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In this paper, a technique of dynamic stability analysis proposed for the
conventional laminated structures is extended to activated shape memo-
ry alloy hybrid rotating structures axially loaded by a time-dependent
force. In the stability study, the hybrid shaft is treated as a thin-walled
symmetrically laminated beam containing both the conventional fibers,
and the activated shape memory alloy fibers parallel to the shaft axis.
The stability analysis method is developed for distributed dynamic pro-
blems with relaxed assumptions imposed on solutions. The weak form of
dynamical equations of the rotating shaft is obtained using Hamilton’s
principle. We consider the influence of activation through the change of
temperature on the stability domains of the shaft in the case when the
angular velocity is constant. The force stochastic component is assumed
in the form of ergodic stationary processes with continuous realisations.
The study of stability analysis is based on examining properties of Liapu-
nov’s functional along a weak solution. Solution to the problem is presen-
ted for an arbitrary combination of simply supported and/or clamped
boundary conditions. Formulas defining dynamic stability regions are
written explicitly.

Key words: weak equation, rotating shaft, thermal activation, almost
sure stability analysis

1. Introduction

The dynamic stability of isotropic elastic simply supported shafts rotating
with a constant speed has been studied for several years (cf., Bishop, 1959;
Parks and Pritchard, 1969; Tylikowski, 1981). The increased use of advanced
composite materials in various applications has caused a great research effort
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in the structural dynamic and acoustic analysis of composite materials. Com-
posite materials find an increased range of applications for high-performance
rotating shafts (e.g., see Napershin and Klimov, 1986; Bauchau, 1983; Song
and Librescu, 1997). The uniform stability of laminated shafts modelled as
composite shells rotating with a constant angular velocity under a combi-
ned axisymmetric loading was investigated by Tylikowski (1996). Thin-walled
standard angle-ply laminated tubes meet relatively easy the requirements of
torsional strength and stiffness but are more flexible to bending and have spe-
cific elastic and damping properties which depend on the system geometry,
physical properties of plies, and on the laminate arrangement. Such systems
are also sensitive to lateral buckling. Using the Liapunov method, Pavlović et
al. (2008) investigated the effect of rotary inertia of the shaft cross-section on
almost sure stability of a rotating viscoelastic shaft.

Shape Memory Alloy (SMA) hybrid composites are a class of materials
capable of changing both their stiffnesses through the application of in-plane
loads and their elastic properties. The stiffness modification occurs as a result
of the thermally induced martensite phase transformation of SMA fibers which
are embedded in standard laminated composite structures. Young’s modulus
of the nitinol (nickel-titanium alloys), which is an example of such a material,
increases 3 to 4 times when the temperature changes from that below Mf (i.e.
in the martensite phase) to that above Af (i.e. in the austenite phase) (Cross
et al., 1970). The damping of vibrations in the SMA due to internal friction
exhibits also important characteristics. The low-temperature martensic pha-
se is characterised by a large damping coefficient while the high-temperature
austenic phase shows a low damping coefficient. The decrease ratio is ap-
proximately equal to 1 : 10. Comprehensive studies of eigen-frequencies and
eigen-functions of SMA hybrid adaptive panels with uniformly and piecewise
distributed actuation are presented in papers by Anders and Rogers (1991),
Baz et al. (1995), Krawczuk et al. (1997).

One of the possible ways towards improving dynamic properties and smo-
othing rotary motion of shafts consists in the implementation of control and
semiactive control methodology. The ones considered are based on the incor-
poration of adaptive materials such as piezoceramics (Przybyłowicz, 2004) and
shape memory alloys (Tylikowski, 2005, 2007) into the structures. Stability of
rotating shafts made of a functionally graded material with piezoelectric fibers
was examined by Przybyłowicz (2005).

The present work investigates dynamic stability of thin-walled shafts ro-
tating with a constant angular velocity and subjected to an axial force having
fluctuations from the constant average value. The time-dependent force com-
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ponent introduces new terms to dynamic equations and lead to the parametric
excitation. In this paper, a technique of dynamic stability analysis proposed
for conventional laminated structures is extended to activated shape memory
alloy hybrid rotating structures. The hybrid elements are treated as a thin-
walled symmetrically laminated beam containing both the conventional (e.g.,
aramid, graphite or glass) fibers, arbitrarily oriented to the laminate coordina-
te axis, and the activated shape memory alloy fibers parallel to the shaft axis.
We will consider the influence of activation through the change of temperatu-
re on the stability domains of the shaft in the case when the force stochastic
component is an ergodic stationary process with continuous realisations. The
structure buckles dynamically when the axial parametric excitation becomes
so large that the structure does not oscillate about the unperturbed state de-
scribed by w, and a new increasing mode of oscillations occurs. In order to
estimate the perturbed solutions of dynamic equations, we introduce a me-
asure of distance ‖ · ‖, of the solution to dynamic equations with nontrivial
initial conditions from the trivial solution. We say that the trivial solution
w = 0 of the dynamic equations is almost sure asymptotically stable (cf. Ko-
zin, 1972) if the measure of distance between the perturbed solution and the
trivial solution, ‖ · ‖, satisfies the condition

P ( lim
t→∞
‖w(t, ·)‖ = 0) = 1 (1.1)

where P denotes the probability. Using the appropriate energy-like Liapunov
functional, the sufficient stability conditions for the almost sure asymptotic
stability of the shaft equilibrium are derived. Finally, the influence of SMA
activation on stability regions is examined. The action of distributed control-
lers is reduced, in the first approximation, to bending moments and transverse
forces distributed on the actuator edges. The fourth order differential opera-
tors are present in classical strong dynamic equations. The use of the Heaviside
generalised functions in an analytical description of loading leads to irregu-
larities. In order to avoid the irregular terms resulting from differentiation of
the force and moment terms, the dynamic equations are written in a weak
form. The weak form of systems contains only the second order derivative of
displacements, and there is no need to differentiate the terms describing the
loading.
The first analysis of the stability of simply supported or clamped rectan-

gular plates in a weak formulation was due to Tylikowski (2008). The problem
here is focused on the stability analysis method of the equilibrium state of be-
ams and plates with relaxed assumptions imposed on solutions. We consider
dynamical systems described by partial differential equations that include time
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dependent coefficients implying parametric vibrations. The Hamilton principle
is used to derive the weak form of rotating beam dynamic equations. Assu-
ming the Lagrangian as a difference of kinetic and elastic energy, and taking
the viscotic force and the destabilising force as external ones, we obtain the
weak form of the equations. Due to elimination of the fourth order deriva-
tive, the solutions of weak equations are not so smooth as solutions of the
strong one. The classical Liapunov technique for stability analysis of continu-
ous elements is based on choosing or generating a functional which is positive
definite in the class of functions satisfying boundary conditions of a structure.
The time-derivative of Liapunov functional has to be negative in some defined
sense. If the constant component of the axial force is smaller than the Euler
critical force, the square root of energy-like Liapunov functional is assumed
as a measure of distance between the disturbed solutions and the trivial one.
Substituting functions related with beam displacements and velocities as the
test functions, yields indentities making algebraic transformations of the func-
tional time-derivative easy. The transformations are performed without the
previous discretisation. Sufficient stability conditions of the compressed beam
are derived for commonly applied boundary conditions.

2. Dynamic equations

The shaft, treated as a thin-walled symmetrically laminated beam, contains
both the conventional (e.g. graphite or glass) fibers oriented at +Θ and −Θ
to the shell axis and the activated shape memory alloy fibers parallel to the
shell axis. The shaft rotates with a constant angular velocity ω.
By forcing the martensite austenite transformation of the SMA layer, we

modify the basic mechanical properties such as Young’s modulus and the in-
ternal damping coefficient. The shaft of length ℓ is assumed to have a constant
circular cross-section of mean radius a, and thickness h without initial geo-
metrical imperfections. The mean density is denoted by ρ and the area and
the geometrical moment of inertia of the shaft cross-section are denoted by
A = 2πAh and J = πa3h, respectively. A viscous model of external damping
with a constant proportionality coefficient be is assumed to describe the dis-
sipation of the shaft energy. The beam-like approach due to Bauchau (1981)
is used in order to derive the shaft bending stiffness

EJ =
(
A11 −

A212
A22

)
πa3 (2.1)
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where Aij , i, j = 1, 2 denote in-plane stiffnesses of the thin-walled beam. More
sophisticated considerations of thin-walled composite beams were performed
by Song and Librescu (1990). Displacements of the center shaft line in the
movable rotating coordinates are denoted by u and v. Introducing the di-
mensionless time with the time scale kt = ℓ2

√
ρA/EJ and the dimensionless

coordinate divided by ℓ, we obtain a shaft model with the unit mass density,
unit bending stiffness, dimensionless angular velocity Ω = ωkt, and modified
damping coefficients of external and internal damping βe = bekt, βi = bikt,
respectively. Starting from the rotating shaft without damping and axial lo-
ading, we write the action integral as a time integral of the difference between
kinetic and bending energy

A(w) = 1
2

t∫

to

1∫

0

[(u,t +Ωv)2 + (v,t −Ωu)2 − (u2,xx + v2,xx)] dx dt (2.2)

where w = [u, v]⊤ ∈ W = [H2b (0, 1)]2, the index b denotes the set of func-
tions satisfying the essential boundary conditions, the time interval (t, to) is
arbitrarily chosen. Consider

ŵ = w + ǫθ =

[
u(t, x)
v(t, x)

]

+ ǫ

[
η1(t)Φ(x)
η2(t)Ψ(x)

]

(2.3)

where η(t) = η(to), θ ∈ W. According to Hamilton’s principle, of motion the
shaft must have a stationary value to the action integral, therefore

d

dǫ
A(u+ ǫθ)

∣∣∣
ǫ=0
= 0 (2.4)

Using equation (2.2) in equation (2.3) and integrating the time-derivatives
of functions η1 and η2, by parts with respect to time we obtain dynamic
equations of the shaft in a weak form

∀Φ
1∫

0

[(u,tt −Ω2u+ 2Ωv,t)Φ+ u,xxΦ,xx] dx = 0

(2.5)

∀Ψ
1∫

0

[(v,tt −Ω2v − 2Ωu,t)Ψ + v,xxΨ,xx] dx = 0

Adding the internal viscous damping with the modified coefficient βi, the
external viscous damping with the modified coefficient βe and the axial force
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fo+f(t) as external works, the shaft dynamic equations can be written in the
weak form as follows

∀Φ
1∫

0

[(u,tt −Ω2u+ 2Ωv,t)Φ+ βe(u,t +Ωv)Φ+ βiu,tΦ+

+u,xxΦ,xx + (fo + f(t))u,xxΦ] dx = 0
(2.6)

∀Ψ
1∫

0

[(v,tt −Ω2v − 2Ωu,t)Ψ + βe(v,t −Ωu)Ψ + βiv,tΨ +

+v,xxΨ,xx + (fo + f(t))v,xxΨ ] dx = 0

where Φ, Ψ are arbitrary sufficiently smooth test functions satisfying essential
boundary conditions. There is no demand for the existence of derivatives higher
than the second order. As reported by Banks et al. (1993), the usual integration
by parts of the terms containing derivatives of the test functions with respect to
the variable x and the assumption of sufficient smoothness of the components
of shaft displacements lead to the commonly used strong formulation. The
shaft is assumed to be simply supported or clamped on its ends. Therefore,
the essential boundary conditions have the following form at its ends

u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) = 0 (2.7)

It means that the displacements of the shaft in supporting bearings are small
as compared with the displacements of a thin-walled flexible shaft. Weak linear
equations (2.6) have the trivial solution (equilibrium state) u = v = 0.

3. Stability analysis

In order to determine conditions of smooth shaft motion corresponding to the
Liapunov stability of the trivial solution w = 0, we choose the positive-definite
functional Liapunov as a sum of the modified kinetic and elastic energy of the
shaft (Tylikowski, 2007)

V =
1
2

1∫

0

[(u,t +Ωv + βu)2 + (u,t +Ωv)2 + (v,t −Ωu+ βv)2 +

(3.1)

+(v,t −Ωu)2 + 2(u2,xx + v2,xx)− 2fo(u2,x + v2,x)] dx
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where β = βi+βe. Functional (3.1) is positive-definite if the constant compo-
nent of the axial force fo fulfils the static buckling condition, i.e. is sufficiently
small. Therefore, the measure of distance of solutions with nontrivial initial
conditions from the trivial required in stability analysis can be chosen as a
square root of the functional ‖w‖ =

√
V . As trajectories of the solution to

equations (2.6) are physically realisable, the classical calculus is applied to
calculation of time-derivative of functional (3.1). Its time-derivative is given
by

dV

dt
=
1∫

0

[(u,t +Ωv + βu)(u,tt +Ωv,t + βu,t) + (u,t +Ωv)(u,tt +Ωv,t) +

+(v,t −Ωu+ βv)(v,tt −Ωu,t + βv,t) + (v,t −Ωu)(v,tt −Ωu,t) + (3.2)

+2(u,xxu,xxt + v,xxv,xxt)− 2fo(u,xu,xt + v,xv,xt)] dx

In order to avoid integration by parts in equations (3.2) and generation the
third and the fourth partial derivatives of displacements, we substitute 2u,t,
2Ωv, βu as the test functions in equation (2.6)1. Therefore, we have three
identities, respectively

1∫

0

[2(u,tt −Ω2u+ 2Ωv,t)u,t + 2βu2,t + 2βeΩvu,t + 2u,xxu,xxt +

+2(fo + f(t))u,xxu,t] dx = 0

1∫

0

[2Ω(u,tt −Ω2u+ 2Ωv,t)v + 2Ωβe(u,t +Ωv)v + 2Ωβiu,tv +

+2Ωu,xxv,xx + 2Ω(fo + f(t))u,xxv] dx = 0 (3.3)

1∫

0

[β(u,tt −Ω2u+ 2Ωv,t)u+ ββe(u,t +Ωv)u+ ββiu,tu+

+βu2,xx + β(fo + f(t))u,xxu] dx = 0

In a similar way we substitute 2v,t, 2Ωu, βv as the test functions in equation
(2.6)2

1∫

0

[2(v,tt −Ω2v − 2Ωu,t)v,t + 2βv2,t − 2βeΩuv,t +

+2v,xxv,xxt + 2(fo + f(t))v,xxv,t] dx = 0
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1∫

0

[2Ω(v,tt −Ω2u− 2Ωu,t)v + 2Ωβe(v,t −Ωu)u+ 2Ωβiv,tu+

+2Ωv,xxu,xx + 2Ω(fo + f(t))v,xxu] dx = 0 (3.4)

1∫

0

[β(v,tt −Ω2v − 2Ωu,t)v + ββe(v,t −Ωu)v + ββiv,tv +

+βv2,xx + β(fo + f(t))v,xxv] dx = 0

Subtracting identities (3.3), (3.4)1 and (3.4)3 from equation (3.2) and adding
identity (3.4)2 we obtain the following form

dV

dt
= −

1∫

0

{β(u2,t + v2,t) + β(u2,xx + v2,xx)− βfo(u2,x + v2,x) +

+(βe − βi)ω2(u2 + v2) + 2Ωβe(vu,t − uv,t) + (3.5)

+[(2u,t + βu)u,xx + (2v,t + βv)v,xx]f(t)} dx

After rewriting, we receive

dV

dt
= −βeV + U (3.6)

where the auxiliary functional U is known. Now, we look for a function χ
which satisfies the following inequality

U ¬ χV (3.7)

Substituting inequality (3.7) into equation (3.6) yields the first order differen-
tial inequality

dV

dt
¬ (χ− βe)V (3.8)

which implies

‖w(t, x)‖ ¬ ‖w(0, x)‖ exp
[
−
(
βe −

1
t

t∫

0

χ(τ) dτ
)
t
]

(3.9)

The ergodicity of the axial loading leads to the following almost sure stochastic
stability condition

Eχ(t) ¬ βe (3.10)
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where E denotes the mean value operator. It should be noticed that the way
to obtain equation (3.5) is purely algebraic contrary to systems described
by strong equations, where the derivation of stability conditions is based on
integrations by parts and manipulations with higher order partial derivatives.
Usually, the Liapunov stability analysis of shafts is performed for both ends
simply supported (cf. Bishop, 1959; Tylikowski, 1996). In order to extend
the field of possible applications, let us assume the following combinations of
boundary conditions: a) s-s, b) c-s, c) c-c, where s denotes the simply supported
end, and c denotes the clamped end.
In order to find χ effectively, we use the expansions of the shaft displace-

ments [
u(t, x)
v(t, x)

]

=
∞∑

n=1

Wn(x)
[
Sn(t)
Tn(t)

]

(3.11)

where Wn are the beam functions (cf. Graff, 1975) depending on the assumed
boundary conditions. In a similar way, velocities of transverse shaft motion
are given by [

u,t(t, x)
v,t(t, x)

]

=
∞∑

n=1

Wn(x)
[
Ṡn(t)
Ṫn(t)

]

(3.12)

Integrating, we have the following equality (Tylikowski, 2008)

1∫

0

W2n,xx dx = γnα2n
1∫

0

W2n,x dx

(3.13)
1∫

0

W2n,x dx =
α2n
γn

1∫

0

W2n dx

where αn is an eigen-value of the corresponding boundary problem and the
sequence {γn} is known. Due to the existence of even-order space derivatives
in functional (3.1) and in its time-derivative (3.5), the value of functionals can
be calculated as a sum of suitable quadratic terms

V =
∞∑

n=1

Vn U =
∞∑

n=1

Un (3.14)

where Vn and Un are calculated for a single term of expansions (3.11) and
(3.12). If χn, which satisfies a single term inequality, is known

dVn
dt
¬ (χn − βe)Vn (3.15)
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then the function χ can be effectively calculated

χ = max
n=1,2,...

χn (3.16)

Denoting κn = χn − βe and substituting the n-th terms of expansions (3.11)
and (3.12) into inequality (3.15), we obtain the second order quadratic inequ-
ality with respect to the four variables Ṡn, Sn, Ṫn, Tn

[
Ṡ2n + T

2
nΩ
2 + 2ṠnTnΩ +

1
2
β2S2n +

(
β − 2α

2
n

γn
f(t)
)
ṠnSn + Ṫ 2n + S

2
nΩ
2 +

−2ṪnSn +
1
2
β2T 2n +

(
β − 2α

2
n

γn
f(t)
)
ṪnTn +

(
α2n −

fo
γn

)
α2n(S

2
n + T

2
n)
]
κn +
(3.17)

+(Ṡ2n + Ṫ
2
n)β + 2βeΩ(ṠnTn − SnṪn) +

+
[
(βe − βi)Ω2 +

(
α2n −

fo
γn

)
α2n − β

2α2n
γn
f(t)
]
(S2n + T

2
n) ­ 0

After some reduction, we obtain an auxiliary matrix of quadratic form (3.17)




a b 0 d
b c −d 0
0 −d a b
d 0 b c



 (3.18)

where

a = κn + β b =
1
2
βκn −

2α2n
γn
f(t) d = Ω(βe + κn)

c = κn
[
α2n

(
α2n −

fo
γn

)
+Ω2 +

β2

2

]
+ βα2n

(
α2n −

fo
γn

)
+Ω2(βe − βi)−

βα2n
γn
f(t)

We recall Sylvester’s conditions for the positive-definiteness of matrix (3.18)

a > 0 ac− b2 > 0
a(ac− b2 − d2) > 0 (b2 + d2 − ac)2 > 0

(3.19)

As latest inequality (3.19)4 is satisfied, it is easy to notice that third Sylvester
inequality (3.19)3 is essential from the stability point of view. It is equivalent
to the elementary second order inequality with respect to κn

κ2n + 2βκn + 4
β2α2n(α

2
n − fo/γn)− β2iΩ2

β2 + 4α2n(α2n − fo/γn)
> 0 (3.20)
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which leads to the determination of κn and finally to the almost sure stability
condition from equations (3.16) and (3.10)

Eχ = E max
n=1,2,...

√
β4 + 4(β2 + α2nf(t)/γn)α2nf(t)/γn + 4Ω2β

2
i

β2 + 4α2n(α2n − fo/γn)
¬ β (3.21)

Estimating the limit behaviour of χn as n tends to ∞, we find the critical
value of angular velocity for a constant axial force fo

Ω2 <
(
1 +
βe
βi

)2
α21

(
α21 −

fo
γ1

)
(3.22)

The function χ in inequality (3.21) is random due to randomness of the axial
force f(t). Therefore, the probability distribution must be known in order to
calculate the average in equation (3.21).

4. Results

Numerical calculations based on formula (3.21) are performed for s-s boundary
conditions with the changing time-dependent component of the axial force
and the coefficient βe of external damping. A number of iterative steps are
performed in order to determine the value of βe. The dimensions of hybrid
shafts are: length ℓ = 1m, radius r = 0.04m, total thickness h = 0.004m.
The material data are given in Table 1.

Table 1. SMA hybrid shaft specification

Nitinol-Epoxy
Glass-
-Epoxy

Graphite-
-Epoxy

Material NiTi – 40%, Epoxy – 60%
activated unactivated

Density [kg/m3] 2350 2350 1790 1560
E11 [GPa] 41.93 19.31 53.98 211.0
E22 [GPa] 20.93 17.25 17.93 5.30
G12 [GPa] 7.54 6.43 8.96 2.60
ν12 0.25 0.25 0.25 0.25
βi 0.01 0.012 0.01 0.01

The shaft consists of seven layers of equal thickness: of two external lay-
ers with activated SMA fibers parallel to the shaft axis and of five internal
conventional layers symmetrically arranged with the lamination angle π/4.
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Thus, the laminate configuration can be uniquely defined by the following no-
tation: [0 / (π/4) / (−π/4) / (π/4) / (−π/4) / (π/4) /0]. We can calculate
the in-plane stiffnesses Aij (c.f. Whitney, 1987) and then also from Eq. (2.1)
the reduced Young modulus E of the beam-like cylindrical shell.
The main results are shown in Fig. 1. The figure compares the stochastic

stability domains in the plane (βe, σ2) for the zero and nearly critical axial
force. The critical variance of the time-dependent component of the axial force
strongly depends on the external damping coefficient βe. The time scale in the
activated and unactivated state is kt = 1.2697 · 10−2 s, kt = 1.0635 · 10−2 s,
respectively. An increase of angular velocity significantly decreases the stability
region. The thermal activation significantly increases the stability regions due
to increasing stiffness of the nitinol fibers. The influence of the shaft material
is not observed in Fig. 1 due to the dimensionless quantities.

Fig. 1. Boundaries of stability domains for zero and nearly critical axial force
components

5. Conclusions

A technique has been presented for the analysis of dynamic stability of an acti-
vated simply supported hybrid shaft rotating with a constant angular velocity.
The shaft consists of classical symmetrically angle-plied layers and symmetri-
cally laminated active plies with axially oriented SMA fibers. The dynamic
stability and the stochastic stability problem is reduced to the problem of po-
sitive definiteness of the auxiliary matrix. The explicit criteria derived in the
paper define stability regions in terms of geometrical and material properties,
lamination angle as well as constant values and variances of the axial force. For
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a constant axial force, the criterion asssumes a closed form of an algebraic ine-
quality. If the axial force is time-dependent, the almost sure stability criterion
has a form of a transcendental equation involving the axial force probability
distribution. Analytical results are presented to demonstrate how the thermal
activation affects critical parameters. The influence of fluctuation class (Gaus-
sian or harmonic) is not significant. The influence of boundary conditions on
stability domains is negligible when the constant component of the axial force
is small as compared with the critical loading.
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Słabe sformułowanie stabilności hybrydowych obracających się wałów
swobodnie podpartych i sztywnie utwierdzonych

Streszczenie

W pracy rozszerzono możliwości analizy stabilności układów ciągłych na obra-
cający się wał hybrydowy poddany czasowo zmiennej sile osiowej przy osłabionych
założeniach spełnianych przez rozwiązania. Kompozytowy wał hybrydowy obracają-
cy się ze stałą prędkością kątową traktowany jest jako cienkościenna belka zawierającą
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obok klasycznych włókien również włókna wykonane z materiału z pamięcią kształtu.
Słabą postać równań ruchu wału wyprowadzono z zasady Hamiltona. Rozpatrzony
jest wpływ aktywacji termicznej na obszar stabilości wału przy założeniu nie tylko
swobodnego podparcia obu końców wału, lecz również przy podparciu utwierdzonym
i mieszanym. Podczas wyprowadzania warunków stabilności korzysta się z badania
właściwości funkcjonału Lapunowa wzdłuż rozwiązania słabych równań ruchu wału.
Wyprowadzono jawną postać warunków stabilności.
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