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In this paper, an effective semi-analytical method is presented for torsion analysis of struc-
tural beams with various kinds of junctions such as T, I, H, E and + beams. A fairly simple
but precise formulation based on analytical and accurate numerical solutions is presented
for evaluating the shearing stress at critical points and computing the torsional rigidity of a
member under torsion. The problem is formulated based on Prandtl’s stress function. The
cross-section is decomposed into several segments, including straight, curved, end, and junc-
tion segments. The torsion problem is solved in each segment separately. Standard junction
segments are analyzed using the finite element method with a fine mesh. Other segments are
analyzed by analytical methods. Closed-form expressions in terms of geometrical parameters
are found for the shearing stresses at critical points of each segment. The torsional rigidity of
the cross section is also expressed by a closed-form expression. The presented formulations
can be used for analysis of a wide range of thin- to moderately thick-walled complicated
sections.
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1. Introduction

In early studies on the torsion problem, simple or thin-walled cross-sections have been considered.
According to the thin-walled theory, the shearing stress and torsional rigidity of a simple open
cross-section can be estimated by analyzing a thin rectangle (Sadd, 2009). There exists an
exact solution for a rectangular member under torsion (Pagano and Chou, 1992; Sadd, 2009).
Although the formulation based on the thin-walled theory is relatively simple, but it cannot
predict acceptable values for the shearing stress at corners (Pagano and Chou, 1992; Timoshenko
and Goodier, 1970).

El Darwish and Johnston (1965) presented a method for approximate torsion analysis of
some structural shapes such as T-beams. They used the finite difference method to solve the
torsion Poisson equation in terms of Prandtl’s stress function. They presented a formulation
for the evaluation of the torsional rigidity and shearing stress at the midpoint of the flange of
the T-beam. However, evaluation of the shearing stress at the web-flange junction fillet of the
T-beam is impossible by the method presented by El Darwish and Johnston.

Chen and Chen (1981) proposed an analytical solution based on the Laplace equation for
torsion analysis of beams with +, I, [, T and some other similar cross-sections. They divided
the cross-section of the beam into some rectangular sub-domains. In their method, the unknown
displacements on the boundaries of these sub-domains are found by solving a system of equations.
They presented some formulas for torsion of these beams; however, corner fillets were ignored
in their formulation.

Lee et al. (2007) studied behavior of a composite double T-section beam under torsional
loading using the finite element method (FEM). They obtained stiffness matrix elements by
minimization of the total potential energy.
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Hematiyan and Doostfatemeh (2007) proposed an analytical approximate method for ana-
lyzing the torsion problem of a hollow isotropic polygonal shape. This method is capable of
predicting the variation of the shearing stress across the thickness of the beam. Moreover, this
method results in acceptable solutions for thin-walled to moderately thick-walled beams; howe-
ver, the method cannot be used for open section members.

Doostfatemeh et al. (2009) presented some analytical formulas for torsion analysis of beams,
including straight and curved segments with different thicknesses. Their formulation can be used
for hollow members, but it cannot be employed for torsion analysis of open section members such
as T-beams. Arghavan and Hematiyan (2009) extended the method presented by Doostfatemeh
et al. (2009) to analyze non-homogenous hallow members under torsion.

Hematiyan and Estakhrian (2011) presented an approximate analytical method for torsion
analysis of members with open cross-sections containing straight and curved segments with a
uniform thickness. They solved Poisson’s equation in each segment separately, and obtained
closed-form formulas for the shearing stress and torsional rigidity of the member. This is a
simple and accurate method for torsion analysis of thin-walled as well as moderately thick-
walled sections; however, it cannot be used for torsion analysis of members with a junction, such
as a T-beam.

The torsion problem of members with three- and four-way segments, such as T, I and + beams
have been studied rarely. The thin-walled theory could not predict an accurate value for the angle
of twist of these members. Moreover, it is impossible to evaluate the value of the shearing stress
at fillets using the thin-walled theory.

The objective of this paper is to present a formulation for torsion analysis of open-section
members with three- and/or four-way segments. Closed-form expressions in terms of geometrical
parameters are found for the evaluation of torsional rigidity and shearing stresses at critical
points of the member. The presented formulations are practical and can be used for analysis
of a wide range of thin- to moderately thick-walled complicated sections. Beams with three-
or four-way segments are widely used in various industries such as aeronautics, aerospace, and
marine. These beams may be subjected to a combination of torsion and other loadings such as
bending moment, shear, and axial forces. This paper is focused on the torsion analysis. If the
beam is subjected to a compound loading, the total stresses can be easily found using a simple
superposition technique.

2. Governing equations

Consider a uniform member with an arbitrary open cross-section, including three-way and/or
four-way segments as shown in Fig. 1. The member is subjected to two equal torques with
opposite directions at two its ends. The z-direction coincides with the longitudinal axis, and the
cross-section is in the zy plane.

Fig. 1. Torsion of a general open-section beam consisting of three- and four-way segments
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Boundary conditions and governing equations of the torsion problem can be efficiently expres-
sed in terms of Prandtl’s stress function (Sadd, 2009). The shearing stresses in the cross-section
can be expressed as follows:

o¢ o¢

Toz = Tyz = —
0y vz ox
where 7., and 7,. are the shearing stresses in the z- and y-direction, respectively, and ¢ is

Prandtl’s stress function. The governing equation for Prandtl’s stress function can be expressed
as

(2.1)

V2p = —2Ga (2.2)

where G is the shear modulus of elasticity, and « is the angle of twist per unit length. Equations
(2.1) and (2.2) satisfy equilibrium and compatibility equations. Since the considered cross-section
is a simply connected domain, the boundary condition on boundaries of the cross-section can be
expressed as ¢ = 0. The applied torque can be expressed in terms of ¢ as follows

T:2/ ¢ dx dy (2.3)

The torsion problem can also be expressed in a dimensionless form, see for example Gorzelanczyk
(2011). The dimensionless relationships can be derived by defining the following dimensionless
parameters

(L'*:£ y*zﬁ t:}:t_w T*:L
t t t t
f f f f (2.4)
= — T5 = _
Gatfc Gaty Gat;%

where z* and y* are dimensionless coordinates, ¢* is dimensionless Prandtl’s stress function,
7* is the dimensionless shearing stress, and T™ is the dimensionless torque. ¢y is a characteristic
length denoting the thickness of the flange. Substituting the parameters given in Eq. (2.4) into
Egs (2.1), (2.2), and (2.3) the following relationships are found
. _ 09" R 99" Pt 0P¢* .
Toy = o Ty = 9 e + 92 = -2 T = 2//¢ dedy (2.5)

The boundary condition on boundaries of the cross-section can be expressed as ¢* = 0.

3. Problem modeling and formulation

An open cross-section containing a three-way and a four-way segment is shown in Fig. 2. The
section shown in Fig. 2 is not a standard section, but it can be considered as a general section
that most of practical members such as I-, T- and L- beams may be extracted from. Contour
lines of constant ¢ are also shown in Fig. 2. To solve the torsion problem over a cross-section,
like the one shown in Fig. 2, the cross-section is decomposed into several straight, curved, and
end segments. A three-way and a four-way segment as shown in Fig. 2, should also be considered.
Through appropriate approximations, the torsion problem is solved over each segment separately.
The methods for analyzing the problem in straight, curved, and end segments are completely
presented in (Hematiyan and Estakhrian, 2011). The focus of this work is to analyze the three-
and four-way segments. Contour lines in straight and curved segments are assumed parallel
to external boundaries (Hematiyan and Estakhrian, 2011). The solution in end segments can
be found using the relationships for rectangular members (Hematiyan and Estakhrian, 2011).
However, the problem is more complicated in the three- and four-way segments. In the following
sections, the methods for modeling and formulating the problem in straight, curved, and end
segments are reviewed, and the method for solving the problem in junction segments is presented.
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Fig. 2. Contour lines in an open cross-section, containing three- and four-way segments

3.1. Formulation for straight segments

In straight segments, the contour lines are assumed parallel to the boundary, as shown in
Fig. 3.

\ K

l straight

Fig. 3. Contour lines in a straight segment

The relationship for the shearing stress in a straight segment can be expressed as follows
(Hematiyan and Estakhrian, 2011)

(o _ ,
m =[] = Galt =2/ (3.1)

where 3’ is the thickness coordinate as shown in Fig. 3. The relationship for the torque cor-
responding to a straight segment with the length [lgpqigne and thickness ¢ is (Hematiyan and
Estakhrian, 2011)

Tstmight _ GlStmighttg (3 2)
a 3 |
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3.2. Formulation for curved segments

A curved segment with the angle 3, internal and external radii r; and r9, and the polar
coordinate system (r,60) is shown in Fig. 4. The contour lines are assumed parallel to the
boundary (Hematiyan and Estakhrian, 2011), as shown in Fig. 4.

Fig. 4. The geometry and contour lines of a curved segment

The relationships for the shearing stress in the inner and outer radius of a curved segment
can be expressed as follows (Hematiyan and Estakhrian, 2011)

GatR GatR

m - GCM’I"l Touter — GOZTQ - m (33)

Tinner =

where t and R are the thickness and mean radius, respectively. The torsional rigidity corre-
sponding to the curved segment can be expressed as follows (Hematiyan and Estakhrian, 2011)

T, 9 Rt }

urve —rl 2

3.3. Formulation for end segments

An end segment is shown in Fig. 5. Dimensions of the end segment are t x 2¢t. This segment
can be modeled with a very good approximation as one-half of a ¢ x 4¢ rectangle under torsion.
Using the exact solutions for a rectangle under torsion, the relationship for torque corresponding
to the end segment can be found as follows (Hematiyan and Estakhrian, 2011)

T,
ol — 0.5620Gt" (3.5)

The maximum shearing stress in the end segment is (Hematiyan and Estakhrian, 2011)

Tmaz = 0.9970Gat (3.6)

o/ dn=0

Fig. 5. Contour lines in the end segment
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3.4. Formulation for three-way segments

A three-way segment with contour lines is shown in Fig. 6. The flange thickness, web thickness
and fillet radius are represented by ty, t,,, and r, respectively. The dimensions and the critical
points A and B are shown in the figure. It is assumed that this segment is connected to other
three segments. In standard hot-rolled sections, t; is always greater than t,, and less than 2t,,
(British Standard, 1993). In this work, we have assumed 1/3 < ¢} < 1, which is a range wider
than that in the standard sections. The wide range 0.05 < r* < 2t is considered for the fillet

ﬂ B ~

r

r_ al

3ty

Fig. 6. Geometry and contour lines in the three-way segment

The main boundary of the segments is denoted by I', while the interface boundaries are
represented by [I7. It is also assumed that the contour lines are perpendicular to the interface
boundaries I'7. By numerical experiments using the FEM, it can be shown that this assumption
is valid with a very good accuracy. The boundary conditions for the three-way segment, in a
dimensionless form, can be expressed as follows

09"

=0 on I and
on*

=0 on I7 (3.7)

where n* represents the dimensionless coordinate in the direction perpendicular to I7.

We want to find a closed-form relationship for expressing the torque in terms of geometrical
dimensions. Two formulas for the shearing stresses at the critical points A and B should be
found too. For this purpose, many reference cases with different geometrical dimensions are
considered, and the torsion problem is analyzed in each case using the FEM with a fine mesh.
A developed MATLAB code based on the method described in the book by Reddy (1993) has
been used for the finite element analysis. Quadrilateral 8-node quadratic elements are used in the
FEM. Because of the symmetry, only one-half of the segment area is modeled in the finite element
analysis. After solving the reference problems, the closed-form relationships for the torque and
shearing stresses are found by an appropriate curve fitting. The employed curve fitting method
is described in Appendix A.

3.4.1. Relationship for shearing stress at point A

The maximum shearing stress on the top edge of the three-way segment occurs at the po-
int A (Fig. 6). The results for variation of the shearing stress at the point A with respect to
the dimensionless web thickness (¢}, = t,,/ty) and dimensionless fillet radius (r* = r/ts) are
demonstrated in Fig. 7. These results have been obtained by solving a large number of problems
using the FEM with a fine mesh. As it can be seen, for a fixed flange thickness, increasing the

web thickness or increasing the fillet radius results in an increase in the shearing stress.
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Fig. 7. Variation of the dimensionless shearing stress at the point A on the three-way segment versus
the dimensionless fillet radius for different thickness ratios

To find a closed-form relationship for the shearing stress at the point A, the following six-
constant function is considered

= G;f‘tf — Ay + Aoty + At + Agr* + A + Agr* (3.8)
After curve fitting, the following values for constants are obtained

A; =0.9704 Az = 0.037997 Az = 0.1742 (3.9)

Ay =0.1232 As = 0.1640 Ag = —0.03469

The maximum error in the results obtained from Eq. (3.8) in comparison with the original FEM
results is only 1.4%. The R? value for the curve fit is 0.9988, which shows a very good agreement
of Eq. (3.8) to the FEM results.

3.4.2.  Relationship for shearing stress at point B

Similar FEM results were obtained for the shearing stress at the point B. Figure 8 de-
monstrates variation of the dimensionless shearing stress with respect to the dimensionless fillet
radius for different thickness ratios. As it can be seen, the shearing stress has a downward-upward
trend. Because of the presence of stress concentration at the fillet, the shearing stress goes to
infinity when the fillet radius approaches to zero. This means there should be a singularity at
r* = 0 in the relationship expressing the shearing stress.

BTt | o
ol —
2.5 " B o
23—\l
2.1 \
1.9 |
: e
15 - A
1.3 . e A | |
0 02 04 06 08 10 12 14 16 18 20

r*=r/ts

Fig. 8. Variation of the dimensionless shear stress at the point B on the three-way segment versus the
dimensionless fillet radius for different thickness ratios

To find a relationship for the shearing stress at the point B, a function including three
constants with a singular term is considered. The power of the singular term is selected by a
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trial and error process in the curve fitting procedure. The function with the three constants is
as follows

B / 1% ;1
=A+B C 3.10
Gt + B+ 0= (3.10)

The computed values for the constants appearing in Eq. (3.10) for different thickness ratios are
given in Table 1. The maximum error of this formula is 1.33%, and the R? value is 0.9994.

5

Table 1. Numerical values of coefficients in Eq. (3.10)
[ [ A [ B | & ]

w

1 0.7752 | 0.4480 | 0.4801
0.9 | 0.7820 | 0.4301 | 0.4379
0.8 | 0.7887 | 0.4123 | 0.3958
0.7 | 0.7980 | 0.3940 | 0.3586
0.6 | 0.8103 | 0.3687 | 0.3242
0.5 | 0.8278 | 0.3488 | 0.2838
0.4 | 0.8541 | 0.3159 | 0.2483

0.33 | 0.8804 | 0.3029 | 0.2130

Table 1 represents the values of coefficients appearing in Eq. (3.10) for different thickness
ratios. These coefficients can also be expressed by mathematical expressions. After curve fitting,
the following relationships are obtained

1
A" =0.05257— + 0.7226 B’ =0.0985 + 0.35058/17,

tw (3.11)
C’ = 0.08739 + 0.3903t7,

By combining Egs. (3.10) and (3.11), the following relationship is obtained

B 1 1
= 0.05257; + 0.7226 + (0.0985 + 0.35058+/t%, )r* + (0.08739 + 0.3903t,) (3.12)

Gaty w N
The shearing stresses computed using Eq. (3.12) has an error less than 1.6%.

3.4.3.  Relationship for torque corresponding to three-way segment

Accurate finite element results for the dimensionless torque with respect to the dimensionless
fillet radius for the three-way segment are shown in Fig. 9. The dimensionless torque rises with
the increase of the dimensionless fillet radius. Furthermore, it can be seen that the dimensionless
torque rises with the increasing thickness ratio ;.

According to the results shown in Fig. 9, a quadratic function is considered for expressing
the torque. The dimensionless torque for the three-way segment can be expressed as follows

A— Lg;;;“y = Arr** 4+ Brr* + Or (3.13)

The coefficients in Eq. (3.13) are found using the curve fitting procedure for different values of
ty . Appropriate relationships in terms of ¢} have also been found for expressing the coefficients
in Eq. (3.13). The final relationship for torque can be expressed as follows

Tthree —way
Gat‘}%

+ (2200 - 3.445\/1;5 + 4.7941;,?)

1
= 10758, %702 + (003450 — 0.08582) r*
w (3.14)

The maximum error of Eq. (3.14) is less than 1.7%, and the R? value is 0.9996.
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Fig. 9. Variation of the dimensionless torque versus the dimensionless fillet radius for different thickness
ratios of the three-way segment

3.5. Formulation for four-way segments

A four-way segment with contour lines is shown in Fig. 10. The thicknesses are indicated
by t; and t,. The fillet radius is denoted by r. Other dimensions and the critical point C
are shown in the figure. The boundary conditions for this for-way segment can be expressed as
follows

0¢*
on*
where I represents the traction free boundaries, and I} represents the four interface lines of

the segment. n* represents the dimensionless coordinate in the direction perpendicular to I7.
The formulation is obtained for 1/3 < ¢! <1, and 0.05 < r* < 2t

=0 on I and

=0 on Iy (3.15)

tw
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3tw 3tf
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Fig. 10. Geometry and contour lines in the four-way segment

The same approach as the one used for three-way segments is used for the four-way segments.
The final form of the derived formulas for the shearing stress at the point C' and the torque can
be expressed as follows

e 1 o .
= 0.01434— + 0.8427 + (0.4074 4 0.2588t 0.05947 + 0.4602t,,) ——
Gatg to - * * w)r” + + w)\/r_*
Trour—
% =4.156 — 4358\/@ + 52161‘:&}2 + (03736 +1.693 t;kug)w /74*3 (316)
[0
f

+ (0.4994 + 0.4801¢% )r*?
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The maximum error of Eq. (3.16); is 2.2% and the R? value is 0.9987. The maximum error of
Eq. (3.16) is 1.8% and the R? value is 0.9999.

4. Formulation for torsional analysis of some structural beams

In this Section, closed-form formulas for the torsional rigidity and the shearing stresses at critical
points of two important structural beams are presented.

4.1. T-beams

Consider a T cross-section as demonstrated in Fig. 11. This section includes three straight
segments, three end segments, and a three-way junction segment. Using the torque formulas
given in Egs. (3.2), (3.5) and (3.14) for the straight, end and three-way segments, the closed
form torque formula for the whole T cross-section can be found. This formula can be expressed

as follows

T (d—5ty—ty)t3,  (b—10tp —ty,)t} .
— = 2 1.124
o 3 + 3 + 0.5620t,, + Ot}
2
+t4{1 175 — 003459——008582
(te)" <tf> (003150 — 05552) - -
t 3
2299 3.445 +4794 H
b >ty +10tf tf+5t
b
‘ T A‘lr I ‘7
| I t
SR — y
|
: |
Slb
|
Lt

Fig. 11. T cross-section

The shearing stresses at the points A and B can be expressed as follows

t t 2 2
74 = Gat £ [0.9704 +0.0379972% + 0.1742( 22) " 4+ 0.1232— + 0.1640( —
¢ Lty Lty Lty Lty

3
— 0.03469(1) ]
ty
¢ t T (4.2)
5 = Gat f{0.05257t—f 1 0.7226 + (0.0985 +0.35058, /t—’“) -
w

1)t
T
+(0.08739+0.3903—) o
tf r

The shearing stress at the point S on the straight segment can found using the expression

75 = Gaty,.
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4.2. Formulation for 4+ beams

Consider a + cross-section as shown in Fig. 12. Having the torsional rigidity formulas given
in Egs (3.2), (3.5) and (3.16)2 for straight, end, and four-way segments, the closed-form torque
formula for the whole + cross-section can be expressed as follows

T  (f—10t, —ty)t3, N (e =10ty —ty)
Ga 3 3

+ t‘;{4.156 - 4.358\/% + 5.216(%)2 + [0.3736 + 1.693\/<%)3] \/(%)3 (43)

+ (0.4994 + 0.4801%) (%)3}

e >ty + 10ty f >ty +10t,

t3
Ly 1124088 + t4)

The shearing stress at the fillet point C' can be computed from Eq. (3.16);, which yields to

t t tuy [F
7o = Gaty [0.01434—f +0.8427+ (0.4074+0.2588-" ) -+ (0.05947+0.4602-" ) —f} (4.4)
tw ty/ty ty r

Fig. 12. + cross-section

5. Numerical study

In this Section, a numerical example for torsion analysis of T beams is presented. The results
obtained by the proposed method are compared with those obtained from the FEM with a
fine mesh. In some cases, the results are also compared with those obtained using the method
presented by El Darwish and Johnston (1965). In the example, it is assumed that G = 70 GPa
and o = 0.1rad/m. A beam with the T cross-section similar to the one shown in Fig. 11 with
d=0.4m and b = 0.44m is considered. The torsion analyses have been carried out for different
values of the thickness and fillet radius.

Figure 13 shows the shearing stresses at the two critical points A and B with ty = t,, =
0.02m for different values of the fillet radius. The results obtained by the present method are
compared with the FEM solutions. The thin-walled theory solution and the results for the
shearing stress at the point A obtained by El Darwish and Johnston method (1965) are also
presented in Fig. 13. The method presented by El Darwish cannot predict the shearing stress
at the point B. Figure 13 shows that the results obtained by the presented formulas are in
excellent agreement with the FEM results. It can also be seen that the results obtained by the
thin-walled theory for the shearing stress are considerably less than values of the shearing stresses
at the points A and B. Variation of the torque with respect to the fillet radius is illustrated in
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Fig. 13. Variation of the shearing stresses in the T-beam with respect to the fillet radius
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Fig. 14. Variation of the torque in the T-beam with respect to the fillet radius

Fig. 14. The obtained results are compared with the FEM solution and the results based on the
El Darwish and Johnston method.

Figure 15 shows the shearing stresses at the two critical points A and B with r = 0.008 m
for different values of the thickness (ty = t,). The results obtained by the present method
are compared with the FEM solutions. The results obtained using the thin-walled theory and
the El Darwish and Johnston method are shown in this figure. The results for the torque with
respect to the thickness in comparison with the FEM solution and the results obtained by the
El Darwish and Johnston method are shown in Fig. 16. As it can be seen from Figs. 15 and 16,
the results obtained by the present method are in excellent agreement with the accurate FEM
solutions.

6. Conclusion

A method for torsion analysis of structural members, including three- or four-way junctions was
presented. By the presented method, closed-form formulas can be derived for the evaluation of
the torsional rigidity and the shearing stresses in a beam containing corner fillets. With these
closed-form formulas, one can simply analyze, design, or optimize a structural member under
torsion. For example, for a T-beam under torsion, it was shown that there is an optimum value for
the corner radius to minimize the maximum shearing stress. By presenting numerical examples,
it was seen that the accuracy of the proposed method is excellent. However, the thin-walled
theory cannot estimate an acceptable value for the shearing stress at the corner points even for
thin-walled members. The method presented in this paper can be used efficiently for thin- to
moderately thick-wall members. In this paper, the focus was on the torsion analysis. When a
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Fig. 15. Variation of the shearing stresses in the T-beam with respect to thickness
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Fig. 16. Variation of the torque in the T-beam with respect to thickness

beam is subjected to a combination of various loads such as torsion, bending moment, shear, and
axial forces, the total deformations and stresses can be found using a superposition technique.

A. Appendix — the curve fitting method

The method for curve fitting used in this paper is based on the least square method. This method
is described briefly in this Section. A simple set, including n points (z;,v;), i = 1,2,3,...,n,
where z; is the independent variable and y; is the dependent variable, is considered. The function
y = f(z;c1,¢9,...,0m) is going to fit on these data. ¢; to ¢, in this function are unknown
constants, which should be determined in a way that the summation of the squares of errors
between the original and fitted values is minimum. This summation can be expressed as follows

n
Serr :Z[yi—f(xi,ChCQ,...,Cm)]Q (Al)
i=1
The minimum of the above summation can be found by setting its gradient equal to zero
aSerr .
— =0 =1,2,3,...,m A2
(%j J ( )

Therefore, m equations are generated, which should be solved simultaneously. Solving this sys-
tem of equations gives m constants appearing in the function f. In order to analyze the accuracy
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of the fitted curve, the coefficient of determination (R?) is evaluated. The coefficient of deter-
mination can be found as follows

R?=1

SCTT

_ Zerr A3
Stot ( )

where

Serr = Z[yz - f(xz)]z Stot = Z(yz - g)Q Y= % iyl (A4)

7 7 1=1

R? values near unity indicate a close relationship between the fitted function and original data.

10.

11.

12.

13.
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Rozwigzania w postaci zamknietej problemu skrecania belek konstrukcyjnych
z uwzglednieniem promieni przejSciowych pomiedzy lgczonymi segmentami

Streszczenie

W pracy przedstawiono efektywne, pélanalityczne rozwiazanie problemu skrecania belek konstruk-
cyjnych o réznych przekrojach, takich jak T, I, H, E oraz +. Calkiem proste, a jednoczesnie dokladne
sformulowanie zagadnienia oparte na rozwiazaniach analitycznych i numerycznych zaprezentowano dla
przypadku obliczania naprezen $cinajacych w krytycznych punktach przekroju oraz wyznaczania sztyw-
nosci torsyjnej elementu poddanego obcigzeniu skrecajacemu. Rozwiazanie zadania oparto na funkcji
naprezen Prandtla. Przekrdj poprzeczny belek zdekomponowano na kilka segmentow, wlaczajac w to
elementy prostoliniowe i zakrzywione, koncowe oraz laczace. Problem skrecania rozwigzano dla kazdego
segmentu oddzielnie. Typowe elementy laczace przeanalizowano za pomoca metody elementéw skonczo-
nych z zastosowaniem drobnej siatki. Pozostale segmenty obliczono analitycznie. Rozwiazanie w postaci
zamknietej wzgledem parametrow geometrycznych wyznaczono pod katem naprezen $cinajacych w kry-
tycznych punktach kazdego segmentu. Sztywnosé skretna calego przekroju wyrazono rowniez formula
w postaci zamknietej. Zaprezentowane rozwiazania moga by¢ stosowane w analizie skrecania szerokie-
go typoszeregu od cienko- po umiarkowanie grubosciennych belek konstrukcyjnych o skomplikowanym
ksztalcie przekroju poprzecznego.
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