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In this paper, we present discrete systems subjected to a generalised
specific load by a force directed towards to positive pole and a follower
force directed towards the positive pole. The critical load and the course
of the natural frequency in relation to the external load are determined.
Adequate relationships describing stability of the considered columns are
obtained taking into account potential energy of the systems (energetic
method) or total mechanical energy (vibration method). Geometrical
parameters of heads realising the load and rigidity of rotational springs
modelling the finite stiffness of structural constraints of the system are
taken into account.
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1. Introduction

1.1. Theoretical and numerical studies on the stability of discrete systems

The problem of stability of rod systems with a finite degrees of freedom
subjected to conservative loads was worked out by Roorda (1981). The critical
loads, at which the equilibrium position of system rods becomes unstable, we-
re determined for models with one or two degrees of freedom at the assumed
lengths of rigid elements of the systems and stiffnesses of structural constra-
ints. Research results of the influence of internal and external damping on
the stability of discrete systems with two rods subjected to non-conservative
loads were presented by Ziegler (1956), Herrman and Jong (1965, 1966), Ga-
jewski and Życzkowski (1972) and Gajewski (1972). Ziegler (1956) made in-
vestigations on the critical load of a double pendulum with viscoelastic joints
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subjected to the follower force. He stated that taking into account internal
friction in the considered model decreased the critical force in comparison to
the identical model without internal damping. Similar contributions were pro-
vided by Herrman and Jong (1965, 1966), where Ziegler’s model was analysed
with consideration given to the internal damping separately for the bottom
mounting joint and the upper joint (joint of rods) of the structure. Gajewski
and Życzkowski (1972) and Gajewski (1972) analysed stability of a two-rod
discrete system (Ziegler’s model) taking into account not only internal but also
external damping in the considered column. They stated and confirmed their
statement through numerical calculations that the external friction stabilizes
the system. The above described results were obtained for different lengths of
individual elements of the column, distributions of concentrated masses and
stiffnesses of joints modelling the finite stiffness of structural constraints of the
system.

Tomski and Szmidla (2004b) applied three methods to determine stability
of discrete columns with one degree of freedom: energetic method, vibration
method and inaccuracy method taking into account the eccentricity of force
application as well as pre-deflection of the column. Those methods were pre-
sented on the basis of elastic systems restrained to the foundation and loaded
by a vertical force.

The problem of stability of the discrete systems with one degree of freedom,
in which a pre-imperfection was studied, was considered by Thompson and
Hunt (1973), Elishakoff (1980) and Elishakoff et al. (1984, 1996). Thompson
and Hunt (1973) presented the effect of pre-deflection of the system on stability
of an infinitely rigid rod hinged at the base. At the free end, the rod was
propped by a horizontal spring with a linear characteristic. The direction of the
spring was permanently (parallel to the base), independently of displacement
of the system and the free end was loaded by the conservative force. Total
influence of pre-deflection of the column and the eccentricity of its loading
was presented for the system built as described above, but the direction of the
spring action was not parallel to the base.

Elishakoff et al. (1996) described the problem of influence of pre-
imperfection on the natural frequency of two discrete systems loaded by a
vertical force. The physical model of one of the columns stays in good agre-
ement with the system for which the effect of pre-deflection on its stability was
considered by Thompson and Hunt (1973). The second system was a modifi-
cation of the first one, where apart from the modelling of the spring, the ends
of the structure were hinged at the props. The props could shift in horizontal
and vertical directions.
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The model of a three-hinged system of two rigid rods with movement re-
strained by a spring with a non-linear characteristic was presented by Elisha-
koff (1980) and Elishakoff et al. (1984). The influence of loading, intensity of
changes in the pre-deflection and changes in the spring stiffness on the buckling
of the system and the range of natural frequency variations were analysed.

1.2. Specific load

Publications discussed in Section 1.1 refer to discrete slender systems sub-
jected to Euler’s loads (Timoshenko and Gere, 1961) or Beck’s loads (Beck,
1952; Bogacz and Janiszewski, 1986) which are divergence (Timoshenko and
Gere, 1961; Gajewski and Życzkowski, 1970; Leipholz, 1974; Ziegler, 1968) or
flutter (Beck, 1952; Bogacz and Janiszewski, 1986) systems, adequately. In
the scientific literature, there is lack of descriptions of discrete slender systems
of the divergence-pseudo-flutter type, subjected to the specific load (Tomski
and Szmidla, 2004a). Systems subjected to the above mentioned conservative
load generated by the generalised force directed towards the pole (Tomski et
al., 1994, 1996, 1998; Tomski and Szmidla, 2004a,c,d) and the follower force
directed towards the pole (Tomski et al., 1998, 2004; Tomski and Podgórska-
Brzdękiewicz, 2006a,b; Tomski and Szmidla, 2004a,c), while the pole could be
positive or negative, are taken into account. The considered cases of the speci-
fic load, defined by Tomski and Szmidla (2004a), combine certain elements of
the generalised load (Gajewski and Życzkowski, 1988; Kordas, 1963), follower
load (Beck, 1952; Bogacz and Janiszewski, 1986) and a load by a force direc-
ted towards the pole (Timoshenko and Gere, 1961; Gajewski and Życzkowski,
1970) (see Fig. 1). In the case of loads directed towards the positive pole, the
direction of the external force passes through the fixed point located at the
in undeflected axis of the column below its free end (Tomski and Szmidla,
2004a). In the case of a load directed towards the negative pole, the discussed
point lies above the free end of the system. The analysed loading is realised by
loading and receiving heads built of linear elements (Tomski et al., 1994, 1995,
1996, 1998; Tomski and Szmidla, 2004a,c) or elements with a circular outline
(constant curvature) (Tomski and Podgórska-Brzdękiewicz, 2006a,b; Tomski
and Szmidla, 2004a,c,d; Tomski et al., 2004).
The specific load as the generalised load with a force directed towards the

positive pole was first presented by Tomski et al. (1994). Then, in the work by
Tomski et al. (1995), the influence of the generalised load on the stability and
vibration of a flat frame built of a vertical column and a horizontal bolt was
discussed. The obtained so far results of numerical and experimental compu-
tations for slender continuous systems (columns, frames) (Tomski et al., 1995,
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Fig. 1. Diagram showing the origin of nomenclature of the specific load (Tomski and
Szmidla, 2004a,d)

1996, 1998, 2004; Tomski and Podgórska-Brzdękiewicz, 2006a,b; Tomski and
Szmidla, 2004a,c,d) confirmed the results of theoretical examinations on the
determined boundary conditions and solutions to the boundary value problem
(taking into account the energetic and vibration methods). An appropriate
selection of geometrical and physical parameters of the heads made it possi-
ble to qualify the considered systems to one of the two types: divergent or
divergence-pseudo-flutter one.
The theoretical investigations presented in this paper are aimed at a ma-

thematical description of discrete systems loaded by the generalised load with
a force directed towards the positive pole (A) and with a follower force direc-
ted towards the positive pole (B). The problem of stability of the considered
systems is solved by applying two methods (see Tomski and Szmidla, 2004b;
Ziegler, 1968):

• energetic method (static criterion). It relies on searching for the load at
which the total potential energy gets no longer positively determined,

• vibration method (kinematic criterion). It relies on searching for the load
at which free movement becomes no longer limited.

The considered columns are discrete systems, where the finite stiffness of struc-
tutal constraints, modelled by rotational springs, is taken into account. The
load is realised by loading and receiving heads built of elements with a circular
outline. The heads are real structures applied in the experimental research on
continuous systems.
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2. A system loaded by the generalised load with a force directed
towards the positive pole (system A)

2.1. Physical model of the system

In Fig. 2, the physical model of the considered system is presented. The
system is loaded by the generalised load with a force directed towards the
positive pole. The system is composed of three rods with lengths l1, l2, l3,
connected by springs with the rotational rigidity c2, c3. The elasticity of the
system mounting is defined as c1. The load of the considered structure is
realised by a specially designed head (Tomski and Szmidla, 2004a,c,d). The
loading head is characterised by a constant radius of curvature R, 1©.

Fig. 2. Physical model of the column loaded by the generalised load with a force
directed towards the positive pole

The head receiving the load, 2©, is described by a constant radius of cu-
rvature r (r ¬ R). In the case of the loading and receiving head, the friction
and inertia forces have not been taken into account, on which assumption
the direction of the loading force is passing through the constant point O1
(the centre of curvature of the head receiving the load) and the constant po-
int O (the centre of curvature of the head exerting the load 1©), placed at the
distance R from the free end of the structure.
Head 2© is rigidly connected to the rod with l3 in length. Concentrated

masses m2 and m3 are the reduced masses of the rods with lengths l1, l2.
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The loading and receiving elements of heads as well as rods of the system are
assumed to be infinitely rigid.

2.2. Mechanical energy of the system

The relationships following from the geometry of the loading and receiving
heads and from the direction of the external loading force are specified to
determine the potential energy. The system is described by three variables
ϕi(t) (i = 1, 2, 3). On the basis of Fig. 2 one can write:
— for the loading head

y0 = (R− r) sin β y = y0 + r sinϕ3 β + ϕ = ϕ3 (2.1)

— for the rods of the system, due to equality of longitudinal displacements

y = l1 sinϕ1 + l2 sinϕ2 + l3 sinϕ3 (2.2)

hence
y0 = l1 sinϕ1 + l2 sinϕ2 + (l3 − r) sinϕ3 (2.3)

The longitudinal displacement of the free end of the column ∆ and the displa-
cement ∆1 resulting from a change of the point of application of the external
force P towards the free end of the structure, are also determined

∆ = l1(1− cosϕ1) + l2(1− cosϕ2) + l3(1− cosϕ3)
(2.4)

∆1 = r(cosβ − cosϕ3)

On the basis of the above conditions, the components of potential energy are
determined as follows:
— energy of elastic strain

V1 =
1
2
c1ϕ
2
1 +
1
2
c2(ϕ2 − ϕ1)2 +

1
2
c3(ϕ3 − ϕ2)2 (2.5)

— potential energy of a component of the vertical force P

V2 = −P (∆−∆1) =
(2.6)

= −P [l1(1− cosϕ1) + l2(1− cosϕ2) + l3(1− cosϕ3)− r(cos β − cosϕ3)]

— potential energy of a component of the horizontal force P

V3 =
P

2
sin β(y0 + r sin β) (2.7)
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The total kinetic energy T is a sum of the kinetic energy of the m2 and
m3 masses

T = T1 + T2 =
m2

2
l21

(∂ϕ1

∂t

)2
+
m3

2

(

l1
∂ϕ1

∂t
+ l2
∂ϕ2

∂t

)2
(2.8)

where ϕi = ϕi(t).
The relationships which determine the parameters describing stability of

the considered structure are found on the basis of the presented energy de-
scription.

2.3. Stability and free vibrations of the column

Appropriate expressions for stability and free vibrations of the considered
column subjected to the generalised load by the force directed towards the
positive pole are presented with small displacements of the structures assumed,
that is when sinϕi = ϕi, sin β = β. The cosine function is expanded in power
series taking into account only its first two terms

cosϕi = 1−
ϕ2i
2

cosβ = 1−
β2

2
(2.9)

The dimensionless quantities are additionally considered in dependences (2.5)-
(2.7) describing the components of potential energy

l∗i =
li

l
(i = 1, 2, 3) P ∗ =

Pl

c2
c∗1 =

c1

c2

c∗3 =
c3

c2
R∗ =

R

l
r∗ =

r

l

(2.10)

where l is the total length of the system.
For the given assumptions, the potential energy takes the form

V (ϕi) = V1 + V2 + V3 =
1
2
c2

{

c∗1ϕ
2
1 + (ϕ2 − ϕ1)

2 + c∗3(ϕ3 − ϕ2)
2 +
(2.11)

−2P ∗
[

l∗1
ϕ21
2
+ l∗2
ϕ22
2
+ (l∗3 − r

∗)
ϕ23
2

]

+ 2P ∗r∗(ϕ23 − β
2) + P ∗R∗β2

}

2.3.1. Stability of the system

Taking into account the condition describing the equality of longitudinal
displacements and arising from Eqs. (2.1) and (2.2), one can write

β =
l∗1ϕ1 + l

∗

2ϕ2 + (l
∗

3 −R
∗)ϕ3

R∗ − r∗
(2.12)



880 L. Tomski, J. Szmidla

Considering the above equation, potential energy (2.11) takes the form

V (ϕi) =
1
2
c2

{

c∗1ϕ
2
1 + (ϕ2 − ϕ1)

2 + c∗3(ϕ3 − ϕ2)
2 +

(2.13)

−2P ∗
[

l∗1
ϕ21
2
+ l∗2
ϕ22
2
+ (l∗3 − r

∗)
ϕ23
2

]

+
P ∗

R∗ − r∗
[l∗1ϕ1 + l

∗

2ϕ2 + (l
∗

3 −R
∗)ϕ3]2

}

To determine the parameters corresponding with stability of the considered
system, essential relationships are specified taking into account the necessary
condition for the existence of minimum of the total potential energy

∂V (ϕi)
∂ϕi

= 0 (2.14)

Taking into account relationships (2.13) and (2.14), the following system
of equations is obtained

[din][ϕi] = 0 n = 1, 2, 3 (2.15)

while

d11 = 1 + c∗1 − P
∗l∗1 +

P ∗l∗21
R∗ − r∗

d12 = d21 =
P ∗l∗1l

∗

2

R∗ − r∗
− 1

d22 = 1 + c∗3 − P
∗l∗2 +

P ∗l∗22
R∗ − r∗

d13 = d31 =
P ∗l∗1(l

∗

3 − r
∗)

R∗ − r∗

d23 =
P ∗l∗2(l

∗

3 − r
∗)

R∗ − r∗
d33 =

P ∗l∗2(l
∗

3 − r
∗)

R∗ − r∗
− c∗3

d33 = c∗3 − P
∗(l∗3 − r

∗) +
P ∗(l∗3 − r

∗)2

R∗ − r∗

(2.16)

Due to homogeneity of the system of Eq. (2.15), the critical parameter of the
load is determined considering that the matrix determinant din is set to zero.
The results of numerical computations of stability of the considered system
are presented in Fig. 3. They are limited to chosen parameters of the system
related to geometry of the loading and receiving heads, length of the column
rods, chosen rigidity of the springs connected to the rods and rigidity of the
prop.
The change of the critical parameter of the load P ∗c was determined for

four values of the parameter ∆r∗ (∆r∗ = R∗ − r∗) with a change in the
radius R∗ of the loading head in the range R∗ ∈ (R∗(j′), 1), j = 1, . . . , 4.
Each curve is characterised by the presence of the maximum critical load
at the considered values of the parameter R∗. In a particular case, when
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Fig. 3. Changes of the critical parameter of the load P ∗c in relation to R
∗ within

R∗ ∈ (R∗(j′), 1) for the following values of the parameter ∆r
∗: 1 – ∆r∗ → 0,

2 – ∆r∗ = 0.1, 3 – ∆r∗ = 0.2, 4 – ∆r∗ = 0.3

R∗ = r∗ (curve 1) the course of changes in the critical parameter of the load
corresponds to this parameter for the column loaded by the follower force
directed towards the positive pole (see Tomski et al., 1998, 2004; Tomski and
Podgórska-Brzdękiewicz, 2006b; Tomski and Szmidla, 2004c). Additionally,
points 2A, 3A, 4A, fulfilling r∗ = l∗3, determine the critical force for the column
loaded by the force directed towards the positive pole (see Timoshenko and
Gere, 1961; Gajewski and Życzkowski, 1970), while point (1′′) determine the
critical load for the system characterised by a hinged mounting at the free end
(R∗ = r∗ = l∗3) – the case of Euler’s load (Timoshenko and Gere, 1961). The
load of the system cannot be carried out within the range R∗ ∈ (0, R∗(j′), 1).
It is due to the design of the head realising the load (R∗ > r∗).

2.3.2. Free vibrations

The Lagrange equations (Cannon, 1967; Goldstein, 1950) are taken into
account to determine equations of motion of the considered system in the
case of the vibration method applied. Considering potential energy (2.13) and
kinetic energy (2.8), the following relationships are obtained:
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m2l
∗2
1 l
2

c2
(1 + γ)ϕ̈1 +

m2l
∗

1l
∗

2l
2γ

c2
ϕ̈2 +

(

1 + c∗1 − P
∗l∗1 +

P ∗l∗21
R∗ − r∗

)

ϕ1 +

+
( P ∗l∗1l

∗

2

R∗ − r∗
− 1
)

ϕ2 +
[P ∗l∗1(l

∗

3 − r
∗)

R∗ − r∗

]

ϕ3 = 0

m2l
∗

1l
∗

2l
2γ

c2
ϕ̈1 +

m2l
∗2
2 l
2γ

c2
ϕ̈2 +

( P ∗l∗1l
∗

2

R∗ − r∗
− 1
)

ϕ1 + (2.17)

+
(

1 + c∗3 − P
∗l∗2 +

P ∗l∗22
R∗ − r∗

)

ϕ2 +
[P ∗l∗2(l

∗

3 − r
∗)

R∗ − r∗

]

ϕ3 = 0

(P ∗l∗1(l
∗

3 − r
∗)

R∗ − r∗

)

ϕ1 +
(P ∗l∗2(l

∗

3 − r
∗)

R∗ − r∗
− c∗3

)

ϕ2 +

+
[

c∗3 − P
∗(l∗3 − r

∗) +
P ∗(l∗3 − r

∗)2

R∗ − r∗

]

ϕ3 = 0

while

d

dt

( ∂T

∂ϕ̇1

)

= (1 + γ)m2l21ϕ̈1 +m2l1l2γϕ̈2
(2.18)

d

dt

( ∂T

∂ϕ̇2

)

= m2l1l2γϕ̈1 +m2l22γϕ̈2
d

dt

( ∂T

∂ϕ̇3

)

= 0

and

ϕ̈i =
∂2ϕi

∂t2
γ =
m3

m2
(2.19)

The system of equations (2.17) after separation of variables

ϕi(t) = Φi sin(ωt) (2.20)

where ω is the frequency of free vibrations, makes it possible to obtain a
transcendental equation describing of frequency of free vibrations Ω in relation
to the load P ∗, where

Ω =
m2l
2ω2

c2
(2.21)

The course of curves in the plane P ∗-Ω for given geometrical and physical
parameters of the column is presented in Fig. 4. Curves 1 and 3 present the
change of the frequency of free vibrations of the column in relation to the
function of external load, adequately: for the system loaded by the force di-
rected towards the positive pole (curves 3) and follower force directed towards
the positive pole (curves 1). The critical load for each eigenvalue is determi-
ned for Ω = 0. The maximum values of the load parameter are obtained for
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the column loaded by the follower force directed towards the positive pole.
The course of presented curves is characteristic for systems of the divergence
pseudo-flutter type.

Fig. 4. Curves in the plane: load P ∗ – frequency of free vibrations Ω for the
following values of the parameter ∆r∗: 1 – ∆r∗ → 0, 2 – ∆r∗ = 0.1, 3 – ∆r∗ = 0.2,

4 – ∆r∗ = 0.3

3. The system loaded by the follower force directed towards the
positive pole (system B)

3.1. Realization of the load by the follower force directed towards the
positive pole

The realisation of the load of the discrete system by a force directed to-
wards the positive pole (see Timoshenko and Gere, 1961; Gajewski and Życz-
kowski, 1970) is presented in Fig. 5a. It is the load applied to the free end
of the column, where the direction of action passes through the constant po-
int O located on the non-deformed axis of the column, lying below its free end.
Beck’s load (follower one) (see Beck, 1952; Bogacz and Janiszewski, 1986) –
it is the load by a concentrated force (Fig. 5b), whose direction is tangential
to the deflection angle of the free end of the column. The direction line of the
force action crosses the non-deformed axis of the column at different points
O1, O2. The systems presented in Figs. 5a and 5b have three degrees of fre-
edom. Connecting the features of the above systems (Tomski et al., 1998, 2004;
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Tomski and Podgórska-Brzdękiewicz, 2006a,b; Tomski and Szmidla, 2004a,c)
made structures (compare Fig. 1) for loading the columns, which realise the
load by the follower force directed foward the positive pole. This is a load by
a concentrated force. Its direction of action coincides with the tangent to the
free end of the column and passes through a constant point (pole – point O)
placed on the non-deformed axis of the column below its free end. The system
presented in Fig. 5c has two degrees of freedom because the follower force is
directed towards the pole, what takes away one degree of freedom. This will
be proved in the further part of the paper.

Fig. 5. Realisation of the load by the follower force directed towards the positive
pole; (a) load by the force directed towards the positive pole, (b) follower load
(Beck’s one), (c) load by the follower force directed towards the positive pole

3.2. Physical model of the system

The above presented structure (Fig. 6) loaded by the follower force direc-
ted towards the positive pole is identically built as the system subjected to
the generalised load by the force directed towards the positive pole (Fig. 2),
concerning rods of the system, concentrated masses m2 and m3, springs mo-
delling the finite rigidity of structural nodes of the column and its mounting
rigidity. The difference relies on the design of receiving head 2© (see Tomski et
al., 2004; Tomski and Szmidla, 2004a,c), whose constant radius of curvature r
has the same value as the radius of curvature of loading head 1©. As a result,
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the direction of the external force P passes through the constant point O lo-
cated at the distance r = R from the free end of the column. As in the case of
the previous system, it is assumed that the elements of loading and receiving
heads and rods of the system are infinitely rigid.

Fig. 6. Physical model of the column loaded by the follower force directed towards
the positive pole

3.3. Potential energy of the system

For the presented physical model of the column, considering three varia-
bles ϕi(t), appropriate relationships for the loading head and rods of the sys-
tem take form

y = R sinϕ3 y = l1 sinϕ1 + l2 sinϕ2 + l3 sinϕ3 (3.1)

The longitudinal displacement ∆ of the free end of the column stays in good
agreement with relationship (2.4)1. The components of potential energy for
the thus defined dependences are:
— potential energy of the component of the vertical force P

V2 = −P∆ = −P [l1(1− cosϕ1) + l2(1− cosϕ2) + l3(1 − cosϕ3)] (3.2)

— potential energy of the component of the horizontal force P

V3 =
P

2
y sinϕ3 =

P

2
sinϕ3[l1 sinϕ1 + l2 sinϕ2 + l3 sinϕ3] (3.3)

where ϕi = ϕi(t).
The elastic strain energy V1 is defined by equation (2.5).
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3.4. Stability and free vibrations of the column

3.4.1. Stability of the system

Taking into account dimensionless quantities (2.10) in the total potential
energy, assumption of small displacements of structure (2.12) and a condition
resulting from equality of transverse displacement of the receiving head and
rods (3.1) in the form

ϕ3 =
l∗1ϕ1 + l

∗

2ϕ2

R∗ − l∗3
(3.4)

one can obtain the final form of potential energy of the considered column
described by two generalized coordinates ϕj (j = 1, 2)

V (ϕj) = V1 + V2 + V3 =
1
2
c2

{

c∗1ϕ
2
1 + (ϕ2 − ϕ1)

2 + c∗3[a1ϕ1 + (a2 − 1)ϕ2]
2 +

+P ∗(a1ϕ1 + a2ϕ2)[(l∗1 + a1l
∗

3)ϕ1 + (l
∗

2 + a2l
∗

3)ϕ2] + (3.5)

−P ∗[l∗1ϕ
2
1 + l

∗

2ϕ
2
2 + l

∗

3(a1ϕ1 + a2ϕ2)
2]
}

while

aj =
l∗j

R∗ − l∗3
(3.6)

In the case of the system loaded by the follower force directed towards the posi-
tive pole, derivatives of potential energy (3.6) over generalized coordinates ϕj
are represented by the following expressions

∂V

∂ϕ1
= c2[1 + c∗1 + a

2
1c
∗

3 − P
∗l∗1(1− a1)]ϕ1 +

+c2
{P ∗l∗1a2

2
+ a1
[

c∗3(a2 − 1) +
P ∗l∗2
2

]

− 1
}

ϕ2
(3.7)

∂V

∂ϕ2
= c2
{P ∗l∗1a2

2
+ a1
[

c∗3(a2 − 1) +
P ∗l∗2
2

]

− 1
}

ϕ1 +

+c2[1 + c∗3(a2 − 1)
2 + P ∗l∗2(a2 − 1)]ϕ2

which leads into a transcendental equation for the critical load in the form

4[1 + c∗1 + a
2
1c
∗

3 − P
∗l∗1(1− a1)][1 + c

∗

3(a2 − 1)
2 + P ∗l∗2(a2 − 1)] +

(3.8)

−{P ∗l∗1a2 + a1[2c
∗

3(a2 − 1) + P
∗l∗2]− 2}

2 = 0

The solution to the above equation is presented in Fig. 7, which illustra-
tes changes of the critical load parameter P ∗c in relation to the radius of the
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Fig. 7. Changes of the critical load P ∗c with respect to R
∗ in the range R∗ ∈ (0, 1)

for the following values of the parameter c∗: 1 – c∗ = 4.714, 2 – c∗ = 3, 3 – c∗ = 1,
4 – c∗ = 0.333, 5 – c∗ = 0.212

receiving head R∗ within R∗ ∈ (0, 1). Every curve of critical load changes,
determined for different relations between rigidities of structural nodes of the
system, is characterised by the maximum value of the critical load P ∗

c(k) (black
circles) at R∗ = R∗(k), (k = 1, . . . , 5). For R

∗ = l∗3 (white circles), the conside-
red system realises Euler’s load. Selection of identical parameters for lengths
of individual rods of the column as in the case of the system subjected to the
generalised load by the force directed towards the pole (system A) was aimed
at comparing the critical load for both systems presented in the paper. The
comparison of the results presented in Fig. 3 and Fig. 7 leads to the conclu-
sion that at identical rigidities of springs (parameters c∗i ) the higher value of
the critical load characterises the system loaded by the follower force directed
towards the positive pole.

3.4.2. Free vibrations of the system

Substitution of derivatives (2.18) of kinematic energy (2.8) and derivatives
(3.7) of potential energy (3.6) into Lagrange’s equations (see Cannon, 1967;
Goldstein, 1950) leads to the following equations of motion
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m2l
∗2
1 l
2

c2
(1 + γ)ϕ̈1 +

m2l
∗

1l
∗

2l
2γ

c2
ϕ̈2 + [1 + c∗1 + a

2
1c
∗

3 − P
∗l∗1(1− a1)]ϕ1 +

+
{P ∗l1a2

2
+ a1
[

c∗3(a2 − 1) +
P ∗l∗2
2

]

− 1
}

ϕ2 = 0
(3.9)

m2l
∗

1l
∗

2l
2γ

c2
ϕ̈1 +

m2l
∗2
2 l
2γ

c2
ϕ̈2 +

{P ∗l1a2

2
+ a1
[

c∗3(a2 − 1) +
P ∗l∗2
2

]

− 1
}

ϕ1 +

+[1 + c∗3(a2 − 1)
2 + P ∗l∗2(a2 − 1)]ϕ2 = 0

for which, after separation of variables in the form

ϕj = Θj sin(ωt) (3.10)

a transcendental equation is obtained. The transcendental equation describes
the natural frequency Ω (compare Eq. (2.21)) in relation to the external lo-
ad P ∗. The effect of changes in the radius of the receiving head on the parame-
ter Ω is presented in Fig. 8 for the assumed geometry and physical constants
of the system of rods. The course of changes in eigenvalues corresponds to the
system of the divergent (curves 5, 6) or divergence-pseudo-flutter (curves 1-4)
type.

Fig. 8. Curves in the plane: load P ∗ – natural frequency Ω for the following values
of the parameter R∗: 1 –R∗ = 0.1, 2 – R∗ = 0.25, 3 – R∗ = 0.4, 4 – R∗ = 0.6,

5 – R∗ = 0.8, 6 – R∗ = 0.9
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4. Conclusions

Physical models of discrete systems subjected to specific loads, including the
generalised load by the force directed towards the positive pole as well as
by the follower force directed towards the positive pole, are presented in the
paper. For the considered column, the total mechanical energy of the system
is determined on the basis of the external load of the structure whose direction
of action depends on geometry of the loading and receiving heads. Applying
the energetic and vibration method, relationships for changes of the critical
load and natural frequency in relation to the external load are determined
for chosen values regarding geometry and physical constants of the considered
discrete systems. The presented character of changes of the critical load allows
one to determine such values of parameters for which the considered load has
its maximum value. For chosen dependences between geometrical parameters
of heads realising the given specific load and lengths of column rods, other
known cases of the conservative load of columns are obtained: Euler’s one and
that loaded by a force directed towards the positive pole. The obtained changes
in natural frequencies in relation to the external load allows one to qualify the
considered systems to one of the two types of systems, that is divergent or
divergence-pseudo-flutter for given parameters describing the geometry and
physical constants of the structure.
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Drgania swobodne i stateczność układów dyskretnych poddanych
działaniu obciążenia swoistego

Streszczenie

W pracy prezentuje się układy dyskretne poddane działaniu obciążenia swoistego
uogólnionego z siłą skierowaną do bieguna dodatniego oraz siłą śledzącą skierowaną do
bieguna dodatniego. Dla zaprezentowanych struktur analizuje się wpływ parametrów
geometrycznych głowic realizujących obciążenie oraz sztywności sprężyn rotacyjnych
modelujących skończoną sztywność węzłów konstrukcyjnych układu na wartość obcią-
żenia krytycznego oraz na przebieg zmian częstości drgań własnych w funkcji obcią-
żenia zewnętrznego. Odpowiednie związki opisujące stateczność rozważanych kolumn
uzyskuje się biorąc pod uwagę energię potencjalną układów (metoda energetyczna)
lub całkowitą energię mechaniczną (metoda drgań).
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