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Unsteady, incompressible boundary layer equations for a modified power-
law fluid of the second grade are considered. The model is a combination
of the power-law and second grade fluid in which the fluid may exhibit
normal stresses, shear thinning or shear thickening behaviour. The equ-
ations of motion are formulated for two-dimensional flows, and from
which the boundary layer equations are derived. By using the similarity
transformation, we reduce the boundary layer equations to system of
non-linear ordinary differential equation. The ordinary differential equ-
ations are numerically integrated for classical boundary layer conditions.
Effects of the power-law index and second grade coefficient on the boun-
dary layers are shown.
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1. Introduction

Prandtl’s boundary layer theory proved to be of great use in Newtonian fluids
as the Navier-Stokes equations can be converted into much simplified equ-
ations which are easier to handle. In the past three decades, with the increase
of technological importance of non-Newtonian fluids, similar attempts were
made at solving the extremely complex equations of motion of non-Newtonian
fluids. For these fluids, a boundary layer similar to that of the Newtonian
case was assumed a priori, and simplified calculations were obtained upon
this assumption. It is only recently that well-established mathematical proofs
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of boundary layers and restrictions on obtaining such boundary layers were
outlined.

Non-Newtonian fluids have become more and more industrially important.
Polymer solutions, polymer melts, blood, paints and certain oils are the most
common examples of non-Newtonian fluids. Several models have been proposed
to explain the non-Newtonian behaviour of fluids. Among these, the power-
law, differential-type and rate-type models gained much acceptance. Boundary
layer assumptions were successfully applied to these models and much work
has been done on them.

Power-law fluids are by far the most widely used models to exhibit non-
Newtonian behaviour in fluids, and to predict shear thinning and shear thicke-
ning behaviour. However, the models have an inadequacy in expressing normal
stress behaviour as observed in die swelling and rod climbing in some non-
Newtonian fluids. On the other hand, normal stress effects can be expressed
in the second grade fluid model, a special type of Rivlin-Ericksen fluids, but
this model is incapable of representing shear thinning/thickening behaviour.
A fluid model which exhibits all behaviour scenarios is deserved, and Man
and Sun (1987) and Man (1992) proposed two models which they called ”the
power-law fluid of grade 2” and ”modified second order (grade) fluid”. These
models were slight modifications of the usual second grade fluid.

The following power-law fluid of second grade model is considered in the
present work

T = −pI+Πm/2(µA1 + α1A2 + α2A
2
1) (1.1)

where T is the Cauchy stress tensor, p is the pressure, I is the identity ma-
trix, A1 and A2 are the first and second Rivlin-Ericksen tensors, respectively,
µ, m, α1 and α2 are material moduli that may be constant or dependent on
temperature. For this model, when m = 0 and α1 = α2 = 0, the fluid is
Newtonian and hence µ represents the usual viscosity. m = 0 corresponds to
the standard second grade fluid, α1 = α2 = 0 corresponds to the power-law
fluid. Besides, when m < 0, the fluid is shear-thinning, while if m > 0, the
fluid is shear-thickening. The tensors are defined as

A1 = L+ L
⊤

A2 =
dA1
dt
+ A1L+ L

⊤
A1

(1.2)

Π =
1

2
tr (A21)

where L = gradv, v is the velocity vector and Π is the second invariant
of A1.
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Equation (1.1) is in fact a generalization of ordinary second grade fluids
with the following constitutive relation

T = −pI+ µA1 + α1A2 + α2A
2
1 (1.3)

Extensive work has been done on the second grade fluids. A general review of
the work is beyond the scope of this study. For the recent works on the model,
see Asghar et al. (2007), Hayat et al. (2007a-e), Hayat and Sajid (2007) for
example.
The work on boundary layers of power-law fluids was due to Acrivos et al.

(1960) and Schowalter (1960). Acrivos et al. (1960) examined in detail the flow
past a horizontal flat plate including heat transfer. Schowalter (1960) indepen-
dently developed the two and three-dimensional boundary layer equations and
presented some similarity solutions for the equations. Later, the boundary lay-
er treatment due to Pohlhausen was extended to power-law fluids by Bizzell
and Slattery (1962). The similarity solution of unsteady boundary layer flow
of power-law fluids on a stretching sheet was presented by Yurusoy (2006).
Modifications of the second grade fluids to account for shear thin-

ning/thickening effects were considered in the literature. Man and Sun (1987)
first proposed the modifications. Later, Man (1992) considered the unsteady
channel flow of a modified second grade fluid, and existence, uniqueness and
asymptotic stability of the solutions were exploited. Franchi and Straughan
(1993) presented stability analysis of the modified model for a special viscosi-
ty function which linearly depended on the temperature. Gupta and Massoudi
(1993) investigated the flow of such a fluid with temperature-dependent visco-
sity between heated plates. Massoudi and Phuoc (2001) studied the flow down
a heated inclined plane. The same authors (Massoudi and Phuoc, 2001) analy-
sed a pipe flow by Reynold’ s temperature-dependent viscosity model. Hayat
and Khan (2005) studied the flow over a porous flat plate and found solutions
using the homotopy analysis method (HAM). Recently, a symmetry analysis
was presented for the boundary layer equations of the modified second grade
fluid (Aksoyet al., 2007). Detailed thermodynamic and stability analyses exist
for the second grade (Dunn and Fosdick, 1974) and third grade (Rajagopal
and Fosdick, 1980) fluids. Dunn and Rajagopal (1995) presented a critical re-
view of thermodynamic analysis for fluids of differential type, including the
models considered here. Many issues regarding the applicability of such non-
Newtonian models to real fluids, thermodynamic restrictions imposed on the
constitutive equations and doubts raised in the previous literature on these
models were addressed in detail.
In this paper, unsteady boundary layer equations for model (1.1) are con-

sidered. By using the similarity transformation, the partial differential system
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is transformed into an ordinary differential system, and the classical boundary
conditions are imposed on the equations. These conditions remain invariant
under the similarity transformation. Numerical solutions of the ordinary dif-
ferential equations are found by using finite difference techniques, and the
effects of power-law index as well as second grade coefficient on the solutions
are outlined.

2. Equations of motion

The mass conservation and linear momentum equations are

divv = 0 ρ
dv

dt
= divT+ ρb (2.1)

By inserting equations (1.1) and (1.2) into equation (2.2), neglecting body
forces, one has

ρ
(

vt +
1

2
grad |v|2 + ω × v

)

= − gradp+ grad
[(1

2
|A1|

2
)m/2]

·

·(µA1 + α1A2 + α2A
2
1) +
(1

2
|A21

)m/2(

µ∆v + α1(∆ω × v) +

(2.2)

+α1∆vt + α1 grad (v∆v) +
1

4
(2α1 + α2) grad |A1|

2 +

+(α1 + α2){A1∆v + 2div [( gradv)( gradv)
⊤]}
)

where ω = curlv. For a two dimensional flow in Cartesian coordinates, a
straightforward calculation yields the equations of motion as follows

∂u

∂x
+
∂v

∂y
= 0 (2.3)

∂u

∂t
+ u
∂u

∂x
+ v
∂u

∂y
= −
∂p

∂x
+
m

2

[

4
(∂u

∂x

)2

+
(∂v

∂x
+
∂u

∂y

)2]m
2
−1{[

8
∂u

∂x

∂2u

∂x2
+

+2
(∂v

∂x
+
∂u

∂y

)(∂2v

∂x2
+
∂2u

∂x∂y

)][

2ν
∂u

∂x
+
α1
ρ

(

2
∂2u

∂x∂t
+ 2u
∂2u

∂x2
+ 2v

∂2u

∂x∂y
+

+4
(∂u

∂x

)2

+ 2
∂v

∂x

(∂v

∂x
+
∂u

∂y

))

+
α2
ρ

(

4
(∂u

∂x

)2

+
(∂v

∂x
+
∂u

∂y

)2)]

+

+
[

8
∂u

∂x

∂2u

∂x∂y
+ 2
(∂v

∂x
+
∂u

∂y

)( ∂2v

∂x∂y
+
∂2u

∂y2

)][

ν
(∂v

∂x
+
∂u

∂y

)

+ (2.4)

+
α1
ρ

( ∂2u

∂y∂t
+
∂2v

∂x∂t
+ u
(∂2v

∂x2
+
∂2u

∂x∂y

)

+ v
( ∂2v

∂x∂y
+
∂2u

∂y2

)

+ 2
∂u

∂x

∂u

∂y
+
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+2
∂v

∂x

∂v

∂y

)]}[

4
(∂u

∂x

)2

+
(∂v

∂x
+
∂u

∂y

)2]m
2
{

ν
(∂2u

∂x2
+
∂2u

∂y2

)

+
α1
ρ

(

2
∂3u

∂x2∂t
+

+
∂3u

∂y2∂t
+
∂3v

∂x∂y∂t
− v

∂3v

∂x∂y2
+ v
∂3u

∂y3
+ u
∂3u

∂x3
+ u
∂3u

∂x∂y2
+ 13
∂u

∂x

∂2u

∂x2
+

+
∂u

∂x

∂2u

∂y2
+ 4
∂v

∂x

∂2v

∂x2
+ 3
∂u

∂y

∂2v

∂x2
+ 3
∂u

∂y

∂2u

∂x∂y
+ 2
∂v

∂x

∂2u

∂x∂y

)

+

+
α2
ρ

(

8
∂u

∂x

∂2u

∂x2
+ 2
∂v

∂x

∂2v

∂x2
+ 2
∂u

∂y

∂2v

∂x2
+ 2
∂u

∂y

∂2u

∂x∂y
+ 2
∂v

∂x

∂2u

∂x∂y

)}

∂v

∂t
+ u
∂v

∂x
+ v
∂v

∂y
= −
∂p

∂y
+
m

2

[

4
(∂u

∂x

)2

+
(∂v

∂x
+
∂u

∂y

)2]m
2
−1{[

8
∂u

∂x

∂2u

∂x2
+

+2
(∂v

∂x
+
∂u

∂y

)(∂2v

∂x2
+
∂2u

∂x∂y

)][

ν
(∂v

∂x
+
∂u

∂y

)

+
α1
ρ

( ∂2u

∂y∂t
+
∂2v

∂x∂t
+

+u
(∂2v

∂x2
+
∂2u

∂x∂y

)

+ v
( ∂2v

∂x∂y
+
∂2u

∂y2

)

+ 2
∂v

∂x

∂v

∂y
+ 2
∂u

∂x

∂u

∂y

)]

+

+
[

8
∂u

∂x

∂2u

∂x∂y
+ 2
(∂v

∂x
+
∂u

∂y

)( ∂2v

∂x∂y
+
∂2u

∂y2

)][

2ν
∂v

∂y
+
α1
ρ

(

2
∂2v

∂y∂t
+

+2u
∂2v

∂x∂y
+ 2v
∂2v

∂y2
+ 2
∂u

∂y

(∂v

∂x
+
∂u

∂y

)

+ 4
(∂v

∂y

)2)

+ (2.5)

+
α2
ρ

(

4
(∂v

∂y

)2

+
(∂v

∂x
+
∂u

∂y

)2)]}

+
[

4
(∂u

∂x

)2

+
(∂v

∂x
+
∂u

∂y

)2]m
2

·

·
{

ν
(∂2v

∂x2
+
∂2v

∂y2

)

+
α1
ρ

(

2
∂3v

∂y2∂t
+
∂3v

∂x2∂t
+
∂3u

∂x∂y∂t
u
∂3v

∂x3
+ u

∂3v

∂x∂y2
+

+v
∂3v

∂x2∂y
+ v
∂3v

∂y3
+ 4
∂u

∂y

∂2u

∂y2
+
∂v

∂y

∂2v

∂x2
+ 13
∂u

∂x

∂2u

∂x∂y
+ 3
∂v

∂x

∂2v

∂x∂y
+

+3
∂v

∂x

∂2u

∂y2
+ 2
∂u

∂y

∂2v

∂x∂y

)

+
α2
ρ

(

8
∂u

∂x

∂2u

∂x∂y
+ 2
∂v

∂x

∂2u

∂y2
+ 2
∂u

∂y

∂2u

∂y2
+

+2
∂u

∂y

∂2v

∂x∂y
+ 2
∂v

∂x

∂2v

∂x∂y

)}

where ν = µ/ρ is the kinematic viscosity, u and v are x, y components of
the velocity inside the boundary layer, t is time, x is the coordinate along
the surface and y is the coordinate vertical to the surface. For m = 0, the
equations are reduced to those of the second grade fluid, and for α1 = α2 = 0,
the equations are reduced to those of the power-law fluid. Boundary layer
equations will be derived from these equations in the next Section.
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3. Boundary layer equations

For the second and third grade fluids, boundary layer equations were derived
in detail by Pakdemirli and Suhubi (1992) and Pakdemirli (1992), respectively.
Inside the boundary layer, y coordinate is stretched by a factor 1/δ

Y =
y

δ
(3.1)

As in the usual boundary layer assumption, x, u and p are of order 1 and v
is of order δ. For a standard boundary layer of one inner deck and one outer
deck, the dimensionless coefficients are required to be as follows

ν = νδm+2 α1 = ε1δ
m+2 α2 = ε2δ

m+2 (3.2)

Other choices are also possible which may lead to multiple-deck boundary lay-
ers. Multiple-deck boundary layer analysis is beyond the scope of this work.
For the second and third grade fluids, such analysis has been presented else-
where (Pakdemirli, 1994).
With the above assumptions and keeping the terms of order 1 in continuity

and x-momentum and order 1/δ in the y-momentum, one finally has

∂u

∂x
+
∂v

∂Y
= 0 (3.3)

∂u

∂t
+ u
∂u

∂x
+ v
∂u

∂Y
= −
∂p

∂x
+
m

2

[( ∂u

∂Y

)2]m
2
−1{

2ε2
( ∂u

∂Y

)3 ∂2u

∂x∂Y
+

+2
∂u

∂Y

∂2u

∂Y 2

[

ν
∂u

∂Y
+ ε1
( ∂2u

∂Y ∂t
+ u
∂2u

∂x∂Y
+ v
∂2u

∂Y 2
+ 2
∂u

∂x

∂u

∂Y

)]}

+

(3.4)

+
( ∂u

∂Y

)m{

ν
∂2u

∂Y 2
+ ε1
( ∂3u

∂Y 2∂t
+ v
∂3u

∂Y 3
+ u

∂3u

∂x∂Y 2
+
∂u

∂x

∂2u

∂Y 2
+

+3
∂u

∂Y

∂2u

∂x∂Y

)

+ 2ε2
∂u

∂Y

∂2u

∂x∂Y

}

−
∂p

∂Y
+ (m+ 2)(2ε1 + ε2)

( ∂u

∂Y

)m+1 ∂2u

∂Y 2
= 0 (3.5)

If the new pressure is defined as

p = p− (2ε1 + ε2)
( ∂u

∂Y

)m+2
(3.6)

equation (3.5) reduces to ∂p/∂Y = 0, and hence p = p(x, t). But matching
with the inviscid outer solution requires

∂p

∂x
= −
∂U

∂t
− U
∂U

∂x
(3.7)
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Differentiation of equation (3.6) with respect to x using equation (3.7), and
substitution into equation (3.4) finally yields the boundary layer equations

∂u

∂x
+
∂v

∂Y
= 0 (3.8)

∂u

∂t
+ u
∂u

∂x
+ v
∂u

∂Y
=
∂U

∂t
+ U
∂U

∂x
+ ν(m+ 1)

( ∂u

∂Y

)m ∂2u

∂Y 2
+
ε1
ρ

( ∂u

∂Y

)m−1
·

·
{

m
[ ∂2u

∂Y 2

( ∂2u

∂Y ∂t
+ u
∂2u

∂x∂Y
+ v
∂2u

∂Y 2
+ 2
∂u

∂x

∂u

∂Y

)

− 2
( ∂u

∂Y

)2 ∂2u

∂x∂Y

]

+

(3.9)

+
∂u

∂Y

( ∂3u

∂Y 2∂t
+ v
∂3u

∂Y 3
+ u

∂3u

∂x∂Y 2
+
∂u

∂x

∂2u

∂Y 2
−
∂u

∂Y

∂2u

∂x∂Y

)}

The boundary conditions for the problem are

u(x, 0, t) = 0 v(x, 0, t) = 0

u(x,∞, t) = U(x, t)
∂u

∂y
(x,∞, t) = 0

(3.10)

where U(x, t) is the velocity outside the boundary layer. For m = 0, the
equations represent the boundary layers of the standard second grade fluid,
and for ε1 = 0 the equations represent the boundary layers of the power-law
fluid.

4. Similarity solutions

In this section, the similarity solutions to equations (3.8) and (3.9) will be
presented. Equations (3.8) and (3.9) have the similarity transformation

ξ = ν−
1

m+2 t
m−1

m+2x−
m

m+2Y u =
x

t
f(ξ)

v = ν
1

m+2 t−
2m+1

m+2 x
m

m+2 g(ξ) U = λ
x

t

(4.1)

where λ is a constant. By substituting equation (4.1) into equations (3.8),
(3.9) and (3.10) and rearranging, we finally obtain the corresponding ordinary
differential equations

f −
m

m+ 2
ξf ′ + g′ = 0 (4.2)
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−f +
m− 1

m+ 2
ξf ′ + f2 −

m

m+ 2
ξf ′ + gf ′ = (m+ 1)|f ′|m−1f ′f ′′ +

+k1|f
′|m−1

[

−2f ′f ′′ +
m2 −m

m+ 2
ξf ′′
2
+ 2(m+ 1)ff ′f ′′ −

m2

m+ 2
ξff ′′

2
+

(4.3)

+mgf ′′
2
− 2
2m+ 1

m+ 2
f ′
3
+ gf ′f ′′′ −

m

m+ 2
ξff ′f ′′′ +

m− 1

m+ 2
ξf ′f ′′′

]

− λ+ λ2

where the primes denote differentiation with respect to the similarity varia-
ble ξ, and k1 = ε1/ρνt is the dimensionless second grade parameter.

Note that one of the problems in dealing with non-Newtonian boundary
layers is the paucity of boundary conditions. The problem arises in the diffe-
rential and rate type of fluids and is discussed in detail by Rajagopal et al.
(1986). In this problem, the last boundary condition is added to the set. Under
the selected similarity transformations, the appropriate boundary conditions
become

f(0) = 0 g(0) = 0

f(∞) = λ f ′(∞) = 0
(4.4)

By using a special finite difference scheme, equations (4.2) and (4.3) are inte-
grated subject to boundary conditions (4.4). In Figs. 1a,b, functions f and g
related to the x and Y component of the velocities are drawn for various
values of k1. An increase in this coefficient results in a decrease in f but
an increase in g. The boundary layer thickens as k increases. In Figs. 2a,b,
the shear thickening case (m > 0) is presented. Numerical results for various
power-law index m are plotted for f(0) = λ = 1. In Fig. 2a, the f function
and in Fig. 2b the g function is plotted for m values 0, 0.2, 0.4. Both func-
tions which are related to the velocity components are observed to increase
with increasing m. It is interesting to note that the velocity profiles are in-
tersected with each other in the near-wall region as highlighted by insertion
of Fig. 2a, where these intersections are found to occur at about ζ = 1.7 for
the specified parameters. Figure 2a shows that the boundary layer thickness
decreases as m increases for 1.7 < ζ <∞. For the shear thinning values (i.e.
m < 0), the similarity functions related to the x and Y velocity components
are given in Figs. 3a,b, respectively. Figure 3a shows that the x component
of the velocity decreases as m decreases for 1.8 < ζ < ∞. It concludes that
the boundary layer becomes thinner with increasing m for 1.8 < ζ < ∞.
In Fig. 3b, the Y component of the velocity is observed to increase with
increasing m.
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Fig. 1. Influence of the second grade coefficient k1 on the similarity function related
to the x-component velocity (a) and the Y -component velocity (b) (m = 0.1)

Fig. 2. Influence of the positive power-law index m on the similarity function
related to the x-component velocity (a) and the Y -component velocity (b) (k1 = 1)

Fig. 3. Influence of the negative power-law index m on the similarity function
related to the x-component velocity (a) and the Y -component velocity (b) (k1 = 1)
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5. Conclusions

In this study, two-dimensional unsteady boundary layer equations for a power-
law fluid of the second grade which can exhibit shear thinning/thickening
behaviour for classical boundary conditions are derived. The power-law equ-
ations and second grade equations can be retrieved from the given equations
as special cases. Using suitable transformations, the governing equations are
transformed into nonlinear ordinary differential equations and are solved nu-
merically by a finite difference scheme approximation. The effect of power-law
index m and second grade coefficient on the solutions is investigated. An in-
crease in the second grade coefficient leads to a thicker boundary layer. The
qualitative behaviour of boundary layers of the modified second grade flu-
id looks similar to that of the power law fluid for shear thinning and shear
thickening cases.
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Numeryczne rozwiązania równań niestacjonarnej warstwy przyściennej

uogólnionego płynu drugiego rzędu

Streszczenie

W pracy omówiono równania niestacjonarnej i nieściśliwej warstwy przyściennej
zmodyfikowanego modelu płynu drugiego rzędu typu potęgowego. Rozważany model
stanowi kombinację koncepcji płynu drugiego rzędu i opisu potęgowego, która po-
zwala na odzwierciedlenie zjawiska występowania naprężeń normalnych w płynie oraz
efektu zmiany grubości warstwy pod wpływem naprężeń stycznych. Sformułowano
równania ruchu dla przepływu dwuwymiarowego i na ich podstawie wyprowadzo-
no równania warstwy przyściennej. Używając przekształcenia przez podobieństwo,
uproszczono równania warstwy do układu nieliniowych równań różniczkowych zwy-
czajnych. Następnie równania te scałkowano numerycznie, stosując klasyczne warunki
brzegowe. W dalszej części przeanalizowano wpływ wykładnika potęgowego modelu
oraz współczynnika drugiego rzędu na zachowanie się płynu w warstwie przyściennej.
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