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The paper deals with the modal analysis of mechanical systems consi-
sting of n identical masses connected with springs in such a way that
the stiffness matrix has the form of a multiband symmetric matrix. The
eigenvalue problem formulated for such systems is characterised by repe-
ated eigenvalues to which linearly independent eigenvectors correspond.
The solution to the eigenvalue problem has been found for an arbitrary,
finite number of degrees of freedom for the fully coupled systems and the
systems in which the masses are exclusively connected with the nearest
neighbours. Depending on the property of the eigenvectors, two forms of
the solution to the initial value problem have been derived. The gene-
ral deliberations are illustrated with an example of the system with 10
degrees of freedom for 5 different degrees of coupling.
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1. Introduction

Dynamic analysis of systems with repeated frequencies is interesting not only
from the theoretical point of view. There are many technical problems concer-
ning such systems, e.g. the influence of the imperfection on the mode shapes
(Wei and Pierre, 1998). The examples analysed in Wang et al. (2005) and Pešek
(1995) refer to a special type of two degrees of freedom systems possessing do-
uble frequency. It seems to be worthwhile to study multi-degree-of-freedom
systems with many repeated eigenvalues possessing various multiplicity.

One of the simplest systems which possesses natural frequency of multi-
plicity 2 consists of three identical masses, connected with one another with
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the use of identical springs. Such a system has one zero frequency to which
corresponds rigid-body motion and a double frequency to which corresponds
harmonic motion. One should expect that systems with a larger number of de-
grees of freedom, consisting of identical masses and springs, will also possess
repeated frequencies. It turns out that depending on the degree of coupling,
the number of frequencies and their multiplicity may be different. The eige-
nvalue problem of such systems possesses, among others, repeated eigenvalues
and mutually orthogonal eigenvectors belonging to them. Since such systems
have a regular structure, there is a possibility of deriving analytical formulae
for natural frequencies and modes of vibration for an arbitrary, finite number
of degrees of freedom. The paper presents the way of deriving formulae for
eigenvalues and eigenvectors of regular systems for various degrees of coupling
as well as two forms of analytical solution to the initial value problem.

2. Fully coupled systems

Let us consider a mechanical system consisting of n identical elements of
mass m, connected – each one with each one – through springs of stiffness k
and, additionally, connected with the base through springs of stiffness p. The
potential energy U and the kinetic energy E of the system have the form

U =
1

2
k
n
∑

i=1

n
∑

j=i+1

(qj − qi)2 +
1

2
p
n
∑

i=1

q2i E =
1

2
m
n
∑

i=1

q̇2i (2.1)

where qi and q̇i denote generalized coordinates and velocities, respectively.

2.1. Equations of motion

Equations of motion derived by means of Lagrange’s equations have the
form

Mq̈ +Kq = 0 (2.2)

where the stiffness matrix is the symmetric Toeplitz matrix of the form

K =

















(n − 1)k + p −k · · · −k −k
−k (n− 1)k + p · · · −k −k
...

...
. . .

...
...

−k −k · · · (n− 1)k + p −k
−k −k · · · −k (n− 1)k + p

















n×n

(2.3)
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while the inertia matrix is a scalar matrix, containing the mass m on the main
diagonal.

2.2. The eigenvalue problem

Seeking a solution to Eq. (2.2) in the form

q = ueαt (2.4)

we obtain the algebraic eigenvalue problem in the standard form

Au = λu (2.5)

where matrix A has the following form

A=



















(n− 1) km +
p
m − km · · · − km − km

− km (n − 1) km +
p
m · · · − km − km

...
...

. . .
...

...

− km − km · · · (n− 1) km +
p
m − km

− km − km · · · − km (n− 1) km +
p
m



















n×n
(2.6)

and the unknown scalar λ is related to exponent α by the formula

λ = −α2 (2.7)

The determinant of A can be written as (Bernstein, 2005)

detA =
p

m

(

n
k

m
+
p

m

)n−1
(2.8)

Since the determinant of the matrix is equal to the product of its eigenvalues,
one can suppose that eigenvalues of A will have the form















λ1 =
p

m

λj = n
k

m
+
p

m
j = 2, 3, . . . , n

(2.9)

As can be seen λ1 is a single eigenvalue while λ2 is repeated n − 1 times.
Putting the eigenvalue λ1 into Eq. (2.5) we obtain a set of equations with
respect to the elements of the eigenvector belonging to λ1 in the form

















n− 1 −1 · · · −1 −1
−1 n− 1 · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · n− 1 −1
−1 −1 · · · −1 n− 1

































u1
u2
...
un−1
un

















= 0 (2.10)
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The rank of the coefficient matrix is equal to n−1 and, as it is easy to notice,
the solution to Eq. (2.10) has the form

u1 = [1, 1, . . . , 1, 1]
⊤ (2.11)

The eigenvectors corresponding to the eigenvalue λ2 should fulfill the following
set of equations

















−1 −1 · · · −1 −1
−1 −1 · · · −1 −1
...
...
. . .

...
...

−1 −1 · · · −1 −1
−1 −1 · · · −1 −1

































u1
u2
...
un−1
un

















= 0 (2.12)

Now, the rank of the coefficient matrix is equal to 1, which means that it
is possible to choose freely n − 1 components of the vector u. The simplest
choice consists in imposing the values: 1 and −1 on two components of uj,
j = 2, 3 . . . , n while putting others as zero. The value −1 can be assigned to the
first component, whereas the value 1 should have a changeable position – from
the second one to the last one. The matrix U created from such eigenvectors
has the form

U =

















1 −1 · · · −1 −1
1 1 · · · 0 0
...
...
. . .

...
...

1 0 · · · 1 0
1 0 · · · 0 1

















n×n

(2.13)

The eigenvectors uj , j = 2, 3 . . . , n constitute a set of n− 1 linearly indepen-
dent vectors, so the geometrical multiplicity of the eigenvalue λ2 is equal to
its algebraic multiplicity, therefore the matrix U diagonalizes the matrix A,
i.e.

U
−1
AU = diag (λ1, λ2, . . . , λn) (2.14)

Relation (2.14) confirms the accuracy of Eqs. (2.9) and (2.13) which describe
the eigenvalues and eigenvectors of matrix A.

2.3. Solution of the initial value problem in the base of linearly

independent vectors

To every (different from zero) eigenvalue λj there correspond, according
to Eq. (2.7), two imaginary mutually coupled values of the exponent α
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αj =
√

λj i α∗j = −
√

λj i i =
√
−1 (2.15)

to which, in turn, corresponds a solution to Eq. (2.2) in the form

qj = (Aje
αj t +A∗je

α∗
j
t)uj =

[1

2
(Cj − iSj)e

√
λj it +

1

2
(Cj + iSj)e

−

√
λj it
]

(2.16)
= (Cj cos

√

λjt+ Sj sin
√

λj t)uj

Due to the fact that the eigenvectors uj , j = 1, 2, . . . , n are linearly indepen-
dent, the complete solution will have the form

q =
n
∑

j=1

qj =
n
∑

j=1

(Cj cosωjt+ Sj sinωjt)uj (2.17)

where ωj denote natural frequencies of the system, related to the eigenvalues
by the formula

ωj =
√

λj j = 1, 2, . . . , n (2.18)

In the case of the lack of the coupling with the base (p = 0), the first eigenvalue
equals 0, so Eq. (2.17) will now have the form

q = (C1 + tS1)u1 +
n
∑

j=2

(Cj cosωjt+ Sj sinωjt)uj (2.19)

The constants Cj and Sj should be found out from the initial conditions

q(0) = q0 q̇(0) = p0 (2.20)

Equation (2.20) constitutes a set of 2n linear algebraic equations.

2.4. Solution of the initial value problem in the base of orthogonal

vectors

The eigenvectors uj, j = 2, 3, . . . , n are orthogonal with respect to the
eigenvector u1 but they are not mutually orthogonal. Thus they cannot be
orthogonal with respect to the scalar matrix either. For this reason, there is
a need to solve the set of Eq. (2.20) to determine the constants Cj and Sj.
It is possible to avoid this necessity using Gram-Schmidt orthogonalization



348 R. Palej, A. Krowiak

process (Meirovitch, 1997) that renders the independent vectors orthogonal.
Next, normalizing the orthogonal vectors to be orthonormal with respect to the
matrix M, we receive vectors nj, j = 1, 2, . . . , n. The elements of matrix N,
composed of the vectors nj, are described by formulae

ni1 =
1√
mn

i = 1, 2, . . . , n

(2.21)

nij =



























1√
m

−1
√

j(j − 1)
i < j

1√
m

j − 1
√

j(j − 1)
i = j j = 2, 3, . . . , n

0 j < i ¬ n

The matrix N fulfils the following relations

N
⊤
MN = I N

⊤
KN = diag (λ1, λ2, . . . , λn)

(2.22)
N
−1
AN = diag (λ1, λ2, . . . , λn)

where I denotes the identity matrix. As can be seen, the matrix N, alike
matrix U, is the similarity transformation matrix of the matrix A.

To uncouple the equations of motion, we should introduce the vector x of
natural coordinates by means of the linear transformation

q = Nx (2.23)

Substituting Eq. (2.23) into Eq. (2.2) and premultiplying the result by N⊤,
we obtain an uncoupled set of equations in the form

ẍ+Λx = 0 (2.24)

where Λ = diag (λ1, λ2, . . . , λn). Making use of linear transformation (2.23),
one can easily determine the initial conditions for the natural coordinates in
the form

x0 = N
⊤
Mq0 v0 = N

⊤
Mp0 (2.25)

The solution to Eq. (2.24) for j-th natural coordinate (λj 6= 0) can be expres-
sed as

xj = n
⊤

j M

(

q0 cosωjt+
p0

ωj
sinωjt

)

(2.26)
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whereas the complete solution becomes

q = Nx =
n
∑

j=1

xjnj =
n
∑

j=1

n
⊤

j M

(

q0 cosωjt+
p0

ωj
sinωjt

)

nj (2.27)

In the case of the lack of the coupling with the base (p = 0), solution (2.27)
will have the form

q = n⊤1M(q0 + tp0)n1 +
n
∑

j=2

n
⊤

j M

(

q0 cosωjt+
p0

ωj
sinωjt

)

nj (2.28)

Thanks to the use of the orthonormal vectors nj , the solutions to Eq. (2.2) in
the form (2.27) or (2.28) do not require any set of algebraic equations to be
solved.

3. Systems not fully coupled

In the case when each individual element of the system is not coupled with
all remaining ones, the stiffness matrix K will have subdiagonals containing
zeroes. The number of zero subdiagonals depends on the total number of mas-
ses (n) and the number of masses connected with individual element (s). As-
suming the same number of neighbouring masses connected with every element
on both their sides, the stiffness matrix will have the form of a symmetrical
multiband matrix. For example, for n = 8 and s = 4 the stiffness matrix has
the form

K =





























4k + p −k −k 0 0 0 −k −k
−k 4k + p −k −k 0 0 0 −k
−k −k 4k + p −k −k 0 0 0
0 −k −k 4k + p −k −k 0 0
0 0 −k −k 4k + p −k −k 0
0 0 0 −k −k 4k + p −k −k
−k 0 0 0 −k −k 4k + p −k
−k −k 0 0 0 −k −k 4k + p





























(3.1)
In such systems, there are repeated eigenvalues as well as single ones. The
formulae for eigenvalues and eigenvectors are not as simple as in fully co-
upled systems. However, the described procedure for obtaining the analytical
solution is still the same.
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4. Systems with the lowest degree of coupling

The systems with the lowest degree of coupling consist of identical masses
connected exclusively with the nearest neighbours (s = 2) where the first mass
is connected with the second one and the last one. The schematic diagram of
such a system (not coupled with the base) is presented in Fig. 1.

Fig. 1. Schematic diagram of the system with the lowest degree of coupling

The system shown in Fig. 1 has its continuous counterpart in the form of
an unrestrained prismatic bar with the ends connected with each other by a
rigid weightless link. Making use of the dispersion formula, which relates the
natural frequency and the length of the wave, it is possible to derive a formula
for natural frequencies of the system in the form (Palej and Goik, 2003)

ωj = 2

√

k

m
sin
π(j − 1)
n

j = 1, 2, . . . , n (4.1)

The squares of natural frequencies (4.1) determine, according to Eq. (2.18),
the eigenvalues of the matrix

A =
k

m

























2 −1 0 · · · 0 0 −1
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
−1 0 0 · · · 0 −1 2

























n×n

(4.2)

In the case when the masses are also coupled with the base (p 6= 0), we obtain
the eigenvalue problem in the standard form of the matrix B

B = A+
p

m
I (4.3)
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The addition of p/m to the diagonal elements of A produces a shift in the
eigenvalues by the same constant, so the eigenvalues of the matrix B take the
form

λj = 4
k

m
sin2
π(j − 1)
n

+
p

m
j = 1, 2, . . . , n (4.4)

It appears from Eq. (4.4) that the smallest eigenvalue λ1 is single, while the
remaining eigenvalues, in the case when n is odd, are double. In the case
when n is even, the smallest eigenvalue λ1 as well as the biggest one λn/2+1
are single, while the remaining eigenvalues are double. It should be pointed
out that Eqs. (2.9) and (4.4) determine the same eigenvalues for the system
consisting of three masses (n = 3, s = 2). The way of coupling in such a
system fulfils the requirements characteristic of fully coupled systems and the
systems with the lowest degree of coupling.

The eigenvectors uj of matrix A form the modal matrix U, which has
elements of the form (Palej and Goik, 2003)

uij =















cos
2π(j − 1)i
n

j ¬ jsep

sin
2π(j − 1)i
n

jsep < j ¬ n
i, j = 1, 2, . . . , n (4.5)

where

jsep =















n+ 1

2
n odd

n

2
+ 1 n even

(4.6)

The eigenvectors uj are mutually orthogonal, therefore they are orthogonal
with respect to any scalar matrix too. Normalizing them to be orthonormal
with respect to the matrix M, we receive vectors nj, j = 1, 2, . . . , n which are
required to make use of solution (2.27) or (2.28).

5. Illustrative example

Eigenvalues of fully coupled systems and systems with the lowest degree of
coupling are determined in an analytical way for an arbitrary, finite number of
masses by formulae (2.9) and (4.4), respectively. In the first case, the second
eigenvalue is repeated n − 1 times, while in the second case, the multiplicity
of individual eigenvalues does not exceed 2. In the case of not fully coupled
systems, the multiplicity of eigenvalues can be different. The spectra of natural
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frequencies of the system consisting of 10 masses for 5 different degrees of
coupling are presented in Fig. 2.

Fig. 2. Spectra of natural frequencies of the regular system consisting of 10 masses
for 5 different degree of coupling, for m = 1kg and k = p = 1N/m

The individual spectra were diversified by a different degree of greyness.
Additionally, the dotted lines join the peaks of stripes belonging to one spec-
trum. The horizontal segments of these lines indicate the repeated frequencies.
As can be seen in Fig. 2, the lowest frequency is the same for all types of co-
upling and the multiplicity of repeated frequency may vary between 2 and 9.

6. Conclusions

For undamped natural systems possessing distinct eigenvalues, to every eige-
nvalue corresponds one unique eigenvector. The eigenvalues determine, by a
suitable formula, natural frequencies while the eigenvectors determine directly
the modes of vibration. Repeated eigenvalues can appear in discrete systems,
consisting of identical masses and springs – arranged in such a way that every
mass is constrained in the same manner. In such systems, to each repeated
eigenvalue there corresponds a set of linearly independent eigenvectors which
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determine the modes of vibration. Since any linear combination of linearly
independent eigenvectors corresponding to the repeated eigenvalue is also an
eigenvector, therefore, an infinite number of modes of vibration correspond
to the repeated eigenvalue. It means that such systems can execute harmonic
motion with natural frequency corresponding to the repeated eigenvalue in
infinite ways. To perform such motion, it is enough to set a vector of initial
displacements q0 and/or initial velocities p0 as a linear combination of the
eigenvectors corresponding to the repeated eigenvalue.
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Analiza modalna układów o wielu stopniach swobody z wielokrotnymi

częstościami drgań – ujęcie analityczne

Streszczenie

Praca dotyczy analizy modalnej układów mechanicznych, zbudowanych z n iden-
tycznych mas połączonych sprężynami w taki sposób, by macierz sztywności miała
budowę wielopasmowej macierzy symetrycznej. Zagadnienie własne sformułowane dla
tych układów charakteryzuje się wielokrotnymi wartościami własnymi, którym odpo-
wiadają układy liniowo niezależnych wektorów własnych. W pracy podano analityczne
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rozwiązanie zagadnienia własnego dla dowolnej, skończonej liczby stopni swobody, dla
układu w pełni sprzężonego i układu, w którym każda masa połączona jest wyłącznie
z dwiema sąsiednimi. W zależności od własności wektorów własnych podano dwie po-
stacie rozwiązania zagadnienia początkowego. Rozważania teoretyczne zilustrowano
przykładem układu o 10 stopniach swobody, dla 5 różnych stopni sprzężenia.
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