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This paper presents the optimized fuzzy logic controller (FLC) with on-line tuning of scaling
factors for vibration control of thin-walled composite beams. In order to improve the per-
formances and robustness properties of FLC, the proposed method adjusts the input scaling
factors via peak observer. The membership functions of the proposed FLC are optimized
using the particle swarm optimization (PSO) algorithm. The composite beam is modeled by
the third-order shear deformation theory (TSDT) and discretized by using the finite element
method. Several numerical examples are provided for the cantilever composite beam under
a periodic excitation and periodic excitation with an unexpected disturbance. In order to
present the efficiency of the proposed controller, the obtained results are compared with the
corresponding results in the cases of the optimized FLCs with constant scaling factors and
LQR optimal control strategy.
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1. Introduction

Thin-walled composite structures are used for aerospace applications such as aircraft wings,
wind turbine blades and helicopter blades. The appearance of unwanted vibration may result in
instability of the system and, also, can reduce structural life and lead to catastrophic failure. In
order to control vibrations of thin-walled structures during operation, conventional structures
have been combined with sensing and actuating mechanisms to develop “smart structures”
(Gabbert, 2002). In recent years, a great number of researches have been using piezoelectric
materials as distributed actuators and sensors (A/Ss) for active vibration control.

The dynamic performance and functionality of smart structures depend on the control algo-
rithm. There are numerous control algorithms which can be applied for vibration suppression
of thin-walled structures with distributed piezoelectric A/Ss. The most commonly used con-
trol algorithms are “classical” control algorithm such as direct proportional feedback, constant
gain velocity feedback (CGVF) and constant amplitude velocity feedback (CAVF) control (Ku-
mar and Narayanan, 2008; Kapuira and Yasin, 2010). Optimal control algorithms (LQR and
LQG) for active vibration suppression were adopted by Kumar and Narayanan (2008), Roy and
Chakraborty (2009), Kapuira and Yasin (2010) and Gabbert et al. (2005).

These control algorithms can provide adequate control managment for wide classes of pro-
blems related to active vibration suppression, but they are sensitive to structure characteristics
and recquire an exact mathematical model of a structure even for the collocated system. Also,
they are sensitive to operating conditions, furthermore, it is difficult to adjust controller gains.
An alternative is the use of intelligent control algorithms based on soft computing schemes such
as fuzzy logic control (FLC) algorithms. The fuzzy set theory was established by Zadeh (1965)
and it has been extensively researched in various fields of engineering. The main advantage of
FLC over conventional control approaches is that the FLC is considered artificial intelligence
where control laws are designd by human intelligence based on expert’s experience, not by a
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deterministic numerical calculation. FLC does not recquire the accurate mathematical model of
the controlled object and it can represent almost any deterministic controller. Therefore, FLC
method has been applied widely for active vibration control of flexible structures (Sharma et
al., 2007; Marinaki et al., 2010; Wei et al., 2010).

Fuzzy control design is composed of three important stages. The first stage is the inference
rules design, the second is tuning of membership functions, and the third is tuning of control
parameters. This paper deals with active vibration control of smart composite beams using
an optimized self-tuning fuzzy logic controller (FLC). Input variables in FLC are scaled with
scaling factors, and, in order to improve the performance and robustness properties of FLC, these
scaling factors are adjusted via peak observer. The membership functions of the proposed FLC
are optimized using the particle swarm optimization (PSO) algorithm. The composite beam is
modeled by the third-order shear deformation theory (TSDT) and discretized using the finite
element method. Numerical examples are provided for the cantilever composite beam under a
periodic excitation and a periodic excitation with unexpected disturbance. The results obtained
using the proposed self-tuning FLC are then compared with the corresponding results in the
cases of PSO-optimized FLC with constant scaling factors and LQR optimal control strategy.

2. Governing equations

2.1. Coupled equations of motion

The laminated composite beam with integrated piezoelectric actuators and sensors conside-
red here is presented in Fig. 1. Both elastic and piezoelectric layers are supposed to be thin,
so a plane stress state can be assumed. The sensors and actuators are perfectly bonded on the
upper and lower surfaces at different locations along the length of the beam. It is assumed that
they span the entire width of beam. The elastic layers are obtained by setting their piezoelec-
tric coefficients to zero. A single mechanical displacement field is considered for all layers while
electric displacements are considered for each layer independently.

Fig. 1. Composite beam with integrated piezoelectric layers

The beam is discretized using the finite element method based on the third-order shear
deformation theory (Heyliger and Reddy, 1985). The formulation results in a coupled finite ele-
ment model with mechanical (displacements) and electrical (potentials of piezoelectric patches)
degrees of freedom (Zorić et al., 2012)

M ü+Cdu̇+K
∗u = Fm − (Kme)AφAA (2.1)

where u presents the vector of generalized mechanical displacmenets, M presents the mass
matrix, (Kme)A is the piezoelectric stiffness matrix of the actuator, Cd is the damping matrix,
φAA is the vector of external applied voltage on the actuators, Fm is the vector of external
forces and K∗ is the coupled stiffness matrix given as

K∗ = Km + (Kme)A(Ke)
−1
A (Kme)

T
A + (Kme)S(Ke)

−1
S (Kme)

T
S (2.2)
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where Km presents the elastic stiffness matrix, (Kme)S is the piezoelectric stiffness matrix of
the sensor and (Ke)A and (Ke)S are the dielectric stiffness matrices of the actuator and sensor,
respectively.

2.2. Modal analysis

For practical implementation, the obtained model needs to be truncated, where only the first
few modes are taken into account. Thus, the displacement vector can be approximated by the
modal superposition of the first r modes as

u ≈ Ψη (2.3)

where Ψ presents the modal matrix, and η the vector of modal coordinates. Using Equation
(2.3), Equation (2.1) can be transformed in the reduced modal space as

η̈ +Λη̇ + ω2η = ΨTFm −Ψ
T(Kme)AφAA (2.4)

where ω2 presents the diagonal matrix of the squares of the natural frequencies, and

Λ = diag i=1,r(2ζiωi) (2.5)

presents the modal damping matrix in which ζi is the natural modal damping ratio of the i-th
mode.

2.3. State-space representation

Equation (2.4) can be expressed in the state-space form as

Ẋ = AX+BφAA + d (2.6)

where

X =

{

η
η̇

}

A =

[

0 I

−ω2 −Λ

]

B =

[

0

B

]

=

[

0

−ΨT(Kme)A

]

d =

[

0

ΨTFm

] (2.7)

present the state vector, the system matrix, the control matrix disturbance respectively, where I
and 0 are the appropriately dimensioned identity and zero matrix. The sensor output equation
can be written as

YS = CSX (2.8)

where CS presents the output matrix which depends on the modal matrix and sensor piezoelec-
tric stifeness matrix.

3. Fuzzy logic control

3.1. Design of the fuzzy logic controller

The idea of fuzzy logic control (FLC) is using linguistic directions as a basis for control.
By incorporating human expertise into the fuzzy IF-THEN rules, FLC can be embedded into a
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closed-loop system, similarly to conventional controllers. The most used fuzzy control inference
is the Mamdani fuzzy inference, whose i-th rule can be written as follows

Ri : if I1 = Ai ∧ I2 = Bi then O = C (3.1)

where I1 and I2 present the input variables, O is the output variable, and Ai, Bi and Ci are
the linguistic values of the fuzzy variables. In general, FLC consists of four principal elements:
fuzzification, rule base, decision making and defuzzification.

The first stage in building the fuzzy controller is choosing input/output parameters. Two
commonly input variables are the error and the error derivative. In this study, the inputs are
modal displacement η and its time derivative-modal velocity η̇. The output variable is control
voltage applied on the actuator φAA. The fuzzy logic controller uses crisp data directly from the
sensor. These are converted into linguistic values through the fuzzification process. Each input
and output fuzzy variable is defined in the fuzzy space in the form of five linguistic variables
namely NB (negative big), NS (negative small), ZE (zero), PS (positive small) and PB (positive
big). In this study, the trapezoid membership function is used to present NB and PB variables
and the triangular membership function to present NS, ZE and PB variables. The universes of
discourse of the inputs and the output are set to be [−1, 1], hence, the inputs need to be scaled,
thus its minimum value be −1, and maximum 1. The scaling of the inputs is performed on the
following way

E = Kdη EC = Kvη̇ (3.2)

where E and EC present the error and the error derivative in the fuzzy set, and Kd and Kv
present the displacement and the velocity scaling factor, respectively. Also, the output from the
fuzzy set needs to be scaled in the following way

φAA = KactU (3.3)

where U presents the output from the fuzzy set, and Kact is the output scaling factor which is
equal to the maximum allowable voltage which can be applied to the piezoelectric actuator. The
membership functions of the inputs and the output are presented in Fig. 2. The membership
functions are parameterized by parameters presented by the matrix α, which are depicted in
Fig. 2.

Fig. 2. Membership functions of the inputs and the output

Observing Equation (3.1), and considering the number of fuzzy linguistic variables for each
input and output, it can be concluded that the number of fuzzy inference rules is 25. They are
presented in a marix form shown in Table 1. For example, the rule described by the second row
and second column in Table 1 reads: “IF E is NS and EC is NS, THEN U is PS”.

The results of fuzzy inference have to be transformed into a numerical output value through
the process of defuzzification. In this study, the center average (centroid) defuzzification method
is used. Determination of parameters of the membership functions requires expert knowledge.
No fixed process for determination of these parameters exists. In this study, these parameters
are optimized in order to maximize control performances.
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Table 1. Inference rules used in the proposed FLC

EC
NB NS ZE PS PB

NB PB PB PB PS PS
NS PS PS PS ZE ZE

E ZE PS PS ZE NS NS
PS ZE ZE NS NS NS
PB NS NS NB NB NB

3.2. Self-tuning fuzzy logic controller

Since the universes of discourse of the input variables are in the range [−1, 1], the scaling
factors Kd and Kv have to be chosen in such a way that they transform the input variables
from the sensor to the fuzzy controller to be in the range [−1, 1]. According to that, the scaling
factors for modal displacement and modal velocity can be calculated as follows

Kd =
1

|ηmax|
Kv =

1

|η̇max|
(3.4)

where ηmax and η̇max present the amplitudes of modal displacement and modal velocity. The
amplitude is a time varying value and, also, the external excitations which cause vibration have
a stochastic nature. Because of that, it is difficult to determine these factors off-line, and keeping
them constant through active vibration suppression leads to a decrease of control performances
(Wilson, 2005). Qiao and Mizumoto (1996) proposed the tuning of the parameters using peak
observer for PID-type FLC. The peak observer, proposed by Qiao and Mizumoto (1996), keeps
watching the system output and transmits a signal at each peak, and measures the apsolute
peak. In this study, this approach is adapted to the problems of vibration reduction, so, the
peak observer is constructed for each input variable in the fuzzy controller. Beside that, the
peak observer is modified and, beside watching the peaks, the presented observer also monitors
the increase in the ampliude. A block diagram of the self-tuning FLC is presented in Fig. 3.

Fig. 3. Block diagram of self-tuning FLC

The presented peak observer monitors the input, and calulates the rates of the input. Con-
sidering the k-th sampling time, the current and previous rates of the modal displacement are

∆η(k) = η(k)− η(k − 1) ∆η(k − 1) = η(k − 1)− η(k − 2) (3.5)

and the displacement scaling factor is tuned in the parameter regulator according to the following
expression
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Kd(k) =




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



















1

|η(k − 1)|
for ∆η(k)∆η(k − 1) ¬ 0

1

|η(k)|
for ∆η(k)∆η(k − 1) > 0 and |η(k)| >

1

Kd(k − 1)

Kd(k − 1) other

(3.6)

For tuning of the velocity scaling factor, the same procedure as for tuning of the displacement
scaling factor can be applied. Figure 4 illustratively presents how the scaling factors are tuned
via the peak observer.

Fig. 4. Tuning of the displacement scaling factor via peak observer

Considering Fig. 4a, it can be seen that ∆η(k−1) > 0 and ∆η(k) < 0, thus, η(k−1)η(k) < 0,
and according to Equation (3.6), the displacement scaling facor is scaled according to this
Equation. On the other hand, considering the (k + 1)-th sampling time, it is obvious that
∆η(k + 1) < 0, and η(k − 1)η(k) > 0, so the displacement scaling factor, in the (k + 1)-th
sampling time, does not change its current value. During operation, a structure can be affected
by various disturbances, so, amplitude will be increased. In this case, the scaling factors have to
be tuned. This is given by the second row in Equation (3.6) and illustrated in Fig. 4b. Considering
Fig. 4b, it can be seen that ∆η(k − 1) > 0 and ∆η(k) > 0, so their product is a positive value,
but the absolute value of amplitude in the current, k-th, sampling time η(k) is larger than the
absolute value of the last peak η(k − 2). In this case, the displacement scaling factor needs to
be tuned so that the input in FLC be in the range [−1, 1].

3.3. Optimization criteria

The next step in designing of FLC is the determination of parameters of the membership
functions. In this study, the membership functions are parameterized with parameters presented
by the matrix α. The aim is to find optimal values of these parameters such that the active
vibration suppression is improved. In order to improve the control performances of FLC, the
optimization problem can be written as follows

max J =
1

‖η‖
(3.7)

where J presents the objective function which has to be maximized, and ‖η‖ presents L2 norm
of the vector of modal displacement. Constraints of this optimization problems are

Subject to
0 < αi,j ¬ 1 i = 1, . . . , 3 j = 1, 2

αi,2 < αi,1 i = 1, . . . , 3
(3.8)
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Incorporating constraints into the optimization problem, the objective function can be transfor-
med as

J =











1

‖η‖
if constraints are not violated

0 if constraints are violated

(3.9)

4. Optimization implementation using particle swarm optimization technique

The particle swarm optimization (PSO) has been inspired by the social behavior of animals
such as fish schooling, insect swarming and birds flocking. It was introduced by Kennedy
and Everhart (1995). The system is initialized with a population of random solutions (cal-
led particles). Each particle represents a potential solution of the problem, and it is treated
as a point in a m-dimensional space. For a given i-th particle, its position is represented as
(pi) = (pi1, pi2, . . . , pid, . . . , pi,m) in which every coordinate presents a parameter which has to
be optimized, and m presents the number of these parameters. The current position of every
particle is affected by three factors: its own velocity: (vi) = (vi1, vi2, . . . , vid, . . . , vi,m), the best
position it has achieved (best local position) which is determined by the highest value of the
objective function encountered by this particle in all its previous iteration and overall best posi-
tion achieved by all particles (best global position), which is determined by the highest value of
the objective function encountered in all the previous iteration. The particle changes its velocity
and position in the following way

vk+1id = χv
k
id + c1r1(lid − p

k
id) + c2r2(gd − p

k
id)

pk+1id = p
k
id + v

k+1
id i = 1, . . . , n d = 1, . . . ,m

(4.1)

where χ is the inertia weight, c1 is the cognition factor, c2 is the social learning factor, r1 and
r2 are random numbers between 0 and 1, the superscript k denotes the iterative generation,
n is the population size, lid and gd are the best local and the best global position. The cognition
and social learning factors are usually set as c1 = c2 = 1.5. In this study, the coordinates of
particles are the parameters given by the matrix α.

5. Numerical studies

In this example, a cantilever symmetric laminated beam is considered. The length of the beam
is 0.5m, and its width is 0.025m. The beam is made of eight graphite-epoxy (carbon-fiber
reinforced) layers. The thickness of each layer is 0.25mm and orientations are (90◦/0◦/90◦/0◦)S .
The piezoelectric actuator and sensor are made of PZT. Their thicknesses are 0.2mm, and
lengths are 50mm. The actuator and sensor are placed at the root of the beam and they are
collocated. The allowable electric field of piezoceramic materials is around 500-1000 V/mm. Since
the thickness of the actuator is 0.2mm, the maximum allowable voltage has been taken as 200V.
Material properties of the graphite-epoxy layer and PZT are given in Table 2.

The beam is discretized with 50 finite elements, and it is subjected to a periodic loading of
0.02 sin(20t) N at the tip. Only the first mode is considered. The number of randomly generated
particles is 100, and number of iteration is 100. The inertia weight is lineary varied from 1 to 0.5
through iterations. The cognition and social learning factors in the PSO algorithm are set as
c1 = c2 = 1.5. The initial values of displacement and velocity scaling factors for self-tuning
FLC are: Kd = 10000 and Kv = 10. During simulation, the sampling time is set to be 1ms,
and only the first mode is considered. The natural modal damping ratio is set to be 0.2%. The
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obtained results for self-tuning FLC after optimization is presented in Table 3. Figure 5 presents
the obtained membership functions. The tip displacement history is depicted in Fig. 6.

Table 2. Material properties of graphite-epoxy and PZT

Material properties Graphite-Epoxy PZT

Modulus of elasticity, Y1 [GPa] 174 63

Modulus of elasticity, Y2 [GPa] 10.3 63

Shear modulus, G13 [GPa] 7.17 24.6

Shear modulus, G23 [GPa] 6.21 24.6

Poisson’s ratio, ν12 0.25 0.28

Density, ρ [kg/m3] 1389.23 7600

Piezoelectric constant, e31 [C/m
2] – 10.62

Permittivity constant, k33 [F/m] – 15.55 · 10−9

Table 3. Initial displacement and velocity scaling factors, parameter matrix, objective function
value and maximim applied voltage for self-tuning FLC obtained by PSO

Max.
Kd Kv α J actuator

voltage [V]

10000 10







0.056 0.028
0.06 0.03
0.92 0.46






1.11 · 104 164.5

Fig. 5. Membership functions for the inputs and output of the self-tuning FLC optimized by PSO

Fig. 6. Tip displacement history: (a) self-tuning FLC optimized by PSO, (b) comparison of self-tuning
FLC optimized by PSO with uncontrolled tip displacement

In order to present the influence of initial settings of the scaling factors Kd and Kv and
performances of the controller optimized for the specific initial scaling factors with different
initial factors used, the numerical simulation is performed with the following initial values:
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Kd = 0, Kv = 0 and Kd = 1000, Kv = 10. Tip displacement histories for different initial values
of the factors are depicted in Fig. 7a. From Fig. 7a, it can be concluded that different initial
values of the scaling factors affect only the first 0.3 s of vibration suppression. After that, these
factors are adjusted, and the control performances do not differ from the initial values of scaling
factors which were used for optimization.

Fig. 7. Tip displacement histories: (a) for different initial values of scaling factors, (b) comparison
self-tuning FLC with FLC with constant factors and LQR optimal control

The next aim is the comparison of the presented optimized self-tuning FLC with the optimi-
zed FLC having constant scaling factors and optimal LQR. For this purpose, the membership
functions of FLC with constant factors are optimized with the proposed optimization technique
for two examples considering the same loading as in the self-tuning FLC. In the first example, the
scalling factors are set to be Kd = 10000 and Kv = 10, and in the second example: Kd = 1000
and Kv = 10. The obtained results are presented in Table 4. For optimal LQR control, the
weighting matrices Q and R are obtained by a trial and error solution, and the reuslts are
presented in Table 5. The tip deflection histories are depicted in Fig. 7b.

Table 4. Displacement and velocity scaling factors, parameter matrix, objective function value
and maximim applied voltage for FLC with constant scaling factors obtained by PSO

Max.
Kd Kv α J actuator

voltage [V]

First example 10000 10







0.05 0.025
0.86 0.43
0.764 0.382






9.11 · 103 155.5155

Second example 1000 10







0.056 0.028
0.06 0.03
0.92 0.46






1.53 · 103 97.151

Table 5. Matrices Q and R and maximum control voltage for LQR optimal control

Max.
Q R actuator

voltage [V]

1012I2×2 1 170
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From Fig. 7b, it can be concluded that the proposed self-tuning FLC is more efficient in
active vibration suppression than the classic FLC with constant scaling factors and LQR optimal
control. Comparing the maximum voltage obtained in the self-tuning FLC (see Table 3) and the
maximum voltage obtained in LQR (see Table 5), it is evident that, beside better efficiency in
active vibration suppression, the self-tuning FLC provides a little less maximum applied voltage
than LQR.
Furthermore, in order to investigate the robustness of the self-tuning FLC optimized PSO

and its ability to work for different loadings, the obtained parameters for a specific loading
is used for differential loadings. In other words, the parameters obtained by using PSO for
loading 0.02 sin(20t), are applied when the loadings are equal 0.02 sin(10t), 0.02 sin(30t) and
0.02 sin(40t). The tip displacement histories for different loadings are presented in Fig. 8. From
Fig. 8, it can be concluded that the proposed controller, that is optimized for one loading, can
be applied successfully when other loadings are used.

Fig. 8. Tip displacement histories of self-tuning FLC for different loadings

The next study about robustness of the proposed FLC is carried out under a periodic exci-
tation with unexpected disturbance. The tip of the beam is subjected to the periodic loading of
0.02 sin(20t) N, and in 0.5 s, the unexpected disturbance of 1N with duration of 1ms is applied.
The response of the self-tuning FLC is compared with the responses of FLCs with constant
scaling factors and LQR optimal control.

Fig. 9. Tip displacement histories for a harmonic loading with unexpected disturbance

The tip displacement histories are plotted in Fig. 9. Histories of the applied control voltages
for the self-tuning FLC and LQR are depicted in Fig. 10. Observing Fig. 9, it can be concluded
that the performances of the self-tuning FLC and of LQR are not significantly affected. For the
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first example of the FLC with constant factors (Kd = 10000, Kv = 10), it can be seen form Fig. 9
that, after appearing of the unexpected disturbance, the amplitude is significantly increased. On
the other hand, comparing the applied control voltages during active vibration suppression for
the self-tuning FLC and LQR, given in Fig. 10, it is evident that in the case of LQR, the
maximum applied voltage is drastically increased, near 2000V. In this case, depolarization of
the piezoelectric actuator is inevitable.

Fig. 10. Histories of the applied control voltage; (a) self-tuning FLC, (b) LQR

6. Conclusions

This paper presents active vibration control of smart composite beams using PSO-optimized
self-tuning FLC. Input variables in FLC are scaled with scaling factors, and, in order to improve
the performance and robustness of FLC, these scaling factors are adjusted via peak observer. The
membership functions of the proposed FLC are optimized using the Particle swarm optimization
(PSO) algorithm.

Taking into account several numerical examples performed for the cantilever composite beam,
where the PSO-optimized self-tuning FLC is compared with PSO-optimized FLCs with constant
factors and the LQR control algorithm, one finds that the PSO-optimized self-tuning FLC is
much more effective in vibration control than other investigated control algorithms.

Although the proposed optimized self-tuning FLC is applied to the beam in the case of the
first mode response, taking into consideration all advantages presented here, this technique can
be applied to more complex structures like plates and shells, and for multimodal responses.
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Aktywna redukcja drgań „inteligentnych” belek kompozytowych za pomocą

samostrojącego sterownika z logiką rozmytą i zoptymalizowanego metodą PSO

Streszczenie

W pracy zaprezentowano zoptymalizowany sterownik z logiką rozmytą (FLC) o bieżąco dostrajanych
współczynnikach skalowania zastosowany do redukcji drgań cienkościennych belek kompozytowych. Dla
poprawy efektywności i stabilności pracy sterownika zaproponowano dostrajanie współczynników skalo-
wania na wejściu poprzez śledzenie wartości szczytowej sygnału. Funkcje przynależności sterownika FLC
zoptymalizowano algorytmem roju cząstek (PSO). Rozważaną belkę kompozytową opisano modelem teo-
rii odkształceń postaciowych trzeciego rzędu (TSDT) i zdyskretyzowano metodą elementów skończonych.
Przedstawiono kilka przykładów belki wspornikowej poddanej wymuszeniu okresowemu z nieoczekiwanym
zakłóceniem tego wymuszenia. W celu zeprezentowania efektywności analizowanego sterownika uzyskane
wyniki porównano z istniejącymi rezultatami odpowiadającymi sterownikom FLC o stałych współczyn-
nikach skalowania i zoptymalizowanej strategii sterowania wykorzystującej regulator liniowo-kwadratowy
(LQR).
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