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In recent years, the analysis and synthesis of control systems in a de-
scriptor form has been established. The general description of dynamical
systems by differential-algebraic equations (DAE) is important for many
applications in various disciplines, but particularly in mechatronics. In
this contribution, the pros and cons of the modelling of mechatronic sys-
tems by differential-algebraic equations are discussed with application of
subsystem modelling. Additionally, the actual state of the art simulation,
analysis and design of descriptor systems are presented.
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1. Modelling

The investigation of dynamical systems in mechanical or electrical engine-
ering usually requires mathematical modelling of the system behaviour. The
increasing complexity of these processes leads on the one hand to the deve-
lopment of computer programs automatically generating the governing system
equations (Schiehlen, 1990) for multibody systems, or on the other hand to
an increase of modular subsystem modelling of which the complete model
is composed. Usually, this interconnection-oriented modelling describes dyna-
mic behaviour of single components by differential equations and the coupling
of the subsystems by algebraic equations. All over, a mathematical model is
represented by a combined set of differential and algebraic, i.e. by differential-
algebraic equations (DAE). In control engineering, we speak about singular
control systems or descriptor systems (Luenberger, 1977).

Mechatronic systems usually consist of a large number of mechanical, hy-
draulic, electrical and electronic components where the subsystem modelling
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represents the most clear and manageable way of modelling that maintains
the physical character of the components. For example, electrical networks
can be considered to be composed of subsystems of network elements (like re-
sistors, capacitors, inductors described by different types of equations) and by
coupling due to Kirchhoff’s laws (described by algebraic equations) (Kampow-
ski et al., 1992; Mathis, 1992). In mechanical systems, differential equations
usually describe the dynamics of subsystems and algebraic equations charac-
terise couplings by constraints such as joints. A general approach to handle
mechanical systems as an interconnected set of dynamic modules has been
given in Rüekgauer and Schiehlen (1997). In the following, three examples of
the descriptor modelling are dealt with for illustration.

1.1. Lagrange’s equations of the first kind

Lagrange’s equations of the first and second kind are well established in
analytical mechanics (Rosenberg, 1977). They describe dynamic behaviour of
discrete systems, particularly of multibody systems. The difference of the two
kinds consists of the manipulation of kinematic constraints. If a kinematic
description of the system has been performed by generalised coordinates con-
sistent with the constraints, Lagrange’s equation of the second kind can be
applied which leads to a set of differential equations only. But if a redundant
set of coordinates is used to describe kinematically the system regarding still
some constraints explicitly, then the Lagrange’s equations of the first kind
hold. In the case of holonomic constraints

f(q) = 0 (1.1)

we have
d

dt

(∂L

∂q̇

)

−
∂L

∂q
= Q+ F>λ (1.2)

where the Lagrangian function L = T −U consists of the kinetic and potential
energies T and U , Q represents nonconservative forces acting on the system.
F = F(q) = ∂f/∂q> is the Jacobian matrix of the constraints and λ is the
vector of Lagrange’s multiplyers. They represent the constraint forces if the
column vectors of F> are normalized. While the variables q describe motion
of the system, the Lagrange’s multiplyers λ give some information on the
load of the mechanical structure. Therefore, critical loads due to motion may
be considered simultaneously. Equations (1.1) and (1.2) represent a system of
DAE. If Q includes some actuators to control the multibody system, then a
descriptor system is under consideration.
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1.2. Subsystem modelling

If the interconnection-oriented modelling approach is applied (Müller,
1995), usually the dynamics of N subsystems is described by sets of diffe-
rential equations

ẋi = ai(xi,ui) i = 1, . . . , N (1.3)

where xi are the internal state vectors and ui the control vectors of the corre-
sponding subsystems. The couplings among the subsystems may be obtained
kinematically by ”constraints” or kinetically by ”forces” leading to

ẋi = ai(xi,ui) +
N
∑

j=1

aij(xi,xj) +
N
∑

j=1

Lij(xj)λj

(1.4)

0 =
N
∑

j=1

f ij(xj) i = 1, . . . , N

The additional terms compared to (1.3) are the kinetic couplings aij between
subsystems no. i and j, and the kinematic couplings (1.4)2 which have to
be considered in dynamic balance equations (1.4)1 by some Lagrange’s mul-
tipliers λj with some input matrices Lij due to coupling requirements. How
Lij is defined more precisely depends on physical principles behind the system
discipline; equations (1.1) and (1.2) show an example of mechanical systems.
All over, equations (1.4) represent again the descriptor system.

1.3. Tracking control

In mechatronics, often the problem of tracking control arises, e.g. the pre-
scribed path control of a robot. In this case, the process dynamics may be
described in the state space by

ẋ = a(x,u, t) (1.5)

and it is asked for the control u which guarantees that some output variables
y = c(x,u, t) follow a prescribed reference path yref (t)

0 = c(x,u, t)− yref (1.6)

This descriptor system (1.5) and (1.6) can be described by

[

Ix 0

0 0

] [

ẋ

ẋ

]

=

[

a(x,x, t)
c(x,x, t)− yref (t)

]

(1.7)
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which defines explicitly the desired tracking control

u(t) =
[

0 Iu

]

[

ẋ

ẋ

]

(1.8)

where Ix, Iu are identity matrices of dim(x) and dim(u), respectively.
The exact tracking control (1.7) and (1.8) can be extended to an asymptotic

tracking control introducing for the tracking error

e(t) = y(t)− yref (t) (1.9)

additional error dynamics

ė(t) = f(e) f(0) = 0 (1.10)

which are asymptotically stable in the large. Then (1.7) and (1.8) are replaced
by







Ix 0 0

0 Iy 0

0 0 0













ẋ

ė

ẋ






=







a(x,x, t)
f(e)

c(x,x, t)− yref (t)− e







(1.11)

u(t) =
[

0 0 Iu

]







ẋ

ė

ẋ







1.4. Advantages

With respect to tasks of the modelling of mechatronic systems, the descrip-
tor approach has many advantages. It is a very natural way to model process
dynamics. It refers much more to physical behaviour of a system and gives
more physical insight. The interpretation of results is also more simple than in
a case of a more abstract description by state space models. In the opposite,
the state space system approach was mainly required by mathematical tools
available until 1980 to simulate, to analyse and to design such systems. But
today, also many tools have been prepared for the simulation, analysis and
control design of descriptor systems.

2. Simulation

As long as it was not possible to simulate descriptor systems, the very
efficient and very accurate state space approach was still superior according
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to well established tools of numerical integration of ordinary differential equ-
ations. But in the 1970s, the simultaneous numerical solution to differential
and algebraic equations was firstly considered (Gear, 1971). Step by step, nu-
merical system solvers were developed. For index-1-problems (see below), the
code DASSL was presented (Petzold, 1983), stimulating more research also
for higher index problems. The first code for mechanical index-3-systems was
presented by Führer (1988). In the meantime, a lot of efficient solvers for
DAE have been developed (cf. Brenan et al., 1989; Hairer and Wanner, 1991;
Simeon, 1994). In the Ph.D. thesis by Rükgauer (1997) on the modular simu-
lation of mechatronic systems, several solvers were compared resulting in the
recommendation of the codes SDOP853 and SDOPPRI5 which are modified
versions of Runge-Kutta solvers for ordinary differential equations including
projection steps with respect to constraints of the algebraic equation. A survey
on solvers of higher index DAEs was given by Arnold (1988). With respect to
these results, today a number of stable and efficient DAE solvers exist and can
be applied as naturally as ODE solvers for state space models. Such solvers
are included in many program packages to generate and simulate equations of
motion of dynamical systems, e.g. in ADAMS and SIMPACK (cf. Schiehlen,
1990), for multibody systems.

3. Analysis and synthesis

The tools for the analysis and control design of descriptor systems have
been developed enormously in the last two decades. As usual, linear theory
was in the foreground of the discussion, but results on nonlinear problems were
reported as well. In the following, the well established results of the linear
theory are touched only shortly, but the optimal nonlinear control design of
descriptor systems will be discussed in more detail.

3.1. Linear systems

Linear time-invariant descriptor systems are presented by

Eẋ = Ax(t) +Bu(t)
(3.1)

y(t) = Cx(t) +Du(t)

where x is an n-dimensional descriptor vector, u denotes the r-dimensional
control input vector, and y characterises the m-dimensional measurement
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output vector. The matrices E, A are n × n-matrices, and B, C, D have
dimensions n×r,m×n,m×r, respectively. The essential property of descriptor
systems is that E is a singular matrix.

rankE < n (3.2)

such that Eq. (3.1)1 consists of differential and algebraic equations.

The basic tool in discussing Eq. (3.1)1 is the theory of matrix pencils
(sE − A) by Weierstrass and Kronecker in the 19th century (cf. Dai, 1989),
separating the system into a few subsystems with different properties. Assu-
ming unique behaviour of (3.1)1 for all control inputs, i.e. assuming that the
matrix pencil is regular

p(s) ≡ det(sE−A) 6≡ 0 (3.3)

then system (3.1)1 is strictly equivalent to the Weierstrass-Kronecker canonical
form

ẋ1(t) = A1x1(t) +B1u(t)

Nkẋ2(t) = x2(t) +B2u(t) (3.4)

y(t) = C1x1(t) + C2x2(t)

Equation (3.4)1 represents the ’slow’ subsystem of the dimension n1, and the
n2-dimensional ’fast’subsystem is described by (3.4)2. The n2×n2-matrix Nk
is nilpotent of the degree k (Nk−1k 6= 0, Nkk = 0) defining the index k of the
linear descriptor system.

According to the separation into two subsystems, the controllability and
observability investigations split off into at least two different concepts of the
so-called R/I-controllability and -observability guaranteeing different proper-
ties of the feedback control (cf. Dai, 1989; Lewis, 1986). The results of many
investigations in the 1980’s were summarized in these two references.

The stability can be discussed in terms of eigenvalues of the matrix pencil
(sE − A), i.e. by the roots of characteristic polynomial (3.3), or equivalently
by eigenvalues of the system matrix A1 of the slow subsystem (3.4)1. Another
approach is based on the generalized matrix equation

A
>
PE+ E>PA = −Q (3.5)

where definiteness properties of P and Q with respect to certain subspaces
assure stability (Müller, 1993).
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First results on the design of the linear feedback control by pole placement
were presented by Dai (1989). But the main problem of the synthesis of the
feedback control consists in the possibility of non-proper system behaviour.
This can be seen immediately by the consistent solution to the fast subsystem
(3.4)2 (cf. Dai, 1989)

x2(t) = −B2u(t)−NkB2u̇− . . .−N
j−1
k B2u

j−1(t) (3.6)

which includes generally higher-order time-derivatives of the control input
until to the order j − 1 with j ¬ k and NjkB2 = 0. The two cases have
to be distinguished, where solution (3.6) depends either only on u(t) but not
on its derivatives u̇(t), . . . ,uj−1(t) (i.e. j = 1) or on u(t) and its derivatives
u̇(t), . . . ,uj−1(t) (i.e. j > 1) according to the general case (3.6). In the first
case, the system is called proper, in the second case non-proper according
to related proper and non-proper transfer matrix functions. System (3.1)1 is
proper if and only if in representations (3.4)1,2, the equation

NkB2 = 0 (3.7)

holds. The distinction between proper and non-proper descriptor systems and
its consequences were discussed by Müller (1998a, 1999a, 2000). Regarding
proper and non-proper systems, the linear quadratic optimal regulator pro-
blem (Müller, 1998a, 1999a, 2000) and the descriptor state estimation problem
(Müller,1999b) were discussed in detail and properly solved. Some initial re-
sults on the robust control design exist as well. The H∞-control problem was
considered in Masubuchi et al. (1997), Rehm (2003), Takaba et al. (1994). In
case of stabilizable, detectable, impulse-controllable and impulse-observable
descriptor systems necessary and sufficient conditions for the solvability of the
control problem are given.
For the analysis and systhesis of linear descriptor systems, usual theoretical

tools are (more or less) available and related program packages have been
developed (Bunse-Gerstner et al., 2000; Varga, 2000).

3.2. Nonlinear systems

First results on nonlinear descriptor systems were reported in Bajic (1992),
Campbell et al. (1999), Müller (1998b). Also, first attempts of the optimal
control design were given in Cobb (1983), Jonckheere (1988). Particularly, the
linear-quadratic optimal regulator for descriptor systems was dealt with in
Bender and Laub (1987).
More recently, theoretical papers on optimal control problems with sta-

te constraints have been published, see Dmitruk (1993), Hartl et al. (1995),
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Stefani and Zezza (1996). However, usually the papers put severe restrictions
on the type of the control problem (such as properness or index one) in or-
der to secure some necessary optimality conditions. Such restrictions are often
not satisfied by real practical problems, therefore the above-mentioned results
cannot be applied in practice. The main weakness here is the lack of distinc-
tion between proper and non-proper descriptor systems. If such distinction is
regarded, the optimal control problems can be correctly dealt with. For the
linear-quadratic optimal control design of linear descriptor systems this has
been fully implemented in Müller (1999a, 2000). In a recent paper (Müller,
2003), the nonlinear optimal control problem has been discussed in detail.

In the present contribution, we will present a survey on these results as
mentioned above.

Controlled time-invariant finite-dimensional descriptor systems can be de-
scribed in a semi-explicit form by

ẋ1 = f1(x1,x2,u)
(3.8)

0 = f2(x1,x2,u)

where xi, i = 1, 2 are ni-dimensional vectors and n1 + n2 = n. Usually u is
an r-dimensional control input vector.

The problem of the optimal control of nonlinear descriptor systems consists
in the control design for (3.8) with respect to the performance criterion

J =

T
∫

0

f0(x1,x2,u) dt ⇒ minimum (3.9)

where u belongs to a set U of bounded or unbounded control functions:
u ∈ U . Additionally, boundary conditions for the optimal control design have
to be considered. The boundary conditions are given either geometrically or
there are dynamical boundary conditions which have to be determined by an
optimization procedure. In both cases they have to be consistent with algebra-
ic equations (3.8)2, which have to be satisfied. The corresponding boundary
conditions will be not regarded explicitly in the following, because the han-
dling follows from usual rules of the optimal control if the descriptor control
problem has been properly formulated. Furthermore, we confine ourselves to
principles of correct formulation of the optimal control design of nonlinear
descriptor systems. The notation is simplified assuming that all algebraic equ-
ations (3.8)2 have a uniform index, i.e. that they have the same index k. Then
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the underlying set of ordinary differential equations runs as

ẋ2 = −
( ∂

∂x>2
Lk−1f1 (f2)

)−1
Lk(f2) = f2(x1,x2,u, . . . ,u

(s)) (3.10)

on a manifold defined by algebraic equations (invariants)

djf2
dtj
≡ Lj(f2) = 0 j = 0, . . . , k − 1 (3.11)

where L, Lf1 are suitably defined operators

L(·) = Lf1(·) + Lu̇(·) +
∆

∆t
(·)

Lf1(·) =
∂(·)

∂x>1
f1 Lu(j)(·) =

∂(·)

∂u>
u(j) (3.12)

∆

∆t
Lu(j)(·) = Lu(j+1)(·)

The first integrals Lj(f2) = 0, j = 0, . . . , k−2, of (3.10) depend on x1 but not
on x2. The function L

k−1(f2) depends on x2 for the first time such that the
related Jacobian is regular and differential equation (3.10) can be derived. Also
Lk−1(f2) = 0 is a first integral of (3.10). Additionally, the function L

j(f2)
depends generally on the time-derivatives of the control input u: u, u̇, . . . ,u(j),
j = 0, . . . , s, 0 ¬ s ¬ k. If u appears explicitly in Lp(f2) = 0 for the first
time, then s = k−p holds. System representations (3.8)1 and (3.10) have to be
supplemented by consistent initial or boundary conditions satisfying invariants
(3.11)

Lj(f2)
∣

∣

∣

t=0
= 0 Lj(f2)

∣

∣

∣

t=T
= 0 j = 0, . . . , k − 1 (3.13)

The different representations of the control system in the preceding Section
show that the system behaviour may depend not only on the control input
u but also on its time-derivatives u̇, ü, . . . ,u(s−1),u(s). Although DAE de-
scription (3.8) shows explicitly only the input u, there may be hidden effects
related to time-derivatives u̇, . . . ,u(s) as it is shown by representations (3.8)1,
(3.10), (3.11). This situation is very different from the common state space di-
scussions. Any control design method has to take care of this unconventional
problem. Therefore, it is necessary to clarify this unusual situation. For these
systems, the notion of ”properness” is introduced according to the definition
of frequency domain for linear systems as it was done in Section 3.1. Descrip-
tor system (3.8)1 is called proper if the solution x1, x2 does not depend on
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u̇, ü, . . . ,u(s−1) but only on u (and/or on weighted integrals of u). Other-
wise the system is called non-proper. The notion of proper behaviour can be
sharpened for strictly proper systems, if system (3.8)1 is proper and additio-
nally x2 depends on x1 but not on u, according to L

k−1(f2) = 0. Obviously,
the description of the dynamical system by equations (3.8)1, (3.10) with the
additional boundary conditions is the most convenient one to perform the
optimization with respect to performance criterion (3.9) applying well-known
methods of calculus of variations or the maximum principle of Pontryagin
(Funk, 1970; Leitman, 1981; Pontryagin et al., 1962). The only one problem,
which still appears, is correct handling of the time-derivatives u̇, . . . ,u(s) in
the non-proper case. But this problem is easily solved by introducing some
extended variables

ξ1 = u, ξ2 = u̇, . . . , ξs = u
(s−1), v = u(s) (3.14)

defining a multi-dimensional integrator chain

ξ̇1 = ξ2, ξ̇2 = ξ3, . . . , ξ̇s−1 = ξs, ξ̇s = v (3.15)

By these variables, we are able to state the optimal control problem properly:
Minimize the performance criterion, i.e.

J =

T
∫

0

f0(x1,x2, ξ1) dt ⇒ minimum (3.16)

regarding the differential constraints of an extended dynamical system resul-
ting from

ẋe =





















f1(x1,x2, ξ1)

f2(x1,x2, ξ1, . . . ,v)
ξ2
...
ξs
v





















(3.17)

where the extended state vector is defined as

x>e =
[

x>1 x
>
2 ξ

>

1 · · · ξ
>

s

]

(3.18)

The new (fictitious) control input is v. The original control constraints u ∈ U
appear as state constraints ξ1 ∈ U . The given geometrical consistent boundary
conditions have to be supplemented.
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The necessary conditions for the optimal control design follow from the
application of the conditions of Pontryagin’s maximum principle, which was
shown in Müller (2003). The necessary condition for the solution of optimal
control problem (3.16) and (3.17) is the existence of a non-vanishing adjoint
vector

[

λ>1 λ
>

2 Ψ
>

1 · · · Ψ
>

s

]

6= 0 (3.19)

satisfying the relations

λ̇1 = −
∂Hnp
∂x1

0 = −
∂Hnp
∂x2

Ψ̇1 = −
∂Hnp
∂ξ1

(3.20)

Ψ̇ i = −
∂Hnp
∂ξi

= −Ψ i−1 i = 2, . . . , s

and

Hnpmax =Max
v
Hnp : Ψ

>

s v ⇒ Maximumv
(3.21)

where the Hamiltonian reads

Hnp = λ
>

1 f1 + λ
>

2 f2 +Ψ
>

1 ξ2 + · · ·+ Ψ
>

s v − f0 (3.22)

Therefore, for non-proper descriptor systems it is necessary to include higher-
order time-derivatives into the optimization procedure according to integrator
chain (3.14) and (3.15). Additionally, the control constraint u ∈ U has to
be considered as a constraint ξ1 ∈ U of extended state (3.18). A practical
problem of maximum condition (3.21) is that the constraint on v is not given
in advance. Therefore, it is strongly recommended to think about a properly
defined optimization problem. Condition (3.21) is an indirect hint that the
problem is not well-posed from the very beginning. In many applications, one
may be easily convinced that the constraint u ∈ U is not reasonable but the
constraint v ∈ V does make sense. If the condition u ∈ U is replaced by
v ∈ V , then a usual optimization problem arrives, which is solved by (3.20)
and (3.21). After all, a two-point-boundary problem has to be considered to
get the optimal (fictitious) control v. According to integrator chain (3.14) and
(3.15) this is not static (proportional) control but dynamic control.

A special case of the above result, see (3.20) and (3.21), is a solution to the
unconstrained optimization problem under sufficient smoothness conditions
such that calculus of variations may be applied. In Müller (2003) it was shown
that conditions (3.20) and (3.21) can be essentially simplified to necessary
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conditions of the existence of non-vanishing adjoint variables λ1, λ2 satisfying
the differential-algebraic equations

λ̇1 = −
∂Hr
∂x1

0 = −
∂Hr
∂x2

0 = −
∂Hr
∂u

(3.23)

Here, the reduced Hamiltonian

Hr = Hr(x1,x2,u,λ1,λ2) = λ
>

1 f1 + λ
>

2 f2 − f0 (3.24)

is applied. The boundary conditions of the adjoint variables follow usual rules
and are not considered explicitly.
The solution to the unconstrained optimization problem consists in the

solution to a two-point-boundary problem with respect to two sets (3.8) and
(3.23)1,2 of differential-algebraic equations having regard to the control from
(3.23)3. Unconstrained optimization problems can be solved by the usual ap-
proach of the calculus of variations independently of the proper or non-proper
behaviour of dynamical system (3.8).

4. Conclusions

In this contribution, an effort to characterise the state of the art of model-
ling, analysing and designing dynamical processes, particularly mechatronic
systems by the descriptor system approach has been made. Without any do-
ubts, the modelling of dynamical systems by differential-algebraic equations
has many advantages and is superior to the state space modelling. The si-
mulation tools for DAEs are well established and are comparable with ODE
solvers. For linear descriptor systems, the tools for analysis and the control
design are available, too. For nonlinear descriptor systems the optimal control
design has been shown, but still more research work has to be performed.
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Fortschr.-Ber. VDI, Reihe 20, Nr. 264, Düsseldorf

2. Bajic V., 1992, Lyapunov’s Direct Method in the Analysis of Singular Systems
and Networks, Shades Technical Publications, Hillcrest, RSA



Modelling and control of mechatronic systems... 605

3. Bender D.J, Laub A.J., 1987, The linear-quadratic optimal regulator for
descriptor systems, IEEE Trans. Autom. Control, 32, 672-688

4. Brenan K.E., Campbell S.L., Petzold L.R., 1989, Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations, North-Holland,
New York

5. Bunse-Gerstner A., Mehrmann V., Varga A., 2000, Numerische Metho-
den zur robusten Steuerung. DFG-Forschungsprojekt, 1999/2000, Zentrum für
Technomathematik, Tätigkeitsbericht, Universität Bremen

6. Campbell S.L., Nikoukhah R., Delebecque F., 1999, Nonlinear descriptor
systems, In: Advances in Control-Highlights of ECC’99, P.M. Frank (Edit.),
Springer, London, 247-281

7. Cobb D., 1983, Descriptor variable systems and optimal state regulation, IEEE
Trans. Autom. Control, 28, 601-611

8. Dai L., 1989, Singular Control Systems, Volume 118 of Lecture Notes in Control
and Information Sciences, Springer, Berlin-Heidelberg

9. Dmitruk A.V., 1993, Maximum principle for the general optimal control pro-
blem with phase and regular mixed constraints, Comput. Math. Modelling, 4,
364-377

10. Führer C., 1988, Differential-algebraische Gleichungssysteme in mechani-
schen Mehrkörpersystemen: Theorie, numerische Ansätze und Anwendun-
gen, Dissertation, Mathematisches Institut und Institut für Informatik, TU
München

11. Funk P., 1970, Variationsrechnung und ihre Anwendung in Physik und Tech-
nik, (2nd ed.), Springer, Berlin-Heidelberg

12. Gear C.W., 1971, The simultaneous numerical solution of differential-
algebraic equations, IEEE Trans. Circuit Theory, 18, 89-95

13. Hairer E., Wanner G., 1991, Solving Ordinary Differential Equations II,
Stiff and Differential-Algebraic Problems, Springer, Berlin

14. Hartl R.F., Sethi S.P., Vickson R.G., 1995, A survey of the maximum
principles for optimal control problems with state constraints, SIAM Review,
37, 181-218

15. Jonckheere E., 1988, Variational calculus for descriptor problems, IEEE
Trans. Autom. Control, 33, 491-495

16. Kampowski W., Rentrop P., Schmidt W., 1992, Classification and nume-
rical simulation of electric circuits, Surv. Math. Ind., 2, 23-65

17. Leitmann G., 1981, The Calculus of Variations and Optimal Control, Plenum
Press, New York



606 P.C.Müller

18. Lewis F.L., 1986, A survey of linear singular systems, Circuits, Syst. Signal
Processing, 5, 3-36

19. Luenberger D.G., 1977, Dynamic equations in descriptor form, IEEE Trans.
Autom. Control, 22, 312-321

20. Masubuchi I., Kamitane Y., Ohara A., Suda N., 1997, H∞-Control for
descriptor systems: a matrix inequaltiy approach, Automatica, 33, 669-373

21. Mathis W., 1992, Analysis of linear time-invariant network in the frequan-
cy domain, In: Mathematical Modelling and Simulation of Electrical Circuits
and Semiconductor Devices, R.E. Bank, R. Bulirsch, H. Gajewski, K. Mertens
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Modelowanie i sterowanie układów mechatronicznych metodą

deskrypcyjną

Streszczenie

W ostatnich latach sformułowano i spopularyzowano problem analizy i syntezy
układów sterujących w postaci deskrypcyjnej. Ogólny opis układów dynamicznych
za pomocą równań różniczkowo-algebraicznych (DAE) ma ogromne znaczenie aplika-
cyjne w różnych dziedzinach nauki, w szczególności w zakresie mechatroniki. W pre-
zentowanej pracy przedyskutowano wszystkie „za” i „przeciw” modelowania układów
mechatronicznych równaniami różniczkowo-algebraicznymi z zastosowaniem podzia-
łu opisywanego układu na podsystemy. Ponadto przedstawiono najnowocześniejsze
metody symulacji, analizy i projektowania układów deskrypcyjnych.
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