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This paper describes the experimental work involving a laboratorial im-
plementation of an active system to increase the damping ratios of a
plane frame physical model of a building structure of three storeys. For
this purpose, the use of an Active Mass Driver commanded by the Di-
rect Velocity Feedback control law is suggested. The study developed
to define the maximum control gain based on the classical Root-Locus
technique, as well as the analysis of system stability is presented. The
efficiency of the proposed control system to achieve pre-defined damping
ratios is verified experimentally by observing free decay responses of the
system at several natural frequencies before and after control.
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1. Introduction

Many Civil Engineering structures have vibration problems in terms of servi-
ceability limit states due to several transient or periodic dynamic loads, e.g.,
footbridges subjected to pedestrians actions, road and railway bridges excited
by traffic loads and tall buildings exposed to wind forces. In these situations,
the implementation of control systems can improve the structural performance
by reducing the vibration levels to acceptable values. To achieve this, several
passive, active, semi-active or hybrid control devices can be used (Chu et al.,
2005). This study is addressed to practical cases where the specific use of active
systems can be an appropriate solution.
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In fact, it is generally accepted that active systems, despite constituting
a powerful control scheme, are not an interesting solution to many structural
problems, especially when dealing with large structures (Kobori, 2002). This
stems from the fact that active control demands sophisticated technology, high
costs and high maintenance, and is less reliable than passive systems (Spencer
and Nagarajaiah, 2003). However, given the potential of active systems, active
control can still be an attractive solution, especially for very flexible systems
whose dynamics is dominated by the contribution of several vibration modes
(Fujino, 2002). The interest in active control grows when dealing with nonli-
near systems and structures that exhibit significant variability in its dynamic
parameters (Soong, 1990).

On the other hand, if the problem under analysis involves harmonic vibra-
tions the use of control strategies that conducts to the increasing of damping
ratios of the structure is particularly adequate. This is because the amplitude
of harmonic responses is strongly influenced by the respective damping ratios,
meaning that an appropriate control strategy should be able to increase these
damping ratios to predefined values capable to keep the maximum structural
response below certain limits. The Direct Velocity Feedback (DVF) control
law associated with Root-Locus techniques also constitutes a good strategy
that can be used for this purpose since it has the ability to add damping
to the structure while providing necessary robustness to the control system
(Preumont, 1997). In fact, when some control schemes using collocated pairs
of actuators and sensors are used, this strategy leads to unconditionally stable
control systems and avoids spillover errors due to unmodeled higher frequency
modes (Preumont and Seto, 2008). However, if an Active Mass Driver is used,
the control system is no longer unconditionally stable and it may destabilize
itself, particularly for high gains (Moutinho, 2008).

In this context, the main objective of this work is to demonstrate how
active control can be used to reduce harmonic vibrations in structures using
the strategy just described. Although based in simple concepts, this article
systematizes the steps and the methodology needed to its real implementation.

2. Review of theoretical background

2.1. Collocated versus non-collocated control

It is well established in theory of system dynamics that in presence of a
SISO system, if the actuator and sensor are collocated, i.e., positioned at the
same point and measuring in the same direction, the transfer function that
relates the system Input and Output has alternating imaginary poles and zeros.
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This property is very important in the context of control systems because it
ensures that the closed-loop poles of the controlled system remain entirely
within the left-half complex plane even if in the presence of uncertainty or
variability of the system parameters (Preumont and Seto, 2008). In this case,
it is said that the system is robust with respect to stability and the general
shape of the Root-Locus plot of such a system is characterized by having
several nice stable loops (Ogata, 2009). On the other hand, in the case of non-
collocated systems, the pole-zero alternating property is no longer guaranteed,
and so there is an effective possibility of achieving system instability in using
high control gains. Figure 1 shows a typical view of the Root-Locus diagram
of both situations when using a pure derivative controller (same as Direct
Velocity Feedback) which has the effect of adding a zero in the open-loop
transfer function (represented at the origin of the real/imaginary axis).

(a) Im A (b) Im A
x——"/

O
stable unstable stable > unstable
1

e -

< >

¥ Re T Re

:\!\a

Fig. 1. Root-Locus diagram for (a) collocated and (b) non-collocated control system

2.2. Case of a control system using an Active Mass Driver

One of the most widely known actuation systems used to apply control
actions in civil structures is the Active Mass Driver (AMD) which enables
generation of inertial forces between the structure and the mass of the devi-
ce. The main advantage of this control system consists in avoiding external
connections from the structure to the ground which, in most of the cases, are
undesirable from the architectural point of view. Although AMDs constitute
an interesting solution for many practical situations, some design issues must
be carefully observed. In fact, AMDs do not correspond to a collocated con-
trol system because, although the actuator is positioned in the same location
as the measurement point, the force generated with this device is applied at
two different points. This effect can be clearly seen in Fig. 2 which represents
the model of an AMD integrated with a single degree-of-freedom structure. In
this case, the control force is calculated according to the structure response
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in correspondence with z1, being applied as a pair of forces at the degrees-of-
freedom related to z1 and zs.
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Fig. 2. SDOF structure with an Active Mass Driver

The problem with this scheme is due to the reaction force that goes to
the inertial mass which is contrary to the direction of control action. As a
consequence, at least one close-loop pole moves in the direction of the unstable
region of the complex plane, causing system instability above a certain gain
level (Moutinho, 2008).

In order to analyze this situation, the Root—Locus diagram of general case
of a multi-degree-of-freedom structure controlled by an AMD using Direct
Velocity Feedback is represented in Fig. 3a. As in the previous case, it is clear
that the system is potentially unstable for a certain level of gain (gmaz). To
minimize this problem, a large gain margin is desirable, which can be achieved
by increasing the damping ratio of the AMD, i.e., moving the respective open-
loop pole to the left side. As a result, it is possible to mobilize extra gain and
extra damping in the vibration modes of the structure.

Another important issue about the use of AMDs is related to its natural
frequency. In the case of Fig. 3a, the open-loop pole associated with the AMD is
the lowest frequency pole of the system. This is why the vibration modes of the
structure describe increasing damping loops, being the instability conditioned
by dynamics of the AMD. On the other hand, if the natural frequency of
the AMD is greater than the first natural frequency of the original structure,
a zero-pole flipping is observed in the intermediate open-loop poles of the
structure, as shown in Fig. 3b. This is disastrous because the damping ratios
of the vibration modes with frequencies below the frequency of the AMD
decrease as the gain increases. As a consequence, in the Root-Locus diagram,
the close-loop poles associated with these modes have loops with departure
angles in the direction of the unstable region, and the AMD loop describes a
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stable trajectory. Moreover, if the structure is lightly damped, it is necessary
just a small gain to get the system unstable by one of these modes.
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Fig. 3. Root-Locus diagram of a controlled structure using an AMD with (a) low
and (b) high frequency

As a summary , it should be emphasized that an ideal AMD used to control
a structure should have a high damping in order to get a larger gain margin and
mobilize extra damping into the system, and should have a natural frequency
below the first natural frequency of the original structure to avoid instability
of the lower vibration modes.

3. Characterization of the experimental control system

3.1. Description of the physical model, equipments and instrumentation

This section describes the laboratorial implementation of an AMD used
to reduce harmonic vibrations in a plane frame physical model, by artificially
increasing its initial damping ratios by means of this device. For this purpose,
it was developed a model of a shear building structure with 3 storeys which
was supported in a shaking table, and a small Active Mass Driver to control
vibrations, as shown in Fig. 4.

The physical model is composed by 3 rigid iron masses connected to each
other and to the base through aluminum columns. The total mass of each
level including the iron mass, mass of the aluminum connections, mass of the
sensor and the mass of each half part of the support columns is m; = 15.16 kg,
ms = 15.16 kg and mg = 12.76 kg, corresponding to the 1st, 2nd and 3rd floors,
respectively. The aluminum columns have 400 mm of height, 120 mm of width
and 7mm of thickness, and are clamped at each level and at the base. The
aluminum modulus of elasticity was evaluated at about 60 Gpa.
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Fig. 4. General view of the experimental setup

In order to excite the system with harmonic loads, the physical model
was fixed on a shaking table composed of a sliding platform connected to an
electromagnetic shaker powered by a current amplifier (see Fig. 5a) which was
specially developed to this test. The total mass mobilized at the base of the
model including the platform mass of the shaking table, the moving mass of
the electromagnetic shaker, the support mass of the model, the mass of the
sensor and the mass of each half part of the support columns is mg = 40.51 kg.

Fig. 5. (a) Detail of the shaking table and (b) detail of the AMD

To control vibrations in the physical model, an Active Mass Driver was
installed at the top level. This device is composed of an active 2.89 kg mass,
which slides with low friction through 2 circular metallic threads connected
to the AMD body which has total mass of 2.65kg (see Fig.5b). The active
mass is connected to a small electromagnetic shaker which is responsible for
application of inertial forces between the active mass and the structure. The
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axis of this electromagnetic shaker has a spring of stiffness & = 3840 N/m
causing damped harmonic motion of the active mass when left in free vibration.
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Fig. 6. (a) Detail of the accelerometer (b) signal conditioners and power amplifiers

The system response was continuously measured with accelerometers po-
sitioned at the base of the model, at each floor and at the active mass of the
AMD (see Fig. 6a). The force developed between the active mass of the AMD
and the top level was also measured with a small load cell. The electric cur-
rent generated by the table shaker and by the AMD shaker was also observed
in order to monitor the force applied with these devices. Figure 6(b) shows
the power amplifiers of the shaking table and the AMD, and the signal con-
ditioners of the accelerometers. All the transducers mentioned before, as well
as the electromagnetic shakers, were operated by a digital computer working
with LabVIEW™ package software, using an acquisition board which per-
forms the signal analog/digital conversion. A Fourier analyzer was also used
in the identification of the modal parameters of the structure.
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Fig. 7. Identification of degrees-of-freedom of the structure and corresponding mass
and stiffness matrices
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Taking into account the description of the physical model and data men-
tioned previously, the mass and stiffness matrices of the laboratorial structure
were defined in correspondence with the degrees-of-freedom shown in Fig. 7.
These matrices were used in analytical calculations discussed in the next Sec-
tions.

3.2. Identification of the modal parameters of the system

In order to identify the modal properties of the system, in particular, the
natural frequencies, mode shapes and damping ratios, the model was subjected
to several tests and the experimental values were compared with the analytical
ones obtained from the numerical model defined in the previous Section (with
the exception of damping ratios which can only be evaluated via experimental
tests).

The natural frequencies of the system were evaluated with the help of the
Fourier analyzer. In this case, FRFs were obtained experimentally by relating
the input force applied at the base of the model by the shaking table and the
output accelerations measured at several degrees-of-freedom. For this purpose,
a frequency range from 0 to 25 Hz was stipulated, and the average of 5 FRF's
estimates was considered. Each FRF was estimated based on time series with
an acquisition time of 16 s, which means that the frequency resolution achieved
is 0.0625 Hz.

Figure 8 shows the magnitude of the FRF obtained, relating the input
force at the base of the model and the output acceleration at the top floor.
The natural frequencies of the system are clearly identified by the peaks on
the graph and their values, as well as the analytical ones, are listed in Table 1.
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Fig. 8. FRF relating the input force at the base of the model and the output
acceleration at the top floor
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Table 1. Identified versus analytical natural frequencies

Identified | Calculated
Frequency [H)] [
1 5.50 5.45
2 7.35 7.35
3 15.50 14.60
4 22.50 22.25

The method used to identify the vibration mode shapes was simply exciting
the structure at resonant frequencies at the base of the model using the shaking
table and measuring the amplitude and phase shift of the system response at
several degrees-of-freedom. This method is adequate to be applied to small
models and gives excellent results because when the structure is subject to a
harmonic force with the excitation frequency equal to the natural frequency
of the system, the contribution of other vibration modes is negligible when
compared with the resonant mode.

Figure 9 shows the graphical representation of the mode shapes in cor-
respondence with the natural frequencies indicated in Table 1. An excellent
agreement can be observed between the identified and calculated mode sha-
pes in the same manner as it was observed with the natural frequencies. This
means that the analytical model accurately represents the system properties
in terms of mass and stiffness.

1st mode 2nd mode 3rd mode 4th mode
4

Fig. 9. Identified versus analytical mode shapes

To characterize completely the system parameters, it was necessary to
evaluate the damping properties of the structure. In this case, the method used
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consists in exciting the physical model with a harmonic force of frequency equal
to any of those that were identified as the natural frequencies of the system.
By suddenly stopping the excitation, it is easy to measure the free vibration
response and estimate the respective damping ratio by analyzing the free decay
response envelope, given by the equation y = A exp(—(wt) (Chopra, 2006).

This procedure was adopted to estimate the modal damping ratios of se-
veral vibration modes of the physical model. The results obtained are sum-
marized in Table 2, and the time series indicating the system response for
each natural frequency are plotted in Fig. 10. Notice that the study of this
equation applied to different sets of time intervals allows concluding that the
modal damping ratios vary slightly with the displacements amplitude. For this
reason, their values were estimated in an intermediate range of the structu-
re response, corresponding approximately to the mean value of the damping
ratio.

Table 2. Identified modal damping ratios

Identified Modal damping
Mode frequency [Hz] ratio [%)]
1 5.50 3.20
2 7.35 1.80
3 15.50 0.35
4 22.50 0.22
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Fig. 10. Free vibration responses and the estimated decay envelopes
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Based on the modal damping ratios indicated in Table 2, the damping
matrix of the system was evaluated using the superposition of modal damping
matrices [kg/s] (Chopra, 2006), resulting

35.30 —3.74 —-1147 -16.11 -3.99
-3 782 -094 -191 -1.23
C=|-1147 —-0.94 10.23 291  -0.73
-16.11 —-1.91 2091 15.00  0.11
-3.99 -123 -0.73 0.11 5.85

4. Implementation of active control

4.1. Description of the control system

The objective of the control system is to reduce vibration levels of the
physical model, when it is excited by harmonic loads. When the frequency of
excitation is equal to any of the natural frequencies of the structure, i.e., when
the resonance occurs, the system may experience large amplitude motion, de-
pending on the damping ratio of the respective vibration mode. Therefore, an
appropriate control strategy should be able to increase the system damping,
causing a significant reduction in the structural response. As it is known, when
the resonance occurs the amplitude of the dynamic system response is obta-
ined by multiplying the static response by 1/2¢ (being ¢ the damping ratio),
which suggests that, if the static response is known, the damping ratio should
be chosen in order to keep the dynamic response below certain pre-defined
limits.

As seen before, the modification of the characteristics of the structure
in terms of the modal damping ratio can be obtained using an Active Mass
Driver commanded by a derivate controller. The definition of control gains
can be studied using the Root-Locus method which also allows evaluating the
system stability. An important issue that must be initially considered is the
location of the actuator system. The main rule is that the actuator should not
be positioned at the point where the significant vibrating modes have reduced
modal components.

Using the described control scheme, a real control system was implemented
in the plane frame physical model composed of an AMD positioned at the top
floor to reduce the vibrations caused by a harmonic excitation applied by the
shaking table. The system response at the top floor is continuously measured
using an accelerometer connected to the signal conditioner which performs
conversion of the accelerations into velocities by integrating the signal from the
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transducer. At each time instant, the control force is calculated by multiplying
the value of the velocity by a pre-defined gain ¢ and applied to the structure
by the AMD shaker connected to the respective power amplifier.

The block diagram of this close-loop control system is represented in
Fig. 11. The transfer function G(s) was obtained directly from the system cha-
racteristics described in the previous Section, relating the system input/output
at the top floor (DOF no. 3).
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Fig. 11. Block diagram of the closed-loop control system

4.2. Root-Locus design

The Root-Locus diagram of this control system is represented in Fig. 12.
This plot clearly shows the advantages of this method to design AMDs, be-
cause even if no previous information was available, looking at this diagram,
it is possible to immediately conclude that (i) the system has four natural
frequencies slightly damped because the open-loop poles are close to the ima-
ginary axis; (ii) the system is unstable for high gains because in this situation
there are close-loop poles in the unstable region; (iii) there is a small gain mar-
gin until instability is reached because the AMD has relatively low damping;
(iv) when the gain increases from zero, the damping ratios of the vibration
modes increase, despite the natural frequencies remain approximately the sa-
me.

The choice of the control gain affects simultaneously all the close-loop poles
locations, which means that it is not possible to select the characteristics of
each vibration mode individually. For this reason, when Root-Locus method
is used, it must be selected the dominant close-loop pole as the one that
contributes more significantly to the system response. The gain is adjusted to
move this pole to a more convenient position, conditioning the locations of the
other poles. In the case of the present plane frame physical model, when the
gain increases, all the modal damping ratios increase in correspondence with a
specific gain value, which is fixed when the target close-loop pole reaches the
desired location in correspondence with the pre-defined damping ratio.
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Fig. 12. Root-Locus diagram of the plane frame controlled by an AMD

In the case of this test, the AMD developed has a relatively low damping
({rmp = 3.2%) due to construction issues, which limits the efficiency of this
control system. However, even in this situation it is possible to significantly
increase the damping ratios of the structure to maximum values according to
the maximum achievable gain g = 82, until instability occurs. If this gain is
selected, the close-loop poles move to the locations marked with small dots in
the Root-Locus diagram, which are in correspondence with the new damping
ratios listed in Table 3.

Table 3. Calculated modal damping ratios for control gains ¢ = 0 and
9 = 9maz = 32
Mode G (%] for g =0 ¢ (%] for g = 82
(without control) | (control with gz )

1 3.20 -

2 1.80 7.09

3 0.35 1.44

4 0.22 0.44

4.3. Experimental results

In order to experimentally verify the efficiency of the described control sys-
tem, the damping ratios of the physical model were evaluated after switching
on the AMD with an intermediate gain g = 60. In this circumstance, the mo-
del was excited with a harmonic load with a frequency in correspondence with
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Fig. 13. Free vibration responses and estimated decay envelopes for control gain
g = 60 and system response for unstable control gain g = 150

the identified natural frequencies of the system and, after stopping the excita-
tion, the free decay response was recorded in order to evaluate the respective
modal damping ratio. The results obtained are represented in Fig. 13 and are
summarized in Table 4, where the experimental values are also compared with
the analytical ones.

Table 4. Identified versus calculated modal damping ratios for control gain
g =60

Mode Identified | Calculated
[7] [%]
1 - 0.83
2 6.05 5.72
3 1.26 1.15
4 0.42 0.38

System instability was also verified when the control gain exceeds its ma-
ximum value, by introducing a clearly excessive gain of g = 150. As expected,
the noise in the sensors was sufficient to excite the system, which became
unstable by the uncontrolled harmonic vibration of the structure with the
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frequency of the AMD vibration mode. This situation was clearly predicted
by the analysis of the Root-Locus diagram plotted in Fig. 12.

5. Conclusions

This paper describes a laboratorial implementation of an active damping sys-
tem to reduce vibrations in a 3-DOF physical model subjected to harmonic
vibrations. When a resonance occurs, the amplitude of the dynamic response
is strongly influenced by the damping ratio of the respective vibration mo-
de. This means that a good control strategy should be able to increase the
damping in the system in order to keep its response below certain limits.

For this purpose, an AMD commanded by the Direct Velocity Feedback
control law, resulting in a control system that applies an inertial force propor-
tional to the velocity at the control point can be used. However, the use of the
AMD constitutes a non-collocated sensor/actuator scheme, causing system in-
stability particularly for high gains. To analyze this problem, the Root-Locus
diagram is a powerful method that allows examination of the system stabi-
lity as well as designing the control gain necessary to reach some structural
properties, particularly in terms of damping ratios.

In order to experimentally verify the efficiency of this control system, the
physical model was subjected to resonant harmonic loads applied by a shaking
table, aiming at the evaluation of several modal damping ratios by analyzing
the respective free decay envelopes. It was observed a good agreement between
the experimental and analytical results corresponding to a significant increase
of the damping ratios of the system with a consequent important reduction of
its harmonic response.
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Zastosowanie aktywnego ukltadu redukcji drgan do zwiekszenia
wspo6tczynnikéw tlumienia laboratoryjnego modelu budynku

Streszczenie

W pracy opisano badania do$wiadczalne przeprowadzone na stanowisku labora-
toryjnym, ktoérych celem byta analiza uktadu aktywnej redukcji drgan zwickszajacego
wspotezynniki ttumienia w ptaskim, ramowym modelu trzykondygnacyjnego budyn-
ku. Cel ten zrealizowano na modelu z inercyjnym ukladem redukcji drgan sterowanym
w predkoséciowej petli sprzezenia zwrotnego. Przedyskutowano problem statecznosci
modelu metoda linii pierwiastkowych (Root-Locus), pozwalajaca na okreélenie mak-
symalnego dopuszczalnego wspdlczynnika wzmocnienia w ukladzie sterowania. Sku-
tecznosé zaproponowanej metody sterowania ukierunkowanej na uzyskanie zadanych
wladciwoéci tlumigcych zweryfikowano eksperymentalnie poprzez obserwacje spadku
amplitudy drgan swobodnych pobudzanych wcze$niej przy kilku czestosciach wtla-
snych modelu z wlaczonym i wylaczonym ukladem sterowania.
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