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In the paper, we introduce information on limitations of the Finite Ele-
ment Method in acoustic analysis. Difficulties that appear in acoustic
analysis are mainly caused by the form of shape functions and sensitivi-
ties to boundaries, so we start with a short description of mathematical
background. The propositions how to overcome and simplify those disa-
dvantages are summarized and illustrated with a real application.
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1. Introduction

Although the fundamental part of the mathematical description of the acoustic
wave was created more than one hundred years ago (Strutt, 1945), the problem
of the effective solution to the wave equation in connection with arbitrary
domains, boundary conditions and initial conditions is still vivid.

In general, the partial differential wave equation can be solved only with
using numerical methods. There are several possibilities, and the decision on
which type of a numerical tool should be used is strictly determined by the
frequency of the acoustic wave.

Acoustic problems can be divided into three main groups according to the
wave frequency order (Rabbiolo et al., 2004):

Low frequency problems: the response exhibits strong modal behavior,

Medium frequency problems: the response spectra exhibit high irregula-
rities, indicating irregular modal density. Boundary conditions, geometry
and materials play the fundamental role.
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High frequency problems: the response spectra are ”smooth”, indicating
high modal ”density”. Boundary conditions, geometry and materials are
not important.

The first and the second type of analysis can be efficiently solved using
Boundary Element Method (BEM), and especially Finite Element Method
(FEM). The third one, i.e. high frequency problems can be solved on the basis
of Statistical Energy Analysis (SEA).

2. Mathematical formulation

2.1. General formulation

The FEM equations are obtained from the equilibrium equation for small
motions of a compressible adiabatic fluid with velocity-dependent momentum
losses in the form [1]

∂p

∂x
+ γ(x, θi)u̇

f + ρf (x, θi)ü
f = 0 (2.1)

where p is the excess pressure in the fluid (the pressure in excess of any static
pressure), x is the spatial position of the fluid particle, u̇f is the fluid particle
velocity, üf is the fluid particle acceleration, ρf is the density of the fluid,
γ is the ”volumetric drag” (force per unit volume per velocity), and θi are i
independent field variables such as temperature, humidity of air, or salinity of
water on which ρf and γ may depend.
The constitutive behavior of the fluid is assumed to be inviscid, linear and

compressible, so

p = −Kf (x, θi)
∂

∂x
· uf (2.2)

where Kf is the bulk modulus of the fluid.
The weak form of Eq. (2.1) (the integral one for an arbitrary variational

field δp) after using Green’s theorem and substituting the constitutive law,
has the final shape for a continuous domain
∫

Vf

[
δp
( 1
Kf
p̈+

γ

ρfKf
ṗ
)
+
1

ρf

∂

∂x
δp ·
∂

∂x
p
]
dV −

∫

S

δp(T (x)) dS = 0 (2.3)

where

T (x) = −n ·
( 1
ρf

∂

∂x
p
)

and the vector n represents the inward normal to the acoustic medium at the
boundary.



Limitations in application of the FEM... 851

2.2. Boundary conditions

The last term in Eq. (2.3) introduces the boundary condition statement for
acoustic problems. All of boundary conditions described below can be formu-
lated in terms of T (x) – this term has dimensions of acceleration. Dividing
the boundary into subregions S, the following conditions can be imposed [1]:

— Sfp: where the value of acoustic pressure p is prescribed (δp = 0)

T (x) = n ·
(
ü
f +
γ

ρf
u̇
f
)

(2.4)

— Sft: where the inward acceleration of the acoustic medium is prescribed
(γ = 0)

T (x) = n · üf (2.5)

— Sfs: the acoustic-structural boundary, where the acoustic and structural
media have the same displacement normal to the boundary

T (x) = n ·
(
ü
m +

γ

ρf
u̇
m
)

(2.6)

u
m denotes the displacement of the structure,

— Sfr: the reactive acoustic boundary – admittance conditions are applied

T (x) = −
[ γ
ρf

1

c1
p+
( γ
ρf

1

k1
+
1

c1

)
ṗ+
1

k1
p̈
)

(2.7)

where the inverse of 1/k1 and 1/c1 are the spring and dashpot parame-
ters, respectively,

— Sfrs: the mixed impedance boundary and acoustic-structural boundary

T (x) = −
[ γ
ρf

1

c1
p+
( γ
ρf

1

k1
+
1

c1

)
ṗ+
1

k1
p̈
]
+ n ·

(
ü
m +

γ

ρf
u̇
m
)
(2.8)

— Sfi: the ”infinite” boundary conditions, obtained from using infinite ele-
ments or from a proper choice of impedance coefficients. For the second
proposal, it can be written

T (x) = −
( 1
c1
ṗ+
1

a1
p
)

(2.9)

— Sff : the boundary between acoustic fluids of possibly different material
properties.
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2.3. Formulation for transient response

Using Eqs. (2.4)-(2.9) in Eq. (2.3), the final variational statement for the aco-
ustic medium is obtained in the following form

∫

Vf

[
δp
( 1
Kf
p̈+

γ

ρfKf
ṗ
)
+
1

ρf

∂

∂x
δp ·
∂

∂x
p
]
dV +

+

∫

Sfr

δp
[ γ
ρf

1

c1
p+
( γ
ρf

1

k1
+
1

c1

)
ṗ+
1

k1
p̈
]
dS +

+

∫

Sfi

δp
( 1
c1
ṗ+
1

a1
p
)
dS −

∫

Sfs

δp(n · üm) dS + (2.10)

+

∫

Sfrs

δp
[ γ
ρf

1

c1
p+
( γ
ρf

1

k1
+
1

c1

)
ṗ+
1

k1
p̈
]
dS +

−

∫

Sfrs

δp(n · üm) dS −

∫

Sft

δp(n · üf ) dS = 0

For the acoustic-structural coupling, assuming that the structural behavior
is defined by the virtual work in the form

∫

V

δε : σ dV +

∫

V

αcρδu
m · u̇m dV +

∫

V

ρδum · üm dV +

(2.11)

−

∫

St

δum · t dS +

∫

Sfs

pδum · n dS = 0

where σ is the stress at a point in the structure, p is the pressure acting
on the fluid-structural interface, n is the outward normal to the structure,
ρ is the density of the material, t is the surface traction and δε and δum

are strain variation and variational displacement field, respectively. The final
FEM equation (after linearization) in a matrix notation is

−δp̂P {(MPQf +M
PQ
fr )p̈

Q + (CPQf + C
PQ
fr )ṗ

Q +

+(KPQf +K
PQ
fr +K

PQ
fi )p

Q − SPMfs ü
M − PPf }+ (2.12)

+δuN{IN +MNM üM + CNM(m) u̇
M + (SQNfs )

⊤pQ − PN} = 0

where δpP = d2(δp̂P )/dt2.
In Eg. (2.12), a semidiscrete approximation is assumed and the pressure

and displacement fields are interpolated as follows

p = HP pP u
m = NNuN (2.13)
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where p = 1, 2, . . . up to the number of pressure nodes and N = 1, 2, . . . up to
the number of displacement degrees of freedom (for detailed information see
Sumelka, 2004).

2.4. Formulation for steady-state response

For steady-state analysis, we assume that all degrees of freedom and loads
vary harmonically at the angular frequency Ω, so in general for an arbitrary
variable field we can write

f = f̃ exp iΩt (2.14)

where f̃ denotes a constant complex amplitude.
By analogy to Eq. (2.3) and using the basic assumption (Eq. (2.14)) we

obtain

−

∫

Vf

δp
Ω2

Kf
p̃ dV +

∫

Vf

1

ρ̃

∂

∂x
δp ·
∂

∂x
p̃ dV −

∫

S

δpT̃ (x) dS = 0 (2.15)

where

T̃ (x) = −
1

ρ̃

∂

∂x
p̃ · n

and
ρ̃ ≡ ρf +

γ

iΩ
is the complex density.
After applying an analogous form of boundary conditions as for the tran-

sient one, the final variational statement for steady-state analysis becomes
∫

Vf

[
−Ω2δp

( 1
Kf
p̃
)
+
1

ρ̃

∂

∂x
δp ·
∂

∂x
p̃
]
dV +

∫

Sft

Ω2δpn · ũf dS +

+

∫

Sfr∪Sfi

δp
( iΩ
c1
−
Ω2

k1

)
p̃ dS +

∫

Sfrs

δp
( iΩ
c1
p̃−
Ω2

k1
p̃+Ω2n · ũm) dS +(2.16)

+

∫

Sfs

Ω2δpn · ũm dS = 0

The final FEM equation for steady-state problems, as for the transient one,
for acoustic-structural coupling we introduce by comparison to Eq. (2.15) and
Eq. (2.11) in the form

−δp̂P{[−Ω2(MPQf +M
PQ
fr ) + iΩ(C

PQ
f + C

PQ
fr ) +K

PQ
f ]∆p̃

Q +Ω2SPMfs ∆ũ
M+

−∆P̃Pf }+ δu
N{[−Ω2MNM + iΩ(CNM(m) + C

NM
(k) ) +K

MN ]∆ũM + (2.17)

+(SQNfs )
⊤∆p̃Q −∆P̃N} = 0
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where

δp̃P = −Ω−2δpP

∆p̃Q = [ℜ(p̃Q) + iℑ(p̃Q)] exp(iΩt)

∆ũM = [ℜ(ũM ) + iℑ(ũM )] exp(iΩt)

∆P̃N = [ℜ(P̃N ) + iℑ(P̃N )] exp(iΩt)

∆P̃Pf = [ℜ(P̃
P
f ) + iℑ(P̃

P
f )] exp(iΩt)

The terms ℜ(p̃Q), ℜ(ũM ), ℑ(p̃Q) and ℑ(ũM ) are the real and imaginary parts
of the amplitudes of the response; ℜ(P̃N ) and ℑ(P̃N ) are the real and ima-
ginary parts of the amplitude of the force applied to the structure; ℜ(P̃Pf )

and ℑ(P̃Pf ) are the real and imaginary parts of the amplitude of the acoustic
traction applied to the fluid (see also Sumelka, 2004).

3. Limitations in using FEM

3.1. Choosing proper element size

The crucial point in the present most popular finite element applications is that
the shape functions are linear or quadratic. Such an approximation, sufficient
in most engineering applications, in acoustic analysis, where the frequency of
excitations change from several to over a dozen thousand hertzs, determines
the delimitation of applicability of the above mentioned method.
There is a strong relationship between the wave frequency and finite ele-

ment size. The approximation for the pressure field, imposed in Eq. (2.13)1,
introduces linear or quadratic shape functions H. To obtain acceptable results,
the following requirements must be fulfilled [1]. For the first order elements
(linear shape functions), the element dimensions have to be chosen such that
the biggest one is at least six times smaller than the acoustic wavelength. For
the second order elements, this requirement is twice smaller.
To understand how fast such requirements can cause that hardware possi-

bilities are exceeded, let us introduce a simple example. Let imagine a typical
room of dimensions 2.5 × 2.5 × 3.0m. Assuming that computations have to
cover the frequency range from 100Hz to 10 kHz with the using first order ele-
ments used, the total number of finite elements needed in analysis is as follows.
For room temperature, in the case when frequency of excitation reaches 100Hz
the biggest element dimension should not exceed 0.57m, so ∼ 100 elements
need to be used. But for frequency 10 kHz, the maximal element dimension is
0.57mm, and the total number of finite elements reaches ∼ 100m.
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The problem of proper dimensions of the dements is even more complicated
if there is a possibility of wave reflection or interference of waves in the model.
In such situations, we cannot predict a priori the frequency of the resultant
wave, so the solution can be obtained in an iterative process only.

3.2. Defining absorptive boundary conditions

Results of numerical analysis of wave propagation phenomena are very sensi-
tive to boundary conditions. Appropriate conditions have to ensure that all
physical phenomena connected with waves like reflection, absorption or trans-
mission are correctly defined.

Eq. (2.7) introduces one of the most important boundary terms. The ”ab-
sorption” coefficients (k1 and c1) enable one to obtain demanded reflection
conditions from total absorption to total reflection. Unfortunately, those coef-
ficients are not given by supplier of the acoustic material. What is more, the
”absorption” at the boundary is nonlinearly dependent on wave frequency.
The factors k1 and c1 should be then functions of frequency, which, in ge-
neral, is not implemented in popular finite element systems. The proposition
how to manage with the first of the above mentioned disadvantage is shown
in Sumelka (2004).

Another serious limitation is that the absorptive properties of materials are
not only caused by physical properties themselves. The shape of boundaries
plays crucial role in the process of acoustic wave energy dissipation, Fig. 1.
The exact mapping of such complicated boundaries would result in a large
number of additional variables, so the process of boundary homogenization is
needed (for detailed discussion see Sumelka ans Łodygowski (2004)).

Fig. 1. A cross section through a typical acoustic material: (a) pyramid,
(b) rectangular prism, (c) other
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4. Example

4.1. Assembly hall ”MAGNA”

Assembly hall ”MAGNA” is the central point of the Educational Center (see
Fig. 2) at Poznan University of Technology (PUT).

Fig. 2. A general view of PUT Educational Center

Fig. 3. A horizontal cross section of hall ”MAGNA”

The main task of ”MAGNA” hall is to create representative place for
PUT ceremonies, international symposia and conferences, concertos and even
movie shows. During an academic year, the assembly hall is an auditorium
for students. The most interesting thing is that the whole area of ”MAGNA”
hall can be divided into three separate areas by using special ”moving” walls,
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so three independent audiences can be obtained, Fig. 3 (thick line indicates
borderline).

In a horizontal cross section ”MAGNA” hall is an ellipse (see Fig. 3), whose
major axis is 33.85m and the minor axis is 29.53m with total area 691m2. In
the top-most point there is nearly 10m (see Fig. 4). The total volume of the
assembly hall is about 6750m3.

Fig. 4. A vertical cross section through the major axis

The elliptic shape of the assembly hall is not optimal in the sense of acoustic
properties because it is similar to a huge mirror which concentrates reflected
waves at the center of ”MAGNA”. That is why all surfaces at the rear (the
walls and a part of ceiling) have to assure absorptive conditions (absorption
coefficient α ≈ 0.8)1.

In the experimental tests and numerical analysis the possibility of division
the area of ”MAGNA” hall into three separated auditoria was omitted due to
the fact that the structural integrity of the assembly hall has been a priority.

4.2. Numerical analysis

The 3D and 2D numerical models of assembly hall ”MAGNA” are shown in
Fig. 5 and Fig. 6, respectively. Because of the above mentioned great sensitivity
to the boundary shape in acoustic analysis, all details in geometry such as
complexity of ceiling, stairs, seats, stage, etc. were mapped with high precision.

Due to the strong relationship between the length of acoustic wave and
element dimensions, precisely described in Section 3.1, the analysis of a three
dimensional model was impossible.

1The complete information about the problems of the Architectural Acoustic can
be found in Sadowski (1971, 1976), Sadowski and Wodziński (1959).



858 T. Łodygowski, W. Sumelka

Fig. 5. A 3D model of assembly hall ”MAGNA”

Fig. 6. A 2D model of assembly hall ”MAGNA” – a cross section through the major
axis

The total volume of the assembly hall is about 6750m3, as mentioned.
Considering the complexity of geometry of ”MAGNA” hall, it can be easily
shown that the minimal dimensions of the cubic finite element are about 0.2m,
so the minimal number of finite elements required reaches 800k. On the basis
of Section 3.1, the above mentioned mesh density is suitable up to ∼ 500Hz for
elements with quadratic shape function, and up to ∼ 250Hz for elements with
linear shape function. The relation between frequency and required number of
finite elements is inversely proportional to the cube of frequency in 3D acoustic
simulations, so it can be easily computed that for analysis with the highest
frequency acceptable by human sense of hearing, i.e. 20kHz, the total number
of elements would be nearly 200G.

Such high computational requirements caused that a substitutive two-
dimensional model of the assembly hall was prepared (Fig. 6). The 2D model
was a cross section of the 3D model cut through the major axis with the total
area of about 260m2. The maximum number of required finite elements at the
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whole range of frequency, i.e. from 16Hz-20 kHz, was then 10m (for second
order elements).

Two-dimensional modeling of ”MAGNA” hall has a lot of disadvantages
which limit the applicability of such an approach. A three dimensional in-
terpretation of the 2D model is an infinitely long ”tube” (Fig. 7), so it was
impossible to model the reflection from the left and right sides, and in con-
sequence, computations of the steady state-response or self response were not
feasible.

Fig. 7. A 2D model interpretation

The only way was to execute the numerical simulations as transient ones.
The duration of the analysis step had to guarantee that the wave reflected
from the left and right sides would not reach the analyzed cross section.

We decided to divide the analysis into two steps. In the first step, the ti-
me needed to travel a distance from the source to lateral walls and back to
the major axis by an acoustic wave was investigated. In the second step (the
principal), the essential computations were made during the time determined
in the first step. In each analysis step we assumed that the room tempera-
ture is considered, so the following values describing the acoustic medium
were established: the density of air ρf = 1.20 kg/m

3, and the bulk modulus
Kf = 141.8 kN/m

2.

Computations were made using ABAQUS Explicit system (based on expli-
cit integration method).

First step. An additional model was created. The model was a horizontal
cross section of the assembly hall at the level of the center of spherical
source (Fig. 8).

The results showed that the time needed to travel a distance from the
source to lateral walls and back to the major axis by an acoustic wave reached
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Fig. 8. Acoustic pressure [Pa] – the investigation of the second step time duration

∼ 0.1 s. This time was recognized as a time in which the results obtained from
the two-dimensional model (from second step) should have satisfied accuracy.

Second step. The scheme of the model with marked measure points Pi and
source S is shown in Fig. 6. The length of the model (identical to the
major axis) is 33.85m, and in the top-most point the height is nearly
10.00m.

The 2D model was meshed by four node linear elements (in ABAQUS no-
tation AC2D4R) whose average dimensions were ∼ 0.1m. Such mesh density
(40k dof) enabled one to lead computations for frequencies up to 500Hz.
It is important to notice that due to the fact that human sense of hearing

accepts the sound pressure from 2 · 10−5 Pa (0dB – threshold of hearing) up
to 20Pa (120dB – pain threshold), the local results has qualitative meaning
in acoustic analysis. The contour maps of acoustic pressure distribution gives
a general view of the solution obtained (Fig. 9).

Fig. 9. A contour map of acoustic pressure distribution [Pa] for 200Hz

The detailed information about analysis is placed in following Section 4.4,
where a comparison between the numerical simulations and experimental tests
is presented.
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4.3. Experiment tests

To validate the results obtained in computations of the mathematical model,
experimental tests were carried out. A precise description of the experiment
and test equipment is presented below. The acoustical experiment was pre-
pared before the Educational Center was opened, on a holiday, so the results
were free of incidental noise.

Measurement equipment. The wave source consisted of the following: wa-
ve generator ”Metatronik” G430, frequency counter ”ALFA Electonics”
FC-1200, amplifier ”Luxman Amplifier” LV102 and sphere loudspeaker.
The acoustic signal was recorded by a microphone connected with oscil-
loscope ”LeCroy” 9310M and handheld sound and vibration analyser
”SVANTEK” SVAN 912AE. The signal was calibrated by sound level
calibrator KA-10.

Measurement process. The experimental tests were executed in the follo-
wing way. The stationary spherical source S was placed on the major
axis, by analogy to numerical analysis. Measurement points Pi were si-
tuated on the level of a human head while seated (Fig. 6). A sinusoidal
signal was generated at a range from 150Hz to 700Hz with the step
50Hz, and the sound level run from 98dB to 107dB dependently on
frequency.

Fig. 10. Results at the point P3 for frequency 300Hz: (a) transient case,
(b) steady-state case

At each point and at each frequency of interest two kinds of readings were
made. The first one enabled one to observe the moment in which the acoustic
wave was reaching the measure point and the second one enabled observation
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of the steady-state response (Fig. 10). The individual reading was 0.5 s long
with the time sampling 1 · 10−5 s.

A graphical representation of the output data was prepared in a free scien-
tific software package for numerical computations SciLab 3.0.

4.4. Comparison

The comparison between the numerical analysis and experimental tests is
shown in Fig. 11 and Fig. 12. These figures indicate differences in the acoustic
pressure [Pa] from 0 s to 0.1 s. The first appearance of the acoustic wave in
the measurement points can be observed. A mathematical idealization of the
results in the artificial zero pressure before the acoustic wave came in (black
line).
The mesh density applied to the model should gave satisfactory results up

to 500Hz, as mentioned.

Fig. 11. Comparison for 200Hz: experiment (grey line), numerical solution (black
line)

In Fig. 11, the results of experimental tests and numerical analysis for the
excitation frequency equal to 200Hz are compared. The convergence of both
the amplitude and phase of acoustic pressure is high in all measurement points.
One should notice the number or finite elements per wavelength. The average
dimensions of the finite element were ∼ 0.1m, so for 200Hz there were nearly
17 elements per wavelength in the analysis.
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Fig. 12. Comparison for 300Hz: experiment (grey line), numerical solution (black
line)

The last sentence has a fundamental meaning. Comparisons made for other
frequencies of interest showed that although the accuracy in phase is high eno-
ugh, the convergence in amplitude of traveling waves decreases considerably.
In Fig. 12 the results of experimental tests and numerical analysis for the exci-
tation frequency equal to 300Hz are compared. It is clearly visible that the
convergence in amplitude was lost. By simple computations, we can determine
the number of elements per wavelength just as before. Because of the mesh
density, which did not change during the analysis, for 300Hz there were around
11 elements per wavelength in the analysis.

For upper frequencies such effects were more and more sharply outlined.

5. Conclusions

Limitations in the application of FEM in acoustic analysis can be divided into
three groups. The first group involves problems with proper choice of element
sizes. The second group includes hardware problems, and the last one takes
into account boundary difficulties.
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A example of assembly hall ”MAGNA” proved all the above mentioned li-
mitations. It was clearly seen that the mesh density had fundamental meaning.
Recommendations in relation to the minimal number of the finite elements per
wavelength, introduced in Section 3.1 (based on [1]), are not adequate as the
example of hall ”MAGNA” had prowed. The results indicated that the maxi-
mal dimensions of element should be at least 10 times smaller then the acoustic
wavelength.
A additional limitation was the fact that only a two dimensional model

could be analysed. Because of this, the first run of the acoustic wave through
the assembly hall could be recognized. But not only the conclusions about the
convergence of the numerical and experimental results at measurement points
could be done. The analysis of the contour maps, showing the rate of change
of the acoustic pressure in the model (Fig. 9), had indicated that the shape of
the first reflected wave was well matched to the amphitheatrical auditorium,
so the uniform loudness should be inside.
In spite of the criticism to application of FEM in acoustic analysis, it has

to be outlined that great meaning of the method in the field of acoustics is
unquestionable, and is still growing along with hardware development.
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Ograniczenia zastosowania Metody Elementów Skończonych w analizie

numerycznej pola akustycznego

Streszczenie

W pracy przedstawiono ograniczenia zastosowania Metody Elementów Skończo-
nych w analizie numerycznej pola akustycznego. Wykazano, iż trudności w ocenie
rozkładu akustycznych pól ciśnień spowodowane są doborem funkcji kształtu, wrażli-
wością na warunki brzegowe oraz gęstością stosowanych siatek MES. Na bazie porów-
nania symulacji numerycznych z przeprowadzonym eksperymentem pokazano, w jaki
sposób można niektóre z tych ograniczeń pominąć oraz do jakiego stopnia można
uprościć analizę akustyczną, przyjmując modele dwuwymiarowe.

Manuscript received February 2, 2006; accepted for print May 5, 2006


