 +m2)− δ3

c44

m1 −m2
a2 =

−c1(1 +m1) + δ3
c44

m1 −m2
δ3 = β3 − c1c13 − c2c33k20 A =

β3q0
2k3(2c13 + c33)

(4.23)

It is known from the potential theory (Kellogg, 1953) that the solution to this problem is
represented by the Newton potential of a simple layer distributed over the region S as

f̃(x1, x2, x3) =
1

2πc44(m1 −m2)

∫∫

S

q(ξ1, ξ2) ln
(√
(x1 − ξ1)2 + (x2 − ξ2)2 + x23 + x3

)
dξ1 dξ2

(4.24)

where the unknown layer density q can be identified as the normal stress σ̃33|S+ . Taking con-
sideration of the first condition in Eq. (4.21), the following governing two-dimensional singular
integral equation (similar to that arising in classical contact mechanics) is obtained

H̃

∫∫

S

q(ξ1, ξ2) dξ1 dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2

= −f0(x1, x2) (x1, x2) ∈ S (4.25)

with f0 given by Eq. (4.22) and H̃ defined by

H̃ =
m2t2 −m1t1
2πc44(m2 −m1)

=

√
c11c33 + c44

2π
√
c44c33

√
(
√
c11c33 − c13)(

√
c11c33 + c13 + 2c44)

(4.26)

Taking a solution to this equation in the form (using Dyson’s and Galin’s theorems)

q(x1, x2) = q̃(r) =
p̃0a
2 − p̃2r2

H̃π2
√
a2 − r2

0 ¬ r < a (4.27)

and substituting it into Eq. (4.25), after appropriate calculations and utilizing Eq. (4.16), we
find the unknown coefficients p̃0 and p̃2 as well as the rigid vertical displacement ε

p̃2 = 4A−
β∗q̃√
k1k3

p̃0 =
2

3
p̃2 ε = −a2

(
2A− 1

3
p̃2
)

(4.28)
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The primary harmonic potential to the thermoelastic perturbed problem is obtained by
calculating integral (4.24) with the use of Eq. (4.27). From the results given in Fabrikant (1989,
1991), it is found that for x3  0

f̃(r, x3) = −
p̃2

3π2(m2t2 −m1t1)
[
x3 sin

−1 a
l2

(
a2 − 3

2
r2 + x23

)

+
√
a2 − l21

(5
2
r2 +
1

3
a2 − l22 −

11

6
l21

)] (4.29)

The expressions for the full-space stress-displacement field can then be obtained from Eq.
(4.29) by simple differentiation, with all results being in terms of elementary functions. As
easily seen, the solution is axially symmetric. In particular, let us focus on some quantities in
the anticrack plane which are presented below

u1(r, 0
±) = u2(r, 0

±) = 0 0 ¬ r <∞

u3(r, 0
±) =






ε 0 ¬ r < a

2

π
(ε+Ar2) sin−1

a

r
− 2Aa

π

√
r2 − a2 −Ar2 r > a

σ33(r, 0
±) =





± p̃2

3H̃π2
2a2 − 3r2√
a2 − r2

0 ¬ r < a

0 r > a

σ3r(r, 0
±) =





β̃r 0 ¬ r < a

2

π

(
β̃r sin−1

a

r
− β̃0a

3

r
√
r2 − a2

− β̃a
√
r2 − a2
r

)
r > a

(4.30)

where

β̃0 = p̃2
c44(
√
c11c33 − c13)

3(
√
c11c33 + c44)

β̃ =
c44
2

[
3β̃0 − q0

δ̃ + (c1 − c2)k0√
k1k2

]

δ̃ =
(
√
c11c33 − c13)(2c1c44 − δ3)

c33c44(t1 + t2)
− c1(t1 + t2)

(4.31)

5. Analysis of the results and conclusions

The analytical results obtained in the previous Section are useful in interpreting the mechanics
of fracture initiation at the rim of the rigid inclusion. In view of linear fracture mechanics, two
failure mechanisms are possible: mode II (edge-sliding) of fracture deformation characterized by
the stress intensity factor

KII = lim
r→a+

√
2π(r − a)σ3r(r, 0) = −

2β̃0a
√
a√

π
(5.1)

and the possible detachment of the material from the inclusion surface described by the stress
intensity coefficients

S±I = lim
r→a−

√
2π(a− r)σ33(r, 0±) = ∓

p̃2a
√
a

3π
√
πH̃

(5.2)

These parameters can be used in conjunction with a suitable failure criterion.
In conclusion, by taking into account some interior conductivity of the anticrack, we ha-

ve pointed out that by letting R0 → ∞ (see Eqs. (4.6) and (4.7)) the present solution with
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q̃ = q0 (cf. Eq. (4.9)) reduces to that dealing with the case of a thermally insulated rigid circular
inclusion obtained in Kaczyński (2014). Moreover, comparison between thermally conductive
and insulated anticracks in a transversely isotropic (in particular, isotropic) space has shown
only quantitative changes in the temperature and stress distributions.
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In this paper, the nonlinear dynamic response in a wind turbine system is considered and
the quantification of uncertainty effects on the variability of this nonlinear response is inve-
stigated. Under dynamic conditions, a lumped model with 12 degrees of freedom is proposed
taking into account the uncertainty associated to the power coefficient of the input aerody-
namic torque. The dynamic response of the two-stage spur gear system is obtained using
ODE45 solver of Matlab. The Polynomial Chaos (PC) method is used to introduce the un-
certainties on the proposed model. A comparison between the two dynamic responses given
by the proposed lumped dynamic model takes into account the uncertainty. It is perfor-
med on the existed model without uncertainty. Thus, the efficiency and robustness of the
proposed new methodology is evaluated.

Keywords: gearbox, uncertainty, power coefficient, random parameter, polynomial chaos

1. Introduction

Recently, due to increasing demand for energy, there has been a rapid development of wind
turbines all over the world. This constant growth in energy consumption and polluting effects
associated are in the heart of the issue of the environmental care, so that an increasing attention is
being paid to wind energy. Generally, wind turbines are one of the machines that take advantage
of wind energy to generate electrical power.

During preliminary design of dynamic systems, many physical parameters can have a signifi-
cant effect on the vibration response of the system. Indeed, some features can generate nonlinear
responses need to be taken into account. The aerodynamic complexities are involved in optimi-
sation of wind turbine systems in an attempt to maximise its performance. Their aerodynamic
and dynamic properties have a decisive influence on the entire system. These properties are
responsible of rotor capability to convert wind energy into mechanical energy. Thus, the overall
efficiency of the energy conversion in the wind turbine is determined.

Several studies have been developed to study the dynamic behaviour of wind turbines (Abbo-
udi et al., 2011; Helsen et al., 2011; Zhu et al., 2014). However, the modelling of these mechanical
systems admits strong dispersions and uncertainties. In this context, design parameters may vary
in an uncertain way during the manufacturing monitoring or operation. Thus, the response may
change in some uncertain way. Therefore, the formulation of dynamical systems requires intro-
ducing uncertainties into input parameters. In this field, Wei et al. (2015) studied the dynamic
response of a geared transmission system of a wind turbine with uncertainty.

To take into account the uncertainties, different methods are reported in the literature, such
as Monte Carlo simulations (Rubinstein, 1981; Kalos and Whitlock, 1986), Polynomial Chaos
Expansion (Wiener, 1938; Ghanem and Spanos, 1991; Fisher and Bhattacharya, 2008).
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The main idea of the polynomial chaos methods is to transform the stochastic differential
equations by means of an intrusive Galerkin projection (Ghanem and Spanos, 1991; Jakerman
and Roberts, 2009) into a deterministic set of differential equations. Moreover, mechanical sys-
tems operate under parametric and external excitation uncertainties. Such as reported in the
literature, the Polynomial Chaos approach is the efficient method comparing to the Monte Carlo
approach for quantifying the effects of such uncertainties on the system response.

The capabilities of polynomial chaos have been illustrated in numerous fields, such as envi-
ronmental and biological problems (Isukapalli et al., 1998a,b), fluid dynamics (Pettersson et al.,
2009; Chantrasmi et al., 2066), multibody dynamic systems (Sandu et al., 2006a,b).

In this study, the main originality is that the treatment of uncertainties in the dynamic
analysis of a wind turbine system is proposed. The dynamic behaviour of nonlinear systems
is investigated in order to analyse the robustness and reliability. For that, a dynamic lumped
model of a two-stage gear system is developed in this paper. Three-bladed horizontal-axis wind
turbines are considered with 12 degrees of freedom in the presence of the aerodynamic torque
that is highlighted by an uncertain coefficient of performance belonging to a well-defined inte-
rval. Finally, the main goal of this work is to determine the dynamic behaviour of the gearbox
transmission system of the wind turbine generated by uncertainty parameters.

2. Dynamic modelling

The studied system is a wind turbine. The increased speed mechanism is a two-stage gear system.
It is composed by two trains of gearings supposed without manufacturing defects. In order to
make this system more reliable, resistant and sustainable, a numerical analysis of the mechanical
system is developed to study the dynamic response.

Figure 1 shows the dynamic model of the two stages gear system. The power transmission
of the wind turbine is composed of the two-stage spur gear system. It is presented by three
main blocks. The first block (j = 1) includes wheel 11 representing the turbine, main shaft and
gear 12. The second block (j = 2) includes gear 21, intermediate flexible shaft and gear 22.
Finally, the third block (j = 3) is composed by gear 31, intermediate shaft and wheel 32 which
is the representative wheel of the electrical generator.

Every block j is supported by a flexible bearing having two stiffnesses: the bending stiff-
ness kxj and the traction-compression stiffness kyj . Each intermediate flexible shaft has a ne-
gligible mass compared to the turbine and the generator. It admits some torsional stiffness kθj .
Wheels (11) and (32) characterise respectively the motor side (inertia I11) and the receiving side
(inertia I32). Angular displacements of each wheel about their rotation axes are denoted by θji.
The indices j = 1 to 3 designates the number of the block and the indices i = 1 to 2 designates
the two wheels of each block.

Besides, the linear displacements of the bearing denoted by xj and yj are measured in the
plane which is orthogonal to the axes of rotation of the wheels. Each pair of wheels is linked
through flexible teeth. This flexibility causes displacements. The gear-mesh contacts are modelled
by a linear time varying stiffness k(t) along the lines of action in the spur gear stage.

The gear mesh stiffness can be modelled by a sinusoid wave or by a square wave depending
on the type of gear employed (for spur gear the stiffness function is a square wave, for helical
gear it is a sinusoid wave function). So the periodic square wave form is the most representative
for description of operation of gear systems (Fig. 2).

The terms εα are the contacts ratio corresponding to the two gear mesh contacts and Te is
the mesh period.

The teeth deflection, denoted by δi(t), is projected along the line of action because the gear
mesh stiffness is defined along this direction.
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Fig. 1. Components of the wind turbine system

Fig. 2. Modelling of the mesh stiffness fluctuation

The first deflection δ1(t) along the first gear-mesh contact is given by

δ1(t) = (x1 − x2) sinα1 + (y1 − y2) cosα1 + rb12θ12 + rb21θ21 (2.1)

while the deflection δ2(t) can be written by

δ2(t) = (x2 − x3) sinα2 + (−y2 + y3) cosα2 + rb22θ22 + rb31θ31 (2.2)

while αn represents the pressure angle (generally equal to 20
◦) and rbji are the base radii of the

wheels.

3. Aerodynamic torque

The maximisation of the power coefficient presents a fundamental role in the wind turbine
design to optimise the extraction of energy and to increase the efficiency (Beltran et al., 2011;
Buckspan, 2012). The power coefficient is defined by the ratio of power available on the primary
shaft and the power of wind. The optimum design of the aerodynamic unit of a wind turbine
can be achieved from considering uncertainty of the power coefficient.

For the wind turbine system studied in this paper, we consider that the rotor is composed
of three blades removed by an angle of 120◦ (Gebreslassie et al., 2013) and connected by a hub,
which houses the system for regulating the angular speed.
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The rotor is presented by wheel (11) rotating with some angular velocity and have an input
aerodynamic torque to the power transmission system such as shown in Fig. 1.
Sloth et al. (2011) considered that the power in the wind depends on the wind speed, air

density, and the swept area. Here, the aerodynamic torque is expressed by the following equation
(Lei et al., 2013)

Caero = ρairAR
3Ω2Cp (3.1)

where ρair represents the air density, A and R are the area and the radius of the rotor, respec-
tively, Ω is the angular velocity and Cp is the power coefficient.
The power coefficient for the existing model is assumed deterministic by the following empi-

rical expression (Abboudi et al., 2011)

Cp = 0.44
(125
λ
− 6.94

)
e
16.5
λ (3.2)

where λ = ΩR/V (t) and V (t) is the wind velocity.

4. Formulation of equations of motion

The Lagrange formalism leads to the set of differential equations governing the system motion

MẌ+ (Ks +K(t))X = F(Cp) (4.1)

The generalised vector of coordinates X is defined by

X(t) = [x1, y1, x2, y2, x3, y3, θ11, θ12, θ21, θ22, θ31, θ32]
T (4.2)

The matrix M representing the global mass matrix is expressed by

M =

[
ML 0
0 MA

]

ML = diag (m1,m1,m2,m2,m3,m3) MA = diag (I11, I12, I21, I22, I31, I32)

(4.3)

where mj is the mass of the block j and Iji is the inertia.
The matrix Ks is the average stiffness matrix of the structure defined by

Ks =

[
Kp 0
0 Kθ

]
(4.4)

where Kp represents the bearing stiffness and Kθ represents the torsional stiffness matrix of
shafts

Kp = diag (kx1, ky1, kx2, ky2, kx3, ky3)

Kθ =




kθ1 −kθ1 0 0 0 0
−kθ1 kθ1 0 0 0 0
0 0 kθ2 −kθ2 0 0
0 0 −kθ2 kθ2 0 0
0 0 0 0 kθ3 −kθ3
0 0 0 0 −kθ3 kθ3




(4.5)

The matrix K(t) is the gear mesh stiffness matrix

K(t) = Km +Kv(t) (4.6)
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Each gear mesh stiffness variation is approximately modelled by the function K(t). It is
composed of an average component Km and a variable component Kv(t)

Kv(t) =

{
Kmin if t < ta

Kmax else
where ta = (2− εα)Te (4.7)

The external force vector F can be written by

F = [0, 0, 0, 0, 0, 0, Caero , 0, 0, 0, 0,−Cr ]T (4.8)

where Cr presents the receiving torque. It is defined by the aerodynamic torque Caero divided
by the gear ratio GR expressed by

GR =
(Z12Z22
Z21Z31

)
(4.9)

5. Modal analysis and dynamic response

The technological and dimensional parameters of the two-stage gear system (Abboudi et al.,
2011) are summarised in Table 1.

Table 1. System parameters

Description Symbol Value Units

Gear material density (42CrMo4) ρ 7860 Kg/m3

Rotor diameter D 12 m

Bending stiffness kxj 7 · 108 N/m

Traction stiffness – compression kyj 6 · 108 N/m

Average mesh stiffness km 2 · 108 N/m

Torsional stiffness of the shaft kθj 5 · 106 Nm/rad

Number of teeth Z(12), Z(21) 72, 18 –
Z(22), Z(31) 54, 18 –

Module of teeth m 0.016 m

Contact ratio εα1-εα2 1.67-1.64 –

In this contribution, the modal analysis focuses on the dynamic properties of system under
vibrational excitation is considered. The goal of the modal analysis is to determine the natural
mode vibration and frequencies of a structure. Thus, the stiffness matrix of the model is assumed
to be the average matrix in order to determine the eigenvalue and modal vibration of the system.
The dynamic system response is different at each natural frequency. A null eigenvalue indicates
rigid body motion. The dashed lines indicate the initial wheel positions.
Figure 3 represents the reference position and some eigen modes of the two-stage gear system.

The fifth mode (mode of pure translation) is relative to the fifth eigen value wp5 = 4600 rad/s.
The first mode (mode of pure rotation) characterises the rigid body motion. Finally, the tenth
mode is relative to the tenth eigen value wp10 = 40700 rad/s, in fact this mode is a combined
mode of translation and rotation.
In order to compare the two models with and without uncertainty, the power coefficient of

the aerodynamic torque is considered without uncertainty in this Section. The Newmark method
is employed to resolve the equations of motion obtained by the Lagrange formalism.
Figure 4 presents evolution of the displacements of the first (input) and the third (output)

bearings. The figures show that the bearing dynamic behaviour is symmetric according to the
y direction as a function of the x direction: y = f(x).



606 M. Tounsi et al.

Fig. 3. Mode shapes of the gear system; (a) reference position, (b) pure rotation mode (rigid body
motion), (c) pure translation mode (f5 = 740Hz), (d) combined mode (f10 = 6460Hz)

Fig. 4. Displacements of the first and third bearing; (a) first bearing, (b) third bearing

Figure 5 presents the fluctuation of deflections of the first and second tooth. These deflections
are due to teeth flexibility. The deflection has an amplitude in the order of 10−5m.

Fig. 5. Fluctuation of deflections in the first and second stage; (a) First stage; (b) second stage

6. Application of the polynomial chaos method

The fundamental idea of this approach is to establish a separation between the stochastic com-
ponents of a random function and its deterministic components. The random process of interest
is approximated by sums of orthogonal polynomial chaos of random independent variables. In
this context, any uncertain parameter can be viewed as a second order random process. The-
refore, the second order random process z can be expanded in terms of orthogonal polynomial
chaos as (Nechak et al., 2011)
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z =
∞∑

j=0

zjφj(ξ) (6.1)

where ξ is a vector of standard normal random variables with the known joint density func-
tion W (ξ), zj are stochastic modes of the random process z and φj are orthogonal polynomial
functions satisfying the orthogonally relation

〈φiφj〉 =
∫
φi(ξ)φj(ξ)W (ξ) dξ (6.2)

where 〈·〉 means the internal product operator and W (ξ) is the probability density function
(PDF) of random variables that make up the vector ξ. The PDF (Xiu and Karniadakis, 2002) acts
as a weighting function in the orthogonally relation for φj(ξ). Therefore, the type of orthogonal
expansion polynomials depends on the nature of the stochastic process through the PDF of the
random variables that describe the probability space. In practice, the generalised polynomial
chaos expansion is truncated to a finite number of terms P . The truncation of the infinite series
is necessary to keep the problem computationally feasible. In this work, we will truncate the
series in such a way that all expansion polynomials up to a certain maximum degree, denoted
by p, are included. The number of terms (P+1) in the expansion now follows from this maximum
degree r and the dimensionality n of the random vector according to

P =
(r + n)!

r!n!
(6.3)

Then, the computing of z is transformed into the problem of finding the coefficients zj of its
truncated expansion. The intrusive and non-intrusive approaches are defined to calculate these
coefficients called stochastic modes. The non-intrusive approach is shown to be more efficient
than the intrusive approach. This approach requires simulations that correspond to particular
samples of the random variables and needs no modifications of the stochastic model, contrary
to the instructive approach.
The system in this work is equivalently expressed as follows

MQ̈+K(t)Q = F(Cp) (6.4)

A representation in the state space can reduce the order of the system to get a first order
system, and it can be written as follows

q̇(t) = Aq(t) + f(q(t), Cp) (6.5)

The robust analysis is based on the system representation in the phase space defined by the
displacements and velocities

q(t) = [θ11, θ̇11, θ12, θ̇12, θ21, θ̇21, θ22, θ̇22, θ31, θ̇31, θ32, θ̇32,

x1, ẋ1, x2, ẋ2, x3, ẋ3, y1, ẏ1, y2, ẏ2, y3, ẏ3]
T

(6.6)

The coefficient of performance of the aerodynamic torque is supposed a random variable
according to a uniform distribution law defined as follows

Cp(ξ) =
b+ a

2
+
b− a
2

ξ (6.7)

According to the state of the art, the Legendre polynomials are the best suited to deal with
uniform uncertainties. Here ξ is distributed uniformly within the orthogonally interval [−1, 1]
of the Legendre polynomials. It models the uncertainty of the parameter Cp in the interval
[a, b] = [0.35, 0.45].
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The Legendre polynomials calculated using the recurrence relation are as follows

(n+ 1)Ln+1(x) = (2n + 1)xLn(x)− nLn−1(x) L0(x) = 1 L1(x) = x (6.8)

The decomposing of the random in the Legendre polynomial basis using the Galerkin pro-
jection allows generating a non-linear deterministic differential equation system

θ̈11,l = −
kθ1
Im
(θ11,l − θ12,l) +

1

〈L2l (ξ)〉
ρAR3

Im

p∑

j=0

p∑

k=0

θ̇11,j θ̇11,k〈Cp(ξ), Lj(ξ), Lk(ξ), Ll(ξ)〉

θ̈12,l =
kθ1
I1
(θ11,l − θ12,l)−

Rb1
I1

K1(t)δ1,l

θ̈21,l =
kθ2
I2
(−θ21,l + θ22,l)−

Rb2
I2

K1(t)δ1,l

θ̈22,l =
kθ2
I3
(θ21,l − θ22,l) +

Rb3
I3

K2(t)δ2,l

θ̈31,l =
kθ3
I4
(−θ31,l + θ32,l) +

Rb4
I4

K2(t)δ2,l

θ̈32,l =
kθ3
Ir
(θ31,l − θ32,l)−

1

〈L2l (ξ)〉
ρAR3

Ir
p∑

j=0

p∑

k=0

θ̇11,j θ̇11,k〈Cp(ξ)Lj(ξ)Lk(ξ)Ll(ξ)〉
1

GR

(6.9)

and

ẍ1 = −
kx1
M1

x1,l +
sinϕ1
M1

K1(t)δ1,l

ẍ2 = −
kx2
M2

x2,l −
sinϕ1
M2

K1(t)δ1,l −K2(t)
sinϕ2
M2

δ2,l

ẍ3 = −
kx3
M3

x3,l +K2(t)
sinϕ2
M3

δ2,l

ÿ1 = −
ky1
M1

y1,l −
cosϕ1
M1

K1(t)δ1,l

ÿ2 = −
ky2
M2

y2,l +
cosϕ1
M2

K1(t)δ1,l +
cosϕ2
M2

K2(t)δ2,l

ÿ3 = −
ky3
M3

y3,l −
cosϕ2
M3

K2(t)δ2,l

(6.10)

7. Uncertainty in the dynamic response of the two stages gear system

In this Section, the dynamic behaviour of the two stage gear transmission system is investigated.
The sesults are presented using the polynomial chaos method. The PC results are compared with
the results of the deterministic system derived in Section 5.

Figures 6 and 7 represent the mean value and standard deviation of the input angular
displacement θ11(t) and the linear displacement x1(t), respectively. The signal is random and it
fluctuates around the boundary conditions (zero value). The standard deviation allows predicting
the variation domain around the average value of the response. The mean value and the standard
deviation of the dynamic displacement have the same order of amplitude.
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Fig. 6. Instantaneous mean value and standard deviation of θ11(t); (a) mean value,
(b) standard deviation

Fig. 7. Instantaneous mean value and standard deviation of x1(t); (a) mean value,
(b) standard deviation

Figure 8 represents deflection of the first and the second tooth. The signal fluctuates around
the zero value with an amplitude of the in order to 10−3. The signal is sinusoidal and have the
same form of the deterministic model (Fig. 5), therefore, the polynomial chaos results provide a
very good accuracy. In the case of uncertainty, at each time t, the performance coefficient varies
randomly in the range of [0.35, 0.45]. By contrast, it is constant in the case without uncertainty
(deterministic model). So, there are many curves of teeth deflection relative to each performance
coefficient. Here, Fig. 8, including Fig. 5, presents a more accurate range.

Fig. 8. Fluctuation of teeth deflection; (a) first bearing, (b) second bearing
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The fluctuation of the aerodynamic torque with consideration of the uncertainty according to
the power coefficient is plotted in Fig. 9. The signal is sinusoidal and the amplitude is increasing
between 0 and 60Nm.

Fig. 9. Fluctuation of the aerodynamic torque

The results presented in Fig. 10 are found through orbits of the shaft. The orbits are con-
structed by using displacements in the x- and y-directions. Figure 10 shows the evolution of
orbits for the first and third bearing with a set of the random parameter defined previously. The
bearings behave in an arbitrary way, which is not observed in the case in the model without
uncertainty (Fig. 4).

Fig. 10. Evolutions of bearings displacements y = f(x); (a) first bearing, (b) third bearing

8. Conclusions

The probabilistic dynamic response of a wind turbine system witha two-stage gearbox trans-
mission system generated by an unceartain input aerodynamic torque has been incestigated. A
new application of the polynomial chaos (PC) method is derived to study the influence of the
input uncertainty parameter. The system structural dynamic response is presented using the
polynomial chaos theory. Therefore, a set of mathematical equations is developed in order to
predict the dynamic behavior of the two-stage spur gear system. Results of the uncertain model
using the PC method are compared with the deterministic model.

The results suggest that the polynomial chaos method takes into account the uncertainty
with a good efficiency. So, the PC approach can be considered as an efficient tool to take into
account unceartianties in the study of dynamic behaviour of gearbox systems.
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Perfect and spiral models of carbon nanotubes (CNTs) have been simulated based on the
finite element method and their vibrational and buckling behavior has been investigated. In
order to evaluate their natural frequency and critical buckling load, computational tests have
been conducted. It has been concluded that the existence of any geometrical modification in
the configuration of perfect CNTs results in a remarkable reduction in the natural frequency
and critical buckling load of CNTs. It has been also revealed that the analytical solutions
are in good agreement with the finite element simulation results in the cases of perfect and
spiral CNTs.
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1. Introduction

The industrial application of carbon nanotubes (CNTs) is continuously increasing due to their
outstanding physical properties. Since their discovery (Iijima, 1991), these nanostructures have
attracted worldwide attention. CNTs are unique because of their outstanding mechanical and
physical properties such as strength, lightness and good conductivity (Dai et al., 1996; Saito et
al., 1997; Niu et al., 1997). The investigation of CNTs can be divided into two groups, i.e. expe-
rimental and computational approaches. Molecular dynamics (MD) and continuum mechanics
techniques such as the finite element method (FEM) have been the most popular approaches to
study the mechanical behavior of these nano-materials. In the following, the results of several
studies on vibrational characteristics and buckling behavior of CNTs are presented.

Previous investigations (Arghavan and Singh, 2011) conducted a numerical study on free and
forced vibrations of single-walled carbon nanotubes (SWCNTs). They applied a simple approach
so that the proximity of the mathematical model to the actual atomic structure of the CNT was
considerably retained. Their results revealed that the appearance of these modes of vibration
in the eigenvectors and eigenvalues were indistinguishable. It was concluded that in the case of
zigzag nanotubes, the axial bending and torsional modes appeared to be decoupled whereas the
armchair nanotubes showed coupling between such modes. Then, the vibrational behavior of two-
and three-junctioned CNTs was investigated with different geometries and boundary conditions
(Seyyed Fakhrabadi et al., 2012). The authors applied a molecular mechanics approach to analyze
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the mentioned CNTs. They finally obtained natural frequencies and their corresponding mode
shapes of two–junctioned CNTs with different diameters and lengths. After that, the natural
frequency of CNTs was investigated (Ghavamian and Öchsner, 2013). They simulated numerous
forms of CNTs from single to 5-walled ones in their perfect form based on the FEM. Then, they
evaluated natural frequencies of the CNTs analytically and through the FEM and compared
their findings. Then, some specific defects were introduced to the perfect models and their
vibrational behavior and the influence of these defects on the vibrational stability of CNTs were
studied. They finally concluded that the existence and development of any type of defects in the
configuration of CNTs reduce the natural frequency and vibrational stability of perfect CNTs.
A study on the impact of vacancy defects on critical buckling loads and strains in CNTs was
conducted under axial compression (Parvaneh et al., 2009). Their results showed that vacancy
defects in CNTs can most likely be modeled as cutouts of the shells. They finally compared their
results of the structural model with those from MD simulations in which the outputs were in
good agreement with the present model. The buckling characteristics of several curved forms of
SWCNTs was investigated performing MD simulations (Wong and Vijayaraghavan, 2012). They
concluded that the performance of the CNT under compression can be changed by an inclusion
of a curvature along the tube axis. The effect of defects on the buckling behavior of CNTs
was investigated by Ghavamian and Öchsner (2012). Their study was based on the FEM. In
detail, they modeled two basic CNTs in their perfect form. Then the buckling behavior of CNTs
was evaluated by comparing their critical loads obtained from the simulation and analytical
calculations. They concluded that the existence of any curvature in the structure of nanotubes
decreases their buckling strength. The aim of the actual research is to continue the previous
investigations and to study vibrational and buckling behavior of spiral CNTs.

As most of the investigations have been performed on perfect CNTs, it is necessary to
pay more attention to geometrical imperfections, e.g. twists and spirals of CNTs, in order to
realistically examine their mechanical properties (see Fig. 1). Spiral deformations were reported
in (Faria et al., 2013; Liuyue et al., 2013; Faria et al., 2013) where the CNTs revealed a shape
similar to a spring which is deformed around its longitudinal axis. The purpose of this research is
to derive computational models of CNTs and investigate their vibrational and buckling behavior.

Fig. 1. General view of a spiral CNT

2. Methodology

2.1. Geometric definition

The atomic structure of CNTs can be imagined as a graphene sheet that has been rolled
into a tube. The thickness of the tube wall is generally considered to be 0.34 nm, which is very
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close to that of a graphene sheet (Li and Chou, 2003; To, 2006). These nano-particles possess a
length of over 10µm and diameters ranging from 0.4 to 3.0 nm.
We followed the modeling method which was first proposed by Li and Chou (2003) where the

theory of classical structural mechanics was extended to the modeling of CNTs. It was assumed
that CNTs, when subjected to loading, behave like space-frame structures. Based on Fig. 2,
the bonds between carbon atoms are considered as connecting load-carrying generalized beam
members, while the carbon atoms act as joints of the members.

Fig. 2. Front view and single ring of a SWCNT as a space-frame structure

The configuration of CNTs in this study has been generated by the CoNTub software (Mel-
chor and Dobado, 2004; Melchor et al., 2011), a computer program for determining the coordi-
nates of CNTs. Then, the finite element analyses have been conducted in order to investigate
the vibrational and buckling behavior of different types of perfect and spiral CNTs.

2.2. Boundary conditions

Vibrational and bucking behavior of perfect and spiral CNTs under cantilevered boundary
conditions are investigated, where for the vibrational behavior one end is fully fixed and the
other end is completely free; and for the buckling behavior one end is fully fixed and the other
end is exposed to a compressive axial load. Different angles for spiral CNTs have been taken
into consideration, as shown in Fig. 3.

3. Results and discussion

In order to evaluate the critical buckling load of CNTs, the numerical finite element approach
allows the introduction of arbitrary compressive point loads to one of the CNT’s ends. The simu-
lation of the vibrational behavior does not require the introduction of any loads. The obtained
numerical finite element results are compared to simple analytical predictions to check if these
simple design equations provide reasonable values.

3.1. Analytical approach to the vibrational behavior

The natural frequency is the frequency of a vibrating system at which the system oscillates at
a greater amplitude. This phenomenon occurs because of the existence of resonance. The natural
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Fig. 3. Spiral CNT with (a) 2◦, (b) 42◦ and (c) 62◦ twisting angle

frequency is mostly investigated to examine the vibrational response of structural members. The
first natural frequency of a fixed-free helical spring is defined by the following analytical equation
(Renno and Mace, 2012)

fn =
1

4

√
k

m
(3.1)

where m and k are the value of mass per unit of the spring and the spring rate, respectively. In
the case of spiral CNTs, we assumed an average value for the diameter as the whole structure
does not possess a constant diameter along its length. The value of the mass per unit length m
can be obtained from the following equation

m =
mtotal

ltotal
(3.2)

where mtotal is the total mass of the CNT carbon atoms and ltotal is the total length of the
nanotube. Figure 4 illustrates the first five natural frequencies of a spiral CNT obtained from
the numerical finite element simulation.

Fig. 4. First five eigenmodes of a spiral CNT
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3.2. Analytical approach to the buckling behavior

The phenomenon of buckling is in its simplest form a particular kind of elastic instability
in a slender configuration that occurs under certain compressive loads. In the basic theory
of elasticity, the critical buckling deflection of a compressive spring is presented by Eq. (3.3)
(Pearson, 1982) as

δcr
Lf
= 0.812

[
1±

√
1− 6.87

(2Dm

Lf

)2
]

(3.3)

where Lf is the free length or unloaded length of the spring, Dm is the mean diameter of the
spring, and δcr is the critical deflection of the spring.

Figure 5 shows a spiral CNT under the cantilevered boundary condition in its original and
buckled shape obtained from the numerical finite element calculation.

Fig. 5. A spiral CNT’s first mode under buckling load in the original and buckled form with the
cantilevered boundary condition

It should be indicated that the proposed approach in this paper deals with the evaluation
of mechanical properties, i.e. vibrational and buckling behavior of spiral CNTs, whereby the
CNTs are deformed as a spring around their axis. By manipulating the twisting angle of these
spiral CNTs from 02◦ to 102◦, the behavior of different models with different conditions could
be studied. This study tried to continue and broaden the investigations on only slightly twisted
CNTs around their straight vertical axis.

It could be shown that the computational and analytical values of the natural frequency as
well as critical buckling load of perfect CNTs are reduced by introducing spiral imperfections
to the configuration of these perfect nano-structures, as illustrated in Fig. 6. Comparing all
cases, it is clear that a decrease in the natural frequency and the critical buckling load is
more visible in the case of armchair spiral CNTs. Figure 6a-c shows a decrease in the natural
frequency of armchair, zigzag and chiral CNTs as a result of increasing the twisting angle of
spiral configurations. It is clear that the natural frequency of all CNTs reduces to less than
12GHz at the angle of 102◦. Figure 6d-f illustrates a significant change in the critical buckling
load of armchair, zigzag and chiral models by increasing the twisting angle of spiral CNTs.
Based on the obtained calculations, it is concluded that the finite element values are in good
agreement with analytical results, where the maximum difference for the natural frequency and
critical buckling load is 17 and 23%, respectively.
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Fig. 6. Change in the natural frequency with different twisting angles for (a) armchair, (b) zigzag and
(c) chiral spiral CNTs. Change in the critical buckling load with different twisting angles for

(d) armchair, (e) zigzag and (f) chiral spiral CNTs

4. Conclusions

In this study, perfect and spiral CNTs (armchair, zigzag and chiral) have been simulated and
their vibrational and buckling behavior has been studied through performing computational tests
with cantilevered boundary condition. Both computational and analytical calculations have been
compared in the cases of perfect and spiral CNTs. It has been shown that the finite element
simulation are in good agreement with the analytical solutions in the case of perfect and spiral
CNTs. It has been shown that in all cases, the analytical values are slightly smaller than the
computational results. It has been also concluded that the existence of any spiral imperfection
in the configuration of perfect CNTs results in a significant reduction in the natural frequency
and critical buckling load of these nano-configurations.
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The dynamic response and isolation performance of a Quasi-Zero-Stiffness (QZS) vibration
isolator using inclined springs as negative stiffness correctors under random excitation are
presented in this paper. The probabilistic linearization method is employed to determine
the dynamic response of the QZS vibration isolator and compared with the exact solution
based on the Fokker-Planck-Kolmogorov (FPK) equation and the equivalent linearization
method. Two performance indexes (Mean Square Relative Displacement (MSRD) and Mean
Square Acceleration (MSA)) are considered to evaluate the isolation performance of the QZS
vibration isolator under random excitation and compared with the equivalent linear vibration
isolator. The results show that the MSRD of the QZS vibration isolator is always lower than
the equivalent linear vibration isolator, while the MSA of the QZS vibration isolator can be
larger or lower than the equivalent linear vibration isolator based on the values of damping
ratio and spectral density of the random excitation.

Keywords: vibration isolator, quasi-zero-stiffness, random excitation, dynamic analysis,
performance analysis

1. Introduction

Nonlinear vibration isolators with Quasi-Zero-Stiffness (QZS) characteristic (Ibrahim, 2008) ha-
ve been developed to improve the vibration isolation performance of passive linear vibration
isolators and have drawn much attention in the engineering industry since they can provide
lower vibration isolation frequency without sacrificing the load bearing capacity. The QZS vi-
bration isolator usually comprises of a load bearing elastic element providing positive stiffness
and special mechanisms providing negative stiffness named as negative stiffness correctors. Ala-
buzhev et al. (1989) investigated the effect of negative stiffness correctors and summarized many
prototypes of QZS vibration isolators. Carrella et al. (2007), Kovacic et al. (2008) and Hao and
Cao et al. (2014) considered a QZS vibration isolator by using inclined springs as negative stif-
fness correctors and studied the static and dynamic characteristics theoretically. Le and Ahn
(2011) built a QZS vibration isolator composed of a positive stiffness mount and two symmetric
negative stiffness structures for improving vibration isolation performance of the vehicle seat.
Robertson et al. (2009), Zhou and Liu (2010) and Xu et al. (2013) used electromagnetic springs
or magnetic springs as negative stiffness correctors to build a QZS vibration isolator and studied
the static and dynamic characteristics detailedly. Liu et al. (2013) designed a QZS vibration
isolator by using Euler buckled beams as negative stiffness correctors and analyzed the dynamic
behavior theoretically. Shaw et al. (2013) used bistable composite plates as negative stiffness
correctors to form a QZS vibration isolator and investigated the dynamic response theoretically
and experimentally.
In most of the above mentioned researches, the dynamic response and vibration isolation

performance of the QZS vibration isolators under harmonic excitation have been investigated in
detail. The QZS vibration isolator can also endure shock excitation or random excitation, which
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are common in the practical engineering. Liu et al. (2013) and Wang et al. (2014) considered the
performance of the QZS vibration isolators under shock excitation systematically. But the per-
formance of the QZS vibration isolator subjected to random excitation has been rarely discussed
in detail. Linear vibration isolators under random excitation were studied fully by Harris and
Piersol (2002). Lyon (1960, 1961) investigated vibration statistics of a randomly excited hard-
spring oscillator and obtained an expression of the joint density of displacement and velocity.
Klein (1964) considered the random excitation of a nonlinear system with tangent elasticity
characteristics and studied the dynamic behavior of the nonlinear system in detail. Kirk (1988)
compared dynamic performances of three different kinds of nonlinear vibration isolators with
cubic hard, cubic soft and tangent stiffness comprehensively. Shin (2014) did experimental in-
vestigation of the vibration transmissibility of a magnet-spring vibration isolator under random
excitation.
A number of approximated analytic methods have been developed to study the dynamic

response of nonlinear vibration isolators under random excitation, such as the method based
on the Fokker-Planck-Kolmogorov (FPK) equation (Lin, 1967), equivalent linearization method
(Caughey, 1963), partial linearization method (Elishakoff and Cai, 1993), dissipation energy
balancing and weighted residuals method (Cai and Lin, 1988), and cumulant-neglect closure
method (Wu and Lin, 1984). In this paper, the probabilistic linearization method (Polidori and
Beck, 1996; Polidori et al., 2000) is used. The probabilistic linearization method finds a linear
vibration system which best approximates the true nonlinear vibration system and minimizes
the error of the FPK equation rather than the stochastic differential equation, it can yield simple
expressions to determine the desired probabilistic characteristics of the dynamic response of the
nonlinear vibration system.
The organization of this paper is as follows. A QZS vibration isolator using inclined springs

as negative stiffness correctors (Carrella et al., 2007) is presented and a brief static analysis of the
QZS vibration isolator is shown in Section 2. In Section 3, a brief description of the probabilistic
linearization method is introduced, the dynamic response of the QZS vibration isolator under
random excitation using this method is obtained and compared with the exact solution based
on the FPK equation and the equivalent linearization method. In Section 4, two performance
indexes are considered to evaluate the isolation performance of the QZS vibration isolator and
compared with an equivalent linear vibration isolator. Conclusions are drawn in Section 5.

2. Static analysis of a QZS vibration isolator

A QZS vibration isolator comprised of a vertical spring used as the load bearing element and
inclined springs used as negative stiffness correctors is shown in Fig. 1. Figure 1 also shows when
loading a mass m, the system is balanced at the static equilibrium position, and the inclined
springs are in the horizontal position. The stiffness of the vertical and inclined springs are Kv

and Kh; the initial length of the inclined springs is l0 and the length when they are in the
horizontal position is l; the damping coefficient of the damper is c; x is the displacement of the
mass from the static equilibrium position and y is the base excitation with random input.
The force-displacement and stiffness-displacement relationships of the QZS vibration isolator

are given as

F = Kv(x−y)+2Kh

(
1− l0√

x2 + l2

)
(x−y) K = Kv+2Kh−

2Khl0l
2

√
[(x− y)2 + l2]3

(2.1)

Equation (2.1) can be written in non-dimensional form as

F̂ = z + 2k
(
1− 1√

z2(1− l̂2) + l̂2

)
z K̂ = 1 + 2k − 2kl̂2√

[z2(1− l̂2) + l̂2]3
(2.2)
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Fig. 1. Model of a QZS vibration isolator

where z = (x − y)/xs, F̂ = F/(Kvxs), l̂ = l/l0, k = Kh/Kv, K̂ = K/Kv , xs =
√
l20 − l2 is the

static equilibrium displacement.
The non-dimensional stiffness of the QZS vibration isolator at the static equilibrium position

can be obtained by substituting z = 0 into Eq. (2.2)2

K̂s = 1 + 2k
(
1− 1

l̂

)
(2.3)

If the stiffness of the QZS vibration isolator is zero at the static equilibrium position, the
QZS characteristic can be achieved and then the value of l̂ is given as

l̂QZS =
2k

1 + 2k
(2.4)

The non-dimensional force-displacement and stiffness-displacement curves of the QZS vibra-
tion isolator for various values of l̂ when k = 1 are shown in Fig. 2. It can be seen that when
l̂ = l̂QZS, the positive stiffness of the vertical spring is balanced by the negative stiffness provided
by the inclined springs at the static equilibrium position, then the QZS characteristic can be
achieved. When l̂ < l̂QZS, the stiffness of the QZS vibration isolator is negative in the neigh-
borhood of the static equilibrium position which is an undesirable condition in the engineering
practice. When l̂ > l̂QZS, the stiffness of the QZS vibration isolator maintains a small positive

value at the static equilibrium position. So in order to keep the stiffness positive, l̂ should be
greater than or equal to l̂QZS.

Fig. 2. Non-dimensional force-displacement and stiffness-displacement curves

When the amplitude of the displacement is small, the non-dimensional force and stiffness
can be expanded as a Taylor series at the static equilibrium position z = 0 for simplicity

F̂a(z) =
(
1− 2k1− l̂

l̂

)
z + k

1− l̂2
l̂3

z3 = αz + γz3 K̂a(x̂) = α+ 3γz
2

α = 1− 2k1 − l̂
l̂

γ = k
1− l̂2

l̂3

(2.5)
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The dynamic equation of the QZS vibration isolator under random base excitation using a
third-order Taylor series expansion is given as

mẍ+ c(ẋ− ẏ) + αKv(x− y) + γKv
(x− y)3
x2s

= 0 (2.6)

where the dots denote derivatives with respect to time t. Equation (2.6) can be written in
non-dimensional form as

z′′ + 2ζz′ + z + λz3 = f(T ) (2.7)

where ζ = c/(2mwn), λ = γ/α, wn =
√
αKv/m, T = wnt, f(T ) = −y′′/xs. The primes denote

derivatives with respect to T . When the base excitation is random excitation, the mathematical
expression of the non-dimensional function f(T ) can be expressed as

f(T ) =
√
S0n(T ) (2.8)

where n(T ) is a stationary zero-mean Gaussian white noise with E[n(T )n(T + τ)] = δ(τ) and
S0 is the spectral density. Then, Eq. (2.7) can be written as

z′′ + 2ζz′ + z + λz3 =
√
S0n(T ) (2.9)

3. Response of the QZS vibration isolator under random excitation

The response of the QZS vibration isolator under random excitation is obtained by using the
probabilistic linearization method. The probabilistic linearization method finds an equivalent
linear vibration system whose stationary probability density function best fits the FPK equation
of the nonlinear vibration system. Consider the Itô stochastic differential equation

dz(T ) = g(z, T )dT + h(z, T )dw(T ) (3.1)

where z ∈ Rn, g(z, T ) ∈ Rn, h(z, T ) ∈ Rn×m and w(T ) ∈ Rm is a normalized Wiener process
with E[(wi(T1)−wi(T2))(wj(T1)−wj(T2))] = |T1−T2|δij . The FPK equation is a linear equation
governing the evolution of the state transition probability density function p(z, T |z0, T0) of the
system, which is given as

∂

∂T
p(z, T |z0, T0) = L(z, T )p(z, T |z0, T0) (3.2)

where L(z, T ) is the forward Kolmogorov operator expressed as

L(z, T )ϕ(z, T ) = −
n∑

i=1

∂

∂zi
(gi(z, T )ϕ(z, T )) +

1

2

n∑

i=1

n∑

j=1

∂

∂zi

∂

∂zj
(bij(z, T )ϕ(z, T )) (3.3)

where b(z, T ) = h(z, T )hT (z, T ) ∈ Rn×n. The equivalent linear vibration system used to appro-
ximate Eq. (3.1) is defined as

dz(T ) = Aeq(σ)z(T )dT +Beq(σ)dw(T ) (3.4)

where Aeq(σ) and Beq(σ) are the matrices of appropriate dimensions and σ is a parameter vector
of the equivalent linear vibration system.
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Define Lnl(z) and Llin(z|σ) as the forward Kolmogorov operators of the nonlinear vibration
system and equivalent linear vibration system respectively. Let pnl(z) and plin(z|σ) be stationary
solutions of their corresponding FPK equations, then gives

Lnl(z)pnl(z) = 0 Llin(z|σ)plin(z|σ) = 0 (3.5)

where plin(z|σ) is the Gaussian probability density function of the equivalent linear vibration
system and depends on the parameter vector σ. The main objective of the probabilistic lineari-
zation method is to find a probability density plin(z|σ) to satisfy the following condition

Lnl(z)plin(z|σ) ≈ 0 (3.6)

The criterion for making this condition is chosen as

min
σ
‖Lnl(z)plin(z|σ)‖ (3.7)

where the norm is a standard or weighted ℜ2 norm. For any two functions: f(z), g(z) : Rn → R,
the standard ℜ2 inner product of these two functions is defined as

〈f, g〉 =
∫

Rn

f(z)g(z) dz (3.8)

For any weighted function µ(z) > 0, a weighted inner product of these two functions is
defined as

〈f, g〉µ =
∫

Rn

f(z)g(z)µ(z) dz (3.9)

So a standard ℜ2 norm and weighted ℜ2 norm of the criterion can be obtained

‖Lnl(z)plin(z|σ)‖2ℜ2 =
∫

Rn

(Lnl(z)plin(z|σ))2 dz

‖Lnl(z)plin(z|σ)‖2ℜ2(µ) =
∫

Rn

(Lnl(z)plin(z|σ))2µ(z) dz
(3.10)

The weighted function µ(z) is chosen to put emphasis in the approximations to the tails
of the probability density function of the nonlinear vibration system, which is known to be
non-Gaussian for the nonlinear vibration system.
The exact probability density function of the nonlinear vibration system based on the FPK

equation expressed by Eq. (2.9) is given by

p(z1, z2) =

√
4ζλ/(πS0)

eεK1/4(ε)
exp

[
−4ζ
S0

(1
2
z21 +

1

4
λz21 +

1

2
z22

)]
(3.11)

where z1 = z, z2 = z
′, ε = ζ/(2λS0) and K1/4 is a modified Bessel function of the second kind.

Rewriting Eq. (2.9) in form of Eq. (3.1), gives

[
dz1(T )
dz2(T )

]
=

[
z2

−2ζz2 − z1 − rz31

]
dT +

[
0√
S0

]
dw(T ) (3.12)

The associated equivalent linear vibration system is obtained as
[
dz1(T )
dz2(T )

]
=

[
0 1
−w2eq −2ζeq

] [
z1
z2

]
dT +

[
0√
S0

]
dw(T ) (3.13)
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The stationary probability density function of the equivalent linear vibration system can be
obtained as the following two terms

plin(z|w2wq, ζeq) =
4ζeqweq
2πS0

exp
[
−
(2ζeqw2eq

S0
z21 +

2ζeq
S0

z22

)]

plin(z|σ, σz2) =
1

2πσσz2
exp

[
−
( z21
2σ2
+

z22
2σ2z2

)] (3.14)

Since the damping ratio of the nonlinear vibration system is linear, the probability density
function of pnl(z2) is a Gaussian probability density function, then Eq. (3.14)2 can be obtained
as a function of the parameter σ

plin(z|σ) =
1

2πσσz2
exp

[
−
( z21
2σ2
+

z22
2σ2z2

)]
(3.15)

where σ2z2 = S0/(4ζ). The forward Kolmogorov operators of the nonlinear vibration system and
the probabilistic linearization method criterion are given by

Lnl(z)p(z) =
S0
2

∂2p(z)

∂z22
− ∂

∂z1
[z2p(z)] +

∂

∂z2
[(2ζz2 + z1 + λz

3
1)p(z)]

min
σ
‖Lnl(z)plin(z|σ)‖

(3.16)

Using the standard ℜ2 norm, Eqs. (3.16) can be written as

Lnl(z)plin(z|σ) =
[( S0
2σ4z2

− 2ζ
σ2z2

)
z22 +

( z1
σ2z1
− z1
σ2z2
− λz31
σ2z2

)
z2 + 2ζ −

S0
2σ2z2

)
plin(z|σ)

min
σ
‖Lnl(z)plin(z|σ)‖2ℜ2 =

15λ2

64πσ3z2
σ5 +

3λ

16πσ3z2
σ3 +

1

16π

(
− 3λ
σz2
+
1

σ3z2

)
σ

+
[( 3
4π
ζ2 − 1

8π

) 1
σz2
− 3ζS0
8πσ3z2

+
3S20
64πσ5z2

] 1
σ
+

σz2
16πσ3

(3.17)

To minimize the criterion, let ∂minσ ‖Lnl(z)plin(z|σ)‖2ℜ2/∂σ = 0, then σ can be obtained
numerically.

σz can also be obtained by using the equivalent linearization method, then it gives

σ2z =

√
ζ2 + 3ζλS0 − ζ
6ζλ

(3.18)

Figure 3 shows the probability density function p(z) of the QZS vibration isolator using
different analytical methods. It can be seen that both the probabilistic linearization method and
equivalent linearization method give good results in the tails of the probability density function,
but the errors become larger in the peak value areas of the probability density function and the
probabilistic linearization method gives better results than the equivalent linearization method.
When l̂ increases, the parameter α increases and γ decreases, which indicates that the nonlinear
parameter λ becomes smaller, the errors of both methods become smaller in the peak value areas
of the probability density function.

4. Performance of the QZS vibration isolator under random excitation

The performance of the QZS vibration isolator under random excitation is evaluated by two
performance indexes, which are defined as follows:
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Fig. 3. Probability density function p(z) of the QZS vibration isolator using different analytic methods
(ζ = 0.02, S0 = 0.05)

(1) Mean square relative displacement (MSRD) E(z2),

(2) Mean square acceleration (MSA) E(z′′2).

It is also of interest to compare the isolation performance of the QZS vibration isolator with
an equivalent linear vibration isolator with the same load bearing capacity. Since the QZS vi-
bration isolator is comprised of the load bearing element and negative stiffness correctors, the
equivalent linear vibration isolator is the QZS vibration isolator with the negative stiffness cor-
rectors removed, then the natural frequency and damping ratio of the equivalent linear vibration
isolator can be obtained

wl =
wn√
α

ζl =
√
αζ (4.1)

4.1. Mean square relative displacement (MSRD)

The MSRD can be obtained by using both the probabilistic linearization method and equ-
ivalent linearization method, which can be clearly seen in Eq. (3.17) and Eq. (3.18). The MSRD
obtained by the probabilistic linearization method can be improved by using a weighted func-
tion. The weighted function µ(z) = 1 + z2 is used in calculating E(z2). Although the chosen
weighted function can be arbitrary, this particular function is chosen for three reasons:

(1) Give more weight to the tails of the probability density function p(z), as the probability
density function p(z) for small values of z is not as important when calculating MSRD.

(2) The weighted function should not significantly increase the computation complexity.

(3) It seems reasonable to include a z2 term in calculating E(z2). Then the weighted ℜ2 norm
of the criterion combining Eq. (3.10)2 and Eq. (3.17)1 can be obtained

min
σ
‖Lnl(z)plin(z|σ)‖2ℜ2(µ) =

105λ2

128πσ3z2
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15(λ2 + 2λ)
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+
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8π
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− 3
16π

) 1
σz2
+
( 1
16π
− 3
16π

ζS0
) 1
σ3z2
+
3S20
128πσ5z2

]
σ

+
[3σz2
32π
+
( 3
4π
ζ2 − 1

8π

) 1
σz2
− 3ζS0
8πσ3z2

+
3S20
64πσ5z2

] 1
σ
+

σz2
16πσ3

(4.2)

To minimize the criterion, let ∂minσ ‖Lnl(z)plin(z|σ)‖2ℜ2(µ)/∂σ = 0, then σ can be obtained
numerically.
Figure 4 shows the MSRD curves of the QZS vibration isolator using different analytical

methods. The exact solutions can be determined by integrating Eq. (3.11) directly using the
numerical method. It can be seen that the probabilistic linearization method overestimates the
MSRD, while the equivalent linearization method underestimates it. The weighted probabilistic
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Fig. 4. MSRD curves of the QZS vibration isolator using different analytical methods
(ζ = 0.02, S0 = 0.05)

linearization method gives better results with the numerical results than the other two analytical
methods.
The MSRD curves of the QZS vibration isolator for different values of damping ratio and

spectral density of the random excitation using the weighted probabilistic linearization method
are shown in Fig. 5. The MSRD curves of the equivalent linear vibration isolator are also plotted
in the same figure for comparison, which are plotted in the thinner lines. The MSRD of the
equivalent linear vibration isolator is given as

σ2zl =
S0
4ζl
=

S0
4
√
αζ

(4.3)

Fig. 5. MSRD curves of the QZS vibration isolator for different values of damping ratio and spectral
density of the random excitation

The MSRD of the QZS vibration isolator is always lower than the equivalent linear vibration
isolator, which indicates that the QZS vibration isolator can achieve a better isolation perfor-
mance for the MSRD case. With an increase in the damping ratio ζ or a decrease in the spectral
density S0, the MSRD of both vibration isolators decreases. Also when the length ratio l̂ incre-
ases, the parameter α increases, γ decreases and the nonlinear parameter λ becomes smaller,
then the MSRD of the equivalent linear vibration isolator decreases, while the MSRD of the
QZS vibration isolator increases with an increase in the length ratio l̂.

4.2. Mean square acceleration (MSA)

The MSA is an important index for investigating the overall effects of various parameters on
the response of the vibration isolator. The MSA can be obtained from Eq. (2.9)

E(z′′2) = 4ζ2E(z′2) + E(z2) + 2γE(z4) + γ2E(z6) (4.4)
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The MSA can be determined by using both the probabilistic linearization method and equ-
ivalent linearization method. Using these two methods, Eq. (4.4) can be transformed as

E(z′′2) = ζS0 + σ
2 + 6γσ4 + 15γ2σ6 (4.5)

where E(z2) = σ2 is determined differently for these two methods. The MSA obtained by the
probabilistic linearization method can be improved by using a weighted function. In this case,
the weighted function µ(z) = 1+ (x1z+x2z

3)2 is chosen in calculating E(z′′2), where x1 and x2
are larger values in order to put more weight to the tails of the probability density function
because of the σ2, σ4 and σ6 terms exist when it determines E(z′′2). Then the weighted ℜ2
norm of the criterion can be obtained

min
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(4.6)

To minimize the criterion, let ∂minσ ‖Lnl(z)plin(z|σ)‖2ℜ2(µ)/∂σ = 0, then σ can be obtained
numerically.
Figure 6 shows the MSA curves of the QZS vibration isolator using different analytical

methods. The exact solutions can be determined by integrating Eq. (4.4) directly using the nu-
merical method combined with Eq. (3.11). It can be seen that both the equivalent linearization
method and the probabilistic linearization method overestimate the MSA. The weighted proba-
bilistic linearization method gives better results with the numerical results than the other two
analytical methods.

Fig. 6. MSA curves of the QZS vibration isolator using different analytical methods
(ζ = 0.02, S0 = 0.05)

The MSA curves of the QZS vibration isolator for different values of damping ratio and
spectral density of the random excitation using the weighted probabilistic linearization method
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are shown in Fig. 7. The MSA curves of the equivalent linear vibration isolator are also plotted in
the same figure for comparison, which are plotted in the thinner lines. The MSA of the equivalent
linear vibration isolator is given as

E(z′′2l ) = (1 + 4ζ
2
l )σ
2
zl
= (1 + 4αζ2)

S0
4
√
αζ

(4.7)

It is more complicated for the MSA case. With an increase in ζ or a decrease in S0, the
MSA of both vibration isolators decrease. For smaller values of ζ, the MSA of the QZS vibration
isolator is larger than the linear one, which indicates the isolation performance of the QZS
vibration isolator is inferior to the linear one; when ζ continues to increase, the MSA is more
or less the same for both vibration isolators; when ζ reaches a higher value, the MSA of the
QZS vibration isolator is smaller than the linear one, which indicates that the QZS vibration
isolator can achieve a better isolation performance. For smaller values of S0, the MSA of the
QZS vibration isolator is smaller than the linear one; when S0 continues to increase, the MSA
is more or less the same for both vibration isolators; when S0 reaches a higher value, the MSA
of the QZS vibration isolator is larger than the linear one, then the isolation performance of the
QZS vibration isolator is inferior to the linear one. Also when the length ratio l̂ increases, the
MSA of both vibration isolators decrease.

Fig. 7. MSA curves of the QZS vibration isolator for different values of damping ratio and spectral
density of the random excitation

5. Conclusions

In this paper, the dynamic response and isolation performance of the QZS vibration isolator
under random excitation are investigated. The QZS vibration isolator is comprised of a vertical
spring providing positive stiffness and inclined springs used as negative stiffness correctors.
The probability density function of the relative displacement of the mass is obtained by using
probabilistic linearization method, and compared with the exact solution based on the FPK
equation and the equivalent linearization method. The compared results show that both the
probabilistic linearization method and equivalent linearization method give very good results in
the tails of the probability density function, but the errors become larger in the peak value areas
of the probability density function and the probabilistic linearization method gives better results
than the equivalent linearization method. When the length ratio increases, which indicates that
the nonlinear parameter λ decreases, the errors of both methods become smaller in the peak
value areas of the probability density function.

Two performance indexes (MSRD and MSA) are defined to evaluate the isolation performan-
ce of the QZS vibration isolator. The weighted probabilistic linearization method is employed to
improve the accurate results of the two performance indexes by adding a weighted function to
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the criterion. The two performance indexes obtained by the weighted probabilistic linearization
method are also compared with the numerical method, the equivalent linearization method and
the probabilistic linearization method. The weighted probabilistic linearization method gives
better results with the numerical results than the other two analytical methods.

The isolation performance of the QZS vibration isolator is also compared with an equivalent
linear vibration isolator. The MSRD of the QZS vibration isolator is always lower than the
equivalent linear vibration isolator, which indicates that the QZS vibration isolator can achieve
a better isolation performance for this case. The MSA of the QZS vibration isolator can be larger
or lower than the equivalent linear vibration isolator based on the values of damping ratio and
spectral density of the random excitation, which is different from the MSRD case. For the MSA
case, the spectral density of the random excitation should be considered first, and choose an
appropiate damping ratio for the QZS vibration isolator to provide a better random isolation
performance than the equivalent linear vibration isolator.
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A study of magnetohydrodynamic (MHD) flow with viscous dissipation and heat transfer in
an electrically conducting laminar steady viscous incompressible micropolar fluid between
two infinite uniformly stretching disks is presented. The transformed self similar nonlinear
ODEs are first linearized using a quasi linearization method and then solved by employing
a combination of a direct and an iterative method. The study may be beneficial to flow and
thermal control of polymeric processing.
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1. Introduction

The exploration in the field of flow over a stretching surface has attracted attention of the rese-
arch community due to its significant applications in different industries such as extrusion paper
production, extrusion of polymers sheet, metal and plastic industries (Altan et al., 1979; Fisher,
1976; Tadmor and Klein, 1970). The problem of fluid flow between parallel disks is also impor-
tant due to its applications in many technological and engineering processes. These applications
include semiconductor-manufacturing processes with rotating wafers, magnetic storage devices,
gas turbine engines, hydrodynamical machines and apparatus, crystal growth processes, rotating
machinery, biomechanics, geothermal, geophysical, heat and mass exchanges, computer storage
devices, viscometry, lubrication, oceanography radial diffusers, etc. Robert et al. (2010) presented
the analytical solution of axi-symmetric flow between two infinite stretching disks whereas Fang
and Zhang (2008) found the exact solution for the axi-symmetric flow between two stretchable
infinite disks. Munawar et al. (2011) studied flow of an incompressible viscous fluid between
two continuously stretching coaxial disks by employing the optimal HAM. Xinhui et al. (2012)
studied asymmetric flow and heat transfer of a viscous fluid between contracting/expanding
rotating disks by using the homotopy analysis method.

All the above cited researchers are, however, confined to the flow and heat transfer pro-
blems of classical Newtonian fluids. The Newtonian model is, however, inadequate to complete-
ly describe some modern scientific, engineering and industrial processes which involve materials
possessing an internal structure. The scope of non-Newtonian fluids has significantly increased
mainly due to their connection with applied sciences. The governing equations of motion for
non-Newtonian fluids are highly nonlinear and complicated as compared to those for Newtonian
fluids. The flow problems of non-Newtonian fluids are challenging for researchers due to their
inherent complexity. Hoyt and Fabula (1964) predicted experimentally that fluids having poly-
meric additives display a significant reduction of shear stress and polymeric concentration (see
Eringen, 1965). Deformation of such materials can be well explained by the theory of micropolar
fluids given by Eringen (1964, 1966). Micropolar fluids have applications in colloidal fluids flow,
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blood flows, dumbbell molecules or short rigid cylindrical elements, liquid crystals, lubricants,
turbulent shear flow and flow in capillaries, fluid suspensions, animal blood, fluid with bar like
elements, heat and mass exchangers, etc. The steady laminar incompressible flow of a micropolar
fluid between two parallel disks in which the lower disk is taken to be impermeable while the
upper one is permeable was discussed numerically by Ashraf et al. (2009a). The magnetohydro-
dynamics (MHD) has attracted the research community due to its novel industrial applications.
Rashidi et al. (2014) investigated velocity and temperature profiles as well as entropy genera-
tion in magnetohydrodynamic (MHD) and slip flow over a rotating porous disk with different
properties using numerical methods. Neetu (2014) found the analytical solution to magnetohy-
drodynamic flow problem of an incompressible micropolar fluid between two eccentrically disks.
MHD steady and axisymmetric flow of an incompressible viscous fluid between two radially
stretching sheets was analyzed by Hayat and Nawaz (2010). Hayat et al. (2011) examined a
time dependent magnetohydrodynamic (MHD) flow problem of a micropolar fluid between two
radially stretching infinite sheets.

The above cited researchers did not take the effects of viscous dissipation in their investi-
gations. Therefore, the aim of the present study is to investigate MHD steady viscous incom-
pressible electrically conducting micropolar fluid flow and heat transfer between two stretching
disks in the presence of a transverse magnetic field and viscous dissipation effects.

2. Problem formulation

Consider hydromagnetic steady laminar viscous flow and heat transfer of an incompressible
electrically conducting micropolar fluid between two stretchable infinite disks located at z = −L
and z = L as shown in Fig. 1. A uniform transverse magnetic field B is applied perpendicularly at
the disks. The geometry of the problem suggests that the cylindrical polar coordinate system is
most suitable for the study. Both the disks are stretched uniformly with the velocity proportional
to the r coordinate. The magnetic Reynolds number is assumed to be small, and hence the
induced magnetic field can be neglected as compared to the imposed magnetic field (Shercliff,
1965). We assume that there is no applied polarization voltage, so the electric field is zero. The
components of velocity (u, v,w) and microrotation (υ1, υ2, υ3) along the radial, transverse and
axial directions can be written respectively as

ur = ur(r, z) uθ = 0 uz = uz(r, z)

υ1 = 0 υ2 = υ2(r, z) υ3 = 0
(2.1)

Fig. 1. Physical configuration

Following the work of Eringen (1964, 1966) and in view of Eq. (2.1), the governing equations of
the problem under consideration can be written as
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where η = z/L is the similarity variable, ρ is density, p is pressure, µ is dynamic viscosity
of the fluid, κ is vortex viscosity, j is microinertia, γ is spin gradient viscosity, σe is electrical
conductivity, B0 is strength of the magnetic field. Including viscous dissipation effects, the energy
equation for the problem of flow between two stretching disks can be written as

ρcp
(
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+
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L

∂T
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)
− k0

( 1
L2

∂2T

∂η2
+
∂2T

∂r2
+
1

r

∂T

∂r

)
− µ

L2

(∂ur
∂η

)2
= 0 (2.4)

where T is temperature, cp is specific heat capacity and k0 is thermal conductivity of the fluid.
The boundary conditions for the problem may be written as,

ur(r,−L) = rE ur(r, L) = rE uz(r,−L) = 0 uz(r, L) = 0

ν2(r,−L) = 0 ν2(r, L) = 0 T (r,−L) = T1 T (r, L) = T2
(2.5)

where E is the parameter determining stretching strength of both the upper and lower disks,
having units of 1/t.
Partial differential Eqs. (2.3) and (2.4) can be converted into ordinary ones by using the

following similarity transformations

ur = −
rE

2
f ′(η) uz = ELf(η) υ2 = −

Er

2L2
g(η) θ(η) =

T − T2
T1 − T2

(2.6)

where T1 and T2 are temperatures at the lower and upper disks, respectively. We see that the
velocity field given in Eq. (2.6) identically satisfies continuity Eq. (2.1), and hence represents
possible fluid motion. By using Eq. (2.6) in Eqs. (2.3) and (2.4), we get the following nonlinear
ordinary differential equations in dimensionless form

(1 + C1)f
′′′′ − C1g′′ − Reff ′′′ − ReM2f ′′ = 0

C3g
′′ + C1(f

′′ − 2g) + ReC2
(f ′g
2
− fg′

)
= 0

θ′′ +
1

4
PrEcf ′′2 −RePrfθ′ = 0

(2.7)

where Re = (ρEL2)/µ is the stretching Reynolds number, M =
√
(σeB20)/(ρE) is the magnetic

parameter, C1 = κ/µ is the vortex viscosity parameter, C2 = j/L2 is the microinertia density
parameter, C3 = γ/µL2 is the spin gradient viscosity parameter, Pr = (µcp)/k0 is the Prandtl
number and Ec = (r2E2)/[cp(T1 − T2)] is the Eckert number.
Boundary conditions given in Eq. (2.7)2 also get the form

f(−1) = f(1) = 0 f ′(−1) = −2 f ′(1) = −2
g(−1) = 0 g(1) = 0 θ(−1) = 1 θ(1) = 0

(2.8)
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3. Computational procedure

In this paper, we discuss the approach based on quasi-linearization of nonlinear ODEs.

3.1. Quasi-linearization

We use quasi-linearization to construct sequences of vectors {f (k)}, {g(k)}, and {θ(k)}, which
converge to the numerical solutions to Eqs. (2.7), respectively. To construct {f (k)}, we linearize
Eq. (2.7)1 by retaining only the first order terms as follows:
We set

G(f, f ′, f ′′, f ′′′, f ′′′′) ≡ (1 + C1)f ′′′′ − C1g′′ −Reff ′′′ − ReM2f ′′

and

G(f (k), f ′(k), f ′′(k), f ′′′(k), f ′′′′(k)) + (f (k+1) − f (k)) ∂G
∂f (k)

+ (f ′(k+1) − f ′(k)) ∂G
∂f ′(k)

+ (f ′′(k+1) − f ′′(k)) ∂G

∂f ′′(k)
+ (f ′′′(k+1) − f ′′′(k)) ∂G

∂f ′′′(k)
+ (f ′′′′(k+1) − f ′′′′(k)) ∂G

∂f ′′′′(k)
= 0

which simplifies to

(1 +C1)f
′′′′(k+1) −Ref ′′′(k+1)f (k) −ReM2f ′′(k+1) −Ref ′′′(k)f (k+1) = C1g′′(k) −Ref ′′′(k)f (k)

(3.1)

Now Eq. (3.1) gives a system of linear differential equations with fk being the numerical solution
vector of the kth equation. To solve the linear ODEs, we replace the derivatives with their central
difference approximations, giving rise to the sequence {f (k)} generated by the following linear
system

Bf (k+1) = C with B ≡ Bn×n(f (k)) and C ≡ Cn×1(f (k)) (3.2)

where n is the number of grid points. On the other hand, Eqs. (2.7)2,3 are linear in g and θ
respectively and, therefore, in order to generate the sequences {g(k)} and {θ(k)}, we write

C3g
′′(k+1) + C1(f

′′(k+1) − 2g(k+1)) + ReC2
(f ′(k+1)g(k+1)

2
− g′(k+1)f (k+1)

)
= 0

θ′′(k+1) +
1

4
PrEcf ′′(k+1)

2 − RePrf (k+1)θ′(k+1) = 0
(3.3)

Importantly, f (k+1) is considered to be known in the above equation and its derivatives are
approximated by the central differences.

We outline the computational procedure as follows:

• Provide the initial guess f (0), g(0) and θ(0), satisfying the boundary conditions given in
Eq. (2.8)

• Solve the linear system given by Eq. (3.2) to find f (1)

• Use f (1) to solve the linear system arising from the FD discritization of Eqs. (3.3), to get
g(1) and θ(1)

• Take f (1), g(1) and θ(1) as the new initial guesses and repeat the procedure to generate
the sequences {f (k)}, {g(k)} and {θ(k)} which, respectively, converge to f , g and θ (the
numerical solutions to Eqs. (2.7)
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• The three sequences are generated until

max
{
‖f (k+1) − f (k)‖L∞ , ‖g(k+1) − g(k)‖L∞ , ‖θ(k+1) − θ(k)‖L∞

}
< 10−6

It is important to note that the coefficient matrix B in Eq. (3.2) will be pentadiagonal and
not diagonally dominant, and hence the iterative method (like SOR) may fail or work very
poorly. Therefore, some direct method like LU factorization or Gaussian elimination with full
pivoting (to ensure stability) may be employed. On the other hand, Eqs. (3.3) will give a rise to
the diagonally dominant algebraic system when discretized using the central differences, which
allows us to use the SOR method. Lastly, we may also improve the order of accuracy of the
solution by using the polynomial extrapolation scheme.

4. Results and discussion

In this Section, the results are presented in tabular and graphical forms together with their
discussion and interpretations. Our objective is to develop a better understanding of the effects
of the micropolar structure of fluids on flow and heat transfer characteristics. The parameters of
the study are the Reynolds number Re, the magnetic parameter M , the micropolar parameters
C1, C2, and C3, the Eckert number Ec and the Prandtl number Pr. The physical quantities of
our interest are the shear stress, the couple stress and the heat transfer rate at the disks which
are, respectively, proportional to f ′(−1), g′(−1), θ′(−1) and θ′(1). It is important to note that
f ′′(−1) = f ′′(1), g′(−1) = g′(1) and θ′(−1) = θ′(1) for Ec = 0 due to symmetry of the problem.
But in the case when Ec 6= 0, the symmetry of temperature profiles no longer exists, and thus
θ′(−1) 6= θ′(1) as C3 affects the temperature distribution only (clear from decoupled Eqs. (2.7).
Therefore, in the presence of viscous dissipation, we will consider f ′′(−1), g′(−1), θ′(−1) and θ′(1)
as well. We shall study the effects of the parameters described above on f ′′(−1), g′(−1), θ′(−1)
and θ′(1) as well as on the velocity profiles f(η), f ′(η), the microrotation profile g(η) and the
temperature profile θ(η).

The sets of values of the dimensionless micropolar parameters C1, C2 and C3 used in the
present work are given in Table 1. In order to establish the validity of our numerical computations
and to improve the order of accuracy of the solutions, numerical values of radial velocity f ′(η)
are computed for three grid sizes h, h/2 and h/4 and then Richardson extrapolation is used
as presented in Table 2. It also shows the convergence of our numerical results as the step size
decreases. Table 3 shows that the shear and couple stresses increase, where the heat transfer rate
increases at the upper disk and decreases at the lower disk as the stretching Reynolds number
increases. The increased stretching rate of the disks forces the fluid to move rapidly towards the
disks, thus increasing both the shear and couple stresses. Moreover, the fluid is carrying away
the heat from the flow region, resulting in an increase in the temperature difference and, hence,
the heat transfer rate.

Table 1. Five cases of values of micropolar parameters C1, C2 and C3

Case No. C1 C2 C3

1(Newtonian) 0 0 0

2 0.5 0.1 0.2

3 1 0.3 0.4

4 3 0.5 0.6

5 5 0.7 0.8
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Table 2. Dimensionless radial velocity f ′(η) on three grid sizes and extrapolated values for
Re = 15, M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5

f ′(η)

η
1st grid
(h = 0.02)

2nd grid
(h = 0.01)

3rd grid
(h = 0.005)

Extrapolated
values

-1 -1.995047 -1.998750 -1.999686 -1.999998

-0.6 0.092943 0.093467 0.093599 0.093642

-0.2 0.606570 0.607070 0.607195 0.607237

0 0.652236 0.652728 0.652851 0.652892

0.2 0.606570 0.607070 0.607195 0.607237

0.6 0.092943 0.093467 0.093599 0.093642

1 -1.995047 -1.998750 -1.999686 -1.999998

Table 3. The effect of the stretching Reynolds number on the shear and couple stresses as well
as the heat transfer rate with M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5

R f ′′(−1) g′(−1) θ′(−1) −θ′(1)
0 5.245037 5.710461 0.556018 1.556018

5 6.656467 6.023234 0.515410 2.005796

10 7.898473 6.213057 0.453647 2.412162

15 8.998815 6.329128 0.385683 2.777904

20 9.986100 6.399389 0.317821 3.110079

Table 4 shows that the magnetic parameter increases both the shear and couple stresses
while reducing the heat transfer rate at the disks. From the mechanical point of view, the
magnetic field exerts a friction like force, called the Lorentz force, which tends to drag the fluid

Table 4. The effect of the magnetic parameter on the shear and couple stresses as well as the
heat transfer rate with Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5

M f ′′(−1) g′(−1) θ′(−1) −θ′(1)
0 6.270359 5.982139 0.798720 3.468070

0.4 6.509053 6.014097 0.721225 3.365199

0.8 7.172924 6.101533 0.558495 3.132747

1.2 8.142989 6.225003 0.427947 2.903393

1.6 9.300534 6.364672 0.382388 2.746286

towards the disks. This not only results in increasing the shear stress at the disks but also
causes greater spinning of the micro fluid particles, and hence increases the couple stress as
well. Furthermore, the frictional force tends to raise the fluid temperature and thus decreases
the temperature difference between the fluid and the disks. Therefore, the heat transfer rate,
which is directly proportional to the temperature difference, also decreases. The influence of the
micropolar parameters C1, C2 and C3 on the shear and couple stresses is given in Table 5. The
first case corresponds to the Newtonian fluid whereas the remaining ones are taken arbitrarily
to investigate their influence on the flow as chosen in the literature (Ashraf and Batool, 2013;
Ali et al., 2014, 2009b). It may be concluded that the micropolar structure of the fluid tends to
decrease the shear stress, which is in accordance with the experimental prediction of Hoyt and
Fabula (1964) that the micro fluid particles cause significant reduction in the shear stress near a
rigid body. Moreover, the particles also cause microrotation in the fluid, which is responsible for
the couple stress at the disks, as shown in Table 5. It is also clear from the table that the role
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Table 5. The effect of micropolar parameters on the shear and couple stresses as well as the
heat transfer rate with Re = 1, M = 1.5, Pr = 2, Ec = 0.2

Cases f ′′(−1) g′(−1) θ′(−1) −θ′(1)
1 7.014810 0.000000 0.697019 1.960602

2 6.473276 3.912051 0.698798 1.973223

3 6.190115 3.896368 0.704141 1.984454

4 5.478203 6.449680 0.729788 2.024384

5 5.183083 7.439771 0.745661 2.046135

of microfluid particles in increasing the heat transfer rate is not as pronounced as compared to
its effect on the shear and couple stresses. Table 6 shows that the viscous dissipation may cause
thermal reversal at the lower disk, thus decreasing the temperature of the fluid which, in turn,
increases the temperature difference between the fluid and the upper disk, and hence the heat
transfer rate at the upper disk.

Table 6. The effect of viscous dissipation on the heat transfer rate with Re = 20, M = 1.5,
C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.3

Ec −θ′(−1) −θ′(1)
0.0 0.844799 0.844799

0.2 0.608888 1.080710

0.4 0.372977 1.316622

0.6 0.137066 1.552533

0.8 -0.098845 1.788444

Now we present a graphical interpretation of our results. Streamlines for the present problem
are given in Fig. 2. It is obvious that the streamlines near the walls are very close to each other
showing larger gradients of the stream function which, in turn, predicts a greater fluid velocity

Fig. 2. Variation of streamlines for Re = 5, M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6

closer to the disks. In order to further validate the presented solution method, we consider the
case when the distance between the disks is infinite and the upper disk is at rest. In this situation,
the problem reduces to the micropolar fluid flow over a stretchable disk which was studied by
Ashraf and Batool (2013). Figure 3 shows an excellent comparison of our numerical results with
those of Ashraf and Batool (2013).
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Fig. 3. Comparison with the results by Ashraf and Batool (2013)

Figures 4-6 show the influence of the magnetic parameter M for typical values of the stret-
ching Reynolds number, the micropolar parameters, the Eckert number and the Prandtl number.
The magnetic parameter decreases the velocity as well as the microrotation distribution across
the disks (Fig. 4 and 5). On the other hand, the external magnetic field decreases the thermal

Fig. 4. Variation of (a) axial, (b) radial velocity for Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7,
Ec = 0.5 and various M

Fig. 5. Variation of microrotation for Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5 and
various M
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reversal by decreasing the temperature distribution across the disks, whether we consider the
viscous dissipation effects or not, as shown in Fig. 6a.

Fig. 6. Variation of temperature for (a) Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5 and
various M , (b) Re = 15, M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6, Ec = 0.4 and various Pr

We have noted that the effect of Re on the velocity and microrotation distribution is similar
to that of M . The Reynolds number always tends to flatten the temperature profiles almost in
the middle of the two disks, thus developing an equi-temperature region. On the other hand, it
discourages thermal reversal near the lower disk, for the case Ec 6= 0.
The effect of the micropolar structure of the fluid on the velocity, microrotation and tempe-

rature profiles is opposite to that of the magnetic field. Thus, the external magnetic field tends
to balance the effect of micropolar parameters. The viscous dissipation tends to eliminate the
symmetry of temperature profiles by raising them near the lower disks, thus causing the thermal
reversal. Viscous dissipation plays a vital role like an internal heat generation source in the ener-
gy transfer, which depends on the temperature distributions and heat transfer rates. This heat
source is caused by the shearing of fluid layers. The merit of the effect of the viscous dissipation
depends on whether the disks walls are hot or cold. Finally, the Prandtl number increases the
thermal reversal by increasing the temperature distribution across the disks in the presence of
viscous dissipation (Fig. 6b).

Table 7. The effect of the Prandtl number on the heat transfer rate with Re = 20, M = 1,
C1 = 2, C2 = 0.2, C3 = 0.3

Pr
Ec = 0.0 Ec = 0.3

−θ′(−1) −θ′(1) −θ′(−1) −θ′(1)
0.0 0.500000 0.500000 0.500000 0.500000

0.2 0.719813 0.719813 0.494006 0.945619

0.4 0.976928 0.976928 0.482008 1.471849

0.6 1.254718 1.254718 0.426965 2.082470

0.8 1.536267 1.536267 0.278411 2.794123

On comparison of our results with those given by Khan et al. (2015) (where the classical
Newtonian fluid has been taken into consideration between the two stretchable disks), we notice
that the role of the external magnetic field and the disk stretching remains the same, even when
the micropolar fluid is introduced in place of the classical Newtonian fluid. That is, both the
factors increase the shear stresses at the disks. Micropolar fluids however show a remarkable
reduction in the shear stress but introduce couple stresses at the disks due to the spinning of
the fluid particles.
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5. Conclusions

In this paper, we numerically study how the governing parameters affect the flow and heat
transfer characteristics of a steady laminar incompressible electrically conducting micropolar
fluid between two stretchable infinite disks. The following conclusions can be drawn.

Micropolar fluids exhibit significant reduction in the shear stress at the disks compared to
Newtonian ones, which may be beneficial for many industrial processes (e.g. in flow and thermal
control of polymeric processing). The external magnetic field is responsible for a remarkable
rise in both the shear and couple stresses while reduction the heat transfer rate at the two
disks. We, therefore, conclude that the external magnetic field may serve as a controlling agent
to neutralize the effects of the micropolar structure of the fluid. Thus, in experimental setups
involving micropolar flows caused by moving disks, the possibility of interference of the external
magnetic field should be eliminated in order to obtain accurate and reliable data.
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This paper deals with the analysis and synthesis of a newly selected Cable-suspended Parallel
Robot configuration, named CPR-D system. The camera carrier workspace has the shape of a
parallelepiped. The CPR-D system has a unique Jacobian matrix that maps the relationship
between internal and external coordinates. This geometric relationship is a key solution
for the definition of the system kinematic and dynamic models. Because of the CPR-D
system complexity, the Lagrange principle of virtual work has been adapted. Two significant
Examples have been used for the CPR-D system analysis and validation.

Keywords: cable-suspended parallel robot, camera observation, kinematics, dynamics

1. Introduction

A system for observation of a workspace with moving objects has been developed to some extent
and widely analyzed in various research areas as well as for different applications. Similar systems
have been analyzed and modeled as presented by numerous publications.
The kinematic design of a planar three-degree-of-freedom parallel manipulator was considered

by Gosselin and Grenier (2011). Four optimal different design criteria were established and
analyzed. A trajectory planning approach for cable-suspended parallel mechanisms was presented
by Gosselin et al. (2012). A planar two-degree-of-freedom parallel mechanism was used in the
analysis. Carricato (2011) studied the kinematics and statics of under-constrained cable-driven
parallel robots with less than six cables in crane configuration. A motion controller for a six DOF
tendon-based parallel manipulator (driven by seven cables) which moves a platform with high
speed was introduced by Fang et al. (2004). A control design of the CPR systems was investigated
by Kraus et al. (2013), and Avci et al. (2014). The workspace conditions and the dynamics of
the manipulator were described in details. Borgstrom et al. (2007) presented algorithms that
enabled precise trajectory control of the Networked Info Mechanical Systems (NIMS), and under
constrained three-dimensional (3D) cabled robot intended for use in actuated sensing. Several
prototypes of the wire-driven parallel robots with different actuation schemes were presented
by Merlet (2010). Two of them were evaluated through extensive tests and showed unexpected
kinematic problems. The determination of this workspace was an important issue by Gouttefarde
et al. (2006) since the cables can only pull and not push on the mobile platform.
Parallel cable-driven Stewart-Gough platforms consist of an end-effector which is connected

to the machine frame by motor driven cables. Since the cables can transmit only tension forces,
at least m = n + 1 cables are needed to tense a system having n-degrees-of-freedom. This will
cause a kinematical redundancy and leads to an (m − n)-dimensional solution space for the
cable force distribution presented by Bruckmann et al. (2007). The recent result from a newly
designed parallel wire robot which is currently under construction was presented by Pott (2008).
It is used for developing a new technique for computation and transfer of its workspace to the
available CAD software. An auto-calibration method for over constrained cable-driven parallel
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robots using internal position sensors located in the motors was presented by Miermeister et
al. (2012). The wire-driven parallel robot presented by Higuchi et al. (1988) has attracted the
interest of researchers since the very beginning of the study of parallel robots. Oh and Agrawal
(2005) addressed the issue of control design for a redundant 6-DOF cable robot with positive
input constraints. Nonlinear dynamic analysis of the suspended cable system was carried out
with some sensible results presented by Duan (1998) that could be useful to the real engine-
ering of LSRT (Large Spherical Radio Telescopes). Integrated mechanical, electronic, optic and
automatic control technologies are employed to make considerable improvement upon the same
system. A multiple cable robotic crane designed by Shiang et al. (2000) is used to provide impro-
ved cargo handling. This is one of a few papers dealing with flexible ropes. For the requirement
of trajectory tracking of the LSRT, a large fine tuning platform based on the Stewart platform
was presented by Su and Duan (2000a,b). The mathematical model for kinematic control was
developed with coordinate transformation, and dynamic analysis was made using a Jacobian
matrix with singularity analysis, which built a solid base for the tracking control. Kozak et al.
(2006) in their paper addressed the static analysis of cable-driven robotic manipulators with a
non-negligible cable mass. A cable suspended parallel robot was analyzed by Zi et al. (2008), in
which cables were utilized to replace links to manipulate objects. It was developed from a paral-
lel and serial cable-driven robot. Therefore, a cable system with j end-effectors DOFs requires
at least (j + 1) cables as shown by Hiller and Fang (2005). For three-translational motions of
the feed in the system, a four-cable-driven parallel manipulator was developed. The goal of Yao
et al. (2010) was to optimize dimensions of the four-cable-driven parallel manipulator to meet
the workspace requirement of the constraint condition in terms of cable tension and stiffness.

However, the same CPR can be used in many different applications, but only some configu-
rations can be used for the workspace observation.

In this paper, we present a novel construction of the CPR system which is named CPR-D,
see Figs. 1 and 2. The camera carrier hangs over ropes properly connected to four highest points,
i.e. four upper angles of the parallelepiped workspace. The system has been designed with only
three motors and two ropes for the maximum workspace, which means that the system is not
redundant. This workspace is double bigger than the workspace of similar systems with the same
number of motors. The CPR-D system has more advantages in comparison with other similar
systems. This system is secured from falling during motion because it is constructed with two
parallel ropes, see Fig. 1.

Fig. 1. CPR-D in 3D space

A camera workspace is an area where a camera can move silently and continuously following
the observed object. A camera carrier moves freely in the space enabling the shooting of the
objects from the above. This gives a unique feeling to the event observer to watch objects
from the unusual proximity without disturbances. The observer will be very close to the action
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Fig. 2. CPR-D, top view

regardless of the size of the observed space. Motion of the ropes which carry the camera is
controlled. The ropes can uncoil or coil, which allow the camera to reach any position in the
space. The control system provides three-dimensional motion of the camera. The commands for
synchronized motion of each winch are provided by controlling the motion of each motor which
ultimately provides the three-dimensional continuous camera carrier motion. The gyroscopic
sensor that is installed in the camera carrier is stabilized to the horizon. The nature of this
system requires development of a new methodology for calculation of its kinematic and dynamic
models, which will be used for building the system.

This work will be extended by implementing elastic properties of the ropes in the kinematic
and dynamic models. The research of elasticity dynamics for nonlinear systems was done by the
following authors: Raskovic (1965), Rega (2004a,b), Hedrih (2010, 2012). In this paper, the CPR
model has been generated using the following assumptions: transverse vibrations of the ropes
are neglected and the ropes are unstretchable.

In Section 2, a detailed description of a selected CPR system type and its mathematical model
is given. Most of that Section is devoted to its kinematic model, which is directly involved in the
development of its dynamic model. Two cases of the system responses are analyzed for different
conditions in Section 3, while in Section 4 concluding remarks are presented.

2. Mathematical model of CPR-D system

In this research, one subsystem of the CPR family has been selected and analyzed in depth. A
graphical representation of that system, named CPR-D, is shown in Figs. 1 and 2. The camera
carrier of the CPR-D structure is guided through the work area of the parallelepiped shape with
two ropes connected with three winches, each powered by a motor. The ropes coil or uncoil on
the winches of radius R1, R2 and R3. The motors rotate the winches directly, and the motor
shafts angular positions after gear boxes are θ1, θ2, θ3. This motion moves the camera in the x,
y, z Cartesian coordinates.
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The first step towards the dynamical model of the CPR-D is the development of its kinematic
model. The geometrical relationship between the lengths k, h, m, n and Cartesian coordinates
x, y, z is defined by the following equations

k =
√
x2 + y2 + z2 h =

√
(d− x)2 + y2 + z2

m =
√
(d− x)2 + (s− y)2 + z2 n =

√
x2 + (s− y)2 + z2

(2.1)

In Fig. 3, motions of motors 1 and 2 are depicted. Motor 1 (motor 2 as well) works so that it
wounds its corresponding rope from one side and unwounds from other side.

Fig. 3. Rope forces before motor 1, 2 and 3 and after motor 1 and 2

Motions of motors 1 and 2 toward the wall anchors (we call this line “before” motor) are
expressed with the following equations respectively

∆θ1
∆t

R1 =
∆h

∆t
+
∆m

∆t

∆θ2
∆t

R2 =
∆m

∆t
+
∆n

∆t
(2.2)

The third motor is used to wind up the two ropes about coil 3 in the k, h, m, n directions.
This motion produces winding or unwinding of both ropes at the same time. This can be seen
in Figs. 2 and 3. The winch used for winding the ropes has radius Ri, i = 1, 2, 3. The relation
between the third motor motion changes ∆θ3, and the lengths change ∆k, ∆h, ∆m, ∆n can be
expressed either with equation (2.3)1 or (2.3)2

∆θ3
∆t

R3 =
∆k

∆t
+
∆h

∆t
+
∆θ2
∆t

R2
∆θ3
∆t

R3 =
∆k

∆t
+
∆n

∆t
+
∆θ1
∆t

R1 (2.3)

Equation (2.4) is obtained by substituting equation (2.2)2 into (2.3)1, or equation (2.2)1 into
(2.3)2

∆θ3
∆t

R3 =
∆k

∆t
+
∆h

∆t
+
∆m

∆t
+
∆n

∆t
(2.4)

If the sampling time ∆t is small enough then equations (2.2) and (2.4) can be expressed, respec-
tively, as

θ̇1R1 = ḣ+ ṁ θ̇2R2 = ṁ+ ṅ θ̇3R3 = k̇ + ḣ+ ṁ+ ṅ (2.5)

By differentiating equations (2.1) and substituting them into equations (2.5), the relationship
between the velocities of the camera carrier in the Cartesian space ṗ = [ẋ, ẏ, ż]T and the velocities
of the internal coordinates φ̇ = [θ̇1, θ̇2, θ̇3]

T can been obtained as following

φ̇ = Jdṗ (2.6)
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This procedure is named KinCPRD-Solver (Kinematic Cable Parallel Robot D-type Solver). It
is clear that the Jacobian matrix Jd [1/m] is a full matrix, and its elements beyond the diagonal
show strong coupling between the external and internal coordinates.
The kinetic energy Ek and the potential energy Ep of the camera carrier motion with massmc

are given in the following equations

Ek =
1

2
mcẋ

2 +
1

2
mcẏ

2 +
1

2
mcż

2 Ep = mcgz (2.7)

The gravitational acceleration is g = 9.81m/s2. The CPR-D system has three motors, and their
mathematical model is expressed with vector equation (2.8) (Vukobratovic, 1989)

u = Gvφ̈+ Lvφ̇+ SvMd (2.8)

where u = [u1, u2, u3]
T is voltage, Gv = diag (Gvi) – motor inertia characteristic, Lv =

diag (Lvi) – motor damping characteristic, Sv = diag (Svi) – motor geometric characteristic,
Md – motor load torque

Gvi =
JriRri
CMi

Lvi =
RriBCi
CMi

+ CEi Svi =
Rri
CMi

(2.9)

where: Rri [Ω] is rotor circuit resistance, CEi [V/(rad/s)] – back electromotive force constant,
CMi [Nm/A] – constant of torque proportionality, BCi [Nm/(rad/s)] – coefficient of viscous
friction, Jri [kgm

2] – moment of inertia for the rotor and the gear box.

Fig. 4. Rope forces carrying the camera

Vector equation (2.8) is based on Lagrange’s equation of motion. The angular positions of
the motors shafts θ1, θ2, θ3 are selected as generalized coordinates.
The motor load torqueMd is defined with vector equation

Md = [F1R1, F2R2, F3R3]
T (2.10)

The load force Fd includes three components expressed in a vector form as Fd = [F1, F2, F3]
T.

This force is acting on the shaft of each motor, and its value depends on the external force F.
The external force F = [Fx, Fy , Fz]

T represents the sum of the camera inertial force Fp which is
acting on the camera carrier described in equation (2.11)2 and the perturbation force Pp which
is disturbing the camera motion

F = Fp +Pp Fp = m(p̈+ acc) (2.11)

The vector acc = [0, 0,−g]T represents the gravitational acceleration. The next step is to describe
the dynamic balance between the force Fm in the m rope direction and the external force F, see
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Fig. 5. (a) Characteristic triangles in 3D space, (b) characteristic triangle in the (d-x)-m plane,
(c) characteristic triangle in the (s-y)-m plane, (d) characteristic triangle in the z-m plane

Figs. 5a-5d. Two similar right-angle triangles in the (d-x)-m plane, in the (s-y)-m plane, and
in the z-m plane are presented in 2D space, see Figs. 5b-5d, respectively. All of these triangles
can be seen in 3D space, which is shown in Fig. 5a. The hypotenuses of the GABx, GABy,
GABz triangles has length m, which is changeable during motion of the camera. The other
two sides of the GABx, GABy, GABz triangles have sizes d − x and k(s−y)z =

√
(s− y)2 + z2,

s − y and k(d−x)z =
√
(d− x)2 + z2, z and k(d−x)(s−y) =

√
(d− x)2 + (s− y)2, respectively.

The component of the external force F in the x direction is Fx, in the y direction is Fy, in
the z direction is Fz. The projection forces Fx, Fy, Fz on the m direction are Fmx, Fmy, Fmz ,
respectively, which can be seen in Figs. 5b-5d. The similarities of the two triangles in Fig. 5
produce the following relations

d− x
m
=
Fmx
Fx

Fmx =
d− x
m

Fx
s− y
m
=
Fmy
Fy

Fmy =
s− y
m

Fy
z

m
=
Fmz
Fz

Fmz =
z

m
Fz

(2.12)

The force Fm is a sum of the previously defined components and it is expressed in the following
equation

Fm = Fmx + Fmy + Fmz =
d− x
m

Fx +
s− y
m

Fy +
z

m
Fz (2.13)

The Lagrange principle of virtual work has been used to find the relation between the motor
load torque Md and the external force F

(Md)
Tφ̇ = FTṗ (2.14)

By substituting equations (2.6) into (2.14), the following equations are generated

(Md)
TJdṗ = F

Tṗ (Jd)
TMd = F (2.15)

From (2.15)2, equation (2.16) can be expressed as

Md =
(
(Jd)

T
)−1
F (2.16)

Equation (2.16) cannot be directly applied to the system from Figs. 1 and 2 because of the
following reasons:
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• The system has two ropes in each direction. Equation (2.16) has been corrected using the
factor ♦ = 0.5.

• Motor 3 is used to synchronize winding or unwinding of the two ropes.

These will produce the adopted Jacobian matrix Jx♦d. The matrix Od [m] is generated, which
represents the torque mapping matrix, as defined below

Od =
(
(Jx♦d)

T
)−1

(2.17)

The adapted Lagrange’s principle of virtual work has been used for solving the complex relation
between the motor load torqueMd (acting as a load on the first, second and third motor shaft)
and external forces F (acting on the camera carrier)

Md = OdF u = Gvφ̈+ Lvφ̇+ SvOdF (2.18)

The torque mapping matrix Od [m] indicates that the system is highly coupled. The control
law is selected by the local feedback loop for the position and velocity of the motor shaft in the
following form

ui = Klpi(θ
o
i − θi) +Klvi(θ̇

o
i − θ̇i) (2.19)

where Klpi is a position constant, and Klvi is a velocity constant for the motion control.
The comparison between previously published papers and this research is summarized as in

the following:

• The novel KinCPRD-Solver gives a relation between the internal and external coordinates
through the unique Jacobian matrix Jd.

• All three motors in this system are differently integrated in comparison with the previously
published systems.

• Most of the previously published papers do not involve dynamics of the motor. The CPR-D
system includes the motors which significantly influence the total system response.

• The CPR-D system construction requires a novel dynamic relation between the load forces
which are acting on the camera and the forces in the m direction.

• The previously published systems used Lagrange’s principle of virtual work for calculating
the relation between the external and internal forces in the original form. This system has
double ropes in all four directions, which requires an adaptation of the Lagrange principle
of virtual work.

3. Simulation results

The CPR-D system presented in Figs. 1 and 2 is modeled and analyzed by the software pac-
kage AIRCAMD. The software package AIRCAMD is used for validation of applied theoretical
contributions. This software includes three essential modules which are kinematic, dynamic and
motion control law solvers for the CPR-D system. The most important element of the CPR-D
system is the mathematical model of the motor which is an integral part of the software pac-
kage AIRCAMD. Through the simulation results, it is shown that the dynamic characteristics
of the motor significantly affect the response of the system and its stability. In order to make
the results comparable, simulation is made for the same desired system parameters. The camera
carrier motion dynamics directly depends on the mechanism dynamic parameters. The camera
moves in the 3D space (x, y, z directions). The workspace is characterized by length d = 3.2m,
width s = 2.2m and height v = 2.0m of the recorded field. The position of the camera carrier
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in the Cartesian space is p = [x, y, z] [m]. The starting point is postart = [0.3m, 1.8m,−0.2m],
and the end point poend = [0.9m, 1.2m,−0.9m], They are presented in Fig. 6a, while their re-
ference velocities are shown in Fig. 6c. In Fig. 6b, we show the reference composite velocity of
the camera carrier. The shape of the composite velocity is trapezoidal.

Fig. 6. The reference trajectory motion of the camera carrier (a) position xo, yo, zo, (b) velocity
(maximum value: pomax = 0.494m/s, (c) velocity components ẋ

o, ẏo, żo (Examples 1, 2)

The motors are Heinzman SL100F type and gears are HFUC14-50-2A-GR+belt type. The
characteristics of the motors are: Rri = 0.917Ω – rotor circuit resistance, CEi = 3.3942 V/(rad/s)
– back electromotive force constant, CMi = 2.5194 Nm/A – constant of torque proportionality,
BCi = 0.0670Nm/(rad/s) – coefficient of viscous friction, Jri = 1.5859 kgm

2 – moment of inertia
for the rotor and the gear box.
The sample time is dt = 0.0001 s. The positional and velocity motion controller parameters

are Klpi = 4200 and Klvi = 130, respectively. Winches radii are Ri = 0.15m. The system
responses are comparable and therefore are shown in Table 1. The results for Example 1 are
presented in Figs. 7 and 10a, while for Example 2 are presented in Figs. 8 and 10b. Figure 7
(and Fig. 8 as well) has six pictures related to:

a) camera carrier position at the reference and the real frames,

b) motor shaft position at the reference and the real frames,

c) load force at the reference and the real frames,

d) deviation between the real and the reference trajectory of the camera carrier,

e) deviation between the real and the reference trajectory of the motor shaft positions,

f) control signals at the reference and the real frames.

Table 1. Comparison of two selected Examples

Example 1 2

Figure 7, 10a 8, 10b

Mathematical model of the system at the reference frame
(2.1)-(2.19) (3.1)-(3.5)

is defined by equations

Camera carrier is under the influence of the disturbance force yes yes

System at the reference frame is coupled yes no

The CPR-D system is designed for outdoor use. Because of that, we analyzed the system
behavior under the influence of wind impacts, determined as the force Fp = [100(sin(4πt) +
sin(32πt)), 0, 0]T , see Fig. 9. The force has a sine shape and operates only in the x direction,
while the components in the y and z directions are zero.

Example 1: The motion response of the camera carrier has oscillatory characteristics and angular
positions of all three motors are caused by the sinusoidal disturbance force. There is a very good
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Fig. 7. Example 1

Fig. 8. Example 2

tracking of the desired trajectory at the camera carrier real frame and at the motor motion
real frame, until the moment when motor 2 enters the saturation in oscillatory manner, see
Fig. 7f. The first and the third motor do not enter the saturation at all. The force Fm has two
components of the same magnitude Fm1 = Fm2 acting in each rope in the m direction at the
reference and the real frames, which is presented in Fig. 10a.

Example 2: All system and control parameters are the same as in Example 1. This Example is
done with one illogical assumption, which is that the system at the reference frame is uncoupled.
In that case, the Jacobian matrix Jd⊕ has the diagonal form

φ̇ = Jd⊕ṗ (3.1)
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Fig. 9. Perturbation force at the camera carrier (Examples 1, 2)

Fig. 10. Components of the force Fm acting in the m direction at the reference and the real frames,
(a) Example 1, (b) Example 2

The mathematical model of the system has the following form

u = Gvφ̈+ Lvφ̇+ SvMd⊕ (3.2)

Using the adapted Lagrange principle of virtual work, the relationship between the motor load
torque Md⊕ and the external force F has been given below

Md⊕ = Od⊕F (3.3)

The diagonal adopted Jacobian matrix is Jx♦d⊕. The matrix Od⊕ is generated, which represents
the torque mapping matrix, as defined below

Od⊕ =
(
(Jx♦d⊕)

T
)−1

(3.4)

The torque mapping matrix Od⊕ is diagonal like the Jacobian matrix Jd⊕. Substituting (3.3)
into equation (3.2) produces a dynamic model of the uncoupled CPR-D system at the reference
frame

u = Gvφ̈+ Lvφ̇+ SvOd⊕F (3.5)

In this case, the mathematical model of the CPR-D system at the reference frame is defined by
equations (3.1)-(3.5). At the real frame, the system is coupled and its kinematic and dynamic
models are defined by equations (2.1)-(2.19), see Fig. 8. The coupling characteristics are not
taken into the consideration at the reference frame. Due to that fact, the tracking of the referent
trajectory in the Cartesian space is not satisfactory, see Figs. 8a and 8d.
The position control law produces the ideal response of the motor angular motion, see Figs. 8b

and 8e.
The forces Fm1 = Fm2 acting in each rope in the m direction at the reference and real frames

are presented in Fig. 10b. Example 2 has an important theoretical meaning, because it confirms
the strong coupling between the external and internal coordinates.
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The presented results imply that the dynamics of the individual motor significantly depends
of the selection of the CPR-D structure and its parameters. The CPR-D is modeled and analyzed
by the software package AIRCAMD.

4. Conclusion

The highly authentic general mathematical model for the CPR-D system has been developed.
This model represents novel kinematic and dynamic solutions of the complex Cable suspended
Parallel Robot structure. The CPR-D system is selected to carry the camera through four pivot
points which produce a 3D workspace of a parallelepiped shape. The camera carrier is controlled
by two ropes in each of the three directions, and driven by three motors. The kinematic model is
defined for the monitored system via the Jacobian matrix. The generalized coordinates selected
for the CPR-D model are angular positions of the motors θ1, θ2, θ3 named internal coordinates.
Camera motion is defined in the Cartesian space, described with the x, y, z coordinates, named
the external coordinate system. The relation between the internal and external coordinate sys-
tems is described by the Jacobian matrix Jd. This relation represents the kinematic model of
the CPR-D system. The solution for the CPR-D kinematic structure has been found through
a novel procedure named KinCPRD-Solver (Kinematic Cable Parallel Robot D-type Solver)
which is developed and validated using two selected Examples. The relation between the motor
load torque and the force acting at the camera carrier is described by the Lagrange principle
of virtual work. This calculation shows that in this relation, the Jacobian matrix is involved.
Because of the construction complexity of this system, the Lagrange principle of virtual work
had to be adapted for two reasons. The software package AIRCAMD has been developed and
used for individual analysis of the CPR-D model from various aspects such as selecting different
workspace dimensions, camera carrier mass, external disturbances, choice of the control law,
reference trajectory, avoidance of singularity and many other characteristics.
The future research will involve elastic ropes (type of nonlinear dynamic elasticity as de-

fined by Filipovic et al. (2007), Filipovic and Vukobratovic (2008a,b), Filipovic (2012) in the
mathematical model of the CPR system. Different CPR models previously developed will be
unified according to their similarities into a single reconfigurable model, using the methodology
presented by Djuric et al. (2010, 2012). Stability conditions, sensitivity analysis and singularity
analysis of the CPR-D system will be done in the future research.
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Fault diagnosis is playing today a crucial role in industrial systems. To improve relia-
bility, safety and efficiency advanced monitoring methods have become increasingly im-
portant for many systems. The vibration analysis method is essential in improving con-
dition monitoring and fault diagnosis of rotating machinery. Effective utilization of vi-
bration signals depends upon effectiveness of applied signal processing techniques. In
this paper, fault diagnosis is performed using a combination between Wavelet Transform
(WT) and Principal Component Analysis (PCA). The WT is employed to decompose
the vibration signal of measurements data in different frequency bands. The obtained
decomposition levels are used as the input to the PCA method for fault identification
using, respectively, the Q-statistic, also called Squared Prediction Error (SPE) and the
Q-contribution. Clearly, useful information about the fault can be contained in some levels
of wavelet decomposition. For this purpose, the Q-contribution is used as an evaluation
criterion to select the optimal level, which contains the maximum information.Associated
to spectral analysis and envelope analysis, it allows clear visualization of fault frequencies.
The objective of this method is to obtain the information contained in the measured data.
The monitoring results using real sensor measurements from a pilot scale are presented and
discussed.

Keywords: vibration, fault diagnosis, wavelet analysis, principal component analysis, squared
prediction error

1. Introduction

Growing demand for higher performance, safety and reliability of industrial systems has increased
the need for condition monitoring and fault diagnosis. During the two past decades, various
monitoring methods have been developed, including dynamics, vibration, tribology and non-
-destructive techniques (Altmann, 1999; Yang, 2004).
The vibration analysis is one of the most important methods used for condition monitoring

and fault diagnosis, because it always carries the dynamic information of a system. Effecti-
ve utilization of vibration signals depends upon the effectiveness of applied signal processing
techniques. The analysis of stationary vibration signals has largely been based on well-known
spectral techniques such as: Fourier Transform (FT) and Short Time Fourier Transform (STFT)
(Seker and Ayaz, 2002; Shibata et al., 2000). Unfortunately, these methods are not suitable
for non-stationary signal analysis (Wu and Liu, 2008). In order to solve this problem, Wavelet
Transform (WT) has been developed. WT is used to extract approximations and detail coef-
ficients of measurements data with different frequency bands by using successive low-pass and
high-pass filtering. This makes the application of WT for non-stationary signal processing an
area of active research over the past decade. An overview of the WT used in vibration signal
analysis was provided by Litak and Sawicki (2009), Al-Badour et al. (2011) and Yan et al. (2014).
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The original signal using WT can be decomposed into approximations and details versions
with different resolutions. The decomposed levels will not change their information in the time
domain (Gaing, 2004). However, useful information can be contained in some sub-bands. So, the
fault can be detected from a given level of resolution. This is based on the choice of an indicator
to determine the optimal level where failure can occur. The selection of the most reliable indica-
tor has been studied by several authors. A large number of applications have been reviewed, e.g.
Prabhakar et al. (2002) selected periodic impulses of bearing faults in the time domain based on
the low and high frequency nature of decomposed levels. Similar analyses were carried out by
Purushotham et al. (2005) in order to extract periodic impulses from time signals using discre-
te wavelet transform at Mel-frequency scales. Chinmaya and Mohanty (2006) used sidebands
of gear meshing frequencies as an evaluation criterion for gear faults diagnosis. Djebala et al.
(2008) analyzed vibration of faults inducing periodical impulsive forces by selecting the kurtosis
as indicator. In another study, Gavrovska et al. (2009) described the optimal selection of decom-
position levels in the wavelet transform used for both high-frequency and low-frequency filtering
of the ECG signal. Yaqub et al. (2011) estimated the bandwidth of the resonant frequency band
of vibration data by adaptive selection of wavelet decomposition levels. The adaptive criterion
was based on saturated dissemination of the signal energy over the wavelet decomposition nodes.
In this work, we propose to use a combination between WT and PCA for improving the vibra-

tion monitoring. PCA is a multivariate analysis technique, also a dimension reduction technique.
It finds the directions of significant variability in the data by forming linear combinations of va-
riables. Its application for vibration analysis is suggested in several papers (De Moura et al.,
2011; Shao et al., 2014).
The aim of the proposed combined method is to provide a solution to the fault diagnosis

problem. WT is used to extract approximations and details vectors in order to obtain multiple
data series at different resolutions. Clearly, useful information is contained in some decomposition
levels. The obtained levels are used as the input to the PCA method for identifying abnormal
situations in different frequency bands using the Q-statistic or Squared Prediction Error (SPE)
and Q-contributions. In order to extract useful information, the Q-contribution is used as the
principal criterion to select the optimal level of resolution. Associated to spectral analysis and
envelope analysis, it allows clear visualization of the frequencies faults. The proposed method is
evaluated using the experimental measurements data in the cases of mass unbalance and gear
fault.
The remainder of this paper is structured as follows. Section 2 presents the fault diagnosis

method using WT and PCA along with its formulations. The experimental setup is discussed
in Section 3. The monitoring results and discussion are presented in Section 4. Finally, Section
5 concludes our work and contributions.

2. Fault diagnosis method

2.1. Wavelet transform

Wavelet Transform (WT) is a relatively new signal processing tool. Due to its strong capa-
bility in the time and frequency domain analysis, it is applied by many researchers in diverse
applications (see, for example, Litak et al., 2009; Sen et al., 2010). WT describes a signal by
using the correlation with translation and dilatation of a function called mother wavelet; it inc-
ludes Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). Let s(t)
be the signal, then the CWT of s(t) is defined as

CWT (a, b) =
1√
|a|

∞∫

−∞
s(t)ψ∗

( t− b
a

)
dt (2.1)
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where ψ∗(t) is the conjugate function of the mother wavelet ψ(t), a and b are the dilation
(scaling) and translation (shift) parameters, respectively.
DWT is derived from discretization of CWT. The most common discretization is dyadic.

DWT is found to yield fast computation of the WT. It is given by

DWT (j, k) =
1√
2j

∞∫

−∞
s(t)ψ∗

(t− 2jk
2j

)
dt (2.2)

where a and b are replaced by 2j and 2jk, j is an integer.
A very useful implementation of DWT, called multiresolution analysis (Mallat, 1989), is

demonstrated in Fig. 1. The DWT analyzes the signal at different frequency bands with different
resolutions by decomposing the signal into several levels; approximations (A1,A2,A3,...) and
details (D1,D2,D3,...). The signal is decomposed at the expected level. DWT employs two sets
of functions, called scaling function and wavelet function (Mallat, 1989), which are associated
with Low-pass (L) and High-pass (H) filters, respectively. The approximations are the high-scale,
low-frequency components and the details are the low-scale, high-frequency components of the
signal.

Fig. 1. Principle of DWT decomposition

Selection of an appropriate wavelet is very important in signal analysis. There are many
functions available that can be used, such as Haar, Daubechies, Meyer, and Morlet functions
(Chui, 1992; Daubechies, 1988). In this application, we use the Daubechies wavelet for fault
diagnosis of the mass unbalance and gear fault.

2.2. Principal Component Analysis

Principal Component Analysis (PCA) (Chiang et al., 2001; Jolliffe, 2002) is a projection
statistical method used for dimensionality reduction. It produces a lower-dimensional represen-
tation in a way that preserves the correlation structure between the variables. Given a set of
n observations or samples and m variables stacked into a matrix X, whose variance-covariance
matrix has eigenvalue-eigenvector pairs

(λ1, p1), (λ2, p2), . . . , (λm, pm) (2.3)

where λ1  λ2  λ3  · · ·  λm  0.
The principal decomposition component of X can be represented as

X = TPT +E =
l∑

i=1

tip
T
i +E l < m (2.4)

where T = [t1, t2, . . . , tl] is defined to be the matrix of principal component scores,
P = [p1, p2, . . . , pl] is the matrix of principal component loadings, E is the residual matrix
in the sense of the minimum Euclidean norm and l is the index of the Principal Components
(PCs).
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The identification of the PCA model thus consists in estimating its parameters by an
eigenvalue-eigenvector decomposition and determining the number of PCs l to retain. Many
procedures have been proposed for selecting the number of PCs to be retained (Kano and Hase-
be, 2001). In this study, we use the experiential method (Nomikos and MacGregor, 1995) which
judges that the cumulative sum contribution of the anterior l PCs is higher than 0.85, as follows

100 ·
∑l
i=1 λi∑m
i=1 λi

> 85% (2.5)

The basic idea of the process of fault detection using PCA is to collect normal observation
data to establish the PCA model. When a new observation data is subject to fault, these new
data can be compared to the PCA model and its threshold. In order to detect the abnormal
changes of the new data, the Q-statistic or SPE is used as follows

Q-statistic = SPE = eTe = ‖x(I−PPT)‖2 (2.6)

The process is considered normal if

Q-statistic ¬ δ2Q (2.7)

where δ2Q denotes the confidence limit or threshold for the Q-statistic. It can be calculated from
its approximate distribution (Jackson and Mudholkar, 1979)

δ2Q = θ1
[
Cα

√
2θ2h20

θ1
+ 1 +

θ2h0(h0 − 1)
θ21

]
(2.8)

where θi =
∑m
j=k+1 λ

i
j , i = 1, 2, 3 and h0 = 1 − 2θ1θ3/(3θ22), and λj is the eigenvalue, Cα is the

critical value of the normal distribution and m is the number of all PCs.

The threshold is used to determine whether the data is within range of the model. To compare
the new data to the PCA model, a confidence limit of α = 95% is used. Any point below the
confidence limit line is considered to have a normal variance from the selected number of PCs,
and any point above this line is considered to have an abnormally high level of variance.

After the fault is detected, i.e. the new observation data exceed the threshold line of the PCA
model but can not be assure in what place the fault appears in the process. An assignable cause
is determined by the contribution plot. The contribution plots are bar graphs of the Q-residual
contribution of each variable calculated as in equation (2.9) (Xuet al., 2008). The variable having
the largest residual produces the worst compliance to the PCA model, and indicates the source
of the fault

Q-contribution = cont i =
‖ei‖2

Q-statistic
(2.9)

where ei presents the i-th element of the residual vector e and cont i is the contribution of the
i-th variable to the total sum of variations in the residual space.

By using the WT, the time domain information will not be lost when the signal is decom-
posed. In order to extract useful information in different decomposition levels, the contribution
plots are used as an evaluation criterion for selecting the optimal level which contains the ma-
ximum information about the fault. A flowchart of the fault detection and diagnosis method
based on WT and PCA is illustrated in Fig. 2.
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Fig. 2. Flowchart of the fault diagnosis method

3. Experimental setup

The problem of diagnosing the degradation of working conditions of rotating machinery is extre-
mely important in industries to reduce the productivity loss. The measurement of vibration
applied to the condition monitoring and fault diagnosis requires different types and levels of
equipment and techniques. In the present study, an experimental system is used and the vibra-
tion response for mass unbalance and gear fault are obtained.

3.1. System description

The experimental system consists of a test rig built by S’tell Diagnostic (France), a data
acquisition system (OROS OR25, 4 channels), piezoelectric accelerometers (PCB Piezotronics
353B34) and a PC (see Fig. 3). The system is driven by a 0.18 kW induction motor giving an
output of 0-1500 rpm, controlled by a variable speed drive. To confirm the feasibility of the
proposed method, we collect real vibration signals using the experimental test rig illustrated in
Fig. 3, where 1 and 2 are gears with 60 and 48 teeth, respectively, H1, H2, H3 and H4 are the
bearing housings.

The vibration signals are taken on bearing housing H1 by means of two piezoelectric accelero-
meters measuring radial vibration, i.e. in the Vertical Direction (VD) and Horizontal Direction
(HD). These measurements are repeated for different states at different rotation speeds. The
data acquisition is performed using the OR25 software. The vibration signals measured have
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Fig. 3. Illustration of the experimental system

length of acquisition of 400 milliseconds. The sampling frequency is 5120Hz and each signal has
2048 samples.

3.2. Faults description

The experiment described in this paper, performs the condition monitoring of rotating ma-
chinery to predict some anomalies that may occur under different measurement conditions such
as: mass unbalance and gear fault.

3.2.1. Mass unbalance

Mass unbalance is one of the most common causes of vibration. It is a condition when the
center of mass does not coincide with the center of rotation, due to unequal distribution of mass
about the center of rotation. It is simulated in this study by an additional weight on the disk.
The mass unbalance creates a vibration frequency exactly equal to the rotational speed, with
an amplitude proportional to the amount of unbalance (Tandon and Parey, 2006).
Figure 4 represents the measured signals of the mass unbalance at a speed of 900 rpm in VD

and HD.

Fig. 4. Vibration signals of the mass unbalance collected at 900 rpm: (a) VD and (b) HD

3.2.2. Gear fault

Vibrations of a gear are mainly produced by the shock between teeth of the two wheels. Gear
fault is simulated with a gap between teeth. The vibration monitored on a faulty gear generally
exhibits a significant level of vibration at the tooth mesh frequency (i.e. the number of teeth on
the gear multiplied by its rotational speed) and its harmonics (Tandon and Parey, 2006).
Figure 5 represents the measured signals of the gear fault at a speed of 900 rpm in VD and

HD.
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Fig. 5. Vibration signals of the gear fault collected at 900 rpm: (a) VD and (b) HD

4. Results and discussion

The structure of proposed fault diagnosis technique involves two parts: the first one is develop-
ment and training of the PCA model; the second is testing the process fault based on the trained
model (see Fig. 2). The measurements used in training phase represent the normal operating
conditions of the system, i.e. system without fault.

The vibration signals used in this work have been gained through the practical measurement,
including a normal state, mass unbalance and gear fault. The data collection has been carried
out according to the following routine: vibration signals used in the training are taken in VD
and HD at seven different rotating speeds between 300 and 1425 rpm. In the testing phase, each
fault of the process has been measured in the radial direction at five different rotating speeds:
675, 900, 1125, 1275 and 1425 rpm which, respectively, correspond to 11.25, 15, 18.75, 21.25 and
23.75Hz.

The multiresolution analysis is applied by using the Daubechies wavelet of the order 4 (db4)
and level 4. It may be noted that the same wavelet with the same level of decomposition is
applied to each signal for the training and testing phases. The results of db4 decomposition of
the vibration signals of the mass unbalance and gear fault collected at 900 rpm in the radial
direction are given respectively in Figs. 6 and 7.

After decomposition with db4, the approximations and details vectors of each signal measured
at the same rotation speed in the radial direction are collected in a matrix. Thus the input
matrices of the PCA method are formed. During the training phase, seven matrices are collected
for identifying the PCA model. Through PCA method, the anterior 8 PCs accumulation sum
contribution rate is 92.46%, as shown in Table 1. These first 8 PCs are selected for the fault
identification.

The detection threshold of Q-statistic is calculated according to equation (2.8), which is
2.2414. To evaluate the fault detection method, the detection ratio is used. It is defined as the
number of samples whose Q-statistic values go beyond the threshold to the total samples. If the
detection ratio is less than 20%, the fault is not successfully detected (Xuet al., 2008). In normal
operating conditions, 2.83% of the Q-statistic samples are above the threshold value. It implies
that the model has captured the major correlation and variance among the system variables.

In the testing phase, five matrices of each fault are collected for validating the PCA method.
The new data are compared to the PCA model and its threshold. The evaluation results of fault
detection rate are summarized in Tables 2 and 3. We show clearly that the majority samples of
the Q-statistic at different rotation speeds are above the threshold value. By comparing these
values to 2.83% obtained in the normal state, it is also clear that an abnormal situation has
occurred in the process.

The objective of the proposed method is to demonstrate the effectiveness of the Q-
contribution as a principal criterion for selecting the optimal level of wavelet decomposition.
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Fig. 6. Decomposition results of the measured signals of the mass unbalance at 900 rpm in VD (left)
and HD (right)

Fig. 7. Decomposition results of the measured signals of the gear fault at 900 rpm in VD (left)
and HD (right)
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Table 1. PCs values

PCs Eigenvalues Variance [%]

1 1.6459 16.46

2 1.6159 16.16

3 1.2381 12.38

4 1.1741 11.74

5 1.0642 10.64

6 0.9358 9.36

7 0.8259 8.26

8 0.7458 7.46

9 0.3934 4.13

10 0.3611 3.54

Table 2. Evaluation results of the mass unbalance detection rate

rpm 675 900 1125 1275 1425

SPE [%] 35.59 67.91 79.00 83.30 85.40

Table 3. Evaluation results of the gear fault detection rate

rpm 675 900 1125 1275 1425

SPE [%] 70.94 81.59 76.36 80.17 87.50

Fig. 8. Contribution plots of the mass unbalance (left) and the gear fault (right)
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The contribution plots are bar graphs of the Q-residual contribution of each variable or decom-
posed vector (Fig. 8). The level having the largest value produces the worst compliance to the
PCA model and indicates the desired level of decomposition. As shown in Fig. 8, decomposition
levels 1 to 4 and 6 to 9 present respectively the detail vectors for VD and HD, and levels 5
and 10 stand respectively for the approximation vectors. It shows an obvious difference between
the levels. From Fig. 8 (left), it can be seen that levels 5 and 10 have the largest values. We
show also in Fig. 8 (right), that the contribution plot using db4 occurs in the third level. So our
choice is attached to approximation A4 for the mass unbalance and detail D3 for the gear fault.

In order to diagnose the mass unbalance and the gear fault from the selected level we use,
respectively, spectral analysis and envelope analysis. Figure 9 (left) shows the spectra of fourth
approximations (A4). Frequency peaks at 11.25, 15, 18.75, 21.25 and 23.75Hz are present, which
could be related to a mass unbalance fault. Figure 9 (right) illustrates the FT of the envelopes
of the selected details. It can be seen from this figure that the peaks at the rotation frequencies
of the shaft (11.25, 15, 18.75, 21.25 and 23.75 Hz) and their multiples (×2,×3, . . .) are present
in the frequency spectra. This clearly indicates a gear fault.

Fig. 9. Spectra of selected levels of the mass unbalance (left) and the gear fault (right)

5. Conclusion

This paper presents a combined approach based on the WT and PCA method to improve the
condition monitoring and fault diagnosis of rotating machinery. It is adapted to obtain multiple
data series at different levels using wavelet decomposition and reduce the number of variables
needed to monitor the process through PCA. The detection method is based on a confidence limit
estimated from normal conditions. The aim is to select the optimal level of resolution using the
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residual contribution of each decomposed vector, for a possible diagnosis. The proposed method
has been tested on real measurement signals collected from a vibration system containing mass
unbalance and gear fault. Better experimental results have been obtained by identifying the type
of fault. Hence the WT combined with the PCA method is a successful approach to vibration
monitoring.
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1. Introduction

The fractional strain is a generalisation of the classical strain measure utilising the fractional
calculus (the branch of mathematical analysis which deals with differential equations of an
arbitrary order (Podlubny, 2002)). Such defined strain is non-local because of the fractional
derivative definition.
In the literature, there exist a few concepts of fractional strain. One can mention here those by

Klimek (2001), Lazopoulos (2006), equivalent concepts of Atanackovic and Stankovic (2009) and
Carpinteri et al. (2011) or, finally, that by Drapaca and Sivaloganathan (2012). It is important
that except for the concept presented in Drapaca and Sivaloganathan (2012), the previous ones
were defined for 1D problems and small strains. Of fundamental meaning is also the fact that
these authors consider different physical units of fractional strain tensor components, e.g. in
Klimek (2001), Atanackovic and Stankovic (2009), Carpinteri et al. (2011) we have [m1−α], in
Lazopoulos (2006) [m−α], or in (Drapaca and Sivaloganathan, 2012) [m3−α1k−α2k−α3k ] k = 1, 2, 3,
where m denotes meter, and the parameter α is in general different than 1.
In the paper by Sumelka (2014c) a different concept of fractional strain was presented. In that

version, the fractional strain is without physical unit, as in the classical continuum mechanics,
and the length scale parameter is given explicitly and simultaneously related to the terminals of
the fractional differential operator.
In this paper, we follow the fundamental results given in the above mentioned paper (Sumel-

ka, 2014c), giving finally the geometrical interpretation of fractional strain tensor components.

2. Geometrical interpretation of fractional strain

The description is given in the Euclidean space in Cartesian coordinates. We refer to B as the
reference configuration of the continuum body while S denotes its current configuration. Points
in B are denoted by X and in S by x.
The regular motion of the material body B can be written as

x = φ(X, t) (2.1)

thus φt : B → S is a C1 actual configuration of B in S, at time t.
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Taking the Taylor expansion of motion for dX, we have

φ(X+ dX, t) = φ(X, t) +
∂φ(X, t)

∂X
dX+ |dX|r(X, t,dX) (2.2)

with the property of the residuum that lim|dX|→0 |r(X, t,dX)| = 0. Denoting dx = φ(X +
dX, t)− φ(X, t) and omitting higher order terms, one gets

dx = FdX (2.3)

and

dX = F−1dx (2.4)

where F(X, t) = ∂φ(X, t)/∂X denotes the deformation gradient, and F−1(x, t) = ∂ϕ(x, t)/∂x.

We introduce non-local effects through multiplication of Eq. (2.3) (left sided) by
α
F
X
and Eq. (2.4)

(left sided) by
α
F
x
, thus

dx̃ = F̃
X
dX (2.5)

and

dX̃ = F̃
x
dx (2.6)

where (following the notation in (Sumelka, 2014c)), dx̃ =
α
F
X
dx is a fractional spatial line element,

dX̃ =
α
F
x
dX is a fractional material line element, while F̃

X
=

α
F
X
F and F̃

x
=

α
F
x
F−1 are fractional

deformation gradients defined as follows

F̃
X
(X, t) = ℓα−1X D

X

αφ(X, t) (2.7)

and

F̃
x
(x, t) = ℓα−1x D

x

αϕ(x, t) (2.8)

where ℓX and ℓx are length scales in B and S, respectively. In Eqs. (2.7) and (2.8), Dα is
the Riesz-Caputo fractional differential operator while α denotes the order of differentiation,
cf. Sumelka (2014c). Comparing Eq. (2.3) and Eq. (2.5) (or Eq. (2.4) and Eq. (2.6)), one can
also interpret such an assumption (by analogy to (Drapaca and Sivaloganathan, 2012)) as the
existence of motion of the order α, which means the motion accounting for non-local effects.
The situation is summarised in Fig. 1.
Notice that the length scales ℓX , ℓx preserve classical physical unit [m], and together with α,

they are additional material parameters. As an example, for metallic materials, they can be
identified as distances connected with non-homogeneous distribution of dislocations and cell
structures (Pecherski, 1983; Sumelka, 2014b).

We have now four ways to define the strain tensor (cf. Fig. 1). Denoting by
⋄
F deformation

gradients F or F̃
X
or F̃

x
or

α
F, one can obtain local/non-local classical/fractional strain tensors

through classical rules, namely

E =
1

2

( ⋄
FT
⋄
F− I

)
e =
1

2

(
i−

⋄
F−T

⋄
F−1

)
(2.9)
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Fig. 1. Relations between the material and spatial line elements with their fractional counterparts

(
α

F = F̃
X
F−1F̃

x

−1
,
α

F
x
= F̃
x
F and

α

F
X
= F̃
X
F−1)

where E is the classical Green-Lagrange strain tensor or its fractional counterpart, and e is the
classical Euler-Almansi strain tensor or its fractional counterpart.
It should be emphasised that appropriate mapping of terminals from a material to spatial

description (or inversely – cf. analogy in Sumelka (2014a)) that fulfil

α
F
X
= F

α
F
x

−1F−1 or
α
F
x
= F−1

α
F
X

−1F (2.10)

assures that
α
F
X
=

α
F
x
−1, so then the operating on the pair dX̃→ dx or dX→ dx̃ is equivalent.

We can now draw a picture showing the geometrical meaning of fractional strain components

– cf. Fig. 2 (
⋄
(·) stands for classical or fractional line elements). It is clear that extension (normal

strain) of a (fractional) material line element d
⋄
X = |d

⋄
X|e is defined as

⋄
ε =
|d⋄x| − |d

⋄
X|

|d
⋄
X|

or
⋄
ε =

√
1 + 2e ·

⋄
Ee⇔ e ·

⋄
Ee =

⋄
ε+

⋄
ε2

2
(2.11)

where e is a unit vector along the fibre direction.

Fig. 2. Geometrical interpretation of the fractional extension and shear

The shear (shear strain) is defined by the deviation from orthogonality of two (fractional)

material line elements d
⋄
X1 = |d

⋄
X1|e1 and d

⋄
X2 = |d

⋄
X2|e2, namely (cf. Fig. 2)
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sin
⋄
γ12 =

d
⋄
x1 · d

⋄
x2

|d⋄x1||d
⋄
x2|

or sin
⋄
γ12 =

2e1 ·
⋄
Ee2 + e1 · e2√

1 + 2e1 ·
⋄
Ee1

√
1 + 2e2 ·

⋄
Ee2

(2.12)

where e1 and e2 are unit vectors along the fibres directions. In the case when initially the
material line elements are perpendicular, e1 · e2 = 0.

3. Conclusions

Geometrical interpretation of the fractional strain components is the same as that for classical
strain. It is because of its analogical definition which is based on fractional (’scaled’) material and
spatial line elements. Hence, the extension is the ratio of the difference of squares of current and
initial elemental lengths and squared initial elemental length. At the same time, shear defines
the deviation from orthogonality of two elemental line elements (in fractional picture they must
not be initially perpendicular).
It is important that an analogous geometrical interpretation can also be applied to other

competitive formulations known in the literature (cf. Section 1 and paper (Sumelka et al., 2015)),
where similarities between formulations are shortly listed) – however one should remember that
they operate on different physical units.
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