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The thermal instability of an Oldroydian heterogeneous viscoelastic fluid in a porous medium
is considered. Following the linearized stability theory and normal mode analysis, the disper-
sion relation is obtained. For stationary convection, the medium permeability and density
distribution are found to have a destabilizing effect. The dispersion relation is also analyzed
numerically. Sufficient conditions for non-existence of overstability are also obtained.
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1. Introduction

The problem of thermal instability in a horizontal layer of a fluid was discussed in detail by
Chandrasekhar (1981). Bhatia and Steiner (1972) studied the thermal instability of a Maxwell
fluid in the presence of rotation and found that the rotation has a destabilizing influence for
a certain numerical range in contrast to the stabilizing effect on the Newtonian fluid. Eltayeb
(1975) considered the convective instability in a rapidly rotating Oldroydian fluid. Toms and
Strawbridge (1953) demonstrated experimentally that a dilute solution of methyl methacrylate in
n-butyl acetate behaves in accordance with the theoretical model of the Oldroyd fluid. Hamabata
and Namikawa (1983)studied the propagation of thermoconvective waves in the Oldroyd fluid.
Mohapatra and Misra (1984) considered the thermal instability of a heterogeneous rotating
fluid layer with free boundaries. The thermal instability of a conducting, viscous, heterogeneous
and incompressible horizontal fluid layer confined between free boundaries in the presence of a
uniform magnetic field and uniform rotation were considered by Sengar and Singh (1989).
The medium was considered to be non-porous in all the above studies. Lapwood (1948) stu-

died the stability of heat convective flow in hydrodynamics in a porous medium using Rayleigh’s
procedure. Wooding (1960) considered the Rayleigh instability of a thermal boundary layer in
flow through porous a medium. The gross effect, when the fluid slowly percolates through pores
of a rock is represented by the well known Darcy’s law. Generally, it is accepted that comets
consist of a dusty “snowball” of a mixture of frozen gases which, in the process of their journey,
changes from solid to gas and vice-versa. The physical properties of comets, meteorites and
interplanetary dust strongly suggests the importance of porosity in the astrophysical context
(McDonnel, 1978).
Sharma and Sharma (1977) considered the thermal instability of a rotating Maxwell fluid

through a porous medium and found that, for stationary convection, the rotation has a stabilizing
effect, whereas the permeability of the medium has both stabilizing as well as destabilizing effect,
depending on the magnitude of rotation. In another study, Sharma (1975) studied the stability of
a layer of an electrically conducting Oldroyd fluid (Oldroyd, 1958) in the presence of a magnetic
field and found that the magnetic field has a stabilizing influence. Khare and Sahai (1995)
considered the effect of rotation on the convection in a porous medium in a horizontal fluid
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layer which was viscous, incompressible and of variable density. Kumar et al. (2004) considered
the instability of the plane interface between two Oldroydian viscoelastic superposed fluids
in the presence of uniform rotation and variable magnetic field in a porous medium. Kumar
and Singh (2008)studied the superposed Maxwellian viscoelastic fluids through porous media in
hydromagnetics. In another study, Kumar and Singh (2010) considered the transport of vorticity
in an Oldroydian viscoelastic fluid in the presence of suspended magnetic particles through
porous media.

Keeping in mind the importance in various fields particularly in the soil sciences, groundwater
hydrology, geophysical, astrophysical and biometrics, the thermal instability of a viscoelastic
(Oldroydian) incompressible and heterogeneous fluid layer saturated with a porous medium,
where density is ρ0f(z), ρ0 being a positive constant having the dimension of density, and
f(z) is a monotonic function of the vertical coordinate z, with f(0) = 1 has been considered in
the present paper.

2. Formulation of the problem and perturbation equations

Consider an infinite horizontal layer of an incompressible and heterogeneous Oldroydian visco-
elastic fluid confined between the planes z = 0 and z = d in a porous medium of porosity ε
and permeability k1, acted on by gravity force g(0, 0,−g). Let the axis z be directed vertically
upwards. The interstitial fluid of variable density is viscous and incompressible. The initial in-
homogenenity in the fluid is assumed to be of the form ρ0f(z), where ρ0 is the density at the
lower boundary and f(z) be a function of the vertical coordinate z such that f(0) = 1. The fluid
layer is infinite in the horizontal direction and is heated from below. An adverse temperature
gradient β = (T0−T1)/d is maintained across the two boundaries, where T0 and T1 are constant
temperatures of the lower and upper boundaries. The effective density is the superposition of
the inhomogeneity described by (a) ρ = ρ0f(z), and (b) ρ = ρ0[1 + α(T0 − T )] which is caused
by the temperature gradient. This leads to the effective density

ρ = ρ0[f(z) + α(T0 − T )] (2.1)

where α is the coefficient of thermal expansion.

The fluid is decribed by the constitutive relations

Tij = −pδij + τij
(

1 + λ
d

dt

)

τij = 2µ
(

1 + λ0
d

dt

)

eij

eij =
1

2

(∂ui
∂xj
+
∂uj
∂xi

)

(2.2)

where Tij, τij, eij , µ, λ, λ0(< λ) denote the normal stress tensor, shear stress tensor, rate-
of-strain tensor, viscosity, stress relaxation time, and strain retardation time, respectively. p is
the isotropic pressure, δij is the Kroneckor delta, d/dt is the mobile operator, while ui and xi
are velocity and position vectors, respectively. Relations of type (2.2) were first proposed by
Jeffreys for Earth and later studied by Oldroyd (1958). Oldroyd (1958) also showed that many
rheological equations of state, of general validity, reduce to (2.2) when linearized. If λ0 = 0, the
fluid is Maxwellian, while for λ0 6= 0 we shall refer to the fluid as Oldroydian. λ = λ0 = 0 gives
a Newtonian viscous fluid.

As a consequence of Brinkman’s equation, the resistance term −(µ/k1)u will also occur with
the usual viscous term in the equations of motion. Here u denotes the filtration velocity of the
fluid.
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The equations of motion and continuity for the Oldroydian viscoelastic fluid, following the
Boussinesq approximation, are

1

ε

(

1 + λ
∂

∂t

)[ ∂

∂t
+
1

ε

(

u · ∇
)]

u

=
(

1 + λ
∂

∂t

)[

− 1
ρ0
∇p+ g

(

1 +
δρ

ρ0

)]

+
(

1 + λ0
∂

∂t

)[ν

ε
∇2 − ν

k1

]

u
(2.3)

and

∇ · u = 0 (2.4)

The equation of heat conduction (Joseph, 1976) is

[ρ0cε+ ρscs(1− ε)]
∂T

∂t
+ ρ0c(u · ∇)T = k∇2T (2.5)

where ρ0, c, ρs, cs denote the density and heat capacity of the fluid and the solid matrix,
respectively, k is the thermal conductivity. Equation (2.5) can be rewritten as

E
∂T

∂t
+ (u · ∇)T = ξ∇2T (2.6)

where

E = ε+ (1− ε)ρscs
ρ0c

Also we have

ε
∂ρ

∂t
+ (u · ∇)ρ = 0 (2.7)

The kinematic viscosity ν(= µ/ρ0) and the thermal diffusivity ξ(= k/(ρ0c)) are assumed to be
constants, where ρ0 has the same positive value due to the coupling and Boussinesq approxi-
mation for the same fluid.
Now the initial state whose stability is to be examined is characterized by

u = [0, 0, 0] T = T0 − βz

ρ = ρ0[f(z) + αβz] p = p0 −
1
∫

0

gρ dz

where p0 is the pressure at ρ = ρ0 and β(= |dT/dz|) is the magnitude of the uniform tempera-
ture gradient.
Let δρ, δp, θ, and v[u, v,w] denote respectively the perturbations in density ρ, pressu-

re p, temperature T and velocity u (initially zero). The change in density δρ, caused by the
perturbation θ in temperature, is given by

ρ+ δρ = ρ0[f(z)− α(T + θ − T0)] = ρ− αρ0θ

i.e.

δρ = −αρ0θ (2.8)

Then the linearized perturbation equations for the Oldroydian viscoelastic fluid flow through
the porous medium are

1

ε

(

1 + λ
∂

∂t

)∂v

∂t
=
(

1 + λ
∂

∂t

)[

− 1
ρ0
∇δp− gαθ

]

+
ν

ε

(

1 + λ0
∂

∂t

)[

∇2 − ε
k1

]

v (2.9)
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and

∇ · v = 0 ε
∂

∂t
δρ+ ρ0w

df

dz
= 0

(

E
∂

∂t
− ξ∇2

)

θ = βw (2.10)

where w is the perturbed velocity in the z-direction.
The fluid is confined between the planes z = 0 and z = d maintained at constant tempera-

tures. Since no perturbation in temperature is allowed and since the normal component of the
velocity must vanish on these surfaces, we have

w = 0 θ = 0 at z = 0 and z = d (2.11)

Here we consider both the boundaries to be free. The case of two free boundaries is slightly
artificial, except in stellar atmospheres (Spiegel, 1965) and in certain geophysical situations
where it is most appropriate. However, the case of two free boundaries allows us to obtain an
analytical solution without affecting the essential features of the problem. The vanishing of
tangential stresses at the free surfaces implies

∂2w

∂z2
= 0 at z = 0 and z = d (2.12)

Eliminating δp between the three component equations of (2.9) and using (2.10)1, we obtain

(

1 + λ
∂

∂t

)[1

ε
∇2∂w
∂t
− gα∇21θ

]

=
ν

ε

(

1 + λ0
∂

∂t

)(

∇2 − ε
k1

)

∇2w (2.13)

where

∇21 =
∂2

∂x2
+
∂2

∂y2
∇2 = ∂

2

∂x2
+
∂2

∂y2
+
∂2

∂z2

3. Dispersion relation and discussion

Decompose the disturbances into normal modes and assume that the perturbed quantities are
of form

[w, θ] = [W (z), Θ(z)] exp(ikxx+ ikyy + nt) (3.1)

where kx, ky are the wave numbers along the x- and y-directions, respectively, k =
√

(k2x + k
2
y

is the resultant wave number and n is a complex constant.
The non-dimensional form of equations (2.13) and (2.10)3, with the help of expression (3.1)

and (2.10)2, becomes

(1 + Fσ)
[

σ(D2 − a2)W + gαd
2ε

ν
a2Θ +

ga2d4

κν

df

dz′
W
]

= (1 + F ∗σ)
(

D2 − a2 − ε
Pl

)

(D2 − a2)W

(D2 − a2 − Ep1σ)Θ = −
βd2

ξ
W

(3.2)

where we have introduced new coordinates (x′, y′, z′) = (x/d, y/d, z/d) in new units of length d
and D = d/dz′. For convenience, the dashes are dropped hereafter. Also we have put a = kd,
σ = nd2/ν, F = λν/d2, and F ∗ = (λ0ν/d

2)p1 = ν/ξ is the Prandtl number and Pl = k1/d
2 is

the dimensionless permeability of the medium.
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Eliminating Θ between equations (3.2), we get

(1 + Fσ)[σ(D2 − a2)(D2 − a2 − Ep1σ)−Ra2 +R2a2(D2 − a2 − Ep1σ)]W

= (1 + F ∗σ)
(

D2 − a2 − ε
Pl

)

(D2 − a2)(D2 − a2 −Ep1σ)W
(3.3)

where

R =
gαβd4ε

νξ

is the modified Rayleigh number for the porous medium and

R2 =
gd4

κν

df

dz

Boundary conditions (2.11) and (2.12) transform to

W = 0 D2W = 0 Θ = 0 at z = 0 and z = 1 (3.4)

Using (3.4), it can be shown that all the even order derivatives of W must vanish for z = 0 and
z = 1, and hence the proper solution to equation (3.3) characterizing the lowest mode is

W = A sin(πz) (3.5)

where A is a constant. Substituting (3.5) into equation (3.3), we obtain the dispersion relation

R1 =
1

x∗
[iσ1(1 + x

∗)(1 + x∗ + iσ1Ep1)−R3π2x∗(1 + x∗ + iσ1p1)]

+
1 + iF ∗σ1π

2

x∗(1 + iσ1π2F )

(

1 + x∗ +
ε

P

)

(1 + x∗)(1 + x∗ + iEσ1p1)
(3.6)

where we have put

x∗ =
a2

π2
R1 =

R

π4
R3 =

R2
π4

iσ1 =
σ

π2
P = π2Pl i =

√
−1

4. The stationary convection

For stationary convection σ = 0, and equation (3.6) reduces to

R1 = −R3π2(1 + x∗) +
(1 + x∗)2

(

1 + x∗ + ε
P

)

x∗
(4.1)

Thus for stationary convection, the stress relaxation time F and the strain retardation time
parameter F ∗ vanish with σ, and the Oldroydian fluid behaves like an ordinary Newtonian
fluid.
To study the effects of medium permeability and density distribution, we examine the nature

of dR1/dP and dR1/dR3 analytically.
Equation (4.1) yields

dR1
dP
= −(1 + x

∗)2ε

x∗P 2
(4.2)
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which is always negative, meaning thereby that the permeability of the medium has a destabi-
lizing effect on the viscoelastic heterogeneous Oldroydian fluid, for stationary convection.
Also from equation (4.1), we have

dR1
dR3
= −π2(1 + x∗) (4.3)

which is always negative, meaning thereby that the density distribution R3 has a destabilizing
effect on the viscoelastic heterogeneous Oldroydian fluid, for stationary convection.
Dispersion relation (4.1) is also analysed numerically. In Fig. 1, R1 is plotted against x

∗ for
ε = 0.5, R3 = −5 and P = 10, 100. The destabilizing role of the medium permeability is clear
from the decrease of the Rayleigh number with the increase in the permeability parameter P .
The minor differences between the effects of P on R1 are due to taking large values of P .

Fig. 1. Variation of the Rayleigh number R1 with x
∗ for ε = 0.5, R3 = −5 and P = 10, 100

In Fig. 2, R1 is plotted against x
∗ for ε = 0.5, P = 10 and R3 = −5, − 1. The value of R1

decreases with the increase in the density distribution R3, showing thereby the destabilizing
role of the density distribution.

Fig. 2. Variation of the Rayleigh number R1 with x
∗ for ε = 0.5, p = 10 and R3 = −5, − 1

5. The case of overstability

Here we examine the possibility of whether instability may occur as overstability. Since for
overstability we wish to determine the critical Rayleigh number for the onset of instability via a
state of pure oscillations, it suffices to find the condition under which equation (3.6) will admit
solutions with real values of σ1. Putting b = 1 + x

∗ and equating the real and imaginary parts
of equation (3.6), we get

R1(b− 1) = −σ21bEp1 −R3π2(b− 1)b− σ21π2Fb2 + σ21π4FR3(b− 1)Ep1
+ b2
(

b+
ε

P

)

−
(

b+
ε

P

)

F ∗σ21π
2Ep1

(5.1)
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and

R1(b− 1)π2F = b2 −R3π2(b− 1)Ep1 − σ21π2FbEp1 − π4FR3(b− 1)b

+ b
(

b+
ε

P

)

Ep1 + b
2
(

b+
ε

P

)

F ∗π2
(5.2)

Eliminating R1 between equations (5.1) and (5.2), we obtain

σ21 = −
b2 −R3x∗Ep1 + b

(

b+ ε
P

)

(Ep1 − bπ2F ) + b2
(

b+ ε
P

)

F ∗π2

π4F 2b2 − π6F 2R3x∗Ep1 + b
(

b+ ε
P

)

F ∗π4Ep1F
(5.3)

Since σ1 is real in the case of overstability, σ
2
1 should always be positive. Equation (5.3) shows

that this is clearly impossible, i.e. if σ21 is always negative if

R3 < 0 i.e.
df

dz
< 0 and Ep1 > bπ

2F

which implies that

df

dz
< 0 and k2 <

E

ξλ
− π

2

d2
(5.4)

Thus if df/dz < 0 and k2 < (E/ξλ) − (π2/d2), the overstability is not possible. Inequalities
(5.4) are, therefore, the sufficient conditions for the non-existence of the overstability.

6. Conclusions

An attempt has been made to investigate thermal instability of a heterogeneous Oldroydian
viscoelastic fluid layer through a porous medium under the linear stability theory. The investi-
gation of thermal instability is motivated by its direct relevance to soil sciences, groundwater
hydrology, geophysical, astrophysical and biometrics. The main conclusions from the analysis of
this paper are as follows:

• For the case of stationary convection, the following observations are made:

– the stress relaxation time F and the strain retardation time parameter F ∗ vanish
with σ, and the Oldroydian fluid behaves like an ordinary Newtonian fluid

– the medium permeability and density distribution have destabilizing effect on the
system

• It is also observed from Figs. 1 and 2 that the medium permeability and density distribution
have a destabilizing effect on the system

• Inequalities df/dz < 0 and k2 < E/(ξλ) − π2/d2 are the sufficient conditions for the
non-existence of overstability.
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Termiczna niestabilność niejednorodnej lepko-sprężystej cieczy Oldroyda w ośrodku
porowatym ogrzewanym od spodu

Streszczenie

W artykule przedstawiono zagadnienie termicznej niestabilności niejednorodnej cieczy Oldroyda wy-
pełniającej ośrodek porowaty. W wyniku zastosowania zlinearyzowanej teorii stateczności i analizy posta-
ci normalnych określono funkcję dyspersji. Dla stacjonarnej konwekcji stwierdzono, że przepuszczalność
ośrodka oraz rozkład gęstości destabilizują ciecz. Funkcję dyspersji wyznaczono także numerycznie. Zna-
leziono również warunki wystarczające do wykluczenia nadstabilności układu.

Manuscript received September 15, 2011; accepted for print December 2, 2011


