WPŁYW SKOŃCZONEGO WSTĘPNEGO SPRĘŻENIA NA SZTYWNOŚĆ RURY

ELENA ZLATANOWA (SOFIA)

Przedmiotem niniejszej pracy jest obliczenie grubościennej rury wstępnie sprężonej, poddanej działaniu małego ciśnienia. W szczególności chodzi o zbadanie wpływu wstępnego sprężenia na własności sprężyste rury przy tym obciążeniu. O materiale zakładamy, że jest izotropowy, sprężysty i nieściśliwy.

Rozważania opierają się na ogólnej teorii małych dodatkowych odkształceń [1], korzystać będziemy w zasadzie z oznaczeń w pracy [2].

1. Wstępny skończony stan odkształcenia

Rozważmy rurę o długości \mathring{h} , promieniach zewnętrznym i wewnętrznym \mathring{a} i \mathring{b} , przy czym $a = \mathring{\delta}\mathring{b}$. Rura ta jest poddana wstępnemu dużemu odkształceniu w sposób następujący: rozcina się półpłaszczyzną przechodzącą przez oś, dodaje się (lub usuwa) klin o pewnym kącie rozwarcia φ , po czym przywraca się spójność materiału (por. [3]). Dla otrzymania związków ogólniejszych przyjmujemy, że poza tym na powierzchni powstałej rury działa w kierunku osiowym ciśnienie q, jednakowe w każdym punkcie. Ciało od-kształcone oznaczamy przez B, jego wysokość i promienie przez h, a, b. Opisaną dużą deformację charakteryzują następujące parametry:

(1.1)
$$\mu = a/\mathring{a}, \quad \nu = b/\mathring{b}, \quad \varkappa = 2\pi/(2\pi - \varphi), \quad \lambda = h/\mathring{h}, \quad \delta = a/b.$$

Przyjęliśmy, że rura jest wykonana z nieściśliwego materiału sprężystego, a więc ma miejsce zależność

(1.2)
$$\dot{r}^2 - \varkappa \lambda r^2 = \dot{a}^2 - \varkappa \lambda a^2 = \dot{b}^2 - \varkappa \lambda b^2,$$

gdzie przez \mathring{r} i r oznaczyliśmy promień typowego punktu przed i po odkształceniu. Zależności (1.1) i (1.2) pozwalają obliczyć

(1.3)
$$Q(r) = \frac{\mathring{r}}{r} = \left[\varkappa \lambda + (1 - \varkappa \lambda \mu^2) \frac{\mathring{a}^2}{r^2} \right]^{1/2},$$

(1.4)
$$\frac{dQ}{dr} = \frac{1}{r} \left(\frac{\kappa \lambda}{Q} - Q \right),$$

(1.5)
$$\delta = \mathring{\delta} \frac{\mu}{\nu}, \quad \nu = \sqrt{\left[1 - (1 - \varkappa \lambda \mu^2) \mathring{\delta}^2\right]/\varkappa \lambda}.$$

W oparciu o (1.5) w dalszym ciągu rugować będziemy ν , δ a parametry \varkappa , λ , μ uważać będziemy za wzajemnie niezależne.

Wprowadzamy walcowy układ współrzędnych $\{r, \vartheta, z\}$, który w ciele *B* pokrywa się z układem konwekcyjnym $\{\vartheta^i\}$ i oznaczamy współrzędne typowego punktu przed odkształceniem w układzie kartezjańskim przez \mathring{x}_i , a po odkształceniu przez x_i . Mamy

(1.6)
$$\mathring{x}_1 = rQ(r)\cos\frac{\vartheta}{\varkappa}, \quad \mathring{x}_2 = rQ(r)\sin\frac{\vartheta}{\varkappa}, \quad \mathring{x}_3 = \frac{z}{\lambda}.$$

Tensory metryczne dla ciała odkształconego g_{ij} i ciała nieodkształconego \hat{g}_{ij} są

(1.7)
$$g_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathring{g}_{ij} = \begin{bmatrix} \frac{\varkappa^2 \lambda^2}{Q^2} & 0 & 0 \\ 0 & r^2 \frac{Q^2}{\varkappa^2} & 0 \\ 0 & 0 & \frac{1}{\lambda^2} \end{bmatrix}$$
$$g = \det \mathring{g}_{ij} = r^2, \quad g = \det g_{ij} = r^2.$$

Tensory (1.7) określają całkowicie stan odkształcenia ciała B. Niezmienniki odkształcenia I_k równe są odpowiednio:

(1.8)

$$I_{1} = \mathring{g}^{ij}g_{ij} = \frac{Q^{2}}{\varkappa^{2}\lambda^{2}} + \frac{\varkappa^{2}}{Q^{2}} + \lambda^{2},$$

$$I_{2} = \mathring{g}_{rs}g^{rs}I_{3} = \frac{\varkappa^{2}\lambda^{2}}{Q^{2}} + \frac{Q^{2}}{\varkappa^{2}} + \frac{1}{\lambda^{2}},$$

$$I_{3} = g/\mathring{g} = 1.$$

Za pomocą wzoru

(1.9)
$$\tau^{ij} = \Phi_1 \mathring{g}^{ij} + \Phi_2 b^{ij} + p g^{ij}$$

w oparciu o (1.7), wyznaczamy tensor naprężenia

(1.10)

$$\tau^{11} = \Phi_1 \frac{Q^2}{\varkappa^2 \lambda^2} + \Phi_2 \left(\frac{Q^2}{\varkappa^2} + \frac{1}{\lambda^2} \right) + p,$$

$$r^2 \tau^{22} = \Phi_1 \frac{\varkappa^2}{Q^2} + \Phi_2 \left(\frac{Q^2}{\varkappa^2} + \frac{1}{\lambda^2} \right) + p,$$

$$\tau^{33} = \Phi_1 \lambda^2 + \Phi_2 \left(\frac{Q^2}{\varkappa^2} + \frac{\varkappa^2 \lambda^2}{Q^2} \right) + p,$$

$$\tau^{12} = \tau^{23} = \tau^{31} = 0,$$

gdzie p jest dowolną funkcją skalarową, a Φ_k pomnożonymi przez dwa pochodnymi potencjału sprężystości względem niezmienników stanu odkształcenia.

Określimy funkcję p z warunków brzegowych i równań równowagi

(1.11)
$$\nabla_i \tau^{ij} = 0,$$

gdzie symbol ∇_i oznacza kowariantne różniczkowanie w układzie $\{\vartheta^i\}$. Rozpisując (1.11) stwierdzamy z równań dla j = 2 i j = 3, że zachodzi związek $\frac{\partial p}{\partial \vartheta} = \frac{\partial p}{\partial z} = 0$; p jest więc funkcją tylko zmiennej r. Z (1.11) dla j = 1 funkcję tę można przedstawić następująco:

(1.12)
$$p = -\Phi_1 \frac{Q^2}{\varkappa^2 \lambda^2} - \Phi_2 \left(\frac{Q^2}{\varkappa^2} + \frac{1}{\lambda^2} \right) + D + L(r),$$

gdzie D jest stałą całkowania, a przez L(r) oznaczyliśmy

(1.13)
$$L(r) = -\int_{r}^{a} (\Phi_1 - \lambda^2 \Phi_2) \left(\frac{Q^2}{\varkappa^2 \lambda^2} - \frac{\varkappa^2}{Q^2}\right) \frac{dr}{r}.$$

Jeśli q jest ciśnieniem zewnętrznym na powierzchni r = a, a powierzchnia r = b jest nie obciążona, to warunki brzegowe są

(1.14)
$$\tau^{11} = -q, \quad \text{dla} \quad r = a, \\ \tau^{11} = 0, \quad \text{dla} \quad r = b;$$

skąd wynika, że

(1.15)
$$D = -q, \quad L(b) = -D,$$

i ostatecznie

(1.16)
$$p = -\Phi_1 \frac{Q^2}{\varkappa^2 \lambda^2} - \Phi_2 \left(\frac{Q^2}{\varkappa^2} + \frac{1}{\lambda^2} \right) + (L(r) - q,$$

(1.17)
$$\frac{dp}{dr} = (\Phi_1 + \lambda^2 \Phi_2) \left(\frac{Q^2}{\varkappa^2 \lambda^2} - \frac{2}{\varkappa \lambda} + \frac{\varkappa^2}{Q^2} \right) \frac{1}{r},$$

 $\tau^{11} = L(\mathbf{r}) - q,$

(1.18)
$$r^{2}\tau^{22} = \tau^{11} + \left(\frac{\varkappa^{2}}{Q^{2}} - \frac{Q^{2}}{\varkappa^{2}\lambda^{2}}\right)(\varPhi_{1} + \lambda^{2}\varPhi_{2}),$$
$$\tau^{33} = \tau^{11} + \left(\lambda^{2} - \frac{Q^{2}}{\varkappa^{2}\lambda^{2}}\right)\left(\varPhi_{1} + \frac{\varkappa^{2}}{Q^{2}}\cdot\varPhi_{2}\right).$$

Z (1.18) wynika, że badane ciało nie posiada stanu naturalnego, nawet gdy q = 0. Naprężenia znikają tylko wtedy, gdy $\varkappa = 1$ i jednocześnie $\lambda = 1$.

Całkowita siła osiowa N, którą przenosi rura oraz ciśnienie q są

(1.19)
$$N = 2\pi \int_{b}^{a} \tau^{33} r dr,$$

(1.20)
$$q = L(b) = -\int_{b}^{a} (\Phi_{1} + \lambda^{2} \Phi_{2}) \left(\frac{Q^{2}}{\varkappa^{2} \lambda^{2}} - \frac{\varkappa^{2}}{Q^{2}} \right) \frac{dr}{r}.$$

E. ZLATANOWA

2. Dodatkowe male odksztalcenia

Poddajemy ciało wstępnie odkształcone małemu dodatkowemu odkształceniu. Przechodzi ono w stan $\overset{*}{B}$. Pole małych dodatkowych przemieszczeń $\varepsilon \underline{w}$ wywołuje dodatkowe naprężenia i odkształcenia. Przytoczymy liniowe części przyrostów wszystkich wielkości w oparciu o wzory podane w pracach [1] i [2], oznaczając je primami. Wprowadzamy dla kowariantnych współrzędnych wektora $\varepsilon \underline{w}$ oznaczenia: $w_1 = u$, $w_2 = v$, $w_3 = w$, a dla ich pochodnych: $w_{1,1} = u_r$, $w_{1,2} = u_3$, ... itd. Otrzymamy

$$g_{11}' = -g'^{11} = 2u_r, \qquad g_{12}' = -r^2 g'^{12} = u_\theta + v_r - 2\frac{1}{r}v,$$

$$g_{22}' = -r^4 g'^{22} = 2(v_\theta + ru), \qquad g_{13}' = -g'^{13} = u_z + w_r,$$

$$g_{33}' = -g'^{33} = 2w_z, \qquad g_{23}' = -r^2 g'^{23} = v_z + w_\theta;$$

$$I_1' = 2\left[\frac{Q^2}{r^2 \lambda^2}u_r + \frac{1}{r^2}\frac{Q^2}{Q^2}(v_\theta + ru) + \lambda^2 w_z\right],$$

$$I_2' = 2\left[\frac{x^2 \lambda^2}{Q^2}u_r + \frac{1}{r^2}\frac{Q^2}{x^2}(v_\theta + ru) + \frac{1}{\lambda^2}w_z\right],$$

$$I_3' = -2\left[u_r + \frac{1}{r^2}(v_\theta + ru) + w_z\right] = 0;$$

$$\tau'^{11} = 2u_r\left[A\frac{Q^4}{x^2\lambda^2} - B\left(\lambda^2 + \frac{x^2}{Q^2}\right) + F\left(\frac{Q^4}{x^2\lambda^2} + \frac{Q^2}{x^2\lambda^2} - 1\right) - p\right] + \\$$

$$+ 2\frac{1}{r^2}(v_\theta + ru)\left[A\frac{1}{\lambda^2} - B\left(\frac{Q^4}{x^2\lambda^2} + \frac{Q^2}{x^2\lambda^2}\right) + F\left(1 + \frac{x^2}{\lambda^2Q^2} - \frac{Q^2}{x^2\lambda^2}\right) + \Phi_2\frac{1}{\lambda^2}\right] + \\$$

$$+ 2w_z\left[A\frac{Q^2}{x^2} - B\left(\frac{Q^2}{x^2\lambda^2} + \frac{1}{\lambda^4}\right) + F\left(\frac{\lambda^2Q^2}{x^2\lambda} + 1 - \frac{Q^2}{x^2\lambda^2}\right) + \Phi_2\frac{Q^2}{x^2}\right] + p',$$

$$r^2\tau'^{22} = 2u_r\left[A\frac{1}{\lambda^2} - B\left(\frac{x^4\lambda^4}{Q^4} + \frac{x^2}{Q^2}\right) + F\left(1 + \frac{Q^2}{x^2\lambda^4} - \frac{x^4\lambda^2}{Q^4}\right) + \Phi_2\frac{1}{\lambda^2}\right] + \\$$

$$+ 2w_z\left[A\frac{2Q^2}{Q^2} - B\left(\frac{x^2}{Q^2} + \frac{1}{\lambda^4}\right) + F\left(\frac{x^2\lambda^4}{Q^4} + \frac{x^2}{\lambda^2Q^2} - 1\right) - p\right] + \\$$

$$+ 2w_z\left[A\frac{x^2\lambda^2}{Q^2} - B\left(\frac{x^2}{Q^2} - B\left(\lambda^2 + \frac{x^4\lambda^4}{Q^4}\right) + F\left(\frac{x^2\lambda^4}{Q^2} + 1 - \frac{x^2\lambda^4}{\lambda^2Q^2}\right) + \Phi_2\frac{\lambda^2x^2}{Q^2}\right] + p',$$

$$(2.3) \quad \tau'^{33} = 2u_r\left[A\frac{Q^2}{x^2} - B\left(\lambda^2 + \frac{x^4\lambda^4}{Q^4}\right) + F\left(\frac{Q^4}{x^4\lambda^4} + 1 - \frac{x^2\lambda^4}{Q^2}\right) + \Phi_2\frac{Q^2}{x^2}\right] + \\$$

$$+ 2w_z\left[A\lambda^4 - B\left(\frac{Q^2}{x^2\lambda^2} - \frac{x^2\lambda^2}{Q^2}\right) + F\left(\frac{\lambda^2Q^2}{x^2} - \frac{x^4\lambda^2}{Q^4}\right) + \Phi_2\frac{x^2\lambda^2}{Q^2}\right] + p',$$

$$r^{2}\tau'^{12} = -\left(\Phi_{1}\frac{1}{\lambda^{2}} + p\right)\left(u_{3} + v_{r} - 2\frac{1}{r}v\right),$$

$$\tau'^{13} = -\left(\Phi_{2}\frac{Q^{2}}{\varkappa^{2}} + p\right)\left(u_{z} + w_{r}\right),$$

$$r^{2}\tau'^{22} = -\left(\Phi_{2}\frac{\varkappa^{2}\lambda^{2}}{Q^{2}} + p\right)\left(v_{z} + w_{3}\right),$$

gdzie

$$A = 2\frac{\partial^2 W}{\partial I_1^2}, \quad B = 2\frac{\partial^2 W}{\partial I_2^2}, \quad F = 2\frac{\partial^2 W}{\partial I_1 \partial I_2},$$

przy czym W jest potencjałem sprężystości na jednostkę objętości ciała nieodkształconego.

Ponieważ niezmienniki odkształcenia I_k [por. (1.8)] są funkcjami zmiennej r, więc A, B, F, Φ_k są również funkcjami tylko zmiennej r. Obliczenia dla dowolnego materiału są skomplikowane. Przyjmujemy konkretną funkcję na potencjał sprężystości $W(I_k)$, co nam pozwoli uzyskać zamknięte rozwiązania. Ograniczamy zatem dalsze rozważania do tzw. materiału Mooneya, dla którego

 $\Phi_1 = 2C_1, \ \Phi_2 = 2C_2, \ A = B = F = 0$, a związki (2.3) przechodzą w

(2.4)
$$W = C_1(I_1 - 3) + C_2(I_2 - 3)$$

Wtedy

$$\tau^{\prime 11} = -2pu_{r} + 4C_{2} \frac{1}{\lambda^{2}} \frac{1}{r^{2}} (v_{\vartheta} + ru) + 4C_{2} \frac{Q^{2}}{\varkappa^{2}} w_{z} + p',$$

$$r^{2} \tau^{\prime 22} = 4C_{2} \frac{1}{\lambda^{2}} u_{r} - 2p \frac{1}{r^{2}} (v_{\vartheta} + ru) + 4C_{2} \frac{\lambda^{2} \varkappa^{2}}{Q^{2}} w_{z} + p',$$
(2.5)
$$\tau^{\prime 33} = 4C_{2} \frac{1}{\lambda^{2}} u_{r} + 4C_{2} \frac{\varkappa^{2} \lambda^{2}}{Q^{2}} \frac{1}{r^{2}} (v_{\vartheta} + ru) - 2pw_{z} + p',$$

$$r^{2} \tau^{\prime 12} = -\left(2C_{2} \frac{1}{\lambda^{2}} + p\right) \left(u_{\vartheta} + v_{r} - 2\frac{1}{r} v\right),$$

$$\tau^{\prime 13} = -\left(2C_{2} \frac{Q^{2}}{\varkappa^{2}} + p\right) (u_{z} + w_{r}),$$

$$r^{2} \tau^{\prime 23} = -\left(2C_{2} \frac{\varkappa^{2} \lambda^{2}}{Q^{2}} + p\right) (v_{z} + w_{\vartheta}).$$

Tensor naprężenia całkowitego $\tau^{ij} + \epsilon \tau'^{ij}$ spełnia warunki równowagi

$$\nabla_i \tau'^{ij} + \Gamma'_{rs} \tau^{rs} + \Gamma'_{rs} \tau^{rj} = 0,$$

gdzie $\Gamma_{ij}^{\prime s}$ są przyrostami symboli Christoffela obliczonymi w pracy [3].

Podstawiamy (2.5), (1.17) oraz przyrosty $\Gamma_{ij}^{\prime s}$ do równań równowagi i otrzymujemy

$$4u_{rr}\left[C_{1}\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+\frac{1}{\lambda^{2}}\right)\right]+$$

313

$$\begin{aligned} +2\frac{1}{r}u_{r}\left[C_{1}\left(\frac{4}{\varkappa\lambda}-\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}-\frac{\varkappa^{2}}{Q^{2}}\right)+C_{2}\left(2\frac{1}{\lambda^{2}}+4\frac{\lambda}{\varkappa}-\frac{Q^{2}}{\varkappa^{2}}-\frac{\varkappa^{2}\lambda^{2}}{Q^{2}}\right)\right]-\\ &-2\frac{1}{r^{2}}u\left[C_{1}\left(\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}+\frac{\varkappa^{2}}{Q^{2}}\right)+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+2\frac{1}{\lambda^{2}}+\frac{\varkappa^{2}\lambda^{2}}{Q^{2}}\right)\right]+\\ &+2\frac{1}{r^{2}}u_{ss}\frac{\chi^{2}}{Q^{2}}\left(C_{1}+\lambda^{2}C_{2}\right)+2u_{zz}\lambda^{2}\left(C_{1}+\frac{\varkappa^{2}}{Q^{2}}C_{2}\right)+\\ &+2\frac{1}{r^{2}}v_{sg}\left[C_{1}\left(\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}+\frac{\varkappa^{2}}{Q^{2}}\right)+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+\frac{2}{\chi^{2}}+\frac{\lambda^{2}\kappa^{2}}{Q^{2}}\right)\right]+\\ &-4\frac{1}{r^{3}}v_{g}\left[C_{1}\left(\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}+\frac{\varkappa^{2}}{Q^{2}}\right)+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+\frac{2}{\chi^{2}}+\frac{\lambda^{2}\kappa^{2}}{Q^{2}}\right)\right]+\\ &+2w_{rz}\left[C_{1}\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+\frac{1}{\lambda^{2}}\right)\right]+\\ &+2w_{rz}\left[C_{1}\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}+C_{2}\left(\frac{2}{\varkappa^{2}}+\frac{1}{\lambda^{2}}\right)\right]+\\ &+2\frac{1}{r}w_{g}C_{2}\left(2\frac{\lambda}{\varkappa}-\frac{Q^{2}}{\varkappa^{2}}-\frac{\varkappa^{2}\lambda^{2}}{Q^{2}}\right)+p_{r}'=0,\\ 2u_{r\delta}\left[C_{1}\frac{\varkappa^{2}}{Q^{2}}+C_{2}\left(\frac{\varkappa^{2}\lambda^{2}}{Q^{2}}+2\frac{1}{\lambda^{2}}\right)\right]+\\ &+2\frac{1}{r}w_{g}\left[C_{1}\left(2\frac{\varkappa^{2}}{Q^{2}}+\frac{2}{\varkappa\lambda}-\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}\right)+C_{2}\left(2\frac{\varkappa^{2}\lambda^{2}}{Q^{2}}+2\frac{\lambda}{\lambda^{2}}-\frac{Q^{2}}{\varkappa^{2}}\right)\right]+\\ &+2(C_{1}+\lambda^{2}C_{2}\left(\frac{\varkappa^{2}\lambda^{2}}{Q^{2}}+2\frac{1}{\varkappa^{2}}\right)\right]+\\ &+2(C_{1}+\lambda^{2}C_{2}\left)\left[v_{r}\frac{\eta^{2}}{\varkappa^{2}\lambda^{2}}-\frac{1}{r}v_{r}\left(3\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}-2\frac{1}{\varkappa\lambda}\right)+4\frac{1}{r^{2}}v\left(\frac{Q^{2}}{\varkappa^{2}\lambda^{2}}-\frac{1}{\varkappa\lambda}\right)\right]+\\ &+2\frac{1}{r^{2}}w_{\delta\delta}\left[C_{1}\frac{\varkappa^{2}}{\varkappa^{2}}+\frac{Q^{2}}{Q^{2}}\right]+\\ &+2\frac{1}{r}w_{z\delta}\left[C_{1}\frac{\varkappa^{2}}{\chi^{2}}+\frac{2}{Q^{2}}\right]+\\ &+2\frac{1}{r}w_{z\delta}\left[C_{1}\frac{\varkappa^{2}}{\chi^{2}}+\frac{2}{\chi^{2}}\frac{1}{\chi^{2}}\right]+\\ &+2\frac{1}{r^{2}}w_{\delta\delta}\left(C_{1}\frac{\varkappa^{2}}{\varkappa^{2}}+\frac{2}{\chi^{2}}\frac{1}{\chi^{2}}\right)+w_{zz}\left[C_{1}\lambda^{2}+C_{2}\left(\frac{2}{\varkappa^{2}}+\frac{\varkappa^{2}}{\chi^{2}}\right)\right]+\\ &+2\frac{1}{r^{2}}w_{\delta\delta}\left(C_{1}\frac{\varkappa^{2}}{\chi^{2}}+C_{2}\frac{1}{\chi^{2}}\right)+w_{zz}\left[C_{1}\lambda^{2}+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+\frac{\varkappa^{2}}{\chi^{2}}\right)\right]+\\ &+2\frac{1}{r^{2}}w_{\delta\delta}\left(C_{1}\frac{\varkappa^{2}}{\chi^{2}}+\frac{2}{\chi^{2}}\frac{1}{\chi^{2}}\right)+w_{zz}\left[C_{1}\lambda^{2}+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+\frac{\varkappa^{2}}{\chi^{2}}\right)\right]+\\ &+2\frac{1}{r^{2}}w_{\delta\delta}\left(C_{1}\frac{\varkappa^{2}}{\chi^{2}}+\frac{2}{\chi^{2}}\frac{1}{\chi^{2}}\right)+w_{zz}\left[C_{1}\lambda^{2}+C_{2}\left(\frac{Q^{2}}{\varkappa^{2}}+\frac{2}{\chi^{2}}\frac{1}{\chi^{2}}\right)\right]+\\ &+2\frac{1}{r^{2}}w_{\delta\delta}\left(C_{1}\frac{\varkappa^{2}}{\chi^{2}}+\frac{1$$

Równania (2.6)–(2.8) razem z $(2.2)_3$ tworzą układ czterech równań różniczkowych na funkcje u, v, w, p' stanowiąc podstawę naszych dalszych rozważań.

3. Sztywność rury wstępnie sprężonej. Dodatkowe male ciśnienie

Naturalnym jest przypuszczenie, że wstępne sprężenie wpływa na własności sprężyste rury i zmienia jej sztywność. W celu zbadania tego zjawiska należy wyprowadzić wzory na siły N'^i , które przenosi ciało (pole małych przemieszczeń εw) i porównać je z odpowiednimi siłami dla rury niesprężonej, ($\varkappa = 1$). Podejście takie jednak prowadziłoby do zbędnych skomplikowanych obliczeń nie dając ilościowej oceny przy najważniejszych technicznych obciążeniach. Badamy zatem wpływ wstępnego sprężenia na sztywność rury przy konkretnym obciążeniu — małym ciśnieniu.

Nałożymy na opisaną wstępnie sprężoną rurę B pole małych dodatkowych przemieszczeń, które odpowiadać będzie równomiernemu ciśnieniu zewnętrznemu. Kowariantne współrzędne wektora dodatkowego przemieszczenia są

$$(3.1) u = ku(r), v = w = 0,$$

gdzie k jest stałą, a funkcję u(r) wyznaczamy z równania (2.2)₃. Mamy

$$u(r) = \frac{k}{r}.$$

Podstawiamy (3.2) do (2.3) i otrzymujemy

(3.3)

$$\tau'^{11} = 2kp \frac{1}{r^2} + 4kC_2 \frac{1}{\lambda^2} \frac{1}{r^2} + p',$$

$$r^2 \tau'^{22} = -4kC_2 \frac{1}{\lambda^2} \frac{1}{r^2} - 2kp \frac{1}{r^2} + p',$$

$$\tau'^{33} = -4kC_1 \frac{Q^2}{\varkappa^2} \frac{1}{r^2} + 4kC_2 \frac{\varkappa^2 \lambda^2}{Q^2} \frac{1}{r^2} + p',$$

$$\tau'^{12} = \tau'^{23} = \tau'^{32} = 0.$$

Funkcję p' określimy z równań równowagi. Podstawiamy (3.2) do (2.6)–(2.8). Ostatnie dwa równania spełnione są tożsamościowo. Z pierwszego równania otrzymujemy

$$p' = -8k(C_1 + \lambda^2 C_2) \left(\frac{Q^2}{\varkappa^2 \lambda^2} - \frac{1}{\varkappa \lambda} \right),$$

a po scałkowaniu, korzystając z (1.3)

(3.4)
$$p' = 2k(C_1 + \lambda^2 C_2) \frac{1}{\varkappa^2 \lambda^2} (1 - \varkappa \lambda \mu^2) \mathring{a}^2 \frac{1}{r^4} + C,$$

gdzie C jest stałą całkowania. Stałą tę określimy z warunku brzegowego

 $\tau'^{11} = 0$, dla r = b;

skąd wynika

(3.6)

$$C = 2k(C_{1} + \lambda^{2}C_{2})\frac{1}{\kappa^{2}\lambda^{2}}\left[2\frac{1}{\nu^{2}b^{2}} - (1 - \varkappa\lambda\mu^{2})\frac{\dot{a}^{2}}{b^{2}}\right],$$

$$p' = 2k(C_{1} + \lambda^{2}C_{2})\frac{1}{\kappa^{2}\lambda^{2}}\left[(1 - \varkappa\lambda\mu^{2})\frac{\dot{a}^{2}}{r^{2}} - (1 - \varkappa\lambda\mu^{2})\frac{\dot{a}^{2}}{b^{4}} + 2\frac{1}{b^{2}\nu^{2}}\right].$$

Stan naprężenia rury jest określony przez $\tau^{ij} + \varepsilon \tau'^{ij}$. Podstawiając (3.6) do (3.3) otrzymujemy ostatecznie dla przyrostów naprężenia

$$\tau'^{11} = 2k(C_1 + \lambda^2 C_2) \frac{1}{\varkappa^2 \lambda^2} \left[2 \frac{1}{b^2 \nu^2} - 2 \frac{1}{r^2} Q^2 + (1 - \varkappa \lambda \mu^2) \frac{\dot{a}^2}{r^4} - (1 - \varkappa \lambda \mu^2) \frac{\dot{a}^2}{b^4} \right] + \frac{1}{r^2} L(r),$$

$$(3.7) \quad r^2 \tau'^{22} = 2k(C_1 + \lambda^2 C_2) \frac{1}{\varkappa^2 \lambda^2} \left[2 \frac{1}{b^2 \nu^2} - 2 \frac{1}{r^2} Q^2 + (1 - \varkappa \lambda \mu^2) \frac{\dot{a}^2}{r^4} - (1 - \varkappa \lambda \mu^2) \frac{\dot{a}^2}{b^4} \right] + \frac{1}{r^2} L(r),$$

$$\tau'^{33} = 2k(C_1 + \lambda^2 C_2) \frac{1}{\varkappa^2 \lambda^2} \left[2 \frac{1}{b^2 \nu^2} + (1 - \varkappa \lambda \mu^2) \frac{\dot{a}^2}{r^4} - (1 - \varkappa \lambda \mu^2) \frac{\dot{a}^2}{b^4} \right] + \frac{1}{r^2} L(r),$$

$$+ 4kC_2 \left(\frac{\varkappa^2 \lambda^2}{Q^2} - \frac{Q^2}{\varkappa^2} \right).$$

Najistotniejsze znaczenie dla dalszych rozważań ma składowa τ'^{11} na brzegu r = a. Podstawiając r = a do $(3.7)_1$ i uwzględniając, że L(a) = 0, otrzymujemy

(3.8)
$$\tau^{\prime 11} = 2k(C_1 + \lambda^2 C_2) \frac{1}{\lambda^2 \varkappa^2 \mu^2 a^2} \left\{ \delta \left(\frac{\mu}{\nu} \right)^4 [2 + (\varkappa \mu^2 \lambda - 1) \mathring{\delta}^2] - (1 + \varkappa \lambda \mu^2) \right\}, \quad \text{dla } r = a.$$

Zależność (3.8) zawiera wszystkie parametry wstępnej deformacji, dla których, oprócz związków (1.5), mamy zależności

(3.9)
$$2(C_1 + \lambda^2 C_2) \left\{ \frac{1}{2\varkappa^2 \lambda^2 \mu^2} \left[1 - \left(\frac{\mu}{\nu}\right)^2 \right] + \frac{1}{\varkappa \lambda} \ln \delta - \frac{\varkappa}{\lambda} \ln \mathring{\delta} \right\} = 0,$$

którą wyprowadziliśmy z (1.20) po scałkowaniu, przekształceniu i podstawieniu q = 0. Podstawiamy do (1.19) N = 0 oraz (1.18) i otrzymujemy

(3.10)
$$2\pi \int_{b}^{a} L(r)rdr + 4\pi C_{1} \int_{b}^{a} \left(\lambda^{2} - \frac{Q^{2}}{\varkappa^{2}\lambda^{2}}\right) rdr + 2\pi C_{2} \int_{b}^{a} \left(\frac{\varkappa^{2}\lambda^{2}}{Q^{2}} - \frac{1}{\lambda^{2}}\right) rdr = 0.$$

W oparciu o (1.5), (3.9) i (3.10) zadając jeden z parametrów deformacji oraz względną grubość δ można wyznaczyć pozostałe.

Wprowadzamy teraz pojęcie względnej sztywności rury wstępnie sprężonej na ściskanie promieniowe η_c . Jest nią stosunek naprężenia τ'^{11} (3.8) do tego samego naprężenia $\tau'_{\kappa=1}^{11}$ dla rury naturalnej o wymiarach *a* i *b* ($\lambda = 1, \mu = 1$). Mamy

(3.11)
$$\tau_{\kappa=1}^{\prime 11} = 4k(C_1 + \lambda^2 C_2) \frac{1}{a^2} (\delta^2 - 1),$$

a z (3.8) i (3.11), stosując (1.5) zgodnie z definicją, otrzymujemy

(3.12)
$$\eta_{c} = \frac{1}{2\varkappa^{2}\mu^{2}\lambda^{2}} \left\{ \delta \frac{\varkappa^{2}\lambda^{2}\mu^{4}}{[1-(1-\varkappa\lambda\mu^{2})\delta^{2}]^{2}} [2-(1-\varkappa\lambda\mu^{2})\delta^{2}] - (1+\varkappa\lambda\mu^{2}) \right\} / \left[\delta^{2} \frac{\varkappa\lambda\mu^{2}}{1-(1-\varkappa\lambda\mu^{2})\delta^{2}} - 1 \right].$$

Nie zwężając ogólności rozważań przyjmujemy $\lambda = 1$. Dla różnych \varkappa i $\mathring{\delta}$ określamy μ z równania (3.9), które po podstawieniu λ i wykorzystaniu (1.5) przyjmuje postać

(3.13)
$$\frac{1}{\mu^2} - \frac{\varkappa}{1 - (1 - \varkappa \mu^2)\check{\delta}^2} - \varkappa \ln \left[\check{\delta}^2 \frac{\varkappa \mu^2}{1 - (1 - \varkappa \mu^2)\check{\delta}^2} \right] + \varkappa^3 \ln \check{\delta}^2 = 0;$$

wynika stąd nierówność

(3.14)

$$\mu^{2} > \frac{1}{\varkappa} \left(1 - \frac{1}{\delta^{2}} \right).$$

$$\eta_{c}$$

$$\eta_{$$

Parametr deformacji z jest jedynym niezależnym parametrem. Rezultaty obliczeń są podane w tabl. 1 i na rys. 1, przy czym w granicznym przypadku $\delta \rightarrow 1$ sztywność wynosi ι^2/\varkappa . (3.15)

_	η_c	 μ^{-}	12
3	→1		

×	µ²	η_c	δ	η_c	δ	η_c
		$\dot{\delta} = 1,5$		$\delta = 2$		$\hat{\delta} \rightarrow 1$
0,5	2,2	1,77	1,470	1,59	1,772	4,4
0,9	1,2	1,152	1,476	1,055	1,807	1,33
1,0	1,0	1,000	1,500	1,000	2,000	1,00
1,1	0,9	0,926	1,507	0,935	2,030	0,82
1,5	0,6	0,796	1,619	0,925	2,449	0,40

Tablica 1

7 Mechanika Teoretyczna

Funkcja (3.12) jest funkcją malejącą. Rura wstępnie sprężona jest sztywniejsza dla $\varkappa < 1$, co odpowiada $\varphi < 0$ (dodanie materiału), natomiast dla $\varkappa > 1$, $\varphi > 0$ (usunięcie materiału), sztywność względna jest mniejsza od jedności.

Jeśli zadana jest nie masa rury, a rozmiary rury wyjściowej \mathring{B} , to możemy podobnie jak w (3.12), zdefiniować względną sztywność $\mathring{\eta}_c$ w stosunku do rury niesprężonej o grubości $\mathring{\delta}$. Sztywność taka wynosi

(3.16)
$$\hat{\eta}_{c} = \frac{1}{2\varkappa^{2}\mu^{4}} \frac{1}{\mathring{\delta}-1} \left\{ \mathring{\delta} \varkappa^{2} \lambda^{2} \mu^{4} \frac{2-(1-\varkappa\mu^{2}) \mathring{\delta}^{2}}{[1-(1-\varkappa\mu^{2})\mathring{\delta}^{2}]^{2}} - (1+\varkappa\mu^{2}) \right\},$$

i w granicznym przypadku

$$(3.17) \qquad \qquad \mathring{\eta}_c = \frac{1}{\varkappa^3 \mu^6}$$

Tablica 2						
2			η̂c			
<i>µ</i> .	×	1,0	1,5	. 2,0		
2,2	0,5	0,750	0,764	0,560		
1,2	0,9	0,794	0,730	0,600		
1,0	1,0	1,000	1,000	1,000		
0,9	1,1	1,030	1,048	1,070		
0,6	1,5	1,240	1,680	2,580		
	1 1					

Rezultaty obliczeń dla $\lambda = 1$, otrzymane na podstawie (3.13), (3.16) i (3.17), podane są w tabl. 2 i na rys. 2. Wnioskujemy, że każda rura wstępnie sprężona, powstała z rury o względnej grubości $\mathring{\delta}$ jest sztywniejsza na małe ciśnienie dla $\varkappa > 1$ i mniej sztywna dla $\varkappa < 1$.

Literatura cytowana w tekście

- 1. A, E. GREEN, R. S. RIVLIN, R. T. SHIELD, General theory of small elastic deformations suporposed on finite elastic deformations, Proc. Roy. Soc., A 211 (1952).
- 2. A. E. GREEN, W. ZERNA, Theoretical Elasticity, Oxford 1954.
- 3. E. ZLATANOWA, Z. WESOŁOWSKI, Stateczność wstępnie sprężonego walca kolowego, Rozpr. Inżyn., 2, 18 (1970).

Резюме

влияние предварительной конечной деформации на жесткость трубы

Толстостенная труба подвергается предварительной деформации путем добавления или вырезания клина с произвольным углом раствора и последующего восстановления связности материала. При таком состоянии труба подвергается малому равномерному давлению. Исследуется влияние предварительной деформации на упругие свойства трубы. Для труб с различными толщинами стенок даются формулы и графики зависимости жесткости от параметров предварительной деформации.

Summary

INFLUENCE OF FINITE INITIAL STRAINS ON THE RIGIDITY OF TUBE

A thick-walled tube is initially stressed by cutting out (or inserting) of a wedge-shaped inclusion with an arbitrary vertex angle: the edges of the cut are welded together. The tube is then subject to a small uniform compression. The influence of the initial stresses on the clastic properties of the tube is investigated; the corresponding formulae and graphs are given.

WYŻSZY INSTYTUT MASZYNOWO-ELEKTRYCZNO-TECHNICZNY SOFIA, BUŁGARIA

Praca zostala złożona w Redakcji dnia 15 lipca 1970 r.