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The present paper deals with the influence of the axial extension mode on
static and dynamic interactive buckling of a thin-walled beam-column with
imperfections subjected to uniform compression when the shear lag pheno-
menon and distortional deformations are taken into account. A plate model
(2D) is adopted for the beam-column. One- and two-dimensional models
of the elements are compared, too. The structure is assumed to be simply
supported at the ends. Equations of motion of the component plates are
obtained from Hamilton’s Principle, taking into account all components of
inertia forces. Within the frame of the first order nonlinear approximation,
the dynamic problem of modal interactive buckling is solved by the transition
matrix using the perturbation method and Godunov’s orthogonalization.
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1. Introduction

Thin-walled structures composed of plate elements have many different buc-
kling modes that vary in quantitative and qualitative aspects. The analysis of
buckling of conservative systems belongs to the main problems in mechani-
cal sciences. In the case of finite displacements, different buckling modes are
interrelated even with the loads close to their critical values (eigenvalues of
the respective boundary problem). The investigation of stability of equilibrium
states requires application of a nonlinear theory that enables us to estimate the
influence of different factors on the structure behavior. When the static post-
critical behavior of each individual mode is stable, their interaction can lead to
unstable behavior, and thus to an increase in the imperfection sensitivity (Ali
and Sridharan, 1988; Benito and Sridharan, 1984-85; Byskov, 1987-88; Byskov
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and Hutchinson, 1977; Kolakowski, 1993; Kolakowski and Kowal-Michalska,
1999; Kolakowski and Krolak, 2006; Kolakowski et al., 1999; Kolakowski and
Teter, 2000; Manevich, 1985, 1988; Moellmann and Goltermann, 1989; Pi-
gnataro and Luongo, 1987; Pignataro et al., 1985; Sridharan and Ali, 1986;
Sridharan and Benito, 1984; Sridharan and Peng, 1989; Teter and Kolakowski,
2004).

The concept of static interactive buckling (the so-called coupled buckling)
involves the general asymptotic theory of stability. Among all versions of the
general nonlinear theory, Koiter’s theory (Koiter, 1976; Koiter and Pignataro,
1976; Koiter and van der Neut, 1980) of conservative systems is the most
popular one, owing to its general character and development, even more so
after Byskov and Hutchinson (1977) formulated it in a convenient way. The
theory is based on asymptotic expansions of the postbuckling path and is
capable of considering nearly simultaneous buckling modes.

The theory of interactive buckling of thin-walled structures subjected to
static and dynamic loading has been already developed widely for over forty
years. Although the problem of static coupled buckling can be treated as fairly
well recognized, the analysis of dynamic interactive buckling is in practice
limited to columns (adopting their beam model), single plates and shells (Ari-
Gur and Simonetta, 1997; Huyan and Simitses, 1997; Kołakowski, 2010; Kowal-
Michalska, 2007; Papazoglou and Tsouvalis, 1995; Petry and Fahlbusch, 2000;
Schokker et al., 1996; Volmir, 1972).

In the world literature, a substantial lack of the nonlinear analysis of dy-
namic stability of thin-walled structures with complex cross-sections can be
felt.

In this study, special attention is focused on the influence of the axial
extension mode on static and dynamic coupled buckling with local buckling
modes of the thin-walled beam-column with closed cross-section. The axial
extension mode should be included in dynamic analysis (Kołakowski, 2010).

1.1. Static interactive buckling

When components of the displacement state for the first order approxi-
mation are taken into account, this can be followed by a decrease in values of
global loads. The theoretical static load carrying capacity, obtained within the
frame of the asymptotic theory of the nonlinear first order approximation, is
always lower than the minimum value of critical load for the linear problem,
and the imperfection sensitivity can only be obtained.

According to the assumptions made in Byskov and Hutchinson’s theory
(Byskov, 1987-88; Byskov and Hutchinson, 1977), local buckling modes do not
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interact explicitly. However, an interaction occurs through an interaction of
each of them with the global modes. It can be noticed that the global fle-
xural (Euler) buckling can interact with an even number of modes that are
symmetric or antisymmetric but the global flexural-torsional mode interacts
only with pairs of symmetric and antisymmetric modes (Kolakowski, 1993;
Kolakowski and Kowal-Michalska, 1999; Kolakowski et al., 1999; Kolakowski
and Teter, 2000; Sridharan and Ali, 1986; Sridharan and Benito, 1984; Sridha-
ran and Peng, 1989; Teter and Kolakowski, 2004). However, the global axial
extension mode can interact even with one symmetric mode or with a pair of
antisymmetric modes with respect to the axis of overall bending.

Since the late 1980’s, the Generalized Beam Theory (GBT) (Basaglia et
al., 2008; Camotim et al., 2008; Camotin and Dinis, 2009; Davies, 2000; Si-
lva et al., 2008) has been developed extensively. Recently, a new approach
has been proposed, i.e., the constrained Finite Strip Method (cFSM) (Adany
and Schafer, 2006a,b; Dinis et al., 2007; Schafer, 2006). These two alternative
modal approaches to analyze the elastic buckling behavior were compared in
Adany et al. (2006, 2007, 2008).

In the current decade, in more and more numerous publications by Adany
and Schafer (2006a,b, 2008), Basaglia et al. (2008), Camotim et al. (2008),
Dinis et al. (2007), Schafer (2006), Silva et al. (2008), attention has been paid
to the global axial mode, which is considered only in the theoretical aspect in
linear issues, that is to say, under critical loads. Adany and Schafer (2006a),
have said that “it should be noted that this axial mode is a theoretically
possible buckling mode, even though it has little practical importance”. In the
axial extension mode, longitudinal displacements of the cross-section dominate
and this mode can be referred to as the shortening one (Fig. 1). The axial
mode is symmetric with respect to the cross-section axis of symmetry and it
is symmetric with respect to the axis of overall bending. The axial extension
mode should be included in dynamic analysis (Kołakowski, 2010).

Fig. 1. Longitudinal displacement distributions of the axial mode of the
beam-column
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A trial to dispute with the statement included in the paper by Adany and
Schafer (2006a), has been undertaken. Here special attention has been focused
on the eigenvalue problem of the axial mode and on the interaction of the
global axial extension mode with local buckling modes for a square box of the
column in the first order nonlinear approximation of the perturbation method
(Kołakowski and Kowal-Michalska, 2011).

In the present study, a plate model (2D) of the column has been adopted to
describe all buckling modes. Instead of the finite strip method, the numerical
method of the transition matrix using Godunov’s orthogonalization is used
in this case. In the solution obtained, the interaction between all the walls of
structures being taken into account, the shear lag phenomenon and also the ef-
fect of cross-sectional distortions are included. The most important advantage
of this method is such that it enables us to describe a complete range of beha-
vior of thin-walled structures from all global to the local stability (Kolakowski
and Kowal-Michalska, 1999; Kolakowski and Krolak, 2006; Kolakowski et al.,
1999; Kolakowski and Teter, 2000). The solution method has been partially
presented in paper by Kolakowski and Krolak 2006.

In the present study, in order to simplify the analysis of the eigenvalue
problem, the results obtained for the two-dimensional element have been com-
pared to the results for the one-dimensional element.

1.2. Dynamic interactive buckling

The dynamic pulse load of thin-walled structures can be divided into three
categories, namely: impact with accompanying perturbation propagation (a
phenomenon that occurs with the sound wave propagation speed in the struc-
ture), dynamic load of a mean amplitude and a pulse duration comparable to
the fundamental flexural vibration period, and quasi-static load of a low am-
plitude and a load pulse duration approximately twice as long as the period
of fundamental natural vibrations.

The dynamic buckling of a beam-column can be treated as reinforcement of
imperfections, initial displacements or stresses in the column through dynamic
loading in such a manner that the level of the dynamic response becomes very
high. When the load is low, the column vibrates around the static equilibrium
position. On the other hand, when the load is sufficiently high, then the column
can vibrate very strongly or can move divergently, which is caused by dynamic
buckling (i.e., dynamic response). The effects of damping can be neglected in
practice.
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In the literature on this problem, various criteria concerning dynamic sta-
bility have been adopted. The most widely used is the Budiansky-Hutchinson
criterion (Budiansky and Hutchinson, 1966; Hutchinson and Budiansky, 1966),
in which it is assumed that a loss of dynamic stability occurs when the velocity
with which displacements grow is the highest for a certain force amplitude.
Other criteria were discussed in papers Ari-Gur and Simonetta (1997), Gan-
tes et al. (2001), Huyan and Simitses (1997), Kleiber et al. (1987), Kowal-
Michalska (2007), Papazoglou and Tsouvalis (1995), Petry and Fahlbusch
(2000), Volmir (1972), for instance.
A dynamic response to the rectangular pulse load of the duration corre-

sponding to the fundamental period of flexural free vibrations has been ana-
lyzed.

2. Formulation of the problem

2.1. Two-dimensional model – plate model

A long prismatic thin-walled beam-column built of panels connected along
longitudinal edges has been considered. The beam-column is simply supported
at its ends. In order to account for all modes and coupled buckling, a plate
model of the thin-walled beam-column has been assumed. The material the
column is made of is subject to Hooke’s law.
For each plate component, precise geometrical relationships are assumed

to enable the consideration of both out-of-plane and in-plane bending of the
i-th plate (Kolakowski and Krolak, 2006; Kowal-Michalska, 2007)

εxi = ui,x +
1

2
(w2i,x + v

2
i,x + u

2
i,x) εyi = vi,y +

1

2
(w2i,y + u

2
i,y + v

2
i,y)

2εxyi = γxyi = ui,y + vi,x + wi,xwi,y + ui,xui,y + vi,xvi,y
(2.1)

and
κxi = −wi,xx κyi = −wi,yy κxyi = −2wi,xy (2.2)

where: ui, vi, wi – components of the displacement vector of the i-th plate
along the xi, yi, zi axis direction, respectively, and the plane xiyi overlaps the
central plane before its buckling.
In the majority of publications devoted to stability of plate structures,

the terms (v2i,x + u
2
i,x), (u

2
i,y + v

2
i,y) and (ui,xui,y + vi,xvi,y) are neglected for

εxi, εyi, γxyi = 2εxyi, correspondingly, in strain tensor components (2.1).
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The main limitation of the assumed theory lies in the assumption of li-
near relationships between curvatures (2.2) and second derivatives of the di-
splacement w (discussed in detail in, e.g., Opoka and Pietraszkiewicz, 2004;
Pietraszkiewicz, 1989). This is the most often applied limitation in the theory
of thin-walled structures.
From Hamilton’s principle, having taken into account relationships (2.1)

and (2.2), the following equations of motion are obtained

Nx,x +Nxy,y + {(Nxu,x),x + (Nyu,y),y + (Nxyu,x),y + (Nxyu,y),x}
+ [−hρu,tt] = 0

Nxy,x +Ny,y + {(Nxv,x),x + (Nyv,y),y + (Nxyv,x),y + (Nxyv,y),x}
+ [−hρv,tt] = 0

Mx,xx +My,yy + 2Mxy,xy + (Nxw,x),x + (Nyw,y),y + (Nxyw,x),y

+ (Nxyw,y),x +
[

−hρw,tt +
1

12
h3ρ(w,xxtt +w,yytt)

]

= 0

(2.3)

The attention has been drawn to the necessity of considering the full strain
tensor and all the components of inertial forces in order to carry out a proper
dynamic analysis in the whole range of length of the structures.
In the case static issues are analyzed, all dynamic components should be

neglected, that is to say, all terms in square brackets should be omitted in
(2.3).
After expanding the fields of displacements U and the fields of sectional

forces N into a power series with respect to the mode amplitudes ζj (the di-
mensionless amplitude of the j-th mode), Koiter’s asymptotic theory (Koiter,
1976; Koiter and Pignataro, 1976; Koiter and van der Neut, 1980; Kolakowski
and Kowal-Michalska, 1999; Kolakowski et al., 1999; Kowal-Michalska, 2007)
has been employed

U = λU
(0)
i + ζjU

(j)
i + . . . N = λN

(0)
i + ζjN

(j)
i + . . . (2.4)

where λ is the scalar load parameter, U
(0)
i , N

(0)
i are the zero (e.g., pre-

buckling) state fields, and U
(j)
i , N

(j)
i – j-th mode fields for the i-th plate.

The range of indices is [1, J ], where J is the number of interacting modes.
For the case, the uncoupled mode for the axial extension mode are

j = J = 1.
In all earlier publications by the author and his co-workers, it has been

assumed that all the modes are normalized so that the maximum normal
displacement of component plates of the j-th mode is equal to the first plate
thickness h1. Due to the fact that the axial mode is taken into consideration,
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it is assumed in the present paper that the absolute maximum value of one of
the components of the displacement field of the j-th mode is equal to the first
plate thickness h1.

The zero approximation describes the pre-buckling state, whereas the first
order approximation allows for determination of eigenvalue problems (critical
loads/natural frequencies and buckling modes/eigenvectors), being the linear
problem of stability and initial post-buckling equilibrium paths.

The obtained static system of homogeneous ordinary differential equations,
with the corresponding conditions of the interaction of walls, has been solved
by the transition matrix method, having integrated numerically the equili-
brium equations along the circumferential direction in order to obtain rela-
tionships between the state vectors on two longitudinal edges. During the in-
tegration of the equations, Godunov’s orthogonalization method is employed.
For a more detailed analysis of the solution in the first nonlinear approxi-
mation, see papers Kolakowski and Kowal-Michalska (1999), Kolakowski and
Krolak (2006), Kolakowski et al. (1999), Kolakowski and Teter (2000), Te-
ter and Kolakowski (2004). The solutions for components of the displacement
fields for the pre-buckling (zero) and the first order approximation are presen-
ted in Kolakowski and Krolak (2006).

The natural frequencies of free vibrations have been determined analogo-
usly as in Teter and Kolakowski (2003).

If the components of membrane forces and displacements within the first
order approximation are taken into account, a shear lag phenomenon and
distortions of cross-sections can be considered then.

For thin-walled structures with initial deflections, Lagrange’s equations
of motion for the case of the interaction of J eigenmodes can be written
as papers by Kowal-Michalska (2007), Schokker et al. (1996), Sridharan and
Benito (1984), Teter and Kolakowski (2003)

1

ω2r
ζr,tt +

(

1− σ
σr

)

ζr + aijrζiζj − ζ∗r
σ

σr
+ . . . = 0 for r = 1, . . . , J (2.5)

where: ζr – dimensionless amplitude of the r-th buckling mode, σr = λr∆E
(at r = 1, 2, . . .) – critical stress instead of the load parameter λr of the
r-th buckling mode, ωr, ζ

∗

r – frequency of vibrations and the dimensionless
amplitude of the initial deflection corresponding to the r-th mode, respectively.

The expressions for aijr are to be found in papers by Byskov (1987-88), By-
skov and Hutchinson (1977), Kolakowski and Kowal-Michalska (1999), Kowal-
Michalska (2007). In equations of motion (2.5), the inertia forces of the pre-
buckling state have been neglected (Kowal-Michalska, 2007; Schokker et al.,
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1996; Sridharan and Benito, 1984). The initial conditions have been assumed
in the form

ζr(t = 0) = 0 ζr,t(t = 0) = 0 (2.6)

The static problem of interactive buckling of the thin-walled channel (i.e.,
for ζr,tt = 0 in (2.5)) has been solved with the method presented in Kola-
kowski and Krolak (2006), the frequencies of vibrations have been determined
analogously as in Teter and Kolakowski (2003), whereas the problem of inte-
ractive dynamic buckling (2.5) has been solved by means of the Runge-Kutta
numerical method modified by Hairer and Wanner.

At the point where the load parameter for static problems σ reaches its
maximum value σs (the so-called theoretical load carrying capacity) for the
imperfect structure with regard to the imperfection of the mode with the
amplitude ζ∗r , the Jacobian of nonlinear system of equations (2.5) is equal to
zero.

2.2. One-dimensional model – beam-column

To simplify the analysis of the axial extension mode, a one-dimensional
model of the beam-column has been assumed as well.

In the cases of one-dimensional structural elements, the relationships are
reduced significantly. When this element is loaded by the axial compression
load only, one speaks of a column but when it is under flexural loads, one calls
this element a beam.

For one-dimensional structural elements, precise geometrical relationships
(2.1) and equation (2.2) are reduced to the following form

εx = u,x +
1

2
[w2,x + u

2
,x] κx = −w,xx (2.7)

whereas equilibrium equations (2.3) take the form

F̂,x + (F̂ u,x),x − ρAu,tt = 0 M̂,xx + (F̂w,x),x − ρAw,tt = 0 (2.8)

where: F̂ – longitudinal force, M̂ – bending moment.

To consider the axial extension mode for the one-dimensional column only,
the bending effect has been neglected, i.e., it has been assumed that equations
(2.7) and (2.8) are reduced to the form

εx = u,x +
1

2
[u2,x]

F̂,x + (F̂ u,x),x − ρAu,tt ≡ F̂,x + F̂,xu,x + F̂ u,xx − ρAu,tt = 0
(2.9)
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To compare the results for the one- and two-dimensional models of the
column, identical boundary conditions have been assumed (i.e., the same as
for the plate model)

u(x = ℓ/2) = 0 u(x = 0) = −u(x = ℓ) (2.10)

which corresponds to both ends moving and the bar being fixed in the middle
of its length ℓ. Thus, the zero and the first order solutions have been assumed

u(0) = (ℓ/2− x)∆ u(1) = U
(1)
cos
mπx

ℓ
(2.11)

where ∆ is measure of applied pressure.

Having considered (2.4) and (2.11), the strain and the longitudinal force
can be expressed as

εx = u,x +
1

2
u2,x ≈ −λ∆+ ζ1u(1),x (1− λ∆) + 0(λ2, ζ21 , λ2ζ1) = λε(0)x + ζ1ε(1)x

F̂ = EAεx ≈ EA(λε(0)x + ζ1ε(1)x ) = λF̂ (0) + ζ1F̂ (1)
(2.12)

and equation of motion (2.9)2 for the first-order approximation (i.e., with
respect to ζ1 – the dimensionless amplitude of the axial extension mode)
takes the form

u(1),xx(1− 3λ∆)−
1

c2
u
(1)
,tt + 0(λ

2, ζ21 , λ
2ζ1) = 0 (2.13)

where: c2 = E/ρ.

In the above-mentioned equation, the inertia forces of the zero state have
been neglected, which is a commonly applied reduction.

For the static problem, the dynamic term, i.e., u
(1)
,tt = 0, should be neglec-

ted in relationship (2.13).

Considering (2.11) in the static version of equation (2.13), the critical eige-
invalue is the nontrivial solution

λcr =
1

3∆
(2.14)

and the respective critical compression force and the critical stress are then
equal to

F̂cr = |(F̂ )cr| = EAλcr∆ =
EA

3
σcr =

F̂cr
A
=
E

3
(2.15)
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The above relationship defines the critical stress corresponding to the axial
extension mode.

As can be easily seen, the static critical value corresponding to the axial
mode neither depends on the bar length nor on the number of halfwaves that
occur along the bar length ℓ.

In the case of the linear dynamic problem, the frequency of free vibrations
can be determined from relation (2.13).

To achieve this, the forecast solution

u(1) = U
(1)
eiωmt cos

mπx

ℓ
(2.16)

has been substituted into (2.13) and the relationship that determines the free
vibration frequency corresponding to the axial extension mode for the bar
under compression is obtained

ωm =
mπ

ℓ

√

E

ρ
(1− 3λ∆) (2.17)

For the bar that is not subject to the longitudinal force (i.e., F̂ = 0 or λ = 0),
we have

ωm =
mπ

ℓ

√

E

ρ
(2.18)

As can be seen, the frequency of longitudinal vibrations of the bar corre-
sponding to the axial extension mode is directly proportional to the number
of halfwaves m and inversely proportional to the length ℓ.

In equation (2.13), only the terms standing at ζ1 and λζ1 have been taken
into account, whereas the terms of the type λ2ζ1 have been omitted. If we
additionally consider the terms λ2ζ1 in (2.13), then the lowest critical value
is expressed by the formula

(λ1)cr =
3−
√
3

3∆
=
0.423

∆
σcr = E(λ1)cr∆ = 0.423E (2.19)

In the developed computer code, according to the characteristics of the
solution method presented in Kolakowski and Krolak (2006), the critical value
is equal to

(λ1)cr =
3−
√
5

2∆
=
0.382

∆
σcr = E(λ1)cr∆ = 0.382E (2.20)
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Flexural vibrations of the beam

To determine the frequency of free flexural vibrations of the beam, it has
been assumed that F̂ = 0 and the longitudinal inertia force has been neglected
(i.e., ρAu,tt = 0) in equations (2.8). In such a case, the system of equations
(2.8), having taken into account that M̂x = −EIzw,xx, is reduced to the
equation

EIzw,xxxx + ρAw,tt = 0 (2.21)

When the following boundary conditions are assumed for the beam

w(x = 0) = w(x = ℓ) = 0 (2.22)

then, the frequency of flexural free vibrations of the beam equals

̟m =
(mπ

ℓ

)2
√

EIz
ρA

(2.23)

The frequency of beam flexural vibrations is inversely proportional to the
squared length of the beam and directly proportional to the squared number
of halfwaves that occur along its length.

3. Analysis of the calculation results

To verify the convergence of the calculation results obtained with two different
methods, the results obtained by Camotim and Denis (2009) have been com-
pared to the author’s results. The results in Camotim and Denis (2009) were
obtained for the elastic post-buckling behavior of the cold-formed steel lipped
channel (Table 1 – case 3 in Camotim and Denis (2009)) and simply supported
columns affected by coupled instabilities with local/distortional/global mode
interaction effects through ABAQUS shell finite element analyses. A very good
agreement of the results has been received when the axial extension mode is
neglected in the considerations.

3.1. Eigenvalue problem

The most difficult for analysis within the first order approximation ca-
se of the column cross-section having at least two axes of symmetry, i.e., a
thin-walled square cross-section, has been assumed. A detailed analysis of the
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Table 1. Natural frequencies of free vibrations, critical stresses of the axial
extension mode and ratios of maximum values of displacement components
for the plate model corresponding to different lengths

ℓ ωpl ωcol σpl σcol
∣

∣

∣

vmax
umax

∣

∣

∣

∣

∣

∣

wmax
umax

∣

∣

∣

[mm] [rad/s] [rad/s] [MPa] [MPa]

100000 158.5 158.5 76393

66666
(Eq.
(2.15))

0.00026 0.00026
10000 1585 1585 76392 0.0026 0.0029
7500 2114 2114 76392 0.0035 0.0043
5000 3170 3171 76391 0.0052 0.0085
2500 6342 6342 76398 0.01 0.047
2000 7928 7928 76393 0.013 0.021
1000 15839 15857 76379

76400
(Eq.
(2.20))

0.026 0.026
750 21139 21143 76362 0.035 0.041
500 31642 31714 76447 0.051 0.238
250 62851 63429 76141 0.11 0.15
200 77423 79286 76352 0.13 0.31
100 175675 158573 75217 0.29 0.32

calculations is conducted for the compressed beam-column of a square cross-
section with the following dimensions (Fig. 2) (Kolakowski, 1993; Kolakowski
et al., 1999; Teter and Kolakowski, 2004)

b1 = b2 = b3 = 100mm h1 = h2 = h3 = 1mm

Each plate is made of steel characterized by the following mechanical proper-
ties

E = 210GPa ν = 0.3 ρ = 7850 kg/m3

Fig. 2. Geometry of the thin-walled beam-column

In Table 1, values of the natural frequencies of vibrations and the criti-
cal stresses for the axial extension mode corresponding to different lengths
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100 ¬ ℓ ¬ 100000mm of the column under investigation are shown. Here ωpl,
ωcol denote the natural frequencies for the plate and the column model, respec-
tively; σpl, σcol are the critical stresses for the plate and the column model,
respectively. The table also includes the ratios of maximum values of displa-
cement components for each mode, i.e., |vmax/umax| and |wmax/umax| for the
plate model of the column. The maximum values of displacement components
umax, vmax, wmax for the particular column length may appear in different
points of the beam-column cross-section.

For the plate model of the column, vibration frequencies have been deter-
mined, taking into account all components of inertia forces (Kowal-Michalska,
2007; Teter and Kolakowski, 2003). Values of free vibrations determined for
both the models under investigation are identical in practice, except for the
length ℓ = 100mm, where the difference equals approx. 10%. Values of critical
stresses, which are identical for the lengths considered for the assumed model,
are collected. Values of critical stresses for both the models in the whole range
of ℓ are virtually the same if σcol is determined with relationship (2.18).

Values of critical stresses for the axial extension mode determined for the
elastic range have very high stresses and one should totally agree with Adany
and Schafer’s statement quoted in Introduction.

For the plate model of the column whose length is 750 ¬ ℓ ¬ 100000mm,
maximum displacements in the cross-section plane (i.e., v, w) are equal to
approx. 4% of the longitudinal displacements (i.e., u) at most. The displace-
ments u are practically constant for the cross-section, for example x = 0. For
the axial mode, the displacements are equal to the thickness h1 (that is to
say, umax ∼= h1).
For the column length ℓ ¬ 500mm (i.e., for the case when the dimensions

of the cross-section are comparable to the length ℓ), the maximum values of
displacement components |vmax|, |wmax| are more than 10%|umax|. Here, the
assumption of a one-dimensional model to determine the eigenvector can prove
insufficient.

A case of static and dynamic interactive buckling for which validity of this
statement can be questioned is presented.

Next, detailed computations for the analyzed beam-column of the given
length, i.e., ℓ = 2750mm, were conducted.

In Table 2, values of the critical stresses σr, values of the natural frequ-
encies of free vibrations ωr and their corresponding numbers of halfwaves m
for the square beam-column are shown.
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Now, the following index symbols have been introduced: 1 – flexural global
mode for m = 1; 2 – primary local mode for m = 28; 3 – secondary local
mode m = 28; 4 – axial extension mode for m = 1.

Table 2. Critical stresses σr and natural frequency ωr of the beam-column

Index m σr [MPa] ωr [rad/s]

1 1 427.3 266.3

2 28 72.3 3069

3 28 102.7 3659

4 1 76415 5766

As obviously follows from Table 2, the vibration frequencies ω2 and ω4
satisfy the relation ω4 = 1.88ω2 ≈ 2ω2, which in the case of system vibrations
is very unfavorable taking into account the energy exchange between the global
axial extension mode and the primary local buckling mode.
In Table 3, subsequent values of the natural frequencies of free vibrations ω

for m = 1 and the ratios of maximum values of displacement components
for each mode, i.e., |vmax/umax| and |wmax/umax|, are displayed. The table
includes also the condition on the symmetric axis of global bending corre-
sponding to this mode. The following index symbols are introduced: A and
S – antisymmetric and symmetric condition on the symmetric axis of global
bending, respectively. The natural frequency of free vibrations corresponding
to the axial extension mode is the fifth value of the free vibration frequency
(ω = 5766) for m = 1.

Table 3. Natural frequencies of vibrations ω for m = 1

ω (m = 1)
∣

∣

∣

wmax
umax

∣

∣

∣

∣

∣

∣

vmax
umax

∣

∣

∣

Condition on the symmetric
[rad/s] axis of global bending

266.3 17.9 17.7 A

1509 145967 18.9 S

2970 41.6 17.6 A

3416 205 0.129 S

5766 0.0186 0.0171 S (axial extension mode)

7646 325 16.2 A

3.2. Static interactive buckling

Detailed results of the static interactive buckling analysis of the first order
nonlinear approximation are presented in Table 4 for the beam-column. The
imperfections assumed are: ζ∗1 = |1.0|, ζ∗2 = |0.2|, ζ∗3 = ζ∗4 = 0.
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In each case, the sign of the imperfections has been selected in the most
unfavorable way, that is to say, as to obtain the lowest theoretical load carry-
ing capability σS for the given level of imperfection when the interaction of
buckling modes is accounted for.

Table 4 shows ratios of the theoretical load carrying capacity to the primary
local critical stress σs/σ2 for the first order nonlinear approximation.

It can be easily seen in Table 4 that when the axial mode is accounted
for in the interaction, then the theoretical load carrying capacity σs is decre-
ased considerably. A decrease in the load carrying capacity σS/σ2 does not
exceed 33%.

Table 4. Theoretical static load carrying capacity σs/σ2 and critical dynamic
load factors DLFcr = σ

BH
D /σ2

J-mode Index of the
σs/σ2 DLFcrapproach coupled mode

4 1; 2; 3; 4 0.6730 0.593

3 1; 2; 3 0.820 0.840

3 1; 2; 4 0.6733 0.602

2 2; 4 0.6733 0.610

In the case of the three-mode approach only (i.e., global flexural mode,
primary and secondary local modes) for the square cross-section, the coef-
ficients responsible for the interaction of buckling modes a122 and a133 are
identical with zero due to vanishing integrals denoted for the opposed walls of
the cross-section (accounting for the symmetry of the local buckling mode).
This requires consideration of the interaction of the global flexural mode with
the two local ones having the same number of buckling halfwaves m along the
longitudinal direction. Apart from the fundamental local mode, the nontrivial
local mode considered is referred to as the secondary one (Koiter and Pigna-
taro, 1976; Koiter and van der Neut, 1980; Kolakowski and Kowal-Michalska,
1999; Kolakowski and Krolak, 2006; Kolakowski and Teter, 2000; Moellmann
and Goltermann, 1989; Sridharan and Ali, 1986; Teter and Kolakowski, 2004).

The term a123, i.e., the term a123ζ1ζ2ζ3 in the potential energy expression,
is responsible for the total effect of the interaction between the global flexural
mode and local modes.

When additionally the axial extension mode is accounted for in the inte-
raction, the two nonlinear coefficients of system of equations (2.5), namely:
a123 and a422, exert the main influence on the decrease in the load σs.
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The key role in the interaction of the buckling mode is played by the co-
efficient a422, i.e., the term a422ζ4ζ

2
2 of the third order in the expression for

potential energy. It is related to the term σ(4)L2(U
(2)), following the nota-

tion of Byskov and Hutchinson (Byskov, 1987-88; Byskov and Hutchinson,
1977; Kowal-Michalska, 2007). This term arises from the product stress σ(4)

associated with the axial mode and the term representing the midsurface stra-
in L2(U

(2)) associated with the primary local mode and integrating the same
over the structure. The integral tends to vanish unless the longitudinal wave
lengths (e.g., the number of halfwaves m) are the same. It makes the coef-
ficient a422 play such a key role for the first order approximation (compare
cases 1, 3, 4 in Table 4). In this case, the global axial extension mode can
interact even with one symmetric local buckling mode.

This interaction of the axial extension mode with the primary local buc-
kling mode can be better visualized by the fact that the additional axial com-

pression N
(4)
ix (i.e., σ

(4)) dramatically increases the deflections corresponding

to the primary local buckling mode w
(2)
i (i.e., L2(U

(2))).

Thus, it can be stated that the most dangerous mode in the nonlinear
problem may not comply with the linear analysis and the maximum values of
the coefficients aijr should be defined on the basis of the nonlinear first order
approximation.

It follows from this comparison that the consideration of the axial mode in
the interaction is necessary as it results in a visible decrease in the theoretical
load carrying capacity in the first order approximation.

3.3. Dynamic response

Further on, an analysis of dynamic interactive buckling (i.e., dynamic respon-
se) of the square box beam-column under consideration is conducted. Identi-
cally as in the static analysis, the interaction of the same modes is considered.
A detailed analysis is carried out for a rectangular pulse load σ(t) = σD for
0 ¬ t ¬ T1 and σ(t) = 0 for T1 < t. This case corresponds to the pulse dura-
tion equal to the period of fundamental flexural free vibrations T1 = 2π/ω1.

In Table 4, values of the critical dynamic load factors DLFcr = σ
BH
D /σ2 for

the square box for the same imperfections under analysis are given, where σBHD
denotes the critical value of dynamic stress determined from the Budiansky-
Hutchinson criterion (Budiansky and Hutchinson, 1966; Hutchinson and Bu-
diansky, 1966).

For the case of the beam-column dimensions under analysis, the obtained
values of DLFcr are lower than the respective values of the theoretical static
load carrying capacity σs/σ2, except for case 2 in Table 4.
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As can be easily seen in Table 4, the axial extension mode shall be included
in dynamic stability analysis.

4. Conclusion

In the present paper, a way of modeling and eigenvalues of the axial extension
mode for the one- and the two-dimensional models of the structural elements
have been presented. A very good agreement between the results of critical
loads and free vibrations has been obtained.

When dimensions of the cross-section are comparable to the column length,
the determined eigenvectors can differ considerably for both the models. In
the study, special attention has been focused on static and dynamic coupled
buckling of the local buckling mode with the global axial extension mode in
the first nonlinear approximation of the perturbation method. In the world
literature, it is probably the first study, to the author’s knowledge, devoted
to dynamic interactive buckling of the global axial extension mode and the
primary local mode. This problem may be of great significance and it requires
further investigations. According to the author’s opinion, a further analysis of
interactive buckling ought to include the interaction of the axial mode with
global and local modes. Therefore, the interactive buckling should be further
analyzed and comprehensively and thoroughly discussed.
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Pewne aspekty osiowej postaci wzdłużnej w sprężystej cienkościennej

belce-słupie

Streszczenie

W prezentowanej pracy omówiono wpływ osiowej wzdłużnej postaci na statyczne
i dynamiczne interakcyjne wyboczenie cienkościennej belki-słupa z niedokładnościa-
mi poddanej równomiernemu ściskaniu przy uwzględnieniu zjawiska shear-lag oraz
dystorsyjnej deformacji. Przyjęto płytowy model (2D) belki-słupa. Porównano jedno-
i dwuwymiarowe modele elementów. Konstrukcja jest przegubowo podparta na obu
końcach. Równania ruchu płyt składowych otrzymano z zasady Hamiltona, biorąc
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pod uwagę wszystkie składowe sił bezwładności. Dynamiczne zagadnienie modalne-
go interakcyjnego wyboczenia w ramach pierwszego rzędu nieliniowej aproksymacji
rozwiązano metodą macierzy przeniesienia, wykorzystując metodę perturbacyjną i or-
togonalizację Godunova.
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