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The dynamic response of a double-beam resting on a nonlinear viscoelastic foundation and
subjected to a finite series of moving loads is analysed. The beams are connected by a
viscoelastic layer and the load moving along the upper beam represents motion of a train
on the rail track. The mathematical model is described by a coupled system of fourth order
partial differential equations with homogeneous boundary conditions. The nonlinearity is
included in the foundation stiffness of medium supporting a lower beam. The coiflet based
approximation combined with Adomian’s decomposition is adopted for the displacements
derivation. The developed approach allows one to overcome difficulties related to direct
calculation of Fourier integrals as well as the small parameter method. The conditions for
correctness of the approximate solution are defined. The influence of some factors on the
system sensitivity is discussed, with special focus on the distance between the separated
loads. Numerical examples are presented for a certain system of physical parameters.
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1. Introduction

The subject of moving load problems, especially the analysis of beam vibrations arising from
dynamic excitations, is a very important direction of studies associated with modern railway
engineering. New conditions, never met in the past, such as high speed rails or intensive freight
transport, lead to necessity of better modelling and prediction of possible scenario for operational
transport systems (Bogacz and Frischmuth, 2009; Bogacz and Krzyzynski, 1991; Krylov, 2001;
Thompson, 2009). In order to achieve this aim, new computational approaches are needed.
The new techniques should allow effective parametrical analysis and show phenomena that can
appear in certain situations. One can find a number of published results showing closed form
solutions for special cases of linear models representing the rail track on a rigid foundation. The
presented analyses usually involve classical approaches such as Fourier and Laplace transforms
or the Green function technique (Fryba, 1999; Hussein and Hunt, 2006; Oniszczuk, 2003).

It was shown that the nonlinear model reflects behaviour of the beam deflection better than
the linear model when compared with measurements (Dahlberg, 2002). In the case of a nonlinear
foundation, classical procedures such as the finite element method or the perturbation approach
are often employed, and they usually give results that are insufficiently exact, making unable
an efficient parametrical study (Kargarnovin et al., 2005; Kuo and Lee, 1994; Sapountzakis and
Kampitsis, 2011; Wu and Thompson, 2004). The coiflet based approximation combined with
Adomian’s decomposition (Adomian, 1989; Koziol, 2010; Wang et al., 2003), adapted in this
paper to the double beam problem solution, appeared more efficient and leading to reliable results
enabling parametrical analysis of nonlinear systems of the beam-foundation type (Hryniewicz
and Kozioł, 2013; Koziol and Hryniewicz, 2012). The method has been validated in a number
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of studies, e.g. by FEM and wavelet FEM in the case of the Euler-Bernoulli beam resting on
a linear viscoelastic foundation (Musuva et al., 2014) and by the Lindestedt–Poincare regular
perturbation method in the case of the Euler-Bernoulli beam resting on a nonlinear foundation
(Kargarnovin, 2005; Koziol, 2013a) both subjected to moving loads.
This paper introduces nonlinear assumptions to the linear model of a double-beam (Onisz-

czuk, 2003; Jang et al., 2008) assuming that the rail and slabs are modelled by the Euler-Bernoulli
beam and the bottom layer has nonlinear characteristics. Preliminary results for the proposed
model solved by coiflet estimation were presented at the Railways 2012 conference (Hryniewicz
and Koziol, 2012), and this paper is an essential extension of the past work. It is assumed that
the load is represented by a finite series of harmonically varying loads distributed on separated
intervals, this being a reliable representation of train movement. The study carried out shows
that the developed method is efficient enough for the parametrical analysis. The undertaken ef-
fort is focused on the investigation of the influence of the distance between certain loads moving
along the upper beam on the nonlinear response of the structure, and also on difficulties in the
method application arising from nonlinear assumptions. It is shown that the conditions needed
for a solution exact enough in the linear case (Koziol, 2010; Wang et al., 2003) are insufficient
for the nonlinear system.

2. Double-beam on a nonlinear foundation

The discussed problem of the dynamic response of the double-beam system supported by a
viscoelastic nonlinear foundation subject to a series of loads moving along the upper beam is
very important in railway engineering. There is a need for structural dynamics prediction for
constructions associated with train transportation, and these can be modelled analytically or
numerically. The analysed model is related to the rail track consisting of rails, railpads, the
floating slab and slab bearings. The theoretical model is composed of an upper beam to account
for the rails (with the mass m1 and the bending stiffness EI1), a lower beam representing the
slab (with the mass m2 and the bending stiffness EI2) and two viscoelastic layers; the first
one linear (with the stiffness k1 and the viscous damping factor c1) between the rail and the
slab, and the second one nonlinear and supporting the structure (with the linear stiffness k2,
the nonlinear part of stiffness kN and the viscous damping factor c2).
The two coupled nonlinear partial differential equations of motion describe vertical vibrations

of the double-beam system
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where U and W are the transverse displacements of the upper and lower beam, respectively, at
position x and time t. The load moving along the upper beam is modelled by a finite series of
loads harmonically varying in time and distributed on separated intervals in the space domain

P (x, t) =
L−1∑

l=0

P0
2a
cos2

(π[x− V t− (2a+ s)l]
2a

)
H
(
a2 − [x− V t− (2a+ s)l]2

)
eiΩt (2.2)

where H(·) is the Heaviside step function, 2a is the span of the moving load, Ω = 2πfΩ is the
frequency of the load, V is the velocity of the moving excitation and s is the distance between
the separated loads. In order to obtain a steady-state response, a moving coordinate system can
be introduced

(x, t)→ (x = x− V t, t) (2.3)
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The response in the following classical form is analysed in this paper

U(x, t) = u(x)eiΩt W (x, t) = w(x)eiΩt (2.4)

Applying representation (2.4) and new variables (2.3), one can rewrite equations (2.1) in form
represented by differential operators

Q4u+R1w = kNw
3e2iΩt + P (x) Q1u+R4w = −kNw

3e2iΩt (2.5)
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and
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with the new coefficients

α4 = EI1 α2 = m1V
2 α1 = −V (c1 + 2im1Ω)

α0 = k1 −m1Ω
2 + ic1Ω α1 = c1V α0 = −k2 − ic1Ω
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(2.8)

The deflection, slope and curvature must tend to zero far from the excitation and, therefore, the
boundary conditions can be assumed as follows

lim
x→±∞

u(x) = lim
x→±∞

w(x) = 0 lim
x→±∞

du

dx
= lim
x→±∞

dw

dx
= 0

lim
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d2u

dx2
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d2w

dx2
= 0

(2.9)

3. Adomian’s procedure

The method developed by Adomian assumes that the solution to any nonlinear problem de-
scribed by differential equations can be represented by an infinite series of functions (Adomian,
1994; Koziol, 2010; Koziol and Hryniewicz, 2012). The first of these functions is a solution to the
linear problem associated with the problem considered, and the other terms describe nonlinear
factors influencing the response. The functions to be evaluated are represented by Adomian po-
lynomials. One can find many procedures for the evaluation of these polynomials in the literature
(Adomian, 1989; Adomian 1994; Hosseini and Nasabzadeh, 2006; Pourdarvish, 2006; Wazwaz,
1999; Wazwaz and El-Sayed, 2001). Some of them offer a bit better convergence in the sense that
a smaller number of polynomials is needed for obtaining results with accuracy sufficient for the
solution exact enough (Wazwaz, 1999; Wazwaz and El-Sayed, 2001). The performed simulations
show that this feature is kept also for the problem considered, but computational difficulties grow
due to complexity of the formulas. Therefore, a good balance between computational cost and
effectiveness must be found when choosing the numerical procedure. In this paper, the following
form of the polynomials is taken (Das, 2009; Pourdarvish, 2006)

Aj(x) =
1

j!

(
dj

dλj

∞∑

k=0

λkwk(x)

)∣∣∣∣
λ=0

for j = 0, 1, 2, . . . (3.1)
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and for practical calculations, the first four polynomials are used
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For the effective solution of the problem considered (Eqs. (2.5)), one assumes that the beams
vibrations are represented by the following series

u(x) =
∞∑

j=0

uj(x) w(x) =
∞∑

j=0

wj(x) (3.3)

and the nonlinear cubic term w3(x) is characterized by the Adomian polynomials

w3(x) =
∞∑

j=0

Aj(x) (3.4)

The problem of the series convergence (Eqs. (3.3)) was solved and discussed in the literature.
In order to control the accuracy of the Adomian approximation, one can use the convergence
condition defined by the following formula (Hosseini and Nasabzadeh, 2006)

0 <
‖uj+1‖

‖uj‖
< 1 0 <

‖wj+1‖

‖wj‖
< 1 (3.5)

with the norm ‖uj‖ = max
x
|Re[uj(x)]| and ‖wj‖ = max

x
|Re[wj(x)]|.

A reliable representation of the response can be described by the n-th order approximation

Sn(u, x) =
n∑

j=0

uj(x) Sw(w, x) =
n∑

j=0

wj(x) (3.6)

depending on the accuracy assumed. Combining equations (2.5), (3.3) and (3.4) leads to an
effective algorithm for the evaluation of the terms uj(x) and wj(x) (j = 1, 2, 3, . . .)

Q4u0 +R1w0 = P (x) Q1u0 +R4w0 = 0

Q4uj +R1wj = kNAj−1(x)e
2iΩt Q1uj +R4wj = −kNAj−1(x)e

2iΩt
(3.7)

The practical form of Adomian polynomials (3.2) needed for consecutive evaluation of appro-
ximate series terms (Eq. (3.3)) is computed in this paper by using a wavelet based approximation
allowing derivation of the Fourier transform without numerical approach and, in the same time,
keeping the assumed accuracy. Essential details of the adopted method are presented in the next
section.

4. The Fourier transform and the coiflet approximation

The above system of equations (3.7) can be solved by applying the Fourier transforms

f̂(ω) =

∞∫

−∞

f(x)e−iωx dx f(x) =
1

2π

∞∫

−∞

f̂(ω)eiωx dω (4.1)

Thus, one can obtain the system of formulas that are needed for the Adomian series computation
in the transform domain
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kN Âj−1(ω)(R̂4 + R̂1)

Q̂4R̂4 − Q̂1R̂1
e2iΩt
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where j = 1, 2, 3, . . . and

P̂ (ω) = P0
iπ2[1− exp(2iaω)]

4aω(π2 − a2ω2)

L−1∑

l=0

exp[−i(a+ 2la+ ls)ω] (4.3)

Formulas (4.2) and (4.3) must be retransformed to obtain the dynamic response of the system in
the physical domain. Because of complexity of the integrands appearing in the Fourier integrals,
classical or numerical methods of the inverse Fourier transform calculation become ineffective and
might give wrong results. An alternative method of derivation based on the coiflet expansion of
functions is adopted in this paper (Koziol, 2010; Wang et al., 2003). It uses the filter family called
coiflets, possessing the property of vanishing moments for both wavelet and scaling functions,
which allows one to estimate multiresolution coefficients relatively easy (Monzon et al., 1999;
Wang et al., 2003)

Ψ(x) =
KC∑

k=0

(−1)kpKC−kΦ(2x− k) Φ(x) =
KC∑

k=0

pkΦ(2x− k) (4.4)

ΨC and ΦC are the wavelet function and the scaling function, respectively and KC is the number
of filter coefficients belonging to the applied family of coiflets pk. Using the properties of coiflets
and relations between the wavelets, the Fourier analysis leads to the formulas allowing one to
approximate analytically the Fourier transforms of every function belonging to the L2 space
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where M =
∑KC
k=0 kpk and the range of summation kmin(n) = ωmin2

n − KC − 1, kmax(n) =
= ωmax2

n − 1 must be determined in such a way that at least the interval [ωmin, ωmax] covers
the set of the variable ω having strong influence on the behaviour of the original function
that guaranties proper application in the linear case. In the next section, it will be shown that
this criterion, given in previous publications for linear problems (Koziol, 2010; Wang et al.,
2003), becomes insufficient for the problem considered. In this case, mainly due to the nonlinear
characteristics of the system and the applied excitation consisting of a number of loads, the
analysis of the power spectrum does not give all information needed for the determination of
coiflet approximation, as opposed to the mentioned criterion applied to much simpler problems,
i.e. a single load or linear models. The proper condition appropriate for the model analysed is
the stabilisation of the solution with an increasing order of the approximation combined with the
analysis of the power spectrum proposed before and a deep knowledge about possible behaviour
of the structure.
Combining Adomian’s decomposition with the coiflet approximation (Eqs. (4.5)) gives a

semi-analytical procedure for the displacements evaluation for j = 0, 1, 2, . . .
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An arbitrarily chosen point in the space can be taken for numerical simulations. Further
analysis is carried out for x = 0 and the n-th order Adomian’s approximation (Eqs. (3.6))

u(t) ≈ Sn(u, t) =
n∑

j=0

uj(−V t) w(t) ≈ Sn(w, t) =
n∑

j=0

wj(−V t) (4.7)

5. Simulations and discussion

The following parameters are considered for numerical examples (Kargarnovin et al., 2005; Abu-
Hilal, 2006; Hryniewicz and Koziol, 2013): KC = 17, K̃ = 10, n = 5, P0 = 5 · 10

4 N/m,
EI1 = 10

7 Nm2, m1 = 100 kg/m, k1 = 4 · 10
7N/m2, c1 = 6.3 · 10

3 Ns/m2, EI2 = 1.43 · 10
9 Nm2,

m2 = 3.5 · 10
3 kg/m, k2 = 5 · 10

7 N/m2, c2 = 4.18 · 10
4Ns/m2, kN = 4 · 10

13N/m4, fΩ = 5Hz,
V = 20m/s.

One should note that the used system of parameters is adjusted in order to highlight the main
features of the approach developed, and more realistic assumptions could be considered for real
structures behaviour investigation. Nevertheless, the implemented values secure the convergence
of the approximate solutions and show that the adopted method indeed enables parametrical
analysis of the considered nonlinear dynamic system.

Answers to questions: how to describe the deflection of the beams after the load passed the
observation point and how to characterize the behaviour of extreme values of the vibrations
amplitude are of importance in railway engineering. For this study, the complex modulus of the
solution can be examined, called in the literature “the maximal response” (Kim and Cho, 2006;
Koziol and Hryniewicz, 2012; Sun, 2002). The maximal response describes changes of the system
dynamic sensitivity in time. This kind of approach is helpful in investigation of the nonlinear
system because for such cases, the real and imaginary part of the solution cannot be so easily
interpreted as it is possible for linear modelling.

Numerical simulations show that the 5-th order Adomian approximation can be taken for
the analysis as a reliable representation of the solution for the considered model and system of
parameters (Eq. (3.6)). The order of the coiflet estimation can be fixed as n = 5, and above this
index the solution stabilizes without showing significant changes when n increases.

Figures 1 and 2 present how the beams deflection changes in time, depending on the distance
between the separated loads being parts of the moving excitations (Eq. (2.2)). One can observe
that the nonlinear solution differs from the linear one much stronger when the distance s beco-
mes smaller. The nonlinear response accumulates in such cases, especially for the upper beam
representing the rail. The response of the upper beam is stronger than vibrations of the lower be-
am in each case. The more noticeable nonlinear effects can also be observed for the upper beam,
which means that the influence of the nonlinear factor included in the layer supporting the lower
beam propagates through the system to the surface where it causes the strongest variations. One
can see that for the lower beam, the difference between the linear and the nonlinear response is
hardly visible (Figs. 1d-f). It was shown previously that the increasing number of loads makes
the nonlinear effects stronger in the systems similar to the model considered (Koziol, 2013b).

There are many factors with an important influence on the developed approximate solution.
A good balance between the efficiency and cost effectiveness of the algorithm must be found in
order to achieve a good procedure allowing parametrical analysis. The most important features
of this approach were discussed in past publications, e.g. (Koziol, 2010; Koziol 2013b). However,
in the case of a nonlinear problem, new questions concerning the wavelet approximation appear.

Figures 3 and 4 show that the criterion regarding the range of summation in the coiflet
approximation formula (Eqs. (4.6)) formulated previously is insufficient for the double-beam
system. It was shown that for the linear modelling it is enough to determine the range of
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Fig. 1. Vibrations of beams in the case of linear (solid) and nonlinear (dashed) system (L = 2; 3 loads):
(a), (d) s = 2.5m; (b), (e) s = 3m; (c), (f) s = 3.5m

Fig. 2. The maximal response in the case of linear (solid) and nonlinear (dashed) model (L = 2;
3 loads): (a), (d) s = 2.5m; (b), (e) s = 3m; (c), (f) s = 3.5m

summation kmin(n) = ωmin2
n −KC − 1, kmax(n) = ωmax2

n − 1 on the basis of the behaviour
of the transformed solution, i.e. by taking into account the fact that the interval [ωmin, ωmax]
includes all points ω important for the original solution. These can be recognized by the analysis
of the support of the power spectrum for each term appearing consecutively in the approximating
sequence (Eqs. (4.6)).

Figure 3 shows the solution for the double-beam system obtained by using the criterion based
on the power spectrum analysis in the case of a relatively big distance of 15m between 2 loads.
One can see that the linear part of the solution clearly shows two separated excitations, whereas
the nonlinear part does not reflect our expectations. One could presume that the second load also
affects the nonlinear solution, especially when its distance from the first excitation is big enough
to possibly neglect the combined accumulation of the loads. Figure 4 presents the solution for the
same system of parameters but with an increased range of summation: −818 < k(n = 5) < 799
(Eqs. (4.6)). Although the power spectrum analysis (Fig. 5) provides the information that the
interval [ωmin, ωmax] = [−7, 7] should be enough for an appropriate choice of the approximate
sum, the range is increased to [ωmin, ωmax] = [−25, 25] this time, leading to a higher number of
functions that must be calculated for the approximation: −818 < k(n = 5) < 799. In both cases,
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Fig. 3. The linear part WL(0, t) = w0(−V t)e
iΩt and the nonlinear part WN (0, t) =

∑5
j=1 wj(−V t)e

iΩt

of the vertical displacements: L = 1 (2 loads), s = 15m and [ωmin, ωmax] = [−7, 7]
(−242 < k(n = 5) < 223)

Fig. 4. The linear part WL(0, t) = w0(−V t)e
iΩt and the nonlinear part WN (0, t) =

∑
5

j=1 wj(−V t)e
iΩt

of the vertical displacements: L = 1 (2 loads), s = 15m and [ωmin, ωmax] = [−25, 25]
(−818 < k(n = 5) < 799)

the solution stabilizes starting from the 5-th order of the coiflet procedure. This means that for
the second case (Fig. 4) the solution stabilization is achieved for both factors: the approximation
order for the coiflet approximation and the interval [ωmin, ωmax] taken for the sum evaluation
on the basis of the power spectrum analysis.

Thus, the use of the criterion formulated for the linear case based on the power spectrum
analysis only, cannot be used in the case of nonlinear modelling. The proper formulation of
guidelines for the developed procedure allows one to analyse better the system vibrations arising
from the moving load. Figure 6 shows that even for such a big distance between 2 loads as
that one considered, the nonlinear effects are strong already for the first load passing by the
observation point and changes visible in shape of vibration curves become noticeably different for
the second load. This feature reflecting accumulation of nonlinear behaviour for a series of loads
(Fig. 6b) could be overlooked when applying the previous condition sufficient for the linear case
(Fig. 6a).

One should remember that this paper does not analyse all important aspects of the wave
phenomena occurring in the considered double-beam nonlinear system and concentrates only
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Fig. 5. The power spectrum Abs[û], Abs[ŵw] of the Adomian series terms u0 = uL, u1, u2 and
w0 = wL, w1, w2 for L = 1 (2 loads), s = 15m and [ωmin, ωmax] = [−25, 25] (−818 < k(n = 5) < 799)

Fig. 6. Vibrations of the upper beam in the case of the linear (solid) and nonlinear (dashed) system for
L = 1 (2 loads), s = 15m: (a) [ωmin, ωmax] = [−7, 7], (b) [ωmin, ωmax] = [−25, 25]

on the development of the proper solution procedure. Other phenomena, e.g. stability domains,
should be analysed for an appropriate description of the dynamic behaviour of the structure.

6. Conclusions

The reliable wavelet based approach to the solution of the double-beam nonlinear system sub-
jected to a series of moving loads is developed. The method based on Adomian’s decomposition
combined with the coiflet estimation of the Fourier transform is modified by an introduction
of a new criterion regarding an appropriate choice of parameters needed for selection of the
approximation order and adjustment of the approximate formulas. The formulated guidelines
lead to the procedure enabling effective parametrical analysis of the considered nonlinear mo-
del. The influence of the distance between separated moving loads acting on the upper beam
on the system response is analysed. It is shown that the nonlinear effects propagate from the
supporting medium to the upper beam and accumulate with the decreasing distance between
the separated loads moving along the double-beam system. Numerical examples are presented
for the considered system of parameters.
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