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The two-dimensional contact problem of elasticity connected with an
indentation of a rigid cylinder in an elastic semi-space covered by an
elastic layer is considered. The detailed analysis of the stress distribution
produced by contact pressures and tangential forces is presented. The
obtained results for stresses are compared with ones obtained within the
framework of theory of elasticity for a half-space loaded by the Hertz
pressure.
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1. Introduction

The two-dimensional contact problem concerned with the pressing of a rigid
cylinder in an elastic half-space which was coated with a layer of a different
elastic material, was considered by Gupta et al. (1973) and Gupta and Walowit
(1974). The authors conducted detailed analysis of the influence of parameters
h = H/a (H is the thickness of the layer, a is the half-width of the contact
zone) and E0/E1 (E0, E1 are Young’s moduli of the layer and the substrate,
respectively) on basic contact characteristics (the contact width and distribu-
tion of the contact pressure). Wide employments of hard top layers for the
improvement of tribological properties are observed in last years, and they re-
stored the great interest to investigations of the field of stresses responsible for
destruction of layers, and namely, for fracture of coatings (cohesive failure) or
delamination and spalling (adhesive failure) at the coating/substrate interface.
It is shown that fundamental factors responsible for destruction of layers are:
maximum tensile stress, which was considered by Gupta et al. (1973), Diao
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et al. (1994), Anderson and Collins (1995), Houmid Bennani and Takadoum
(1999), Schwarzer (2000), Kato (2000), Bargallini et al. (2003), Bhomwick
et al. (2003) and Xie and Tong (2005); the maximum shear stress, conside-
red by Kouitat Nijwa and von Stebut (1999) and Bhomwick et al. (2003)
(or Huber–Mises reduced stress – the approach used by Anderson and Col-
lins (1995), Kouitat Nijwa et al. (1998), Diao (1999), Elsharkawy (1999) and
Schwarzer (2000)) and the maximum shear stress at the coating/substrate in-
terface, considered among others by Gupta et al. (1973) and Xie and Tong
(2005). Therefore, the analysis of such stresses is very important.
In majority of studies, when analysis of stresses in a layer due to contact

loads is considered, two hypotheses are accepted: (1) tangential forces working
in the area of contact as a result of friction have negligible influence on the di-
stribution of contact pressure, (2) the actual pressure distribution are replaced
by Hertz’s distribution. In the case, when the first theory does not raise doubts,
which was given by Johnson (1985) and Elsharkawy and Hamrock (1993), the
second one seems undisputed in the case of very ”thin” (h < 0.2) or ”thick”
(h > 0.7) coatings. As it is known from Gupta and Walowit (1974), the distri-
bution of contact pressure may considerably differ due to Hertz’s distribution.
The largest differences among these distributions occur when 0.3 < h < 0.6.
In the case of h = 0.4 and E0/E1 > 5, the maximum value of the contact
pressure is not in the centre of the contact area but in some distance from the
centre.

In the present work, we will focus on detailed analysis of the stress distri-
bution produced by contact pressure described by Gupta and Walowit (1974)
and related tangential forces. We make a comparison between stress fields
created by the distribution given by Gupta and Walowit (1974) and Hertz’s
distribution. It permits one to define conditions in which the replacement of
the contact stress distribution presented by Gupta and Walowit (1974) with
Hertz’s distribution provides results satisfying for engineering practice. We
propose a simplified algorithm for solving the contact problem together with
the classical algorithm. This algorithm allows one to obtain a formula for pres-
sure calculation which simplifies the analysis of stress fields by direct numerical
methods (finite element method or boundary element method).

2. Problem formulation

The problem of an elastic half-space covered by an elastic layer in which a rigid
cylinder is pressured, is considered. We assume that the cylinder is in the state
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of limit equilibrium (problem A, Fig. 1a) or it slides along the boundary surface
of the half-space (problem B, Fig. 1b).

Fig. 1. A scheme of problem I (a) and of problem II (b)

From the mathematical point of view, boundary conditions, typical for
the problem of a cylinder sliding along a boundary surface of an elastic half-
space with a constant velocity, are the same as the boundary conditions ty-
pical for the problem of limit equilibrium. The field of displacements satisfies
quasi-static equations of elasticity in movable coordinates. In these coordi-
nates, the z-axis changes its position with constant velocity (the case of a
two-dimensional problem was presented by Galin, 1980). On the basis of the
solution to the problems connected with loading of the half-space surface by
movable pressures (see by Eason, 1965), we can infer that when the velocity
of the loading is much lower than the velocity of transverse waves in the con-
sidered elastic media, quasi-static equations can replaced by equations of the
static theory of elasticity. In engineering calculations, we can obtain that the
solution to the contact problem concerned with the limit equilibrium is also
the solution to the sliding problem.
We take into account that the height of the cylinder as well as its radius R

are much larger than the width of the area of contact 2a. This approach
permits one to consider this problem within the plane state of strain and to
approximate the surface of the cylinder by a paraboloid

z(x) =
ax2

2R
(2.1)

where x, z are dimensionless Cartesian coordinates referred to the half-width
of the contact. Let us consider that the tangential forces coincident with fric-
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tion in the contact region are connected with contact pressure by Amonton’s
law

q(x) = fp(x) (2.2)

where f is the coefficient of friction.

Simultaneously, we assume that the tangential forces exert a negligible
influence on the size of the contact area and on the distribution of contact
pressure described by Johnson (1985). The ideal mechanical contact conditions
between the layer and the half-space are assumed.

All state functions denoted by the upper index 0 describe the state of
displacement and stresses in the layer; the state functions for the elastic half-
space are denoted by the index 1 (E is Young’s modulus, ν – Poisson’s ratio).

We seek the final solution as a sum of two solutions. The first one is the
solution to the contact problem (problem I), while the second one stands for
the solution to the problem of elasticity for the half-space loaded by tangential
forces on the boundary (problem II). In these problems, the equations of the
elasticity theory should be satisfied

(1− 2νi)∆u(i)x +
∂θi
∂x
= 0

(1− 2νi)∆u(i)z +
∂θi
∂z
= 0

i = 0, 1 (2.3)

and boundary conditions

u
(0)
x = u

(1)
x u

(0)
z = u

(1)
z σ

(0)
xz = σ

(1)
xz

σ
(0)
zz = σ

(1)
zz z = 0

(2.4)

— problem I

σ(0)xz = 0 σ(0)zz = −p(x)H(1− x2) z = h (2.5)

— problem II

σ(0)xz = fp(x)H(1− x2) σ(0)zz = 0 z = h (2.6)

and

σ
(1)
ij → 0 x2 + z2 →∞ (2.7)

where u is the vector of the non-dimensional displacement referred to the half-
width of contact, σ is the stress tensor, p is an unknown contact pressure,
H(x) is the Heaviside unit step function. The unknown contact pressure should
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satisfy the boundary conditions connected with the shape of the pressured
cylinder

∂u
(0)
z

∂x
=
ax

R
− 1 < x < 1 z = h (2.8)

and the equilibrium condition:

2a

1∫

0

p(x) dx = P (2.9)

where P is the total normal load, see Fig. 1.

3. The method of solution

The general solution to the system of equations (2.3), which satisfies the re-
gularity conditions in infinity (2.7) presented in the Fourier transform space

f̃(s, z) = F [f(x, z); x→ s] ≡ 1√
2π

∞∫

−∞

f(x, z) exp(−ixs) dx (3.1)

can be written in the form:

— for 0 ¬ z ¬ h

2isũ(0)x (s, z) = a3(s)[(2 + d0) sinh(|s|(h −z)) + d0(h− z)|s| cosh(|s|(h −z))]+
+a4(s)[(2 + d0) cosh(|s|(h − z)) + d0(h− z)|s| sinh(|s|(h − z))] +
+2a5(s)|s| cosh(|s|(h− z)) + 2a6(s)|s| sinh(|s|(h− z))

(3.2)

2ũ(0)z (s, z) = d0(h−z)a3(s) sinh(|s|(h−z)) + d0(h−z)a4(s) cosh(|s|(h−z))+
+2a5(s) sinh(|s|(h − z)) + 2a6(s) cosh(|s|(h − z))

— for z ¬ 0

2isũ(1)x (s, z) = −a1(s)(2 + d1 + d1|s|z) exp(|s|z)− 2a2(s)|s| exp(|s|z)
(3.3)

2ũ(1)z (s, z) = d1a1(s)z exp(|s|z) + 2a2(s) exp(|s|z)

and
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— for 0 ¬ z ¬ h

σ̃(0)xx (s, z)
1

µ0
= a3(s)[(2d0 +1) sinh(|s|(h −z)) + d0(h−z)|s| cosh(|s|(h −z))]+

+a4(s)[(2d0 + 1) cosh(|s|(h− z)) + d0(h− z)|s| sinh(|s|(h− z))] +
+2a5(s)|s| cosh(|s|(h− z)) + 2a6(s)|s| sinh(|s|(h− z))

σ̃(0)zz (s, z)
1

µ0
= −a3(s)[sinh(|s|(h− z)) + d0(h− z)|s| cosh(|s|(h− z))] −

−a4(s)[cosh(|s|(h− z)) + d0(h− z)|s| sinh(|s|(h− z))] − (3.4)

−2a5(s)|s| cosh(|s|(h− z))− 2a6(s)|s| sinh(|s|(h− z))

i sgn (s)σ̃(0)xz (s, z)
1

µ0
=

= −a3(s)[(1 + d0) cosh(|s|(h − z)) + d0(h− z)|s| sinh(|s|(h − z))]−
−a4(s)[(1 + d0) sinh(|s|(h − z)) + d0(h− z)|s| cosh(|s|(h − z))]−
−2a5(s)|s| sinh(|s|(h − z))− 2a6(s)|s| cosh(|s|(h− z))

— for z ¬ 0

σ̃(1)xx (s, z)
1

µ1
= −(2d1 + 1 + d1|s|z)a1(s) exp(|s|z)− 2a2(s)|s| exp(|s|z)

σ̃(1)zz (s, z)
1

µ1
= a1(s)(1 + d1|s|z) exp(|s|z) + 2a2(s)|s| exp(|s|z) (3.5)

i sgn (s)σ̃(1)xz (s, z)
1

µ1
= −a1(s)(1 + d1 + d1|s|z) exp(|s|z)− 2a2(s)|s| exp(|s|z)

where di = 1/(1 − 2νi), i = 0, 1. Equations (3.2)-(3.5) contain six unknown
functions ai(s), i = 1, 2, . . . , 6.
These functions are obtained as a solution to linear equations (see Appen-

dix A), satisfying boundary conditions (2.4) and (2.5) (problem I) or (2.4)
and (2.6) (problem II). Satisfying boundary condition (2.8) for problem I, we
obtain the following integral equation

1∫

0

p∗(y)K(x, y) dy = −2(1− ν0)a20x 0 ¬ x ¬ 1 (3.6)

where

K(x, y) =

∞∫

0

sa6(s) cos(sy) sin(sx) ds

(3.7)

a6(s) =
1

µ0
p̃(s)a6(s) p(x) = p0p

∗(x) a = aHa0



Stresses of hard coating under sliding contact 759

p0 = P/2a is the mean contact pressure, aH is the Hertzian half-width of
contact for the homogeneous half-space with mechanical properties adequate
for the layer. The solution to the integral equation is sought in the form

p∗(x) =
m∑

i=1

pi

√
a2i − x2H(a2i − x2) (3.8)

where pi are unknown parameters, ai are points within interval [0, 1] which
are calculated from:

ai =
i(2 + c(2m− i− 1))
m(2 + c(m− 1)) i = 0, 1, . . . ,m (3.9)

Equation (3.9) is taken in such a for so that for c > 0 we obtain a parti-
tion of the interval [0, 1], which condenses in the vicinity of the right end of
the interval. Substituting Eq. (3.8) into integral (3.6) and comparing the left
and right hand sides in points xj = (aj + aj−1)/2, j = 1, 2, . . . ,m, we obta-
in m linear algebraic equations containing (m + 1) unknown parameters pi,
i = 1, 2, . . . ,m and a0

m∑

i=1

Ajipi = −2(1− ν0)a20xj (3.10)

where

Aji =
π

2
ai

∞∫

0

a6(s) sin(sxj)J1(sai) ds (3.11)

The missing (m+ 1)-th equation

π

4

m∑

i=1

pia
2
i = 1 (3.12)

is found by satisfying equilibrium condition (2.9). The solution to the system
of equations is obtained by making use of a numerical method. The results are
compatible with those given by Gupta and Walowit (1974).

4. A simplificed algorithm for solving the contact problem

The distribution of contact pressure is sought in the form

p∗(x) =
[
p̂+
16

π

(
1− π
4
p̂
)
x2
]√
1− x2 (4.1)
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which satisfies equilibrium condition (2.9). It is necessary to point out that the
parameter p̂ is the ratio of the contact pressure in the centre of the contact area
to the mean contact pressure. Contact boundary condition (2.8) is replaced
by the following conditions

u(0)z (1, h) − u(0)z (0, h) =
a

2R

1∫

0

[u(0)z (x, h) − u(0)z (0, h)] dx =
a

6R
(4.2)

Substituting Eq. (4.1) into Eqs. (4.2), we obtain two equations for two unk-
nown parameters

(1− ν0)a20 +Aip̂ = Bi i = 1, 2 (4.3)

The forms Ai and Bi, i = 1, 2 are presented in Appendix B.
Figures 2 and 3 show that the solution to the system of equations (4.3) is

well approximated by integral equation (3.6). The largest differences among
the solutions appear in the case of ”thin” layers. They increase together with
an enlargement of the ratio of the layer and Young’s moduli of substrates. The
error of estimation of the half-width of contact for h = 0.1 and E0/E1 = 8
is equal to 3.1%. Accuracy of contact pressure distributions is satisfactory for
h > 0.2. The largest differences between contact pressure distributions for our
contact problem and Hertz’s pressure occurs when h ∈ [0.3, 0.6]. In this range,
we can use an approximate solution given in Eq. (4.1).

Fig. 2. (a) Non-dimensional half-width of contact. (b) Pressure in the centre of the
contact area as functions of the parameter E0/E1 (solution to integral equation (3.6)
– gray curves, approximate solution – black curves, Hertz solution – dashed curve)
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Fig. 3. Distribution of contact pressure (solution of integral equation (3.6) – gray
curves, approximate solution – black curves, Hertz solution – dashed curve)

5. The calculation algorithm for stress tensor components

Stress tensor components in interior points of the non-homogeneous half-space
can be obtained by numerical calculation of the integrals

σ
(i)
jk (x, z) =

1√
2π

∞∫

−∞

σ̃
(i)
jk (s, z) exp(ixs) ds

jk = xx, zz, xz
i = 0, 1

(5.1)

where the Fourier transforms σ̃
(i)
jk (s, z) are described by Eqs (3.4) and (3.5).

The accuracy of calculation of integrals (5.1) is supported by the continuity of

stresses for z → h. The stresses σ(0)xz (x, h) and σ(0)zz (x, h) on the surface of the
non-homogeneous half-space are known from the boundary conditions. The

formula for calculating the stress σ
(0)
xx (x, h) is obtained taking into account

the sixth equation of the system of (A1):

σ(0)xx (x, h) = p(x) +
2
√
2d0√
π

∞∫

0

[a4(s) cos(sx) + f â4(s) sin(sx)]p̃(s) ds (5.2)

where the relationship f â4(s)p̃(s) = µ0a4(s)i sgn (s) occurs in problem II.
Asymptotic analysis of the solution to the system of equations (A1) for

s→∞ shows that

a4(s) = −
1

d0
+ a∗4(s) â4(s) = −

1

d0
+ â∗4(s)

(5.3)

lim
s→∞
a∗4(s) = lims→∞

â∗4(s) = 0
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Taking into consideration Eq. (5.3), we can write expression (5.2) in the fol-
lowing form

σ(0)xx (x, h)
1

p0
= −p∗(x)− 2

√
2f√
π

∞∫

0

p̃∗(s) sin(sx) ds+

(5.4)

+
2
√
2d0√
π

∞∫

0

[a∗4(s) cos(sx) + f â
∗

4(s) sin(sx)]p̃
∗(s) ds

We can calculate the first integral from Eq. (5.4) analytically and the second
one numerically.

6. Numerical results and discussion

Upon the analysis of the relationship found for calculation of the dimension-

less stresses σ
(0)
ij /p0, we conclude that they depend on five non-dimensional

parameters: the ratio of the thickness of the top layer and the half-width of
contact, the ratio of the layer and Young’s moduli of substrates the coefficient
of friction and the layer and the substrate Poisson ratios.
In the contact problem for the homogeneous half-space, tensile stresses oc-

cur at the trailing edge of the unloaded half-space surface, which was described

by Smith and Liu (1953). The maximum value of σ
(0)
xx /p0 occurs at the edge

area of contact (x = −1, z = h) and is equal to 8f/π. In the case of the non-
homogeneous half-space, tensile stresses in the mentioned zone also appeare
(Fig. 4). In that case, mechanical properties of the layer differ insignificantly
from the substrate properties, the maximum tensile stress occur at the edge of
contact. An increment of the parameter E0/E1 causes that the maximum ten-
sile stresses occur in a certain distance from the edge of the contact area. This
is more typical for ”thick” layers. When the thickness of the layer increases
it leads to a decreasing level of dimensionless tensile stresses in the described
area.
The second area, in which tensile stresses can occur is the coating/substrate

interface (Fig. 4b’,c’). In the case of ”thin” layers, the tensile stresses in this
area do not occur at all or their level is much lower with respect to tensile
stresses appearing at the surface. Together with the increasing thickness of
the layer or E0/E1 parameter, tensile stresses at the interface also increase.
For a certain layer thickness, the principal stress σ1 (we make an assump-
tion that σ3 < σ2 < σ1) achieves the largest value at the interface. Figure 5
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Fig. 4. Distribution of σxx/p0 on the non-homogeneous half-space surface (a, b, c)
and at the coating/substrate interface (a’, b’, c’): distribution of the contact

pressure on the basis of integral equation (3.6) – black curves, distribution of actual
contact pressure replaced by the Hertz solution – gray curve



764 R. Kulchytsky-Zhyhailo, G. Rogowski

shows that every curve (except for gray curve 2) consist of two sections. The
first section (adequate for smaller values of parameter h) is related with pa-
rameters for which the maximum tensile stress occurs on the surface of the
non-homogeneous half-space. The second section describes cases in which the
maximum tensile stress at the interface is observed. Gray curve 2 shows that
an increment in the coefficient of friction can cause that the dominant stress
will be stress on the surface of the non-homogeneous half-space.

Fig. 5. Relationship between the maximum tensile stresses and non-dimensional
layer thickness (E0/E1 = 4 – gray curves, E0/E1 = 8 – black curves)

The replacement of the actual contact pressure by Hertz’s distribution does
not lead to large errors during calculation of the maximum value of the tensile
stress on the surface. For the coefficient of friction f = 0.25, the calculation
error is less than 5%, and for f = 0.5 is less than 9% (Fig. 6). In the case of
”thin” layers, the error is smaller, and for the thickness h = 0.2 is up to 4%.
It is necessary to pay attention to the difference between results described

in the present work and results published by Diao et al. (1994). The non-

dimensional stress distributions σ
(0)
xx /pmax on the surface of the half-space

calculated on the base of the Hertz contact pressure fully agree with the re-
sults published by Diao et al. (1994). The difference is included in the para-
meter pmax. In the present paper, the parameter pmax = 4p0/π is calculated
from the condition of equilibrium of the cylinder. However, in the work by
Diao et al. (1994), it was assumed that pmax = px=0, where px=0 was the
actual contact pressure in the centre of the contact area. The value px=0 was
taken from the paper by Gupta and Walowit (1974).
The maximum values of tensile stresses at the interface calculated of the

basis of the Hertz contact pressure and the distribution of actual pressure
considerably differ.



Stresses of hard coating under sliding contact 765

Fig. 6. Error of calculation of the maximum tensile stresses (distribution of pressure
replaced by the Hertz solution – gray curves, contact pressure approximated by

Eq. (4.1) – black curves)

In the case when h > 0.2, the distribution of contact pressure described by
Eq. (4.1) permits one to calculate the maximum value of tensile stresses with
satisfactory precision both on the surface and at the interface (black curves in
Fig. 6).

On the basis of the stress distribution σxx, it is easy to predict
the maximum shear stress distribution in the plane of strain τ1 =
=
√
(σxx − σzz)2 + 4σ2xz/2 and the maximum shear stresses τ = (σ1 − σ3)/2.

Calculations confirmed the conclusion of the work by Kouitat Nijwa and von
Stebut (1999) that the maximum shear stress τ1 in the plane of strain assu-
med the minimal value in the central part of the top layer. The stress τ1 has
the maximal value on the surface of the non-homogeneous half-space (for the
determinated level of friction forces or in the case of ”thin” layers) or at the
coating/substrate interface (for a small coefficient of friction for layers whose
thickness exceeds the described value). Moreover, it is necessary to note that
the maximum shear stress τ = (σ1 − σ3)/2 is frequently above the maximal
value of the stress τ1. Typical distributions of maximum shear stresses on the
surface of the non-homogeneous half-space are shown in Fig. 7. Figure 7 pre-
sents that the largest level of the stress τ is achieved in the central part of the
contact area (0 < x < 0.7, z = h).

In the case of reasonable friction (f < 0.3), the level of maximum shear
stresses may be much higher than the level of tensile stresses (Fig. 8).

The error of calculation of the maximum shear stresses due to the repla-
cement of the actual contact pressure by the Hertz pressure may be regarded
reasonable (Fig. 9) in the case of ”thin” (h < 0.2) and ”thick” (h > 0.7) lay-
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Fig. 7. Distribution of the maximum shear stresses τ/p0 (τ = (σ1 − σ3)/2) on the
surface of the non-homogeneous half-space: contact pressure distribution found from
integral equation (3.6) – black curves, distribution of actual contact pressure

replaced by the Hertz solution – gray curves

ers. The largest deviation is observed when h ≈ 0.4. Describing the contact
pressure by Eq. (4.1), it permits one to calculate the largest value of the ma-
ximum shear stresses with an error up to 3% when h > 0.3 (black curves in
Fig. 9).

The distribution of shear stresses σxz at the coating/substrate interface in
the case of ”thin” layers was described in the paper by Houmid Bennani and
Takadoum (1999). A typical distribution, which occurs in the case h > 0.3,
is shown in Fig. 10. Replacing of the actual contact pressure by the Hertz
pressure does not cause considerable changes in the σxz stress distribution at
the coating/substrate interface.
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Fig. 8. Relationship between τmax/σmax
1
and the non-dimensional layer thickness

(E0/E1 = 4 – gray curves, E0/E1 = 8 – black curves)

Fig. 9. Calculation error of the maximum τ1 stresses (distribution of pressure
replaced by the Hertz solution – gray curves, contact pressure approximated by Eq.

(4.1) – black curves)

7. Conclusions

The analysis of stress distribution in the hard top layer proved that this layer
can be divided into three sections: ”thin” layers (h < 0.2), ”thick” layers
(h > 0.7) and those in between.

In the case of ”thin” layers, the maximum tensile stress occurs at the
trailing edge of the unloaded half-space surface. The largest value of the tensile
stresses can be mostly observed at the edge of the area of contact (except for
very large values of the ratio E0/E1). The maximum shear stress can turn
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Fig. 10. Typical distribution of σxz/p0 stresses at the coating/substrate interface:
contact pressure distribution found from integral equation (3.6) – black curves,
distribution of actual contact pressure replaced by the Hertz solution – gray curves

out to be much larger (more than twice) from the largest value of the tensile
stress. The parameter τmax/σmax1 increases with growing of ratio E0/E1 and
decreases with growing coefficient of friction. In engineering calculations, we
can replace the distribution of actual pressure by the Hertz distribution.

In the case of ”thick” layers, the predominant stresses are mostly tensile
stresses at the coating/substrate interface (except for very large coefficients of
friction). In engineering calculations, we can also apply Hertz distribution.

In the case when 0.2 < h < 0.7, the maximum tensile stress occurs either at
the trailing edge of the unloaded half-space surface or at the coating/substrate
interface. In the case of reasonable values of E0/E1 and f (E0/E1 < 5,
f < 0.3), the parameter τmax/σmax1 is greater than 2. The replacement of the
actual contact pressure by the Hertz pressure leads perhaps to larger errors of
calculation of the maximum tensile stresses at the coating/substrate interface.
The error of calculation of the maximum shear stress often exceeds 10%. In
engineering calculations, we can describe the distribution of actual pressure
by approximate relation (4.1).
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A. Appendix

A system of linear equations for determination of the functions ai(s),
i = 1, 2, . . . , 6 is

Aa = b (A.1)

where the non-zero elements of the matrix A are

A11 = 2 + d1 A12 = A22 = A56 = A65 = 2|s|
A13 = (2 + d0) sinh(|s|h) + d0|s|h cosh(|s|h)
A14 = (2 + d0) cosh(|s|h) + d0|s|h sinh(|s|h)
A15 = −A26 = −A36 = A45 = 2|s| cosh(|s|h)
A16 = −A25 = −A35 = A46 = 2|s| sinh(|s|h)
A23 = −d0|s|h sinh(|s|h) A24 = −d0|s|h cosh(|s|h)
A31 = µ

∗(1 + d1) A33 = −(1 + d0) cosh(|s|h)− d0|s|h sin(|s|h)
A32 = 2µ

∗|s| A34 = −(1 + d0) sinh(|s|h) − d0|s|h cosh(|s|h)
A41 = µ

∗ A43 = sinh(|s|h) + d0|s|h cosh(|s|h)
A42 = 2µ

∗|s| A44 = cosh(|s|h) + d0|s|h sinh(|s|h)

A53 = 1 + d0 A64 = 1 µ∗ =
µ1
µ0

and

b =





[
0, 0, 0, 0, 0,

1

µ0
p̃(s)
]

problem I

[
0, 0, 0, 0,− 1

µ0
f p̃(s)i sgn (s), 0

]
problem II

B. Appendix

Formulas for calculating parameters Ai and Bi, i = 1, 2 are

A1 =
3π

2

∞∫

0

a6(s)F1(s)G1(s) ds A2 =
9π

2

∞∫

0

a6(s)F1(s)G2(s) ds

B1 = 8

∞∫

0

a6(s)F2(s)G1(s) ds B2 = 24

∞∫

0

a6(s)F2(s)G2(s) ds
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F1(s) =
J1(s)

s
− 4J2(s)

s2
F2(s) =

J1(s)

s
− 3J2(s)

s2

G1(s) = cos s− 1 G2(s) =
sin s

s
− 1
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Naprężenia w twardej warstwie wierzchniej wywołane obciążeniami
kontaktowymi

Streszczenie

Rozpatrzono dwuwymiarowe zagadnienie kontaktowe teorii sprężystości dotyczące
wciskania nieodkształcalnego walca w półprzestrzeń sprężystą pokrytą sprężystą war-
stwą. Przeprowadzono szczegółową analizę rozkładu naprężeń wywołanego naciskami
kontaktowymi i powiązanymi z nimi siłami tarcia. Otrzymane wyniki porównano z wy-
nikami, które otrzymuje się w zagadnieniu teorii sprężystości dotyczącym obciążenia
powierzchni rozpatrywanej półprzestrzeni niejednorodnej naciskami Hertza.
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