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In this paper, the development of a numerical method to compute the multimodal scattering
matrix of a lined duct in the presence of flow is presented. This method is based on the use
of the convected Helmholtz equation and the addition of modal pressures at duct boundaries
as additional degrees of freedom of the system. The boundary effects at the inlet and outlet
of the finite waveguide are neglected. The choice of this matrix is justified by the fact that it
represents an intrinsic characterization of a duct system. The validation of the proposed finite
element is done by a comparison with the analytical formulation for simple cases of ducts.
Then, the numerical coefficients of the scattering matrix of a lined duct and its acoustic
power attenuation are computed for several flow velocities to evaluate the flow effect.
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1. Introduction

The characterization of the acoustic behavior of aircraft engines is an important tool used by
engine designers to reduce the noise inside such systems and radiated from them. These engines
are generally presented as a wave guide composed of an acoustic source and a series of a rigid wall
and lined ducts. To characterize these wave guide systems, some specific matrices are used such as
the mobility matrix as used by Pierce (1981), transfer matrix, see To and Doige (1979a,b), Lung
and Doige (1983), Munjal (1987), Peat (1988) and Craggs (1989), reflection matrix presented
in Akoum and Ville (1998) and Sitel et al. (2003), transmission matrix see Sitel et al. (2003) or
scattering matrix see Abom (1991), Leroux et al. (2003), Bi et al. (2006) and Sitel et al. (2006)
matrices. In a previous work, Taktak et al. (2010) developed the multimodal scattering matrix
of a lined duct to characterize an axisymmetric rigid wall – lined – rigid wall duct simulating
an aircraft engine without flow. In fact, this matrix represents an intrinsic characterization of
the duct element independently of the upstream and downstream conditions: it depends only
on acoustics and geometrical duct features and provides a complete description of the modal
reflection, transmission and conversion of the duct element. This matrix is also used to evaluate
the efficiency of the duct by computing its acoustic power attenuation as presented by Aurégan
and Starobinski (1998) and Taktak et al. (2010). In that latter work, the scattering matrix was
used to evaluate the efficiency of a lined duct and to characterize duct edges by calculation of its
acoustic impedance without flow. But in a real engine the flow is present and has an important
effect on the acoustic behavior of liners. For this rreason, a method based on the finite element
method to compute the multimodal scattering matrix of a lined duct in the presence of a uniform
flow with a Mach number smaller than unity is presented in this paper. This matrix is then used
to characterize the acoustic performance of the studied duct by computing its acoustic power
attenuation and to evaluate the flow effects on these parameters (scattering coefficients and
acoustic attenuation).
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In this paper, the studied problem is presented in Section 2. Then, the finite element method
to compute the numerical multimodal scattering matrix with flow of a lined duct is presented
in Section 3. Section 4 presents the computation of the acoustic power attenuation from the
scattering matrix. Results of the proposed numerical method are presented and discussed in
Section 5 to evaluate the flow effect.

2. Description of the physical problem

The studied duct is cylindrical. Figure 1 presents its symmetric part. It does not present a
sudden section change but an impedance discontinuity caused by the liner which is supposed to
be locally reacting is modeled by its acoustic impedance Z. Ω is the acoustic domain inside the
duct. The edge of the studied duct is composed of four parts: the rigid wall duct part ΓWD, the
lined duct part ΓLD, the left transversal boundary ΓL and the right transversal boundary ΓR.
ΓWD, ΓLR, ΓL and ΓR are characterized respectively by their normal vectors nWD, nLD, nL
and nR. A uniform flow with a Mach number smaller than unity is present in this duct modeled
by the vector M0 defined as

M0 =
(U0

c

)

=
(U0z

c

)

=M0z (2.1)

where M0 is the Mach number, U0 is the flow velocity, c is the sound velocity and z is the duct
axis. The objective of this work is the characterization of an industrial duct composed of a rigid
wall and lined parts and the evaluation of its efficiency as well as the flow effect on the acoustic
behavior of this duct. This is obtained by using the multimodal scattering matrix, from which
the acoustic power attenuation is deduced. The methodology of numerical computation of this
matrix as well as of the acoustic attenuation is presented in the next sections.

3. Computation of the multimodal scattering matrix

3.1. Definition of the scattering matrix

The scattering matrix SN×N of the duct element relates the outcoming pressure wa-
ves array Pout2N = [P

I−
00 , . . . , P

I−
PQ, P

II+
00 , . . . , P

II+
PQ ]

T
N to the incoming pressure waves array

Pin2N = [P
I+
00 , . . . , P

I+
PQ, P

II−
00 , . . . , P

II−
PQ ]

T
N (Fig. 1) as follows, see Taktak et al. (2010)

Pout2N = S2N×2NP
in
2N =

[

R+N×N T+N×N
T−N×N R−N×N

]

2N×2N

Pin2N (3.1)

where P I+mn and P
I−
mn are the modal pressure coefficients associated to the (m,n) mode traveling,

respectively, in the positive and the negative direction in region I, P II+mn and P
II−
mn are respecti-

vely the modal pressure coefficients associated to the (m,n) mode traveling, respectively, in the
positive and the negative direction in region II (Fig. 1). m and n are, respectively, the azimuthal
and the radial mode numbers. N is the number of modes in both cross sections, P and Q are,
respectively, the angular and radial wave numbers associated to the N -th propagating mode
(m ¬ P and n ¬ Q).

3.2. Governing equations

The studied duct is axisymmetric. The boundary effects at the inlet and outlet of the duct
are neglected. The acoustic pressure p in the duct is the solution of the system containing
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Fig. 1. Schematic of the theoretical model for the computation of the multimodal scattering matrix

the convected Helmholtz equation with boundaries conditions at ΓWD (rigid wall duct part)
and ΓLD (lined duct part)

∆p+ k2p+
2iω

c
(M0 · ∇p)−M0 · ∇(M0 · ∇p) = 0 (Ω)

Z
∂p

∂nLD
=
ρ0
iω

(

−iω + U0
∂

∂z

)2
(p) (ΓLD)

∂p

∂nWD
= 0 (ΓWD)

(3.2)

where ∆ is the Laplacian operator; k is the total wave number, ρ0 is the density and ω is the
pulsation. ∇ = 〈∂/∂r, im/r, ∂/∂z〉T is the modified gradient for axisymmetric problems. χmn is
the n-th root satisfying the radial hard-boundary condition on the rigid wall of the main duct.
The acoustic pressure fields at the left section ΓL and the right section ΓR (Fig. 1) are given as
follows

pL =
Nr
∑

n

(

P I+mne
ik+mn(z−zL) + P I−mne

ik−mn(z−zL)
)

Jm
(χmn
a
r
)

pR =
Nr
∑

n

(

P II+mn e
ik+mn(z−zR) + P II−mn e

ik−mn(z−zR)
)

Jm
(χmn
a
r
)

(3.3)

with Nr being the number of radial modes. zL and zR are, respectively, the axial position of
the left and right boundaries, Jm is the Bessel function of the first kind of the order m, a is
the duct radius, r is the radial variable. k±mn are the axial wave numbers associated with the
(m,n) mode and defined as

k±mn =
−M0k ±

√

k2 − (1−M20 )k
2
t

1−M20
(3.4)

where kt is the transverse wave number. The sign “+” means that the axial wave number is
calculated in the same direction of the flow, the sign “−” means that the axial wave number is
calculated in the opposite direction of the flow.

3.3. Variational formulation

To solve problem (3.2), the finite element method is used. The weak variational formulation
of this problem is written as follows

Π =

∫

Ω

−(∇q · ∇p)r dΩ +
1

c2

∫

Ω

(iωq +U0 · ∇q)(−iωp+U0 · ∇p)r dΩ

+

∫

∪Γi

[

q
∂p

∂ni
−
1

c2
U0 · niq

(

−iω + U0
∂

∂ni

)

(p)r dΓi = 0
(3.5)
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where p and q are, respectively, the acoustic pressure in the duct and the test function.
dΩ = dr dz is the surface element. ∪Γi present the whole boundaries (i = LD – lined part,
i = L – left, i = R – right). The third integral includes boundary conditions. This integral is
composed of three parts:

— Lined part ΓLD

∫

ΓLD

[

q
∂p

∂nLD
−
1

c2
U0 · nLDq

(

−iω + U0
∂

∂nLD

)

(p)
]

r dΓLD = −ρ0ω
2
∫

ΓLD

q
p

iωZ
r dΓLD

− 2iωρ0U0

∫

ΓLD

q
∂

∂z

( p

iωZ

)

r dΓLD − ρ0U
2
0

∫

ΓLD

∂q

∂z

∂

∂z

( p

iωZ

)

r dΓLD

+ ρ0U
2
0

[

rq
∂

∂z

( p

iωZ

)]LLD

(3.6)

with LLD being the lined part length.

— Left boundary ΓL

∫

ΓL

[

q
∂p

∂nL
−
1

c2
U0 · nLq

(

−iω + U0
∂

∂nL

)

(p)
]

r dΓL

=
Nr
∑

n=1

inL
[

(1 +M20 )(k
+
mnP

I+
mn + k

−

mnP
I−
mn)− kM0(P

I+
mn + P

I−
mn)

]

∫

ΓL

qJm
(χmn
a
r
)

r dΓL

(3.7)

— Right boundary ΓR

∫

ΓR

[

q
∂p

∂nR
−
1

c2
U0 · nRq

(

−iω + U0
∂

∂nR

)

(p)
]

r dΓR

=
Nr
∑

n=1

inR
[

(1 +M20 )(k
+
mnP

II+
mn + k

−

mnP
II−
mn )− kM0(P

II+
mn + P

II−
mn )

]

∫

ΓR

qJm
(χmn
a
r
)

r dΓR

(3.8)

The use of modal decomposition at the boundaries ΓL and ΓR in Eq. (3.3) introduces the modal
pressures as additional degrees of freedom of the model. It is necessary to complete Eqs. (3.5),
(3.6) and (3.7) with more equations to obtain a well posed problem. This is done by supposing
that pressures at ΓL and ΓR can be obtained by the projection of the acoustic field over the
eigenfunctions of the rigid wall duct

∫

ΓL

pJm
(χmn
a
r
)

dΓL = (P
I+
mn + P

I−
mn)

∫

ΓL

Jm
(χmn
a
r
)2
r dΓL

∫

ΓR

pJm
(χmn
a
r
)

dΓR = (P
II+
mn + P

II−
mn )

∫

ΓR

Jm
(χmn
a
r
)2
r dΓR

(3.9)

3.4. Finite element discritization

To solve the proposed problem, the domain (Ω) is discretized with triangular finite elements
while the edges are meshed by two node finite elements. The computation of integrals of Eq.
(3.4) is made by the summation over the finite elements number of elementary integrals (Dhatt
and Touzout, 1989)
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Ie1 =

∫

Ωe

−(∇q · ∇p)r dΩe +
1

c2

∫

Ωe

(iωq +U0 · ∇q)(−iωp+U0 · ∇p)r dΩe

Ie2 = −ρ0ω
2
∫

Γe

q
p

iωZ
r dΓe − 2iωρ0M0

∫

Γe

q
∂

∂z

( p

iωZ

)

r dΓe − ρ0M
2
0

∫

Γe

∂q

∂z

∂

∂z

( p

iωZ

)

r dΓe

Ie3 = ρ0M
2
0

[

rq
∂

∂z

( p

iωZ

)]LLD

Ie4 =
Nr
∑

n=1

inL
[

(1 +M20 )(k
+
mnP

I+
mn + k

−

mnP
I−
mn)− kM0(P

I+
mn + P

I−
mn)

]

∫

Γe

qJm
(χmn
a
r
)

r dΓe

Ie5 =
Nr
∑

n=1

inR
[

(1 +M20 )(k
+
mnP

II+
mn + k

−

mnP
II−
mn )− kM0(P

II+
mn + P

II−
mn )

]

∫

Γe

qJm
(χmn
a
r
)

r dΓe

(3.10)

The computation of integrals (3.9) is obtained by the summation over the finite elements number
of elementary integrals

Ie6 =

∫

Γe

pJm
(χmn
a
r
)

r dΓe − (P
I+
mn + P

I−
mn)

∫

Γe

Jm
(χmn
a
r
)2
r dΓe

Ie7 =

∫

Γe

pJm
(χmn
a
r
)

r dΓe − (P
II+
mn + P

II−
mn )

∫

Γe

Jm
(χmn
a
r
)2
r dΓe

(3.11)

where Ωe and Γe are, respectively, the elementary triangular and two-node finite elements.

3.4.1. Elementary computation of the triangular finite element

For the triangular finite element composed of three nodes, the integral Ie1 is written as
follows

Ie1 = [q1, q2, q3](Ke)1[p1, p2, p3]
T

(Ke)1 =

∫

Ωref

−(∇q · ∇pT) det j r dξ dη

+

∫

Ωref

(

iω

c











N ′1
N ′2
N ′3











+U0 · ∇q

)

(

−
iω

c
[N ′1, N

′

2, N
′

3] +U0 · ∇p
)

det j r dξ dη

(3.12)

where pi = 1, 2, 3 and qi = 1, 2, 3 are, respectively, nodal acoustic pressures and nodal test
functions of the triangular finite element. j is the inverse matrix of the Jacobian matrix J of the
transformation from the reference element to the real base and N ′1(ξ, η), N

′
2(ξ, η) and N

′
3(ξ, η)

are the interpolation functions of the triangular element (Dhatt and Touzout, 1989)

N ′1(ξ, η) = 1− ξ − η N ′2(ξ, η) = ξ N ′3(ξ, η) = η (3.13)

The integration of integral (3.12)2 is made using the numerical Gauss integration method, see
Dhatt and Touzout (1989). Finally, the global corresponding matrix is

K1 =
NelT
∑

1

(Ke)1 (3.14)

where NelT is the number of triangular finite elements.
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3.4.2. Elementary computations of the two node finite element

For the two-node finite element belonging to the lined part of the duct composed of two
nodes, Ie2 and Ie3 are computed as follows

Ie2 = [q1, q2](Ke)2

{

p1
p2

}

(Ke)2 = (Ke)21 + (Ke)22 + (Ke)23

(Ke)21 = ρ0iω

1
∫

−1

{

N1
N2

}

[N1, N2]
[N1, N2]

[Z1, Z2]

{

N1
N2

}

Le
2
r dξ

(Ke)22 = −2ρ0U0

1
∫

−1

{

N1
N2

}















2
Le
[−1/2, 1/2]

[Z1, Z2]

{

N1
N2

} − [N1, N2]

2
Le
[Z1, Z2]

{

− 1/2
1/2

}

(

[Z1, Z2]

{

N1
N2

})2















Le
2
r dξ

(Ke)23 =
ρ0U

2
0

iω

1
∫

−1

2

Le

{

− 1/2
1/2

}















2
Le
[−1/2, 1/2]

[Z1, Z2]

{

N1
N2

} − [N1, N2]

2
Le
[Z1, Z2]

{

− 1/2
1/2

}

(

[Z1, Z2]

{

N1
N2

})2















Le
2
r dξ

(3.15)

where pi = 1, 2 and qi = 1, 2 are, respectively, nodal acoustic pressures and nodal test functions
of the two-node finite element. Z1 and Z2 are the acoustic impedance of each node of the
two-node finite element. Le is the finite element length, N1(ξ) and N2(ξ) are the interpolation
functions of the two-node finite element defined by Dhatt and Touzout (1989)

N1(ξ, η) =
1− ξ

2
N2(ξ) =

1 + ξ

2
(3.16)

The computation of Ie3 is done for the two-node finite elements on the lined part extremities in
which the first node of the first finite element of this part and the second node of the last finite
element of the lined part are used

Ie3 = [q1, q2](Ke)3Z2

{

p1
p2

}

− [q1, q2](Ke)3Z1

{

p1
p2

}

(Ke)3Z2 =
ρ0U

2
0

iω

2

Le

{

0
1

}















[−1/2, 1/2]

[Z1, Z2]

{

0
1

} − [0, 1]

[Z1, Z2]

{

− 1/2
1/2

}

(

[Z1, Z2]

{

0
1

})2















[r1, r2]

{

0
1

}

(Ke)3Z1 =
ρ0U

2
0

iω

2

Le

{

1
0

}















[−1/2, 1/2]

[Z1, Z2]

{

1
0

} − [1, 0]

[Z1, Z2]

{

− 1/2
1/2

}

(

[Z1, Z2]

{

1
0

})2















[r1, r2]

{

1
0

}

(3.17)

where r1 and r2 are the radii of each corresponding real node. The integration of the above
integrals is made using the numerical Gauss integration method, see Dhatt and Touzout (1989).
The assembly of different elementary integrals computed before is obtained as follows

K2,3 =
NelLD
∑

1

(Ke)3 + (Ke)3Z1 + (Ke)3Z2 (3.18)

where NelLD is the number of two node finite elements along the lined part.
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The integral Ie6 is written as follows for a finite element belonging to the left boundary

Ie4 = [q1, q2](Ke)
+
4 (P

I+
mn)Nr + [q1, q2](Ke)

−

4 (P
I−
mn)Nr

(Ke)
±

4 =











· · · [−ik±mn(1 +M
2
0 )− kM0]

1
∫

−1
N1(ξ)Jm

(

χmn
a
r
)

Le
2 r dξ · · ·

· · · [−ik±mn(1 +M
2
0 )− kM0]

1
∫

−1
N2(ξ)Jm

(

χmn
a
r
)

Le
2 r dξ · · ·











2Nr

(3.19)

The integral Ie5 is written as follows for an two-node finite element belonging to the right
boundary

Ie5 = [q1, q2](Ke)
+
5 (P

II+
mn )Nr + [q1, q2](Ke)

−

5 (P
II−
mn )Nr

(Ke)
±

5 =











· · · [ik±mn(1 +M
2
0 )− kM0]

1
∫

−1
N1(ξ)Jm

(

χmn
a
r
)

Le
2 r dξ · · ·

· · · [ik±mn(1 +M
2
0 )− kM0]

1
∫

−1
N2(ξ)Jm

(

χmn
a
r
)

Le
2 r dξ · · ·











2Nr

(3.20)

By using linear interpolation of the pressure, the integrals Ie6 and Ie7 are obtained as follows

Ie6 = (Ke)61

{

p1
p2

}

+ (Ke)
+
62(P

I+
mn)Nr + (Ke)

−

62(P
I−
mn)Nr

Ie7 = (Ke)71

{

p1
p2

}

+ (Ke)
+
72(P

II+
mn )Nr + (Ke)

−

72(P
II−
mn )Nr

(Ke)61 = (Ke)71 =















...
...

1
∫

−1
N1(ξ)Jm

(

χmn
a
r
)

Le
2 r dξ

1
∫

−1
N2(ξ)Jm

(

χmn
a
r
)

Le
2 r dξ

...
...















2Nr

(Ke)
+
62 = (Ke)

−

62 = (Ke)
+
72 = (Ke)

−

72 =



 diag

(

1
∫

−1

Jm
(χm
a
r
)2Le
2
r dξ

)





Nr×Nr

(3.21)

Once the elementary integrals are computed, the assembly of them is obtained as follows

K±4 =
NelL
∑

1

(Ke)
±

4 K±5 =
NelR
∑

1

(Ke)
±

5 (3.22)

where NelL and NelR are, respectively, the number of two-node elements at the left and right
boundaries

K61 =
NelL
∑

1

(Ke)61 K±62 =
NelL
∑

1

(K±e )61

K71 =
NelR
∑

1

(Ke)71 K±72 =
NelR
∑

1

(K±e )72

(3.23)
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The arrangement of the previous system leads to the following matrix system















KM×M (K−4 )M×Nr (K+4 )M×Nr (K−5 )M×Nr (K+5 )M×Nr
(K61)Nr×M (K−62)Nr×Nr (K

+
62)Nr×Nr 0 0

0 0 0 0 0

0 0 0 0 0

(K71)Nr×M 0 0 (K−72)Nr×Nr (K
+
72)Nr×Nr











































































p1
...
pM











M

(PI−mn)Nr
(PI+mn)Nr
(PII−mn )Nr
(PII+mn )Nr














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








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


















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(3.24)
KM×M = K1 +K2,3

with M is the number of nodes. For a given m, the azimuthal scattering matrix is defined as
{

PI−mn
PII+mn

}

= s2Nr×2Nr

{

PI+mn
PII−mn

}

(3.25)

This matrix is obtained by formulating the system of Eq. (3.24)1 as follows

Kp+A

{

PI+mn
PII−mn

}

+B

{

PI−mn
PII+mn

}

= 0 Cp+U

{

PI+mn
PII−mn

}

+V

{

PI−mn
PII+mn

}

= 0 (3.26)

where p is the nodal acoustic pressure vector, and the matrices A, B, C, U, and V are defined
as

A =
[

K−4K
+
5

]

B =
[

K+4K
−

5

]

C = K61 +K71

U =
[

K−62K
+
72

]

V =
[

K+62K
−

72

]
(3.27)

The azimuthal scattering matrix is then written as

s = (V −CK−1B−1)(U −CK−1A−1) (3.28)

The total scattering matrix of the studied duct S2N×2N is obtained by repeating this operation
for each m and by gathering the azimuthal matrices s2Nr×2Nr and N is the total number of
modes present in the duct.

4. Computation of the acoustic power attenuation

The axial acoustic intensity at a point M(r, θ, z) located in a plane section of the duct is given
by Ville and Foucart (2003)

Iz(r, θ, z) =
1

2
(1 +M20 )Re(P, V

∗

z ) +
ρ0, V0
2
Re(VzV

∗

z ) +
V0
2ρ0c20

(PP ∗) (4.1)

where Vz is the axial acoustic velocity and P is the acoustic pressure. The acoustic power is
given by

W (z) =
+∞
∑

m=−∞

∞
∑

n=0

Iz,mn(z)Nmn (4.2)

with Nmn is the normalization coefficient associated with the (m,n) mode defined as

Nmn = SJ
2
m(χmn)

(

1−
m2

χ2mn

)

(4.3)

where S = πa2 is the plane section are of the duct.
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The axial acoustic intensity associated with the (m,n) mode Iz,mn is given by the following
expression in function of modal acoustic pressures and velocities

Iz,mn(z) =
1

2
(1 +M20 )Re(PmnV

∗

z,mn) +
ρ0V0
2
Re(Vz,mnV

∗

z,mn) +
V0
2ρ0c

2
0

Re(PmnP
∗

mn) (4.4)

From this expression, the incident, reflected, transmitted and retrograde modal intensities are
given by

II+z,mn =
(1 +M20 )Nmnk

+
mn

2ρ0c0(k −M0k
+
mn)
|P I+mn|

2 II−z,mn =
(1 +M20 )Nmnk

−
mn

2ρ0c0(k −M0k
−
mn)
|P I−mn|

2

III+z,mn =
(1 +M20 )Nmnk

+
mn

2ρ0c0(k −M0k
+
mn)
|P II+mn |

2 III−z,mn =
(1 +M20 )Nmnk

−
mn

2ρ0c0(k −M0k
−
mn)
|P II−mn |

2

(4.5)

The acoustic power attenuation Watt of a two-port duct is defined as the ratio between the
acoustic power of incoming pressures from the two sides of the duct W in and the acoustic power
of out-coming pressures from the two sides of the duct W out

Watt(dB) = 10 log
W in

W out

W in =
P
∑

m=−P

Q
∑

n=0

(1 +M20 )Nmn
2ρ0c0

( k+mn
k −M0k

+
mn

|P I+mn|
2 +

k−mn
k −M0k

−
mn

|P II−mn |
2
)

W out =
P
∑

m=−P

Q
∑

n=0

(1 +M20 )Nmn
2ρ0c0

( k−mn
k −M0k

−
mn

|P I−mn|
2 +

k+mn
k −M0k

+
mn

|P II+mn |
2)

(4.6)

The acoustic power attenuation is then written as follows

Watt(dB) = 10 log
W in

W out
= 10 log

∑2N
i=1 |di|

2

∑2N
i=1 λi|di|

2
(4.7)

where λi are the eigenvalues of H defined as

H2N×2N =
[

[ diag (XO)]2N×2NS2N×2N [ diag (XI)]
−1
2N×2N

]T∗

2N×2N

·
[

[ diag (XO)]2N×2NS2N×2N [ diag (XI)]
−1
2N×2N

]

2N×2N

XImn =

√

Nmn
2ρ0c0

((1 +M20 )k
+
mn

k −M0k
+
mn

+
k+mnM0

(k −M0k
+
mn)2

+M0
)

XOmn =

√

Nmn
2ρ0c0

((1 +M20 )k
−
mn

k −M0k
−
mn

+
k−mnM0

(k −M0k
−
mn)2

+M0
)

d2N = U
T∗
2N×2N (Π

in)2N

(4.8)

with U is the eigenvector matrix of H and T∗ denotes conjugate transpose.

5. Numerical results

5.1. Scattering matrix coefficients

The studied duct in this paper is a 1 meter long cylindrical duct composed of three parts:
0.35m rigid wall duct, 0.3 lined duct and 0.35m rigid wall duct. This duct is similar to the
experimental duct used by Taktak et al. (2010). The computation of the multimodal scattering
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matrix and the acoustic power attenuation is made by supposing that the duct is lined by
a Helmholtz resonator composed of a perforated plate with the thickness e = 0.8mm, the
hole diameter d = 1mm with a perforation ratio σ = 5% of the honey comb structure with
thickness D = 20mm and a rigid wall plate. This kind of liner is characterized by its acoustic
impedance Z. In the present work, the acoustic impedance model of Elnady and Boden (2003)
is used as the input for computation of the numerical multimodal scattering matrix and the
acoustic power attenuation of the studied duct. This model gives the resonance frequency at
ka = 2.22. Computations are made for different Mach numbers (M0 = 0, 0.1, 0.2) over the
frequency band ka ∈ [0, 3.8] to evaluate the flow effect.

Fig. 2. Modulus of the transmission coefficients T+00,00 (a) and T
+

10,10 (b) versus ka for several Mach
numbers

Figures 2a,b present the moduli of transmission coefficients T+00,00 and T
+
10,10 computed

in the same direction of the flow versus of the nondimensional wave number ka for different
Mach numbers. The modulus of the coefficient T+00,00 shows that it is near 1 in ka ∈ [0, 0.8].
From ka = 0.8, this modulus decreases with the frequency until becoming nil in the interval
ka ∈ [2.4, 2.8] near the theoretical resonance frequency. Then, an increase of the modulus is
observed in the rest of the studied frequency band until reaching 0.4 at ka = 3.8. For the
T+10,10 modulus, an increase versus ka is observed from ka = 2.8 to reach 0.4 at ka = 3.8.
Figures 2a,b also show that there are no significant effects of the flow on transmission coefficients.
Figures 3a,b,c present, respectively, the moduli of reflection coefficients R+00,00, R

+
10,10 and R

+
20,20

Fig. 3. Modulus of the reflection coefficients R+
00,00
(a), R+

10,10
(b) and R+

20,20
(c) versus ka for several

Mach numbers
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of the studied duct. Oscillations are observed on the reflection coefficient R+00,00. The reflection
coefficients of higher order modes are close to 1 near the cut on frequencies, then a decrease of
their moduli is observed versus ka. Figures 3a,b,c show the flow effects on reflection coefficients:
when the flow velocity increases, the reflection coefficients moduli decrease except the R+00,00
coefficient modulus in ka ∈ [1.2, 1.8]. This decrease is more apparent on the (0, 0) mode reflection
coefficient (∼ 0.05) and (2, 0) mode (∼ 0.2) and less important than the (1, 0) mode.

5.2. Acoustic power attenuation

Acoustic power attenuations are computed using a configuration of unit modal incident
pressures from one side of the duct (left) and in the same direction of flow, see Taktak et al.
(2010) (Pin = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]T). Figures 4a,b,c present the acoustic power attenuation
of the studied duct versus ka, respectively, in presence of (0, 0), (1, 0), (2, 0) for different studied
Mach numbers. They show that attenuations are dependent of the incident wave and that the
maximum of attenuation is observed near the liner resonance frequency. The amplitude and the
frequency of this maximum is dependent on the flow speed. Figure 4a shows that this maximum
is equal to 15 dB without flow at ka = 3.1, 17 dB for M0 = 0.1 at ka = 3 and 19 dB for
M0 = 0.2 at ka = 2.95. The same remark is observed in presence of the (1, 0) and (2, 0) mode:
without flow, the maximum of attenuation in presence of the (1, 0) is 12 dB at ka = 3.2, 13 dB at
ka = 3.1 for M0 = 0.1 and 14 dB at ka = 3.05 for M0 = 0.2. These figures allowed concluding
that an increase in the flow velocity generates a increase in the acoustic power attenuation and
a decrease in the maximum of attenuation frequency.

Fig. 4. Acoustic power attenuation of the studied duct in the presence of (0, 0) mode (a),
(1, 0) mode (b) and (2, 0) mode (c) versus ka for several Mach numbers

6. Conclusions

In this study, a numerical method for the characterization of a lined duct inthe presence of
flow was developed and presented. This method is based on the computation of the multimodal
scattering matrix as well as the acoustic power attenuation. By varying the flow velocity, its
effect was evaluated: the increase of the flow decreases the reflection coefficients when the effect
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is weak on the transmission coefficients. For the acoustic power attenuation, the increase of the
flow velocity increases the attenuation and decreases the frequency of the maximum attenuation.
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Numeryczna charakteryzacja wyściełanego przewodu osiowo-symetrycznego z przepływem

za pomocą wielomodalnej macierzy rozpraszania

Streszczenie

W pracy zaprezentowano numeryczną metodę wyznaczania macierzy rozpraszania dla wyściełanego
przewodu z uwzględnieniem wewnętrznego przepływu czynnika. Metodę oparto na zastosowaniu równania
konwekcji Helmholtza z wprowadzeniem ciśnień modalnych na brzegach jako dodatkowych stopni swo-
body układu. Efekty brzegowe na wlocie i wylocie przewodu falowego o skończonej długości pominięto.
Wybór macierzy rozpraszania uzasadniono faktem, że reprezentuje ona wewnętrzną charakterystykę ana-
lizowanego modelu. Zaproponowany element skończony zweryfikowano poprzez porównanie z istniejącymi
rozwiązaniami analitycznymi dla prostych przypadków konfiguracji przewodu. Następnie numerycznie ob-
liczono wartości elementów macierzy rozpraszania oraz współczynniki tłumienia akustycznego dla kilku
prędkości przepływu w celu określenia, jak dalece wpływa on na badany układ.
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