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Application of the shape sensitivity analysis to the case of problems of the
biological tissue freezing process is discussed. The freezing process described
by a strongly non-linear bioheat transfer equation in which an additional
term controlling the evolution of latent heat appears. Using the approach
called ’the one domain method’, one finally obtains a partial differential
equation containing the substitute thermal capacity of tissue. The boundary
and initial conditions determine the thermal interaction between the tissue
and cryoprobe tip.

In the paper, we consider a spherical internal cryoprobe. In order to es-
timate the influence of cryoprobe geometry on the course of the process,
the shape sensitivity analysis is applied. In particular, a direct approach is
used (explicit differentiation method). The results of numerical modeling
(the boundary element method is applied) allow one to formulate essential
practical conclusions concerning the course of cryosurgery treatments.
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1. Governing equations

From the mathematical point of view, the freezing process belongs to a
group of moving boundary problems because the shape and dimensions of the
frozen region are time-dependent. In the case of internal spherical cryoprobe
application (Fig. 1), the following equation written in the spherical co-ordinate
system should be taken into account

Ri<r<Ry: C(T)M = ig[)\(T)

ot rZ or

20T (1) t)} (1.1)

or
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where C(T) [J/(m3K)] is the substitute thermal capacity per unit volume,
A(T) [W/(mK)] is the thermal conductivity, T', 7, t denote temperature, spatial
co-ordinate and time. The courses of C(T) and also A(T') are presented in
Fig. 2 (Comini and Giudice, 1976; Majchrzak and Dziewonski, 2000).

cryoprobe

tissue freezing

Fig. 1. Spherical cryoprobe
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Fig. 2. (a) Substitute thermal capacity; (b) thermal conductivity

Equation (1.1) is supplemented by the following boundary conditions
r=Ry: T(rit)="T.

OT(r 1) (1.2)

or =0

r=Ry:

and initial condition
t=0: T(r,t)="Tp (1.3)
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where R; is the cryoprobe radius, Ry is the conventionally assumed exter-
nal radius of the domain considered, T, is the temperature of the cryoprobe
surface, Tj is the initial temperature of the tissue.

In order to use the boundary element method, linearization of the problem
discussed must be introduced. Here, the artificial heat source method is applied
(Majchrzak and Mochnacki, 1996). This method requires transformation of
the governing equations and boundary-initial conditions by the introduction
of Kirchhoff’s function, namely

V(T) = [ A dp (1.4)
T
where T, is an arbitrary assumed reference level.

Using this function, we can transform governing equations (1.1), (1.2),
(1.3) to the form

where (cf. Fig. 3) CIT(V
SIT(V) A[[T((V))]] (1.6)

Boundary and initial conditions (1.2), (1.3) should be also transformed and

then
r=Ry: V(irt)=V,

ov(r,t) .
— =0 (1.7)

t=0: V(rt)=W
where V, = V(T}), Vo = V(Tp).

r=Ry:

2. Sensitivity analysis

In order to estimate the influence of the cryoprobe radius on the course of
the freezing process, a sensitivity model is constructed. Using the concept of
material derivative (Dems, 1987; Kleiber, 1997) one can write

DV 9V 9V

Dy % + Ev (2.1)
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Fig. 3. Course of the function ¢[T (V)]

where v = v(r,b) is the velocity associated with the design parameter b = R;.
Equation (1.5) can be written in the form
ov._9*V 20V

—+ (2.2)

W5 = *7or

Using the direct approach of sensitivity analysis (Dems, 1987; Kaluza, 2005;
Kleiber, 1997), equation (2.2) is differentiated with respect to the shape pa-
rameter b, namely

DS[T(V)] OV

D 0V D 9%V D 10V
o or O (5r) = 53 (52) 205 (0 5) 29)
Because (c.f. formula (2.1))
D 0V 0 0V 0 0V 0 0V oV
o) =ala) Tala) =5 (&) a2 29
and
0 DV 0 0V oV 0 0V 0*V ov o
a) =5 =@ ot o 29
therefore D OV & /DVy 0V o
o5 (ar) = 5 (3) ~ oo (26)

Next, the material derivative of the component 92V /dr? is calculated. From
equation (2.1), one obtains

or

D (82‘/) D {8 (OV)] 0 {D (OV)} 0V Qv

oo\az) “oolar\ar ) = arlme\ar ) ~ o ar 37
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this means

D 0%V 0% DV 0*’Vov 0V 0%
— ()= (=) ot L8 oY 2.
Db( or? ) or? ( Db ) or? or  Or or? (28)
In a similar way, one finds
D /10V 1ro 0V g oV 10V
o) = rla(a) oGl — e 29
Taking into account formula (2.1) and dependence (2.6), we have
D /10V 1D 0V 10V 10 /DVy 10Vov vV
— (- ) = e () sy = () 2 D (9
Db(r87“> TDb(ar) 2 ar rar(Db> ror Or r20r (2.10)
The material derivative of the component 9V/0t is also calculated
D 0V 0 0V 0 0V 0 0V oV 0 DV
oo (ar) = o ar) o (or) = 3 (e + o) = e (pw) 10
From equation (2.2), it results that
o0*V ov. 20V
— =T —_—— 2.12
Or? (vl ot r or ( )
Using formulas (2.8), (2.10) and (2.11), equation (2.3) takes form
ou(r,t) 0*U(r,t) 20U(rt
@[T(V)] (7'7 ) _ (27 )+_ (T )+
ot or r  or (2.13)
ov  DP[T(V)]\ OV (r,t) 200 9*v 20\ 9V (rt)
~(ervig+ =5 ) 5+ Gar am @) o
h
e DV (1, 1)
Ulr,t) = —5; (2.14)
is the sensitivity function, while
DO[T(V)] 1 dC dx
= — — —@[T 2.1
Db NT(V)] (G~ TV (2.15)

Boundary and initial conditions (1.7) are also differentiated with respect
to b

_ g . DV _DV_
T Dy T D

Dg D 0V d DV OV dv
r= IRy Db Db<87“) ar(Db)+8rar 0 ( )
_p. DV_DW_
- Db Db
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this means

r=Ry: W(rt)= (2.17)
t= U(r,t)=0

where
W(rt) = — aUa(::’ ) (2.18)

In equation (2.13), the velocity field v(r,b) associated with the design para-
meter b = R; is defined as follows

R2 - T
Rs —b

v=uv(rb) = (2.19)

It should be pointed out that the additional problem (c.f. equations (2.13),
(2.17)) connected with the sensitivity function U(r,t) is coupled with the
basic one (c.f. equations (1.5), (1.7)) by the functions V(r,t) and @[T'(V)].

3. Method of solution

The basic problem and the additional one have been solved using a combi-
ned variant of BEM (Brebbia and Dominiguez, 1992; Kaluza, 2005; Majchrzak,
2001) supplemented by the artificial heat source procedure (Majchrzak and
Mochnacki, 1996).

Let us consider the following equation

@[T(V)]aF(T’t) 10 [ 9 OF (1,1)

il S A P el 121 t 1
ot 2orl” " or }A—R(r, ) (3.1)
where for the basic problem F(r,t) = V(r,t), R(r,t) = 0 (cf. equation (1.5)),
while for the additional problem F(r,t) = U(r,t) and (cf. equations (2.13),
(2.15))

2B(T(V)] OV (r, 1) 1 d dC OV (r,t)
Rint) == =% o 2w (2T V) =7 Ut o= 52)
2[ 1 Ry —r }QV(r,t)
r(Ry—b) 12(Ry—0)1 Or
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Using the artificial heat source method ((Majchrzak and Mochnacki, 1996) the
function @[T'(V)] is expressed as a sum of two components, which entails a
constant part @¢ and a certain increment AP[T(V)], see Fig. 3

PT(V)] =Py + AP[T(V)] (3.3)

Equation (3.1) can be written in the form

Dy aFé:’ 0 _ r%% [7“2 8F(§?7:, t)} + S(r,t) (3.4)
where
S(r,t) = R(r,t) — AoV 2L gt" 2 (3.5)

is the source function (capacity of internal heat sources).

The essential feature of equation (3.4) consists in the fact that leaving out
the last term, we obtain a linear form of energy equation. The calculation of
the source function requires the introduction of a certain iterative procedure
(Majchrzak and Mochnacki, 1996).

In order to solve equation (3.4), BEM using discretization in the time
domain is applied (Brebbia and Dominiguez, 1992; Kaluza, 2005; Majchrzak,
2001). At first, the time derivative appearing in equation (3.4) is substituted
by a differential quotient

oF(r,t) F(r,th) — F(r,t/71)

te[tf-1 ¢ . =
€l t] ot At

(3.6)
and then equation (3.4) takes form

a [ QM} - &TQF(T, t/) + %TQF(Ta ) 4280ty =0 (3.7)

or or At
Next, the weighted residual criterion is applied
Ry
A E 2k ¢ f
/{ar[ o Fe )+
Ry

(3.8)

+%r2F(r, 1) 4 28 () L P (€ ) dr = 0

where ¢ is the observation point and F*(&,r) is the fundamental solution

Fr(gr) = 21\fexp |r—erf ) —ep(-r el )] 39)
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After mathematical transformations of criterion (3.8), one obtains

r=Ra

Fet!) + [P enit)] = [2renped)]
r=Ry r=R1
(3.10)
o Ro Rs
+ o [PREE ) drs [ S0 ) dr
Ry Ry
where
a *
ren = -2 - pen +
(3.11)
1 ] ]
+ﬁ[sgn<r—§>exp(—\r—a@) — sgn(r+ &) exp(—Ir + €1y 1 )]
and oF f)
£y _oFt)
J(rth) = o (3.12)
Equation (3.10) can be written in the form
F(&,t)) + R3F*(§, Ro)J (R, t)) — RIF*(&, Ry)J (R, t)) = (3.13)
= R3J*(&, Ro)F(Ry, t!) — R{J* (&, R1)F(Ry, t!) + P(§) + Z(€)
where
o,
P =2 [ Rt ) dr
f (3.14)
Ry
29 = [ St F () dr
Ry

For ¢ — Rf and £ — R, , one obtains the following system of equations

—RIF*(Ry,R1) R3F*(Ri,Rp)| [J(Ri,t!)| _
—R3F*(Ra, Ry) R3F*(Ry,Rs)| |J(Ra,tf)

:[—R%J*(R]L,Rl)—l R3J*(RY, Ry) ]lF(Rl,tf)]+[P(R1)]+[Z(R1)1
—R2J*(Ry,Ry) R3J*(Ry,Rs)—1| |F(Ry,t¥)| " |P(Ry)
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from which the unknown boundary values J(Ry,tf), F(Ry,t/) are determined.
Values of the function F at the internal points £ € (R, R2) are calculated
using the formula

F(&,t7) = R3J*(€, Re)F(Ra,t!) — RYJ* (€, R1)F (R, t7) + (3.16)

—R3F*(&,Ro)J(Ro, t)) + RIF* (&, Ry)J(Ry, t)) + P(€) + Z(€)

4. Results of computations

A cryoprobe of diameter R; = 0.005m has been considered. The surface
temperature is assumed as —90°C. The external radius of the tissue domain:
Ry = 0.025m. The initial temperature of tissue Ty = 37°C. The domain of
tissue has been divided into 600 linear internal cells, time step At = 0.5s and
constant @ = 4 - 107 (see equation (3.4) and Fig. 3).

In Figure 4a, the temperature distribution in the tissue for times instants
5, 10, 15, ..., 60s is shown. Figure 4b illustrates cooling curves at the points
r = 0.006, 0.007, 0.008, 0.009 and 0.01 m. In Figure 5a, the distribution of the
sensitivity function U = DV/Db in the domain considered for instants 5, 10,
15, ..., 60s is presented. Figure 5b shows courses of the function U at selected
points in the tissue domain.

50 — ®)
O
o: 30 \\\
.010m)|
10 \ k
10 \\\0-009111
0.008m|
230 \ \\
-50 ——0.007m|
70 .
0.006
-90 -60 I ———
0.005 0.009 [ 0-013 0 10 20 30 40, 1%

Fig. 4. (a) Temperature distribution; (b) cooling curves

The function V(r,t, Ry) is expanded into Taylor series taking into account
the first two components

V(’f’,t,Rl + ARl) = V(T,t, Rl) + U(T,t, Rl)ARl (41)
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Fig. 5. (a) Distribution of the function U = DV/Db; (b) courses of the function U
at selected points

Thus, using the solutions V(r,t,R1) and U(r,t, Ry), it is possible to obtain
solutions corresponding to cryoprobe radii R — ARy and Ry+ AR;. Figures 6
present results obtained this way on the assumption that AR; = 0.1R;.
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Fig. 6. (a) Temperature distribution for R; — ARy; (b) temperature distribution for
Ri + AR,

Summing up, the solutions to the basic and additional problem allow
one (using the Taylor formula) to rebuilt the results obtained on the infi-
nite number of other solutions corresponding to the changed cryoprobe radii.
In this way, it is possible to analyze mutual connections between the radius
of the cryoprobe and the course of freezing process proceeding in the tissue

domain.



SENSITIVITY ANALYSIS OF BIOLOGICAL TISSUE... 391

This paper is a part of project No. 3T11F 01826 sponsored by the State Com-
mittee for Scientific Research (KBN).

References

1. BrREBBIA C.A., DOMINIGUEZ J., 1992, Boundary Elements, an Introductory
Course, Computational Mechanics Publications, McGraw-Hill Book Company,
London

2. CoMiNI G., GIupIiCE L.D., 1976, Thermal aspects of cryosurgery, Journal of
Heat and Mass Transfer, 12, 543-549

3. DEMs K., 1987, Sensitivity analysis in thermal problems — II: structure shape
variation, Journal of Thermal Stresses, 10, 1-16

4. Karuza G., 2005, Application of the sensitivity analysis methods in bioheat
transfer, Doctoral thesis Silesian University of Technology, Gliwice, 2005

5. KLEIBER M., 1997, Parameter Sensitivity in Nonlinear Mechanics, J. Wiley &
Sons, Chichester

6. MaAJCHRZAK E., 2001, Boundary Element Method in Heat Transfer, Publ. of
Czestochowa University of Technology, Czestochowa (in Polish)

7. MAJCHRZAK E., DZIEWONSKI M., 2000, Numerical simulation of freezing pro-
cess using the BEM, Computer Assisted Mechanics and Engineering Sciences,
7, 667-676

8. MAJCHRZAK E., MOCHNACKI B., 1996, The BEM application for numerical
solution of non-steady and non-linear thermal diffusion problems, Computer
Assisted Mechanics and Engineering Sciences, 3, 4, 327-346

Analiza wrazliwo$ci procesu zamrazania tkanki biologicznej ze wzgledu
na promien kriosondy sferycznej

Streszczenie

Praca dotyczy zastosowania analizy wrazliwosci ksztaltu w zagadnieniach mode-
lowania procesu zamrazania tkanki biologicznej. Proces ten jest opisany silnie nieli-
niowym réwnaniem przeplywu biociepta, w ktérym pojawia sie dodatkowy sktadnik
zwigzany z wydzielaniem si¢ utajonego ciepta zamrazania. Formalne przeksztalcenia
wyjsciowego rOwnania opisujacego proces prowadzi do rownania rézniczkowego, w kto-
rym wystepuje zastepcza pojemnos$é cieplna tkanki (tzw. metoda jednego obszaru).
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Odpowiednio przyjete warunki brzegowe determinuja oddziatywania termiczne mig-
dzy tkanka a koncéwka kriosondy.

W pracy rozwaza sie sferyczna kriosonde wewnetrzng. W celu oszacowania wpty-
wu geometrii kriosondy na przebieg procesu zamrazania wykorzystano podejécie bez-
posrednie analizy wrazliwosci ksztaltu. Wyniki obliczenn numerycznych otrzymane za
pomocyg metody elementéw brzegowych pozwolily na sformutowanie wnioskéow przy-
datnych w praktyce kriochirurgiczne;j.
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