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The paper presents a new method to obtain an approximate solution to
plate vibrations problems. The problem is described by a partial diffe-
rential equation of fourth order. The key idea of the presented approach
is to find polynomials (solving functions) that satisfy the considered dif-
ferential equation identically. In this sense, it is a variant of the Trefftz
method. The method is addressed to differential equations in a finite
domain. The approach proposed here has some advantages. The first is
that the approximate solution (a linear combination of the solving func-
tions) satisfies the equation identically. Secondly, the method is flexible
in terms of given boundary and initial conditions (discrete, missing).
Thirdly, the solving functions can be used as base functions for several
variants of the Finite Element Method. In this case, the approximation
is good even for relatively large elements. It means that the approach
is suitable for inverse problems. The formulas for solving functions and
their derivatives for the plate vibration equation are obtained. The co-
nvergence of the method is proved and numerical examples are included.
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1. Introduction

There are a lot of methods for solving partial differential equations. They may
be divided into three groups. The first group contains the so-called analytical
methods. It means that the solution exactly satisfies both the equation and all
the given conditions (e.g. integral-transformation, separation-of-variables, Gre-
en’s function and so on). Unfortunately, these methods are not always useful
for numerical calculations (some problems with numerical convergence of se-
ries). Moreover, the shape of the body should be relatively simple. The second
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group contains methods such as the Finite Element Method or the Boundary
Element Method. Then the solution approximately satisfies both the equation
and all the given conditions and the shape does not have to be simple. In the
third group, the solution exactly satisfies the equation and approximately all
given conditions (the Trefftz method (Trefftz, 1926)). The method presented
here belongs to the third group. The key idea of the method is to find functions
(polynomials) satisfying the given differential equation (solving functions) to
be fitted to the governing initial and boundary conditions.

The Trefftz functions method for linear partial differential equations has
been developed by Herrera and Sabina (1978), Jirousek (1978), Jirousek et al.
(1997), Kołodziej and Zieliński (2009), Kupradze (1989), Zieliński and Zienkie-
wicz (1985). Especially the monograph Kołodziej and Zieliński (2009) contains
a large survey of the T-functions method and their applications to engineering
problems. All the above mentioned authors considered equations without time
variable or the time was discretized. A little bit different approach towards
using Trefftz functions (the solution depends in continuous way on time) was
first described in the paper by Rosenbloom and Widder (1956), where it was
applied to solving one-dimensional heat conduction equation. Although his ap-
proach has been developed only recently, it has rich literature. In the papers
by Ciałkowski et al. (1999a,b), Futakiewicz (1999), Futakiewicz et al. (1999);
Futakiewicz and Hożejewski (1998a,b), Hożejewski (1999), Yano et al. (1983)
the authors described heat functions in different coordinate systems and for
direct and inverse heat conduction problems. The making use of heat polyno-
mials as a new type of finite-element base functions is described in Ciałkowski
(1999). The paper by Ciałkowski and Frąckowiak (2000) deals with numero-
us cases, involving other differential equations such as the Laplace, Poisson
and Helmholtz ones. Solving functions for the wave equation are presented in
Ciałkowski (2003), Ciałkowski and Frąckowiak (2000, 2003, 2004), Ciałkowski
and Jarosławski (2993), Maciąg (2004, 2005) Maciąg and Wauer (2005a,b).
Applications of wave polynomials for elasticity problems are shown in Maciąg
(2007b). Solving polynomials for beam vibration problems are described in
Al-Khatib et al. (2008).

The properties of Taylor series are very useful in the method of solving
functions

f(x+∆x, y +∆y, t+∆t) = f(x, y, t) +
(1.1)

+
df

1!
+
d2f

2!
+ · · ·+

dNf

N !
+RN+1
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where

dnf =
( ∂
∂x
∆x+

∂

∂y
∆y +

∂

∂t
∆t)nf

and RN+1 is the remainder term.
Based on this, in Section 2, plate polynomials and their properties are

considered. In Section 3, the method of solving functions is described. Section 4
contains some remarks on convergence of approximation. Section 5 describes
how to use plate polynomials in the polar coordinate system. In Section 6, a
test example is discussed. Here two ways of solving are shown – in the whole
domain and nodeless FEM. Concluding remarks are given in Section 7.

2. Solving polynomials for the plate vibration equation

There are two ways to obtain solving polynomials for the plate vibration equ-
ation (let us name them ”plate polynomials”). The first is to use a ”generating
function”. The second is to expand the function satisfying the equation into
power series and reduct some components of the expansion with the use of
this equation. Both methods are equivalent and lead to the same polynomials.

2.1. Generating function

Let us consider the equation which describes vibrations of plates

∇2(D∇2u) + (1− ν)
[
2
∂2

∂x∂y

(
D
∂2u

∂x∂y

)
−
∂2

∂x2

(
D
∂2u

∂y2

)
−
∂2

∂y2

(
D
∂2u

∂x2

)]
=

(2.1)

= Q(x, y, τ)− ρ
∂2u

∂τ2

here ν is the Poisson ratio, Q – load (inhomogeneity), D – stiffness of
the plate. If the plate is homogeneous and has constant thickness then
D(x, y) = const , and equation (2.1) has form

D∇4u = Q(x, y, τ) − ρ
∂2u

∂τ2
(2.2)

If we assume further dimensionless time t = τ
√
D/ρ, then we get a dimen-

sionless equation

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
+
∂2u

∂t2
= Q(x, y, t) (2.3)
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We use the dimensionless time for the only reason of convenience – formulas
for Trefftz functions obtained below are simpler. First we consider the homo-
geneous equation (inhomogeneity is considered further on)

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
+
∂2u

∂t2
= 0 (2.4)

The function

g = eax+by+i(a
2+b2)t (2.5)

satisfying equation (2.4) is called a generating function. The power series
expansion (1.1) for (2.5) is

g =
∞∑

n=0

n∑

k=0

Rnka
n−kbk =

∞∑

n=0

n∑

k=0

(Pnk + i(a
2 + b2)Qnk)a

n−kbk (2.6)

where Pnk(x, y, t), Qnk(x, y, t) are polynomials satisfying equation (2.4) (func-
tion g satisfies equation (2.4) for each a and b). E.g.

P00(x, y, t) = 1 Q00(x, y, t) = t

P10(x, y, t) = x Q10(x, y, t) = xt

P11(x, y, t) = y Q11(x, y, t) = yt

P20(x, y, t) =
x2

2
Q20(x, y, t) =

x2t

2
P21(x, y, t) = xy Q21(x, y, t) = xyt

P22(x, y, t) =
y2

2
Q22(x, y, t) =

y2t

2

P30(x, y, t) =
x3

6
Q30(x, y, t) =

x3t

6

P31(x, y, t) =
x2y

2
Q31(x, y, t) =

x2yt

2

P32(x, y, t) =
xy2

2
Q32(x, y, t) =

xy2t

2

P33(x, y, t) =
y3

6
Q33(x, y, t) =

y3t

6
· · ·

(2.7)

Obtaining formulas for solving polynomials from (2.6) is inconvenient. There-
fore, recurrent formulas for these polynomials and their derivatives are further
shown.
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2.2. Partial derivatives of the solving polynomials

Recurrent formulas are very useful in numerical calculations. The proce-
dures to obtain space and time derivatives are similar. Therefore, we show the
way to obtain derivative relative to variable x and final formulas for varia-
bles y and t. To obtain these formulas, we differentiate (2.5) with respect to
suitable variable

∂g

∂x
= ag =

∞∑

n=0

n∑

k=0

∂Rnk
∂x
an−kbk

Hence
∞∑

n=1

n−1∑

k=0

R(n−1)ka
n−kbk =

∞∑

n=0

n∑

k=0

∂Rnk
∂x
an−kbk

and

∞∑

n=1

n−1∑

k=0

R(n−1)ka
n−kbk =

∂R00
∂x
+
∞∑

n=1

n−1∑

k=0

∂Rnk
∂x
an−kbk +

∞∑

n=1

∂Rnn
∂x
bn

Hence
∂R00
∂x
=
∂Rnn
∂x
= 0 and

∂Rnk
∂x
= R(n−1)k

so that finally

∂P00
∂x
=
∂Q00
∂x
=
∂Pnn
∂x
=
∂Qnn
∂x
= 0

(2.8)

∂Pnk
∂x
= P(n−1)k

∂Qnk
∂x
= Q(n−1)k

{
n > 0
k = 0, 1, . . . , n− 1

Similarly we have

∂P00
∂y
=
∂Q00
∂y
=
∂Pn0
∂y
=
∂Qn0
∂y
= 0

(2.9)

∂Pnk
∂y
= P(n−1)(k−1)

∂Qnk
∂y
= Q(n−1)(k−1)

{
n > 0
k = 0, 1, . . . , n

and

∂Qnk
∂t
= Pnk

∂Pnk
∂t
= 0 n = 0, 1, 2, 3, k = 0, . . . , n

∂Pn0
∂t
= −Q(n−4)0

∂Pnn
∂t
= −Q(n−4)(n−4)
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∂Pn(n−1)
∂t

= −Q(n−4)(n−5) (2.10)

∂Pn(n−2)

∂t
= −2Q(n−4)(n−4) −Q(n−4)(n−6)

∂Pn(n−3)
∂t

= −2Q(n−4)(n−5) −Q(n−4)(n−7)

∂Pnk
∂t
= −Q(n−4)k − 2Q(n−4)(k−2) −Q(n−4)(k−4)

{
n > 3
k = 0, 1, . . . , n− 4

In formulas, (2.10), of course we put zero instead of the polynomial in question
in the right-hand side if any of its subscripts takes a negative value.

2.3. Recurrent formulas for the solving polynomials

Theorem 1 enables one to get all plate polynomials Pnk and Qnk.

Theorem 1. Let (P00 = 1) and (Q00 = t). Then, the polynomials

Pn1 = yP(n−1)0 Qn1 = yQ(n−1)0 (2.11)

Pn(n−1) = xP(n−1)(n−1) Qn(n−1) = xQ(n−1)(n−1) (2.12)

P(n+2)0 =
2x(n + 1)P(n+1)0 − x

2Pn0 − 4t
2P(n−2)0 − 2tQ(n−2)0

(n+ 1)(n + 2)
(2.13)

Qn0 =
2x(n + 1)Q(n−1)0 − x

2Q(n−2)0 − 4t
2Q(n−4)0 + 2tPn0

(n+ 1)(n + 2)
(2.14)

and for 1 ¬ k ¬ n− 1

Pn(k+1) =
(n− k + 1)Pn(k−1) − xP(n−1)(k−1) + yP(n−1)k

k + 1
(2.15)

Qn(k+1) =
(n− k + 1)Qn(k−1) − xQ(n−1)(k−1) + yQ(n−1)k

k + 1
(2.16)

satisfy equation (2.4).

Proof. The proof of Theorem 1 is based on putting the considered polynomial
into equation (2.4) and on using suitable formula from (2.8)-(2.10) for
derivatives. For example, we proof formula (2.16). For acceptable n and
k we have
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∂4Pn(k+1)

∂x4
+ 2
∂4Pn(k+1)

∂x2∂y2
+
∂4Pn(k+1)

∂y4
+
∂2Pn(k+1)

∂t2
=

=
1

k + 1

[
(n− k + 1)P(n−4)(k−1) − xP(n−5)(k−1) + yP(n−5)k +

+2(n− k + 1)P(n−4)(k−3) − 2xP(n−5)(k−3) + 2yP(n−5)(k−2) +

+(n− k + 1)P(n−4)(k−5) − xP(n−5)(k−5) + yP(n−5)(k−4) +

+(n− k + 1)(−P(n−4)(k−1) − 2P(n−4)(k−3) − P(n−4)(k−5)) +

−x(−P(n−5)(k−1) − 2P(n−5)(k−3) − P(n−5)(k−5)) +

+y(−P(n−5)k − 2P(n−5)(k−2) − P(n−5)(k−4))
]
= 0

This proves relation (2.16). The proofs for other cases are similar.

2.4. Usage of the plate vibration equation in Taylor series

Similarly as for other equations (Ciałkowski and Frąckowiak, 2000; Ma-
ciąg, 2005; Maciąg and Wauer, 2005a), the plate polynomials can be obtained
using Taylor series (1.1) for the function u. Let the function u(x, y, t) satisfy
equation (2.4) with given initial and boundary conditions. We assume that
w ∈ C2N+1 in the neighborhood of (x0, y0, t0). Let x̂ = x − x0, ŷ = y − y0,
t̂ = t− t0. Then the function u can be expanded into power series. Further in
the expansion of the function u, some derivatives can be eliminated by making
use of the plate vibration equation as follows

∂4u

∂x4
= −2

∂4u

∂x2∂y2
−
∂4u

∂y4
−
∂2u

∂t2
(2.17)

or
∂4u

∂y4
= −
∂4u

∂x4
− 2

∂4u

∂x2∂y2
−
∂2u

∂t2
(2.18)

or
∂2u

∂t2
= −
∂4u

∂x4
− 2

∂4u

∂x2∂y2
−
∂4u

∂y4
(2.19)

For example, after using the substitution according to formula (2.19) in the
expansion, the coefficient by the derivative ∂4u/∂x4 will be (x̂4/4!)− (t̂2/2!).
It is the plate polynomial. Other plate polynomials we get as coefficients by
successive derivatives in the expansion. Simple but a little bit onerous calcula-
tions show that this procedure leads to the same plate polynomials as obtained
by using formulas in Theorem 1. This way of obtaining the plate polynomials
is very important. It will be used to prove the convergence of the method of
solving functions (see Section 4).
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2.5. Inhomogeneity

For the non-homogeneous equation

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
+
∂2u

∂t2
= Q(x, y, t) (2.20)

the particular solution has to be known. It is easy to calculate it if the inho-
mogeneity Q(x, y, t) can be expanded into Taylor series. Then it is sufficient
to know how to calculate the inverse operator L−1 for monomials, where
L = ∇4 + ∂2/∂t2. Denote Zklm = L

−1(xkyltm). It is easy to prove that we
have four forms of Z(xkyltm)

Z1klm =
1

(k + 4)(k + 3)(k + 2)(k + 1)
·

·
[
xk+4yltm − 2(k + 4)(k + 3)l(l − 1)Z(k+2)(l−2)m +

−l(l − 1)(l − 2)(l − 3)Z(k+4)(l−4)m −m(m− 1)Z(k+4)l(m−2)
]

Z2klm =
1

2(k + 2)(k + 1)(l + 2)(l + 1)
·

·
[
xk+2yl+2tm − (k + 2)(k + 1)k(k − 1)Z(k−2)(l+2)m +

−(l + 2)(l + 1)l(l − 1)Z(k+2)(l−2)m −m(m− 1)Z(k+2)(l+2)(m−2)
]

(2.21)

Z3klm =
1

(l + 4)(l + 3)(l + 2)(l + 1)
·

·
[
xkyl+4tm − k(k − 1)(k − 2)(k − 3)Z(k−4)(l+4)m +

−2k(k − 1)(l + 4)(l + 3)Z(k−2)(l+2)m −m(m− 1)Zk(l+4)(m−2)
]

Z4klm =
1

(m+ 2)(m+ 1)

[
xkyltm+2 − k(k − 1)(k − 2)(k − 3)Z(k−4)l(m+2) +

−2k(k − 1)l(l − 1)Z(k−2)(l−2)(m+2) − l(l − 1)(l − 2)(l − 3)Zk(l−4)(m+2)
]

In formulas (2.21), we put zero instead of a polynomial when any subscript is
negative.

3. The method of solving functions

The method of solving functions discussed below belongs to the class of Trefftz
methods. As a solution to equation (2.4) we take a linear combination of plate
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polynomials which also satisfy this equation. Let us denote these polynomials
as

V1 = P00 = 1 V2 = P10 = x V3 = P11 = y

V4 = Q00 = t V5 = P20 =
x2

2
V6 = P21 = xy

V7 = P22 =
y2

2
V8 = Q10 = xt . . .

Obviously, we have one polynomial of order zero, three polynomials of order
one, five polynomials of order two and so on. An approximation for the solution
to equation (2.4) is

u ≈ w =
N∑

n=1

cnVn (3.1)

A linear combination (3.1) of plate polynomials satisfies equation (2.4). The
coefficients cn in (3.1) are chosen such that the error (usually in the mean-
square sense) for fulfilling given boundary and initial conditions corresponding
to equation (2.4) is minimized (see examples). In the case of non-homogeneous
equation (2.20), the particular solution has to be added into formula (3.1).

4. Convergence of approximation

Any time we talk about the approximation method we have to ask about the
error of approximation and convergence of the procedure. It is easy to specify
the error when in formula (3.1) all plate polynomials from the 0-th to K-th
order are taken, e.g., for K = 0, N = 1, for K = 1, N = 1+3 = 4, for K = 2,
N = 1+3+5 = 9 and so on. Let us consider the plate polynomials obtained in
Section 2.4 by using formula (2.19). Notice that when in approximation (3.1)
all plate polynomials from the 0-th to 2K-th order are taken, then in this
approximation:

• full differentials of the order from 0 to K are taken into account,

• some components of differentials of the order from K + 1 to 2K are
taken into account,

• no components of differentials of order larger than 2K are taken into
account.

Let us denote by wK approximation (3.1) when all plate polynomials from
the 0-th to K-th order are taken. Taking all above into consideration, we can
formulate:
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Theorem 2. Let function u satisfy equation (2.4). If in formula (1.1)

lim
N→∞

RN = 0 (4.1)

for function u satisfying equation (2.4), with given initial and boundary
condition, then

lim
K→∞

wK = u

Proof. First, we prove that
lim
K→∞

w2K = u

For w2K we have |R2K+1| ¬ |w2K − u| ¬ |RK+1|. But

lim
K→∞

R2K+1 = lim
K→∞

RK+1 = 0

hence
lim
K→∞

|w2K − u| = 0

It means that
lim
K→∞

w2K = u

On the other hand we have |w2K | ¬ |w2K+1| ¬ |w2(K+1)| hence

lim
K→∞

wK = u

Condition (4.1) is satisfied for example when all derivatives are commonly
restricted. Moreover, the approximation of the solution is better in a small ne-
ighbourhood of the considered point. It means that when we expand the func-
tion into Taylor series in point (0, 0, 0), the approximation is faster convergent
(depending on the number of polynomials) in a small distance from this point.
Therefore, we usually look for an approximation if x, y, t are from (0, 1).
Theoretically, we get the convergence for any time only if limN→∞RN = 0.
In practice, for a large value of time we should take into account plenty of
polynomials. Therefore, it is recommended to carry out calculations in a short
time interval (∆t < 1). Such a procedure is justified because the solving po-
lynomials contain powers of time and we get a faster convergence if t < 1.

5. Plate polynomials in polar coordinates

In the polar coordinates

x = r cosφ y = r sinφ (5.1)

equation (2.4) has form



Trefftz functions for a plate vibration problem 107

( ∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂φ2

)(∂2u
∂r2
+
1

r

∂u

∂r
+
1

r2
∂2u

∂φ2

)
+
∂2u

∂t2
= 0 (5.2)

Then, to find the plate polynomials in polar coordinates, it is sufficient to
substitute in (5.1) polynomials expressed in the Cartesian coordinate system.
The polynomials obtained in that way satisfy equation (5.2). We can use re-
current formulas (2.8)-(2.12) in polar coordinates as well, keeping in mind that
x = r cosφ and y = r sinφ. The advantage of this method is that in the polar
coordinate system we avoid Bessel functions in the solution, which sometimes
causes numerical problems.

6. Test example

We will show how the method of solving functions works by discussing a test
example. The problem of plate vibration will be solved in two ways. The first
is solving the problem in the whole domain. In the second case, the Node-
less Finite Element Method (substructuring) with Trefftz base function will
be used. In general, the solving functions can be used as base functions in
several variants of FEM. These variants are wider described in the papers by
Ciałkowski et al. (2007), Maciąg (2007a). A lot of numerical calculations for
several equations (Laplace, heat conduction, wave equation) show that solving
polynomials as FEM base functions give the best results for Nodeless Finite
Element Method (substructuring). Therefore, this approach is proposed here.
Consider vibrations of a square plate described by equation (2.4) and con-

ditions:
— initial conditions

u(x, y, 0) = u0(x, y) =
sin(πx) sin(πy)

1000

∂u(x, y, 0)

∂t
= 0 (6.1)

— boundary conditions

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0
(6.2)

∂2u(0, y, t)

∂x2
=
∂2u(1, y, t)

∂x2
=
∂2u(x, 0, t)

∂y2
=
∂2u(x, 1, t)

∂y2
= 0

Conditions (6.1) and (6.2) describe a simply supported plate. The exact solu-
tion to this problem is

u(x, y, t) =
sin(πx) sin(πy) cos(2π2t)

1000
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6.1. Approximate solution in the whole domain

The approximated solution u(x, y, t) has the form as follows

u ≈ w =
N∑

n=1

cnVn

Because the function w satisfies the plate vibration equation (with w being
a linear combination of the solving polynomials), in order to find the coeffi-
cients cn, we minimize the norm ‖w − u‖ for the boundary and initial con-
ditions. We look for an approximate solution u in the time interval (0,∆t).
Hence, the coefficients cn have to be chosen appropriately to minimize the
functional

I =

1∫

0

1∫

0

(
[w(x, y, 0) − u0(x, y)]

2 +
[∂w(x, y, 0)

∂t

]2)

︸ ︷︷ ︸
cond. (6.1)

dx dy +

+

∆t∫

0

1∫

0

(
[w(0, y, t)]2+

[∂2w(0, y, t)
∂x2

]2
+ [w(1, y, t)]2 +

[∂2w(1, y, t)
∂x2

]2)

︸ ︷︷ ︸
cond. (6.2)

dy dt +

+

∆t∫

0

1∫

0

(
[w(x, 0, t)]2 +

[∂2w(x, 0, t)
∂x2

]2
+ [w(x, 1, t)]2 +

[∂2w(x, 1, t)
∂x2

]2)

︸ ︷︷ ︸
cond. (6.2)

dx dt

The necessary condition to minimize the functional I is

∂I

∂c1
= · · · =

∂I

∂cN
= 0 (6.3)

The linear system of equations (6.3) can be written as

AC = B (6.4)

where C = [c1, . . . , cN ]
⊤. Note that the matrix A is symmetric, which

simplifies calculations. From equation (6.4), we obtain the coefficients cn:
C = A−1B. In the time intervals (∆t, 2∆t), (2∆t, 3∆t), . . . , we proceed ana-
logously. Here, the initial condition for the time interval ((m− 1)∆t,m∆t) is
the value of function w at the end of interval ((m− 2)∆t, (m− 1)∆t).
All the results shown in Figures 1-4 have been obtained for (∆t = 0.25).

Figure 1 shows the initial condition (a) the exact one, (b) an approximation
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Fig. 1. Solution for time t = 0: (a) exact, (b) approximation, (c) difference

with the solving polynomials of degree up to 13, (c) the difference between (a)
and (b). It is clear that the approximation is satisfactory.

Figure 2 shows for time t = 0.15: (a) the exact solution, (b) an approxi-
mation by polynomials of the order 0 up to 13, (c) the difference between (a)
and (b).

Fig. 2. Solution for time t = 0.15: (a) exact, (b) approximation, (c) difference

It is obvious that the approximation presented in the Figs. 1 and 2 is
accurate. Figure 3 shows the exact solution (solid line) and the approximation
by polynomials of the order from 0 to (a) 5, (b) 10, (c) 15 (dashed line) for
the vibration as a function of time at the location x = 0.5, y = 0.5.

Figure 3 suggests that the method is convergent. In this case, we can
calculate the error of approximation in the norm L2(Ω), where Ω = (0,∆t)
for the point x = y = 0.5. The error is defined as



110 A. Maciąg

Fig. 3. Exact and approximate solution at the location x = 0.5, y = 0.5.
Approximation by polynomials of the order from 0 to (a) 5, (b) 10, (c) 15

ED =

√√√√√√√√

∆t∫

0
[u(0.5; 0.5; t) −wD(0.5; 0.5; t)]2 dt

∆t∫

0
[u(0.5; 0.5; t)]2 dt

100%

In the approximation wD, we take all plate polynomials from degree 0 to D.
Figure 4 shows the error depending on the degree D.

Fig. 4. Error depending on the highest degree D of the polynomial

The error decreases when the number of polynomials in the approxima-
tion u increases. This confirms that the method is convergent.

6.2. Nodeless Finite Element Method

The second way of using solving polynomials is the nodeless FEM. Let us
divide the domain (0, 1)× (0, 1) into subdomains Ωk and seek the solution in
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the time-space subdomains Lk = Ωk ×∆t, k = 1, . . . ,K. Let us introduce a
local co-ordinate system in each subdomain Lk and assume the approximation
of the solution in the form

uk ≈ wk =
N∑

n=1

cknVn (6.5)

To find coefficients ckn, we minimize the norm ‖w − u‖ for the bounda-
ry and initial conditions. Moreover, the norms on common borders betwe-
en neighbouring elements ΩA and ΩB : ‖wA − wB‖, ‖∂wA/∂n − ∂wB/∂n‖,
‖∂2wA/∂n

2−∂2wB/∂n
2‖ and ‖∂3wA/∂n

3−∂3wB/∂n
3‖ are minimized simul-

taneously. Here n is normal to the corresponding border. In the time intervals
(∆t, 2∆t), (2∆t, 3∆t), . . . , we proceed analogously. Here, the value of func-
tion w at the end of interval ((m − 2)∆t, (m − 1)∆t) stands for the initial
condition for the time interval ((m− 1)∆t,m∆t).

In the nodeless FEM, we can use big elements (subdomains) with a su-
itable number of base functions. Even for four subdomains, the results are
satisfactory. The division of the domain reduces the number of polynomials
in an approximation. In order to compare the solution in the whole domain
(Section 6.1) with the approximate solution obtained with the nodeless FEM,
we assume ∆t = 0.125. The domain is divided into four identical squares.
Figure 5 shows the exact solution (solid line) and the approximation (dashed
line) for the vibration as a function of time at the location x = 0.5, y = 0.5
and the approximation in each subdomain by polynomials of the order from 0
to (a) 5, (b) 9, (c) 10.

Fig. 5. Exact and approximate solution at the location x = 0.5, y = 0.5.
Approximation by polynomials of the order from 0 to (a) 5, (b) 9, (c) 10

When comparing Figs. 3 and 5 we notice that for the nodeless FEM the
approximation is better than for the solution in the whole domain. Moreover,
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using only four subdomains, allowed us to reduce the highest degree of the
solving polynomials from 15 down to 10. When using the nodeless FEM, the
advantage is such that the elements can be relatively big. Moreover, in each
element we have a solution satisfying the equation.

In the considered case we had two time steps. Despite that, the approxima-
tion stays good for more steps as well. Figure 6 shows: (a) the exact solution
(solid line) and approximation (dashed line) for the vibration as a function
of time at the location x = 0.5, y = 0.5 and the approximation in each sub-
domain by polynomials of the order from 0 to 10, (b) difference between the
exact and approximate solution for five time steps ∆t = 0.125.

Fig. 6. (a) Exact solution (solid line) and approximation by polynomials of the order
from 0 to 10 (dashed line) for x = 0.5, y = 0.5, (b) difference between the exact and

approximate solution

Like in Section 6.1 we define the relative error of the approximate solution
as

ED =

√√√√√√√√

TS∆t∫

0
[u(0.5; 0.5; t) − wD(0.5; 0.5; t)]2 dt

TS∆t∫

0
[u(0.5; 0.5; t)]2 dt

100%

where TS is the number of time steps. In the approximation wD, we take all
plate polynomials from degree 0 to D. Table 1 shows values of the error E10
in the time interval (0, TS∆t) for ∆t = 0.125 depending on the number of
time steps TS.

Table 1. Error dependence on the number of time steps

TS 1 2 3 4 5

E10 [%] 2.473 2.504 2.718 2.728 2.784
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It is clear that the error increases when the number of time steps increases,
but still remains small. For 5 time steps, the error does not exceed 3%, which
shows that the approximation is good.

7. Concluding remarks

A new simple technique for solving the problems of plate vibration is deve-
loped. The main result is the derivation of formulas for plate polynomials
(satisfying the plate vibration equation) and their derivatives. Moreover, the
convergence of the method is proved. The method of solving functions pre-
sented in this paper is a straightforward method for solving plate vibration
equations in finite bodies. The author’s experience in terms of Trefftz func-
tions for other equations suggests that this method can be also useful when
the shape of the plate is more complicated. Then it may be necessary to divide
the domain into elements.
The test example shows that the obtained approximation is very good.

The solving polynomials presented here can be used in the whole domain or
as a base function in the nodeless FEM.
The method of solving functions has three very important properties. The

first is that the approximate solution of the considered problem satisfies the
governing equation. Secondly, in the nodeless FEM, the elements can be relati-
vely big. Thirdly, the method is relatively flexible in terms of given initial and
boundary conditions. These three cases make this method suitable for inverse
problems. However, this is a very broad subject and it will be discussed in
another paper.
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Funkcje Trefftza dla problemu drgań płyty

Streszczenie

Artykuł przedstawia nową metodę rozwiązywania problemów drgań płyty, które
opisywane są cząstkowym równaniem różniczkowym czwartego rzędu. Idea metody
polega na uzyskaniu wielomianów spełniających w sposób ścisły dane równanie róż-
niczkowe (funkcje Trefftza). Za rozwiązanie przyjmuje się kombinację liniową tych
funkcji. Współczynniki kombinacji liniowej dobierane są w taki sposób, aby zmini-
malizować błąd dopasowania rozwiązania do warunków początkowo - brzegowych.
Podejście proponowane w pracy ma kilka zalet. Po pierwsze liniowa kombinacja funk-
cji Trefftza spełnia w sposób ścisły dane równanie różniczkowe. Po drugie metoda
jest elastyczna odnośnie warunków początkowo - brzegowych. Mogą one być ciągłe
lub dyskretne. Dodatkowo warunki te mogą być niekompletne, co czyni metodę uży-
teczną w rozwiązywaniu zagadnień odwrotnych. Trzecią zaletą metody jest możliwość
zastosowania uzyskanych wielomianów jako funkcji bazowych w różnych wariantach
Metody Elementów Skończonych. W pracy uzyskano wzory rekurencyjne na funkcje
Trefftza oraz ich pochodne dla równania drgań płyty. Zbadano zbieżność metody oraz
zamieszczono przykłady numeryczne
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