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The study of eruption of the vortex boundary layer phenomenon due
to motion of the patch of vorticity above the wall is presented here.
The vortex particle method is chosen to investigate the phenomenon. It
shows the eruptive character of the vortex induced boundary layer. Such
visualization is possible through the use of the vortex particle method.
Description of the numerical method is given. The obtained numerical
results are confronted with the numerical and analytical data of other
researchers, conforming to a great extent with the conclusions.
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1. Introduction

The loss of stability in the boundary layer, which manifests itself in a sudden
eruption and injection of a fluid particle from a solid wall layer to the flow
interior, is a very interesting hydrodynamical phenomenon with great practical
significance (Sengupta et al., 2002; Sengupta and Sarkar, 2003; Smith and
Walker, 1996). It occurs during turbine blades motion, where the ejected fluid
generates wake, which affects other blades. Eruption of the wall vortex layer
on an airfoil profile initiates the ”dynamic stall” phenomena that influence the
lift force and can seriously affect steerability (Ekaterinaris and Platzer, 1997).
The eruption influences the mixing and heat exchange.

It is well known that the wall is the only source of the vorticity. Recognition
of the mechanism by which the vorticity is introduced to the interior of the flow
has a fundamental meaning for understanding of the transition to turbulence
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and turbulent boundary layer behavior (Sengupta et al., 2002; Smith and
Walker, 1996). The vorticity, which is created on a rigid wall, diffuses to the
flow domain. However, if the fluid viscosity is low enough, the vorticity is
concentrated in a small zone along the wall. In the presence of the external
vortex structure, this vorticity may be violently ejected into the outer flow. It
changes flow conditions. The key to explain why such an eruption takes place
lies in appreciation of the nature of a viscous response near the wall to the
flow induced by the vortex patch passing in an otherwise stagnant flow above
the wall (Doligalski, 1994; Peridier et al., 1991a,b; Van Dommelen and Cowley,
1990).

In order to visualize and study the whole process of the eruption of the
vortex layer described above, we use the vortex particle methods. The compu-
tations are carried out in Lagrangian variables. The study of the evolution of
vorticity is done by tracing the position of vortex particles. Results and conc-
lusions are worked out on the basis of velocity, energy and vorticity analysis.

2. Equations of fluid motion

Equations of viscous and incompressible fluid motion in a two-dimensional
space have the following form

ou 1
bt . S A
5 + (u-V)u pr—i—V u

8U1 811,2
o7 + By 0 (2.1)
where w = [ug,us] is the velocity vector, p — fluid density, v — coefficient
of kinematic viscosity, p — pressure, V = (9?/0x?) + (8%/0y?) — Laplace’s
operator.

It is assumed that density is constant, so it can be put under the pres-
sure gradient operator. Equations (2.1) must be completed with initial and
boundary conditions

u=0 dla (z,y) € 012
(2.2)

u(x,0) = ug(z,y)

where 02 means the solid wall and w(x,y) means the initial velocity. In our
case, this initial velocity is the velocity induced by the vortex patch. Equation
(2.1)2, which expresses the incompressibility of fluid, ensures the existence of
a stream function 1, so that u; = vy, ug = —1,. In the two dimensional
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space, the vorticity vector rot(u) = kw = Jyus — dyu; has only one non-
zero component, where k means a unit vector orthogonal to the plane of
motion. Applying the rot(-) operator to both sides of equation (2.1)1, it can
be transformed into the Helmholtz equation, which describes the evolution of
vorticity in time

Wi + urwy + uswy = vAw (2.3)

where

AY = —w uy = Oy ug = =0 (2.4)

In that way, vectorial equation (2.1); is replaced by scalar equation (2.5)
for w(z,y,t). It is worth noticing that now we do not have the pressure term in
this equation. Usually, in the vortex method, the viscous splitting algorithm is
used (Cottet and Koumoutsakos, 2000). Equation (2.3) is solved in two steps:
at first, the inviscid equation is solved

Wt + UIWe + UgWy = 0 (25)
and then, the diffusion equation (Stokes problem)
wy = vAw (2.6)

is solved. For solving equation (2.5), the vortex particles method is used.

3. Description of the vortex particles method

From equation (2.5), it results that the vorticity is conserved along the particle
path. Hence w(xz(t,),t) = w(ex,0). From the third Helmhlotz theorem (Wu
et al., 2006), we know that vorticity lines move with the fluid. It means that
motion of vortex particles is described by the differential equation

dzy

at u(Tp, 1) z(0,a) = o (3.1)

where a = (a1, a9) are Lagrangian coordinates of the fluid particle. On ac-
count of equation (2.4), the velocity can be determined from the vorticity
distribution by convolution of the Green function K and w (Hald, 1991; Wu
et al., 2006)

w(@) = / K(x - 2\w(@,t) de’ (3.2)
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where

1
K(x) = 27T|m|(y796) x| = /22 + y?

Equation (3.2) is a fundamental formula in the direct summation vortex
method (Kudela, 1995), but the velocity of vortex particles can be found by
solving the Poisson equation for stream function (2.4) by using the finite diffe-
rence method and then interpolating from the grid note to the position of the
vortex particles. This approach dramatically speed-up calculations, and just
that approach is used in this work (Cottet and Koumoutsakos, 2000; Kudela,
1995).

In numerical calculations, we have to replace the infinite set of differential
equations (3.1) by a finite one. The a-space (Lagrangian variable) is covered
by a regular grid (j1 Az, j2Ay) (j1,j2 =1,...,N), Az = Ay = h. This grid is
also used later for solving the Poisson equation for the stream function. The
initial vorticity field is replaced by particle distribution of point vortices. Each
particle has mass (circulation)

r,= /w(m,y) dA ~ h*w (3.3)
Ap

where A, = h? means the area of the pth cell and @ is the average vorticity
in the cell. The vorticity is approximated by a sum of delta Dirac measures

N
w(x) ~ Z Iyo(x — xp) (3.4)
i=1

where N is the number of particles and J means the Dirac delta function,
x = (z,y). The circulations of particles are constant in time.

The solution to equation (2.5) in the interval (t,,t,+1) is obtained by
solving the system of differential equations

d:cp(t) n n t < t < tn+1
= u(x,(t),1) xp(tn) = x, pn: LN (3.5)

and a new position of particles becomes an approximate solution to (2.5) at
the instant ¢t = ¢"*!

N
@) = 3 Dyl — @t 2 = ay(tar)  (36)
p=1

The fluid velocity is calculated from the stream function by solving Poisson
equation (2.4) on the grid, and its values from the grid nodes are interpolated
to the position of particles.
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To solve diffusion equation (2.6), we use a stochastic (random) method.
In context of Helmholtz equation (2.3), this has an interesting motivation
(Long, 1988). The generalization of particle paths x,(t) (Eq. (3.5)) for viscous
equation (2.3) is a diffusion process X (¢, ), t > 0 defined by the stochastic
differential equation (Hald, 1991; Kloeden and Platen, 1995; Long, 1988)

dX (t,0) = w(X (t,a),t) dt + V2w dW (t) X(a,0)=a  (3.7)

where W (t) is a Brownian motion in R? (standard Wiener process). One
may notice that for v = 0, we obtain a trajectory of inviscid motion given
by (3.5). Each sample path of Brownian motion W (t) is a continuous and
nowhere differentiable function with W (0) = 0 (Kloeden and Platen, 1995).
An infinite number of particles moving along their trajectories given by (3.7),
describes motion of the viscous fluid.

Let G(zx,t; a, s) means the transition probability density that the particle
reaches the position x at the time ¢ from the position « and time s < t. In the
terminology of stochastic processes, we know that the function G(z,t;a,s)
satisfies the Fokker-Planck-Kolgomorov (F-P-K) equation (Kloeden and Pla-
ten, 1995; Sobcezyk, 1996). Since V -w = 0, equation (2.3) can be transformed
into a form that is identical to the F-P-K equation

i + V- (wu) =rvAw (3.8)
ot

The solution X (¢, ) to stochastic equation (3.7) expresses the position
of a particle that has the value w(X (¢, ), t) and which at the moment ¢ =0
was in a. Vorticity w(a,t) can be interpreted as the transition probability
density.

Let us assume that we reach the time t = t,,. Let us take the finite set of
a = x, values. We replace the infinite set of stochastic equations (3.7) by a
finite one

dX (xp,t) = u(xp, t) dt + V20 dW (x)p, 1) p=1,...,N (3.9)

To solve (3.8) numerically, we must discretize it in time. Each component
of W (t+ At)— W (t) is a Gaussian random variable with the zero mean value
and variance At (Kloeden and Platen, 1995). We choose the improved Euler
scheme for stochastic equation (3.9) (Kloeden and Platen, 1995)

x, = x, + Atu"(x),) + V2VALN,, (310)
3.10

1
mZH =z + §(u”(:cp) + u”(m;))At + V2vAtN,,
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where u(x,) is the velocity interpolated from the grid nodes to the particle
positions and IN,, is the Gaussian distributed vector (/N ;, N 123) with the zero
mean value and a unit variance. This vector can be obtained by the Box-Muller
method (Kloeden and Platen, 1995)

N = cos(2nUM)/—2In U@ N@® =sin(27UM)\/—2In U@
(3.11)
where UM and U® are independent random variables uniformly distributed
in [0,1]. We must note that we are not forced to use the random walk method
for solving the diffusion equation. This method is fast and easy in realization,
but one can try simulating the viscous effect of the fluid by a deterministic
method (Cottet and Koumoutsakos, 2000).

The essential part of calculations is the redistribution of the particles circu-
lation to the grid nodes to obtain the vorticity there. We need this for solving
the Poisson equation for stream function (2.4). The redistribution can be done
by an area-weighting scheme as follows

1
Wi = A Z Lypi(z)p) (3.12)
t'p

where summation includes particles which are inside the support function ;.
The index j means the jth node j = (j1 Az, jaAy). As the function ¢, the
first order B-function is taken

(3.13)

1— || for |xz| <1
plx) =

0 for |xz|>1

It can be shown that the redistibution process is conservative and stable in
the L? sense (Cottet and Koumoutsakos, 2000). It means that

Z hw; = Z h2w(z,) and Z h2|w;? < Z h2|w(x,)?
J p J p

The second important step of calculations is the interpolation of the velocity
field to the particles location. The velocity interpolated to the position of
particles may be expressed as follows

u(xp) = Zujlh(mp —z;j) (3.14)

where [, is the base function of the bilinear Lagrange function.
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4. Realisation of the boundary condition on a solid wall

Condition (2.2); for the viscous fluid flow means no slip of the fluid at the
wall. Both normal and tangent components of the velocity to the wall should
equal zero. Description of the flow using the vorticity and stream function
by removing from the equation the pressure term made the equations easier
but caused complications in the realization of no-slip condition (2.2);. When
using the vortex methods, condition (2.2); is realized by generation of the
proper vorticity amount on the wall (Cottet and Koumoutsakos, 2000; Kudela,
1995). It can be achieved by choosing an appropriate value of the vorticity
or the vorticity flux v(0w/0n) (Koumoutsakos et al, 1994). In this study,
the second approach is chosen. For Euler’s equation, the distribution of the
vorticity inside of the flow domain generates non-zero tangent velocity at the
wall wus. This tangent velocity can be regarded as a vortex layer, which is
established along the rigid boundary with the intensity v = us. To understand
how the vorticity flux can eliminate the undesirable tangent component of
velocity, let us consider equation (2.1); at the wall

_ v
Oy

du

du 9
dt

:_83:

(4.1)

wall wall wall

where (x,y) means a variable coordinate tangent and normal to the wall. It
can be noticed that the acceleration is connected with the pressure gradient
and vorticity flux. When an additional non-zero tangent velocity appears at
the wall, it may be interpreted as an additional acceleration which appears at
the wall in a short time At. This acceleration has to be compensated by the
additional vorticity flux v(dw/dy). So, one can write

~NV— (4.2)

If the tangent velocity which appears on the wall in the interval At, then
the velocity is equal to us = vAtOw/dy. To compensate this velocity to zero,
one must change the sign of ug, Thus the normal derivative of the vorticity

will be 5
w Us
- _ _ 4.3
on v At (43)
To introduce an additional vorticity to the flow domain, which diffuses
from the wall, the diffusion equation is solved

Ow Ug
wr = vAw w(z,y,0) =0 o= vl (4.4)
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It can be noticed that the initial condition for vorticity is equal to zero.
The vorticity field achieved from the solution to equations (4.4) is replaced by
vortex particles in grid nodes according to formula (3.3). The vorticity that
diffused to the domain from the wall is different from zero only on the wall
and on a few grids near the wall. The vortex particles which drop out from
the domain during the solution of stochastic equation are eliminated from
calculations.

5. Numerical calculations

In Fig. 1, a sketch of the computational domain and the initial vortex patch
arre shown. The calculation starts when the fluid is at rest. The size of the
computational domain is chosen by a trail and error method in such a way as
to reduce the influence of the boundary conditions. Dimensions of the domain
are: length L = 10 and height H = 10. The boundary condition for the stream
function is assumed periodic in x and zero for the upper (y = 10) and lower
(y = 0) boundary. The initial position of the patch is z¢p = 7.2, yo = 0.6.
The initial radius of the patch is r = 0.1 and its vorticity wg = —4. One can
estimate that the module of the velocity induced by the patch on the upper
boundary of the domain equals I'/27rH =~ 0.002, where I" = 7mr"2wy. So the
influence of the upper boundary condition on the behavior of the vortex layer
along the solid wall seems to be small. We checked this experimentally by
repeating the calculation in a twice smaller domain. The results are nearly the
same. The size of the mesh and the time step are Ax = Ay = 0.02, At = 0.02.
The patch is replaced by N = 121 vortex particles.

v A
10.0
Z Vortex patch r=0.1 P
0.6 [Femers & S S -cl)
0 Wall 7.2 10 ¥

Fig. 1. Computation area of the investigated problem (the scale is not conserved)
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One computational time step from ¢, to t, + At runs as follows:
1. Redistribution of the vortex circulation to the mesh nodes (Eq. (3.12))

2. Solution to the Poisson equation for the stream function

Ap = —w

(5.1)
= p— = 0
=0 z=L 77b‘y:O dj’y:H
3. Calculation of the velocity in grid nodes
- = Y@y + Ay) — Plai,y; — Ay)
I 2Ay
(5.2)
et Aryy) — bl - Aryy)
I 2Ax

4. Calculation of the vorticity layer v = wug, solution to diffusion problem
(4.4) and introduction of the new vortex particles.

5. Movement of particles according to stochastic differential equation (3.9).
To solve (5.1), a fast elliptic solver was used. This solver was also adopted

to solve diffusion equation (4.4). Replacing the time derivative by wy|,—m+1 =~
w1 /At (W™ = 0), one obtains the elliptic problem

AwnJrl - ﬂ —

vAt (5.3)
8_w s =w w‘ =0
8y y=0 N Aty =0 N =L y=H N

To interpolate velocity from the mesh nodes to the location of particles,
the bilinear Lagrange interpolation was used (formula (3.6)).

6. Numerical results

The eruption phenomenon can be understood by investigating the effect of
viscosity on fluid motion close to the wall and just under the vortex patch.
The vortex patch due to presence of the wall moves along the wall from right to
left. The direction of motion is determined by the sign of the vorticity carried
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by the patch. The vortex patch, due to its small support, can be treated
approximately as a point vortex. The vortex patch generates an unsteady
boundary layer. The maximum velocity induced by the patch is exactly under
it. And at this place, the pressure has the minimal value. In front of the
patch, the velocity decreases and pressure increases. That is why the pressure
gradient is adverse to the direction of patch motion. Such a pressure gradient
slows down motion of the fluid, brings on stagnation points in velocity and a
small recirculation zone, like a bubble. This bubble grows perpendicularly to
the wall and finally leads to eruption in that direction. Figure 2 shows stream
lines in the vicinity of the eruption place, which results from the analytical
investigation presented by Doligalski (1994), Peridier et al. (1991a), Smith and
Walker (1996), Van Dommelen and Cowley (1990). Region number I presents
a viscous boundary layer under the vortex patch. In region number II, the
flow direction is opposite to the main flow and it is regarded as free from
the vorticity (Doligalski, 1994). This region separates the boundary layer from
two different regions I and III, is very dynamic and controls the eruption
(Doligalski, 1994; Peridier et al., 1991a,b).

111

7.

Fig. 2. Instantaneous boundary layer region near the point of eruption

Figure 3 presents the sequence of time evolution of stream lines during
vortex patch motion. For ¢ = 20, the occurence of the recirculation zone can
be noticed. For ¢ = 32, the recirculation region increases and pushes away fluid
elements from the wall. One can notice concentration of the stream lines. It
means a very high velocity gradient along that lines. Within the interval ¢t = 44
and t = 50, the beginning of the next recirculation zone is seen. The boundary
layer eruption process is clearly seen in Fig. 4, which shows a sequence of the
vorticity evolution. The frames correspond to Fig. 3. The eruption phenomenon
manifests itself here as an explosion of the concentrated vorticity jet, and
creation of the secondary vortex structure. The necessary eruption condition
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=20 ’ =32

Fig. 4. Time frames of the vorticity. The vortex patch interaction with wall,
wo = —4, v = 0.00002
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is a low viscosity value. If the viscosity is high enough, the vorticity can not
concentrate and diffuses quickly from the wall. The recirculation region, which
is established inside the boundary layer, is caused by the viscosity effect and
initiates the eruption. The vorticity which is thrown out to the flow domain
significantly changes motion of the primary vortex.

Kinetic energy Ej, = u? + u2 of the flow was also examined. As expected,
the eruption starts in the place where the kinetic energy was minimal. Figure 5
shows the evolution of the kinetic energy around moving vortex patch. The
dark region in the boundary layer corresponds to the energy minimum. Here,
the velocity is minimal as well, and this causes vorticity concentration.

1.0 90.11591
0.08332

Y 0.9 = 007141
—0.05951

0.8 —0.04761
0.7 0.03571
0.02380

0.6 0.01190
0.5 0.00595
0.00260

0.4 0.00195
03 0.00102
0.00048

0.2 0.00037
01 0.00005

0.00002
0.00001

6.0 6.5

6.0 65 o

X

Fig. 5. Isolines of kinetic energy for t = 15 and ¢ = 20. The appearance of the
recirculation zone is visible where the kinetic energy is zero

In many papers (Peridier et al., 1991a; Smith and Walker, 1996; Van Dom-
melen and Cowley, 1990) concerning the eruption phenomenon, it is emphasi-
zed that the eruption effect is accompanied by the zero vorticity line w = 0.
This line is seen in Fig. 6 as a border line between positive and negative va-
lues of the vorticity in the boundary layer. For better illustration, Fig. 6 in-
corporates the zebra technique (each vorticity range is separated by a black
lane).

In Table 1, numerical results for different intensities of the primary vortex
patch are set together and compared. The first column shows the primary vor-
tex intensity. The second column shows the intensity of the secondary vortex.
In the third column, distance covered by the vortex patch to the beginning
of the eruption is given. The fourth one shows time after which the eruption
takes place. The results suggest that the intensity of the secondary vortex,
which blows off from the wall, is about 50 percent of the primary vortex in-
tensity. Obviously, the primary vortex patch circulation has the opposite sign
to the secondary vortex. Interestingly, the separation always occurs almost in
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0.9
v 0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

5.75 6.00 6.25 6.50 x 6.75

Fig. 6. Blow-up of vorticity isolines in the vorticity layer around the eruption point.
The white lane near the point z = 6.5 means w =0

the same place but in a different time. Figure 7 presents the flow region which
corresponds to the sketch shown in Fig. 1. The first frame shows the vorticity
field, the second one — velocity field. On the first frame, the appearance of
the secondary vortex structure is clearly seen. The second frame shows that
in critical zone III, the x velocity component equals zero and the middle of
this zone corresponds to the secondary vortex center.

Table 1. Calculation results

Primary vortex Secondary vortex | Eruption start
structure intensity | structure intensity | distance | time
-1 0.47 0.85 41.6
-2 0.88 0.9 241

—4 1.76 0.9 15

-8 4.16 0.945 8

7. Conclusions

Based on the presented results, it is evident that the eruption of the vortex
layer form the wall is an effect of the interaction of the vorticity diffused from
the wall and the external interaction with the vortex patch. It is shown that
the eruption vortex boundary layer manifested itself by ejection of a narrow
stream of vorticity from the wall to the external flow. The initiation of the



798 H. KubpELA, Z.M. MALECHA

B
|
il

L\ .,/"., I~ 7‘ 74

0 ; . :
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Fig. 7. Blow-up of the space around the eruption point: (a) secondary vortex (a
fragment of the primary vortex patch is visible in the upper right corner),
(b) velocity field with marked zones I, II, III (as in Fig. 2

eruption process starts with formation of a small recirculating eddy inside of
the vortex boundary layer. It is regarded that the zero vorticity line within
the vortex layer heralds a subsequent eruption (Smith and Walker, 1996; Van
Dommelen and Cowley, 1990).

All these facts were predicted by theoretical considerations (Doligalski,
1994; Peridier et al., 1991a,b; Smith and Walker, 1996; Van Dommelen and
Cowley, 1990). The use of the vortex particle method made it possible to
clearly show these phenomena. It stems from the fact that the calculations
were carried out in Lagrangian variables and all essential elements of the phe-
nomena like generation and diffusion of the vorticity from the wall as well
as its interaction with the vortex patch were directly incorporated into the
calculation.

Symbols
ui,us — « and y component of velocity, respectively
wo — vorticity of vortex patch
— z-component of vorticity field

w
P — stream function

Subscripts and superscripts

x,y,t — differentation with respect to x, y and time
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Badanie zjawiska niestacjonarnej erupcji warstwy wirowej wywolanej tatg
wirowg metoda czastek wirowych

Streszczenie

W pracy przedstawiono wyniki badan numerycznych zjawiska erupcji warstwy
wirowej wywolanej przej$ciem skoncentrowanej struktury wirowej w poblizu $ciany.
Do badan wybrano metode czastek wirowych. Pokazano erupcyjny charakter war-
stwy przyéciennej indukowanej przez tate wirowa. Przedstawiono dokladny opis pre-
zentowanej metody numerycznej. Omoéwiono mechanizm formowania sie osobliwo-
$ci w warstwie przysciennej. Wyniki numeryczne skonfrontowano z wynikami badan
analityczno-numerycznymi innych badaczy. Przedstawione wyniki numeryczne dobrze
potwierdzity hipotezy dotyczace natury erupcji warstwy. Zweryfikowaly tym samym
niezwykla przydatnos¢ do badania tego typu zjawisk metody czastek wirowych.
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