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The second part the paper focuses on implementation issues of the spec-
tral element technique and presents sample results of numerical simulations.
Particular algorithms like preconditioning of the presser solver, fast diago-
nalization method and the projection method for solving sequences of large
linear systems are described in some details. The computational results, ob-
tained for both test domains and geometries of medical origin, are presented.
The comparison with the results of computations with the FIDAP package is
provided. The difficulties and limitations of the spectral method and current
implementation are discussed. Attempts of the parallelization of the spectral
code and the obtained efficiency are briefly described.
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1. Introduction

In the first part of the paper, the problem of a nonstationary flow of a
viscous incompressible fluid in a three dimensional pipe system has been for-
mulated. The most remarkable element of this formulation is, following the
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terminology introduced by Formaggia et al. (2000), the enforcement of ”defec-
tive” boundary conditions at inlet/outlet sections of a computational domain.
Such conditions prescribe temporal variation of the flow rate (the volume flux)
or area-averaged static pressure. It means that distributions of velocity and
pressure fields across the inlet/outlet section are not a priori assumed – they
are obtained during a solution process. Moreover, the flow rate inlet/outlet
conditions (referred to as V F -type conditions) can coexist with the area-
averaged pressure conditions (referred to as AP -type conditions), meaning
that each of the inlet/outlet sections can be of either of these types (but not
of both at the same time). While the boundary conditions of the AP -type
can be incorporated directly in the weak formulation, the V F -type conditions
are, in fact, additional constrains imposed on the problem, and they are en-
forced using Lagrange’s multipliers. If mixed explicit-implicit time integration
schemes are used, the algebraic problem to be solved during each time step
becomes linear. It is convenient to seek for a solution to such a system in the
form of a linear combination of particular solutions, which all but one can
be computed in advance. This procedure allows also for simple evaluation of
time-dependent Lagrange’s multipliers, which are interpreted as instantaneous
values of the area-averaged pressure at V F -type inlets/outlets.
In this part of the paper, we discuss the most important elements of the

numerical implementation based on the spectral elements and present sample
results of numerical calculations. For a convenient reference, the summary of
the numerical algorithm, formulated in Part I, is provided in Section 2. A brief
account of the spectral element discretization used in this study is presented in
Section 3. For a detailed exposition of the spectral methods, the reader may
refer to recent monographs (Deville et al., 2002; Karniadakis and Sherwin,
1999).
Some issues, particularly important for the overall performance of the me-

thod, also are addressed: the construction of the preconditioner of the pressure
solver (Section 4), the fast diagonalization method (Section 5) and the projec-
tion method for solving a sequence of large linear problems (Section 6). Some
longer mathematical derivations and formulas have been shifted to Appendix.
Sample numerical results are described in Section 7. The focus is on the

validation of the algorithm in the case of mixed inlet/outlet conditions rather
than on solving a particular (technically interested) problem. Therefore, most
of the calculations are carried out for a simple T-shaped pipe system. Some
preliminary results, obtained for a more complicated model of the Blallock-
Taussig shunt, are also presented. Finally, we shortly discuss an important
issue of the parallelization and present some preliminary results concerning
the parallel efficiency of the spectral solver.
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2. Description of the numerical method

In this section, the numerical method, described in Part I of the paper, is
summarized for convenient reference.
Let u

(m)
α (α = 1, 2, 3) and π(m) denote vectors of a spectral representation

of velocity components and pressure computed in the time step t(m). The
following procedure, based on the OIFS scheme, yields the solution in the
next time step t(m+1):

Computation of the convection substep

The following initial value problems (k = 1, ...,K, where K is the order
of OIFS scheme)

d

dt
(ûα)k = −Cα[(û1)k, (û2)k, (û3)k](ûα)k α = 1, 2, 3

(2.1)

(ûα)k(t = t
(m−k+1)) = u(m−k+1)α

are integrated numerically using the 4th order Runge-Kutta explicit scheme.
The integration is carried out with the uniform sub-step h = ∆t/MS (MS is
typically not larger that 5) until the time t(m+1) = t(m) + ∆t is reached.
The system of differential equations (2.1) is a space-discretized counterpart of

equations (3.13) from Part I. As a result, one obtains vectors (ûα)
(m+1)
k =

(ûα)k(t = t
(m+1)), α = 1, 2, 3, k = 1, ...,K.

Determination of the solution to the special Stokes problem

Next, the following (unsteady) Stokes problem is solved




A 0 0 (D1)
>

0 A 0 (D2)
>

0 0 A (D3)
>

D1 D2 D3 0







u
{0}
1

u
{0}
2

u
{0}
3

π{0}




(m+1)

=




r1
r2
r3
0




(m+1)

(2.2)

where the right-hand side vectors are defined as follows

r(m+1)α = −
1

∆t

K∑

k=1

βkMV (ûα)
(m+1)
k − (ΛPα )

>P (m+1) α = 1, 2, 3 (2.3)

In the above, the symbol P (m+1) denotes the vector of the section-averaged
pressure prescribed for all inlets/outlets of the AP -type at the time t = t(m+1).
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The solution to linear system (2.2) is sought using the Schur-compliment
method in an incremental version, which can be summarized as follows:

• Solution of three (independent) linear systems

Aũα = r
(m+1)
α − (Dα)

>π{0}(m) α = 1, 2, 3 (2.4)

The Helmholtz matrix A is symmetric, positive definite and, typically,
strongly diagonally dominant. Thus, the above systems can be efficien-
tly solved with the Conjugate Gradients Method (CGM) with simple
diagonal preconditioning.

• Solution of the linear system for the pressure correction

Sπ′ = D1ũ1 +D2ũ2 +D3ũ3 (2.5)

where

S = D1A
−1(D1)

> +D2A
−1(D2)

> +D3A
−1(D3)

> (2.6)

The Uzawa matrix S is symmetric and positive definite. For an unste-
ady Stokes problem, this matrix is very poorly conditioned. Hence, an
effective preconditioning technique is compulsory. We will discuss this
problem in details later. Note also that computing product, like S · p,
involves solving of three linear systems with the Helmholtz matrix A. In
Part I, we shortly described the method of approximation of the matrix
A
−1 based on the Neumann expansion. This method, however, is not
used in the current implementation of the algorithm.

In effect of this part of calculations, we obtain the total pressure of the
Stokes solution

π{0}(m+1) = π{0}(m) + π′ (2.7)

• Calculation of the velocity components

The new velocity field can be calculated as follows. First, the Helmholtz
linear systems for velocity corrections

Au′α = −(Dα)
>π′ α = 1, 2, 3 (2.8)

are solved by PCGM iterations with the diagonal preconditioner. After-
wards, the final velocity components are obtained

u{0}(m+1)α = u{0}(m)α + u′α α = 1, 2, 3 (2.9)
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Finally, the vector of corresponding volume fluxes through all inlets/outlets
of the VF type is calculated

f
{0}(m+1)
V F =

3∑

α=1

ΛFαu
{0}(m+1)
α (2.10)

Determination of the full solution at the time t = t(m+ 1)

The full solution at t = t(m+1) is obtained in the form of the following
linear combination





u
(m+1)
1

u
(m+1)
2

u
(m+1)
3

π(m+1)




=





u
{0}(m+1)
1

u
{0}(m+1)
2

u
{0}(m+1)
3

π{0}(m+1)




+
NV F∑

k=1

λ
(m+1)
k





u
{k}
1

u
{k}
2

u
{k}
3

π{k}





(2.11)

Let us remind that the symbols u
{k}
α , α = 1, 2, 3, k = 1, ..., NV F , refer to the

solutions to special Stokes problems




A 0 0 (D1)
>

0 A 0 (D2)
>

0 0 A (D3)
>

D1 D2 D3 0







u
{k}
1

u
{k}
2

u
{k}
3

π{k}



=




−(ΛF1 )
>λ{k}

−(ΛF2 )
>λ{k}

−(ΛF3 )
>λ{k}

0


 (2.12)

where

λ
{k}
j =

{
0 if j 6= k
1 if j = k

For a fixed geometry and time step, these solutions can be calculated once
and forever. The vector of the Lagrange multipliers λ(m+1) is found from the
linear system

TFλ
(m+1) = F (m+1) − f

{0}(m+1)
V F (2.13)

The matrix TF of system (2.13) is defined as follows

TF =




f
{1}
1 · · · f

{NV F }
1

...
...

...

f
{1}
NV F

· · · f
{NV F }
NV F


 (2.14)

where

f
{k}
j =

( 3∑

α=1

ΛFαu
{k}
α

)

j
j = 1, ..., NV F (2.15)
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Note that parts (2) and (3) of the above procedure provide a solution to the
following linear system




A 0 0 (D1)
> (ΛF1 )

>

0 A 0 (D2)
> (ΛF3 )

>

0 0 A (D3)
> (ΛF3 )

>

D1 D2 D3 0 0

ΛF1 Λ
F
2 Λ

F
3 0 0







u1
u2
u3
π

λ




(m+1)

=




r1 − (Λ
P
1 )
>P

r2 − (Λ
P
2 )
>P

r3 − (Λ
P
3 )
>P

0
F




(m+1)

(2.16)
Typically, the above system contains only a few equations more that the special
Stokes systems described above. However, the matrix of (2.16) is not positive
definite, and a different iterative technique from PCGM has to be applied.

3. Spectral element discretization

3.1. Physical and standard spectral elements

In the present work, a block-structured grid of hexahedral elements is used.
In order to perform local operations, each element in the physical space is
mapped to the standard spectral element: the cube [−1, 1]3 (see Fig. 1).

Fig. 1. Standard cube [−1, 1]3 and its transformation to a spectral element in the
physical space
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The mapping is based only on vertex information and takes the following
triple-linear form

x(ξ1, ξ2, ξ3) =
1

8
(1− ξ1)(1 − ξ2)(1− ξ3)x1 +

1

8
(1 + ξ1)(1− ξ2)(1− ξ3)x2 +

+
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3)x3 +

1

8
(1− ξ1)(1 + ξ2)(1− ξ3)x4 +

(3.1)

+
1

8
(1− ξ1)(1 − ξ2)(1 + ξ3)x5 +

1

8
(1 + ξ1)(1− ξ2)(1 + ξ3)x6 +

+
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3)x7 +

1

8
(1− ξ1)(1 + ξ2)(1 + ξ3)x8

More sophisticated mappings including detailed description of curvilinear in-
terfaces of the element can also be used. An efficient algorithm for dealing with
such mappings was proposed by Gordon and Hall (see, for instance, Chapter 4
of the work by Deville et al. (2002).

In order to carry out local differentiation and integration, the Jacobi matrix
of transformation (3.1) should be calculated. The rows of this matrix can be
expressed as follows

∂

∂ξ1
x =

1

8
(1− ξ2)(1 − ξ3)(x2 − x1) +

1

8
(1 + ξ2)(1 − ξ3)(x3 − x4) +

+
1

8
(1− ξ2)(1 + ξ3)(x6 − x5) +

1

8
(1 + ξ2)(1 + ξ3)(x7 − x8)

∂

∂ξ2
x =

1

8
(1− ξ1)(1 − ξ3)(x4 − x1) +

1

8
(1 + ξ1)(1 − ξ3)(x3 − x2) +

(3.2)

+
1

8
(1− ξ1)(1 + ξ3)(x8 − x5) +

1

8
(1 + ξ1)(1 + ξ3)(x7 − x6)

∂

∂ξ3
x =

1

8
(1− ξ1)(1 − ξ2)(x5 − x1) +

1

8
(1 + ξ1)(1 − ξ2)(x6 − x2) +

+
1

8
(1− ξ1)(1 + ξ2)(x7 − x3) +

1

8
(1 + ξ1)(1 + ξ2)(x8 − x4)

3.2. Local basic functions

The local representation of any scalar field defined in the element is based
on the usage of the Lagrange interpolation. The interpolation grids in the stan-
dard cube [−1, 1]3 are defined as triple tensor products of one-dimensional sets
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of nodes in the interval [−1, 1]. The grid for velocity components is generated
over the Gauss-Jacobi-Lobatto (GJL) nodes

ξ
(0)
V = −1 ξ

(MV −1)
V = 1

(3.3)

{ξ
(j)
V , j = 1, ...,MV − 2} – roots of the Jacobi polynomial P

1,1
MV −2

The pressure field is interpolated using a grid generated using the Gauss-
Legendre (GL) nodes

{ξ
(j)
P , j = 0, ...,MP − 1} – roots of the Legendre polynomial PMP−1 (3.4)

Note that the pressure grid contains no interface points.

The reason for using two separate (and staggered) grids for the velocity and
pressure is to satisfy the div-stability (or inf-sup) condition (see Chapter 8 in
Karnidakis and Sherwin (1999) and further references therein). We also assume
that MV = MP + 2. Thus, the numbers of internal nodes of both grids are
equal.

The components of the velocity field in the spectral element are represented
by local interpolants, which are linear combinations of the following basic
functions

bVijk(ξ1, ξ2, ξ3) = L
V
i (ξ1)L

V
j (ξ2)L

V
k (ξ3) i, j, k = 0, ...,MV − 1 (3.5)

The Lagrange polynomials LVi (ξ) (i = 0, ...,MV − 1) satisfy the conditions

LVi (ξ
(j)
V ) = δ

j
i (j = 0, ...,MV − 1). Analogously, the local basis for the pressure

is given as

bPijk(ξ1, ξ2, ξ3) = L
P
i (ξ1)L

P
j (ξ2)L

P
k (ξ3) i, j, k = 0, ...,MP − 1 (3.6)

where the Lagrange polynomials LPi (ξ) satisfy the conditions L
P
i (ξ
(j)
P ) = δji

(j = 0, ...,MP − 1).

3.3. Local differentiation and integration

Consider a function f(ξ) defined in the interval [−1, 1] and its interpolant
f̂(ξ) on the GJL nodes, i.e. the following polynomial

f̂(ξ) =
MV −1∑

α=0

f(ξVα )L
V
α (ξ) (3.7)
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The collocation approximation of the derivative f ′(ξ) (called also pseudo-
spectral derivative) is defined as follows: it is the GJL interpolant of the deri-
vative of the interpolating polynomial (3.7). Thus, we have

f ′(ξ) ≈
MV −1∑

α=0

φαL
V
α (ξ)⇒ φα ≡ f̂

′(ξVα ) =
MV −1∑

β=0

L
′V
β (ξ

V
α )f(ξ

V
α ) (3.8)

This way, the vector of nodal values of the derivative φ is directly related
to the vector f containing the nodal values of the differentiated function f ,
namely

φ = df (3.9)

where the symbol d denotes the matrix of pseudo-spectral differentiation on
the GJL grid

(d)αβ = L
′V
β (ξ

V
α ) α, β = 0,MV − 1 (3.10)

Another one-dimensional operator used in the spectral element method is the
interpolation from GJL grid to GL grid. Given a function f(ξ) by its GJL
interpolant f̂(ξ), this operator yields the GL interpolant defined as

f̃(ξ) =
MP−1∑

α=1

ψαL
P
α (ξ) (3.11)

where

ψα ≡ f̂(ξ
P
α ) =

MV −1∑

β=0

LVβ (ξ
P
α )f(ξ

V
β ) (3.12)

In terms of the vectors of nodal values, the above interpolation can be written
in the form of

ψ = tf (3.13)

where t is arectangular matrix defined as follows

(t)αβ = b
V
β (ξ
P
α )

α = 0, ...,MP − 1

β = 0, ...,MV − 1
(3.14)

In the calculations involving the gradient and divergence operators, the com-
ponents of the velocity field are differentiated and then interpolated to the GL
grid. Therefore, it is convenient to introduce a composite operator. Its matrix
representation is obtained as the product of the matrices defined by (3.10) and
(3.14)

z = t d (z)αβ =
MV −1∑

γ=0

(t)αγ(d)γβ (3.15)
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All volume integrals are computed element-by-element using local transfor-
mations (3.1) to the standard cube [−1, 1]3. The integrals in the cube are
computed using Gauss-Jacobi-Lobatto or Gauss-Legendre integration formu-
las (see Appendix B in Karniadakis and Sherwin, 1999).

4. Preconditioning of the pressure solver

During each time step, algebraic Stokes problem (2.2) has to be solved. The
solution is calculated in three major steps explained in Section 2. The most
difficult element of the described procedure is the evaluation of the pressure
correction. It consists in solving of linear system (2.5) with Uzawa matrix (2.6).
The solution is computed approximately using the iterative method of precon-
ditioned conjugate gradients (PCGM). Since system (2.5) is ill conditioned
(Maday et al., 1993), the problem of selection of an appropriate preconditio-
ner becomes crucial.

According to Maday et al. (1993), Cahouet and Chabard (1986), conver-
gence of the CGM for linear system (2.5) can be efficiently accelerated by
means of the following preconditioner

R
−1 = νM−1P +

β0
∆t
E
−1 (4.1)

where E denotes the pseudo-Laplace matrix

E = D1M
−1
V D

>
1 +D2M

−1
V D

>
2 +D3M

−1
V D

>
3 (4.2)

and MP is the pressure mass matrix. It should be noted that, in the nodal
variant of the spectral element method, all mass matrices are diagonal and thus
trivial to invert. The reason for this convenient structure stems from the fact
that the volume integrals of products of the basic functions are computed with
the Gauss or Gauss-Lobatto formulas based on the same local meshes that are
used for the pressure or velocity interpolation. Thus, the basic functions form
(discretely) orthogonal systems.

The major difficulty, however, presents efficient calculation of the matrix-
vector product with the matrix E−1. In each iteration of the PCGM, one has
to solve a linear system with the matrix E, which can be formally written as

Eq = r (4.3)
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The solution should be determined with reasonable accuracy, perhaps not very
high, but sufficient for the preconditioner to maintain a satisfactory conver-
gence rate. The matrix E is symmetric and positive definite, thus the method
of conjugate gradients is a natural choice. The point is that the matrix E is
itself ill-conditioned and thus the convergence of the internal iterations will be
very slow, unless another lower-level preconditioner is used.
The complete preconditioning strategy used in this study is based on the

approach proposed by Ronquist (1991) and further developed by Couzy and
Deville (1994). In the latter work, several variants of preconditioning of the
Uzawa matrix were discussed. Numerical tests showed that the two-stage pre-
conditioners, referred to as P5 and P7, are the most effective. In this study,
the implementation based on the variant P5, described below, proved to be
superior.
Assume we need to solve linear system (4.3) where dimE = N . Assume

next that a K-dimensional subspace of RN is defined. In the context of the
Stokes problem, K is equal to the number of the spectral elements in the flow
domain, and the subspace will correspond to the pressure which is constant
inside each individual element, i.e. piecewise constant in the computational
domain.
Assume that K orthonormal vectors have been chosen in the subspace.

Using these vectors as columns, one can construct a matrix J with N rows
and K columns. Clearly, the matrix J is orthogonal, i.e. J>J = I. Now, the
K-dimensional subspace can be formally defined formally as

Π = {π ∈ RN : π = Ju, u ∈ RK} (4.4)

We will seek a solution to (4.3) in the following form

q = Jq0 + q1 (4.5)

where q0 is a vector from RK . Thus, the vector q is expressed as a sum of two
parts. The first part corresponds to the ”background” distribution (uniform
in each element), while the second one describes local variations with respect
to the locally uniform ”background”.
The above representation, (4.5), is clearly not unique. We will find a par-

ticular pair {q0, q1} in the following way. First, we define the operator

PΠ⊥ = I− EJE
−1
0 J
> (4.6)

where

E0 = J
>
EJ (4.7)
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Note that PΠ⊥ is a projection operator, as the following calculation proves

PΠ⊥PΠ⊥ = (I− EJE
−1
0 J
>)2 =

(4.8)

= I− 2EJE−10 J
> + EJE−10 J

>
EJE

−1
0 J
> = I− EJE−10 J = PΠ⊥

The operator PΠ⊥ projects all vectors onto a subspace orthogonal to Π,
denoted here as Π⊥. Indeed, it is easy to verify that J>PΠ⊥w = 0. On the
other hand, this projection is not orthogonal. The following equality, valid for
each vector π ∈ Π

PΠ⊥Eπ ≡ PΠ⊥EJu = 0 (4.9)

shows that the operator PΠ⊥ is the projection onto Π
⊥ along the subspace

E(Π).
Since PΠ⊥EJq0 = 0, the application of the projection operator to the

equation
EJq0 + Eq1 = r (4.10)

yields
PΠ⊥Eq1 = PΠ⊥r

or, equivalently
(I− EJE−10 J

>)Eq1 = (I− EJE
−1
0 J
>)r (4.11)

The matrix of the linear system E1 = (I − EJE
−1
0 J
>)E is singular. Neverthe-

less, the system is uniquely solvable in the subspace Π⊥. The solution can be
computed approximately using the Conjugate Gradient Method with an ap-
propriate preconditioner described later. Once the vector q1 ∈ Π

⊥ is found,
the K-dimensional vector q0 is evaluated as a solution to the following linear
system

E0q0 = J
>(r − Eq1) (4.12)

In the context of the spectral element method, linear system (4.12) has as
many unknowns as the number of elements in the computational domain. In
most situations, the number of the elements does not exceed several thousands,
and system (4.12) can be solved by an exact solver. Since the matrix E0 is
symmetric and positive definite, the natural method is the Choleski Decom-
position. For a fixed grid geometry, this decomposition can be evaluated once
and forever and the forward/backward substitution part of the solution can
be implemented efficiently using one of the sparse storage schemes (see Saad,
2003).
It should be noted that the solution to system (4.11) in the subspace Π⊥

corresponds to the pressure distribution orthogonal to all piecewise-constant
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”background” distributions (generated by vectors from Π). The main ad-
vantage of the orthogonal decomposition is that linear system (4.11) can be
efficiently preconditioned by the block matrix {E}.

5. Block-diagonal preconditioning of inner iterations using the
Fast Diagonalization Method

In this Section, we will briefly describe the preconditioning of conjugate
gradients for linear system (4.11), based on the usage of the block matrix {E}
(Couzy and Deville, 1994).

Consider a preconditioning step in PCGM iterations (see Appendix A).
In order to find the vector r̃ out of the current residuum r, we follow the
following procedure:

(1) The global residual vector r is disassembled into local vectors
rlock , k = 1, ...,K corresponding to individual spectral elements.

(2) Local linear systems Elock r̃
loc
k = r

loc
k , k = 1, ...,K are solved independen-

tly for each spectral element. The matrices of these systems

E
loc
k =

3∑

j=1

(Dj)
loc
k (M

−1
V )
loc
k (D

>
j )
loc
k (5.1)

are constructed using local velocity and pressure basic functions. The
dimension of the local systems is equal to M 3P . The dimension of the
velocity local base depends on the conditions imposed at interfaces of
the element. For internal elements, all components of the matrix Elock are
constructed using the full velocity base of M 3V functions. If some collo-
cation nodes are located on the material surface of the computational
domain, the local velocity base is accordingly reduced.

(3) The resulting local vectors r̃lock , k = 1, ...,K are assembled into the
global vector r̃.

The local systems can be solved in many ways. Note that their dimension is
small (typically they contain from several tens to several hundreds equations),
so it is natural to use exact solvers. One can simply construct all local matrices
explicitly and compute local Choleski factorizations. The numerical cost of
such a preconditioner will be roughly as K · M 6P . With a greater number
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of spectral elements with different shapes, the memory required to store all
decomposed local matrices becomes large. Couzy and Deville (1994) proposed
an alternative approach based on the Fast Diagonalization Method (FDM),
see Appendix B.
In order to use the FDM one has to construct the local matrix as a sum

of appropriate tensor products of matrices corresponding to one-dimensional
operations. Consider the standard element [−1, 1]3. Note that we can use index
notations within each element: a ”natural” triple-index notation and a single-
index numeration. The latter is usually more convenient because it leads to
a simpler formalism. The local velocity and pressure basic functions in the
standard element, introduced in Section 2, can be conveniently numerated as
follows

BVi (ξ1, ξ2, ξ3) = b
V
I1(i)
(ξ1)b

V
I2(i)
(ξ2)b

V
I3(i)
(ξ3)

(5.2)

BPj (ξ1, ξ2, ξ3) = b
P
J1(j)
(ξ1)b

P
J2(j)
(ξ2)b

P
J3(j)
(ξ3)

In the above, the integer functions Iα(i) and Jα(j) (α = 1, 2, 3) define the
mappings between triple-index and single-index numeration of the basic func-
tions for the velocity and pressure, respectively.
We will now consider systematic calculations of the block matrix {E}. It is

sufficient to consider an arbitrary element in the physical space. However, in
the case of general hexahedral geometry, the volume integrals will not factorize
into three one-dimensional ones, and direct application of the FDM is not
possible. Thus, let us assume that all physical elements are parallelepipeds.
In order to compute matrix (5.1), the following local matrices have to be

computed

(D>α )ij = −

∫

ΩK

∂vi
∂Xα

qj dx = −

∫

[−1,1]3

( 3∑

β=1

∂BVi
∂ξβ

∂ξβ
∂Xα

)
BPj

∣∣∣
∂(x)

∂(ξ)

∣∣∣ dξ (5.3)

The elements of the Jacobi matrix and its inverse in a parallelepiped are the
same at each point of the integration domain. Introducing edge vectors

x2 − x1 = x3 − x4 = x6 − x5 = x7 − x8 ≡ k1

x4 − x1 = x3 − x2 = x8 − x5 = x7 − x6 ≡ k2 (5.4)

x5 − x1 = x6 − x2 = x7 − x3 = x8 − x4 ≡ k3

it is easy to show that

∂x

∂ξ
=
1

2
[k1,k2,k3]

∣∣∣
∂x

∂ξ

∣∣∣ =
1

8
|k1 · (k2 × k3)| ≡

1

8
volΩ (5.5)
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and

∂ξ

∂x
=
2

volΩ





(k2 × k3)
>

(k3 × k1)
>

(k1 × k2)
>





(5.6)

Now, the volume integral can be expressed in terms of one-dimensional inte-
grals in [−1, 1]

∫

Ω

∂vi
∂xα

qj dx =

=
∣∣∣
∂x

∂ξ

∣∣∣
[ ∂ξ
∂x

]

1,α

1∫

−1

b
′V
I1(i)

bPJ1(j) dξ1

1∫

−1

bVI2(i)b
P
J2(j)

dξ2

1∫

−1

bVI3(i)b
P
J3(j)

dξ3 +

(5.7)

+
∣∣∣
∂x

∂ξ

∣∣∣
[ ∂ξ
∂x

]

2,α

1∫

−1

bVI1(i)b
P
J1(j)

dξ1

1∫

−1

b
′V
I2(i)

bPJ2(j) dξ2

1∫

−1

bVI3(i)b
P
J3(j)

dξ3 +

+
∣∣∣
∂x

∂ξ

∣∣∣
[ ∂ξ
∂x

]

3,α

1∫

−1

bVI1(i)b
P
J1(j)

dξ1

1∫

−1

bVI2(i)b
P
J2(j)

dξ2

1∫

−1

b
′V
I3(i)

bPJ3(j) dξ3

All integrals in (5.7) are calculated approximately using the Gauss quadrature
based on the pressure nodes. To this end, the velocity basic functions and
their derivatives are interpolated from the Gauss-Lobatto nodes to the Gauss
nodes. Using one-dimensional operations defined in Section 2, one can write
formulas

1∫

−1

b
′V
r b
P
s dξ

GL
≈ wPs b

′V
r (ξ

P
s ) = w

P
s (z)s,r

(5.8)
1∫

−1

bVr b
P
s dξ

GL
≈ wPs b

V
r (ξ
P
s ) = w

P
s (l)s,r

In order to use the FDM solver, one has to switch back to the triple-index
tensor notation. The final formulas are

D̃α = −(w
P ⊗wP ⊗wP )(C1,αz ⊗ l⊗ l+ C2,αl⊗ z ⊗ l+ C3,αl⊗ l⊗ z)

(5.9)

D̃
>

α = −(C1,αz
> ⊗ l> ⊗ l> + C2,αl

> ⊗ z> ⊗ l> + C3,αl
> ⊗ l> ⊗ z>) ·

·(wP ⊗wP ⊗wP )
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where the matrix C is defined as

C =
∣∣∣
∂x

∂ξ

∣∣∣
∂ξ

∂x
(5.10)

The local velocity mass matrix and its inverse can be written as follows

M̃V =
∣∣∣
∂x

∂ξ

∣∣∣(wV ⊗wV ⊗wV )
(5.11)

M̃
−1

V =
∣∣∣
∂x

∂ξ

∣∣∣
−1
(ŵV ⊗ ŵV ⊗ ŵV )

In the above, the structure wV can be viewed as a diagonal matrix containing
the weights of the Gauss-Lobatto quadrature, and ŵV ≡ (wV )−1. The final
form of the local Ẽ matrix reads

Ẽ ≡
3∑

α=1

D̃αM̃
−1

V D̃
>

α =
∣∣∣
∂x

∂ξ

∣∣∣(wP ⊗wP ⊗wP ) ·

·
{
(CC>)1,1(z ⊗ l⊗ l)(ŵ

V ⊗ ŵV ⊗ ŵV )(z> ⊗ l> ⊗ l>) +

+(CC>)2,2(l⊗ z ⊗ l)(ŵ
V ⊗ ŵV ⊗ ŵV )(l> ⊗ z> ⊗ l>) +

+(CC>)3,3(l⊗ l⊗ z)(ŵ
V ⊗ ŵV ⊗ ŵV )(l> ⊗ l> ⊗ z>) +

+(CC>)1,2
[
(z ⊗ l⊗ l)(ŵV ⊗ ŵV ⊗ ŵV )(l> ⊗ z> ⊗ l>) + (5.12)

+(l⊗ z ⊗ l)(ŵV ⊗ ŵV ⊗ ŵV )(z> ⊗ l> ⊗ l>)
]
+

+(CC>)1,3
[
(z ⊗ l⊗ l)(ŵV ⊗ ŵV ⊗ ŵV )(l> ⊗ l> ⊗ z>) +

+(l⊗ l⊗ z)(ŵV ⊗ ŵV ⊗ ŵV )(z> ⊗ l> ⊗ l>)
]
+

+(CC>)2,3
[
(l⊗ z ⊗ l)(ŵV ⊗ ŵV ⊗ ŵV )(l> ⊗ l> ⊗ z>) +

+(l⊗ l⊗ z)(ŵV ⊗ ŵV ⊗ ŵV )(l> ⊗ z> ⊗ l>)
]}
(wP ⊗wP ⊗wP )

Unfortunately, formula (5.12) still cannot be cast into a form amenable to
the FDM solver, and an additional restriction on the shape of an element is
necessary. To this end, we will assume that the element is rectangular. Then,
the inverse Jacobi matrix is expressed as follows
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∂ξ

∂x
=

2

k1k2k3





k2k3
k1

k>1

k1k3
k2

k>2

k1k2
k3

k>3





= 2





1

k21
k>1

1

k22
k>2

1

k23
k>3





(5.13)

∣∣∣
∂x

∂ξ

∣∣∣
−1
CC
> =
∣∣∣
∂x

∂ξ

∣∣∣
∂ξ

∂x

∂ξ>

∂x
=




k2k3
2k1

0 0

0
k1k3
2k2

0

0 0
k1k2
2k3




Eventually, the local matrix Ẽ takes the form of

Ẽ = (wP ⊗wP ⊗wP )
[k2k3
2k1
(z ⊗ l⊗ l)(ŵV ⊗ ŵV ⊗ ŵV )(z> ⊗ l> ⊗ l>) +

+
k1k3
2k2
(l⊗ z ⊗ l)(ŵV ⊗ ŵV ⊗ ŵV )(l> ⊗ z> ⊗ l>) + (5.14)

+
k1k2
2k3
(l⊗ l⊗ z)(ŵV ⊗ ŵV ⊗ ŵV )(l> ⊗ l> ⊗ z>)

]
(wP ⊗wP ⊗wP )

Consider now the local linear system

Ẽỹ = g̃ (5.15)

where the matrix Ẽ is given by (5.14). After some algebra, this system can be
transformed into an equivalent form

[
(k21lŵ

V l>)−1zŵV z> ⊗ I⊗ I+ I⊗ (k22lŵ
V l>)−1zŵV z> ⊗ I+

+I⊗ I⊗ (k23lŵ
V l>)−1zŵV z>

]
(wP ⊗wP ⊗wP )ỹ = (5.16)

=
2

k1k2k3
(wP lŵV l>)⊗ (wP lŵV l>)⊗ (wP lŵV l>)g̃

which can be viewed as a special case of form (B.1) from Appendix B with

Lα = (k
2
αlŵ

V l>)−1zŵV z> α = 1, 2, 3
(5.17)

y = (wP ⊗wP ⊗wP )ỹ

and

r =
2

k1k2k3
(wP lŵV l>)⊗ (wP lŵV l>)⊗ (wP lŵV l>)g̃ (5.18)
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Note that all operators Lα can be obtained as Lα = L0/k
2
α, where

L0 = (lŵ
V l>)−1zŵV z> (5.19)

In order to implement the FDM solver, all eigenvalues and eigenvectors of the
matrix L0 should be found. The eigenvalue problem for L0 can be transformed
to a generalized eigenvalue problem as follows

[(lŵV l>)−1zŵV z>]υ = λυ ⇒ (zŵV z>)υ = λ(lŵV l>)υ (5.20)

and easily solved using standard procedures from the LAPACK library. Note
also that, in the spectral element method, the dimension of the above eigenva-
lue problem will be very small, typically not larger that 10.

6. A projection method for solving a sequence of linear systems
with a fixed matrix

The most time-consuming part of the calculations during each time step
is the determination of new pressure fields. In order to obtain convergence in
a reasonable number of iterations, some nontrivial preconditioning techniques
are compulsory. Additionally, the multiplication by the pressure matrix S
requires a solution to the internal inversion of the Helmholtz matrix. The
approximation of the matrix H−1 discussed in Part I can be applied to avoid
costly inversion, however, at the price of inaccuracy in the mass balance.
As long as the grid geometry and the time step are fixed, the problem

of the pressure evaluation in subsequent time instants consists actually in
solving a sequence of algebraic problems with the same matrix and different
right-hand sides. Due to the continuity of the flow evolution, the difference
between the right-hand side vectors corresponding to subsequent time steps is
expected to be small, so the solution in a given time instant may be used as
a sensibly accurate initial approximation for iterations in the next time step.
One can probably do even better by extrapolating this initial approximation
from the recent history of the solution. Such an extrapolation will typically
involve several past time steps.
Fisher (1998) proposed a much more sophisticated and efficient approach.

It is shortly presented in this paper, however in a slightly modified form, which
avoids matrix-vector multiplication appearing in the original formulation.
Consider a sequence of linear systems

Ax(k) = b(k) k = 1, 2, ... (6.1)
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The matrix of all systems is the same, and it is assumed SPD, large and sparse.
The method starts with solving the first system

Ax(1) = b(1) (6.2)

At this point, we assume that no ”special” initial approximations are available.
After the solution is obtained, it is normalized as follows

e1 =
x(1)

‖x(1)‖A
(6.3)

The norm induced by the SDP matrix A is defined as usual as

‖x(1)‖A =
√
〈x,x〉A ≡

√
〈x,Ax〉 (6.4)

Assume now that we want to solve the k-th system in sequence (6.1)
(k > 1), and that we have, previously generated, a set of A-normalized and
A-orthogonal vectors e1, ..., ek−1. Then we construct the vector x̃ as follows

x̃ =
k−1∑

j=1

αjej (6.5)

The coefficients of linear combination (6.5) are chosen in such a way that the
orthogonality conditions hold

〈ej , b
(k) −Ax̃〉A = 0

which implies that

αj = 〈ej, b
(k)〉 (6.6)

The new vector is now computed as

b̃ = Ax̃ (6.7)

and the sought solution is expressed as a sum

x(k) = x̃+ x′ (6.8)

The correction vector x′ will be found from the following linear system

Ax′ = b(k) − b̃ ≡ b′ (6.9)
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and the iterations of the PCGM start from the zero vector. Note that the resi-
dual vectors of original system (6.1) and new system (6.9) (explicitly available
in PCGM iterations) are the same

r ≡ b(k) −Ax(k) = b′ −Ax′ ≡ r′ (6.10)

and the following stopping criterion is convenient

‖r‖2

‖b(k)‖2
< ε (6.11)

In order to continue the calculation, we have to create the next vector ek.
Theoretically, it would be sufficient to A-normalize the vector x′ and obtain

ek =
x′

‖x′‖A
(6.12)

Indeed, it is easy to show that if x′ were the exact solution to (6.9), then we
would have x′⊥span{e1, ..., ek−1}. However, the vector x

′ is only an approxi-
mate solution, so the explicit orthogonalization is recommended. To this end,
we write

x′⊥ = x
′ −
k−1∑

j=1

βjej (6.13)

where

βj = 〈ej,x
′〉A = −〈ej, r

′〉 (6.14)

The A-norm of the orthogonal projection x′⊥ should be calculated

‖x′⊥‖
2
A = ‖x

′‖2A −
k−1∑

j=1

β2j (6.15)

It can be shown that the A-norm of the vector x′ can be computed without
additional matrix-vector multiplication, namely

‖x′‖2A ≡ 〈x
′,Ax′〉 = 〈x(k), b− r′〉 −

k−1∑

j=1

(αj + βj)
2 +
k−1∑

j=1

β2j (6.16)

Thus, the new vector ek is obtained as

ek =
x′⊥
‖x′⊥‖

(6.17)
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where

‖x′⊥‖A ≡
√
〈x′,Ax′〉 =

√√√√√〈x(k), b− r′〉 −
k−1∑

j=1

(αj + βj)2 (6.18)

If the number of the linear systems in sequence (6.1) is large, it is practical
to interrupt the process of generation of the A-orthogonal basis having N
systems completed, and then restart the process by setting

e1 =
x(N)

‖x(N)‖A

The number N should be large enough to ensure fast convergence of the itera-
tive solver of system (6.9). On the other hand, the value of N may be limited
by the memory available for the additional storage of the basic vectors. Fi-
sher (1998) presented test calculations using various values of N , the largest
being equal to 80. The obtained results show that the number of iterations
necessary to solve each system (6.9) saturates with increasing N . If such beha-
vior is generic, it may a reasonable decision to use the lowest N ensuring the
”saturated” iteration. However, the authors’ experience suggests that using
even larger values of N is advantageous. Indeed, anytime the sequence of the
basic vector is restarted a ”transient state” is observed, i.e., during next cal-
culations the number of iterations is much larger than that in the ”saturated
state”. Thus, the larger N is used the better overall performance is obtained,
since ”transient states” occur more seldom.

7. Numerical simulations and parallel efficiency

The test calculations have been carried out for flows in the T -shaped doma-
in presented in Fig. 2. The hexahedral grids used in the calculations contained
1648 elements (grid A) or 3064 elements (grid B). Densities of the veloci-
ty/pressure meshes of the collocation points in each element have been set to
(MV ,MP ) = (5, 3) or (MV ,MP ) = (6, 4). However, in the case of the larger
grid B, only the smaller density (5,3) of the collocation mesh has been used
in order to avoid excessive computational times (all tests have been run on a
PC computer with a single Pentium 4 processor)
The dimension of the computational problem depends on the number of

spectral elements and the density of the collocation mesh:
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Fig. 2. Computational domain for test calculations (the large grid with 3064 spectral
elements is shown)

• grid A with (5,3) collocation mesh: 3 · 99854 and 44496 unknowns for
the velocity and pressure fields, respectively

• grid A with (6,4) collocation mesh: 3 · 197177 and 105472 unknowns for
the velocity and pressure fields, respectively

• grid B with (5,3) collocation mesh: 3 · 189230 and 83268 unknowns for
the velocity and pressure fields, respectively.

The goal of the first part of test calculations was to compare results ob-
tained for different discretization parameters. The sample flow was driven by
an oscillating static pressure applied symmetrically to inlet sections 1 and 2.
The pressure at outlet Section 3 was fixed in time and equal to zero. The tem-
poral variation of the static pressure at both inlets was given by the following
formulae

P1,2(t) = 1500 sin
2(2πt) (7.1)

The kinematic viscosity ν was set to 0.1 and the time step to ∆t = 0.0002.
In order to get an idea how these parameters refer to any physical flow, it was
assumed that the length was measured in centimeters. The spatial extent of
the computational domain was several centimeters and the diameters of the
pipes were about 0.5 cm. Then it was assumed that the density of the fluid
was that of water (1000 kg/m3), which made the corresponding amplitude of
the static pressure to be 150 Pa and the viscosity 10−5m2/s2. The latter value
is approximately ten times larger than the viscosity of water, and two and a
half times larger than the blood viscosity in large- and medium-sized arteries.
The results of the calculations include time histories of volume fluxes thro-

ugh the inlet and outlet sections and instantaneous patterns of the static pres-
sure and velocity magnitude. The time variation of the volume fluxes obtained
for different discretization parameters are presented in Fig. 3. The driving inlet
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pressure is also plotted to show the phase shift between the forcing and the
fluid response. The instantaneous pressure distribution in the symmetry plane
of the domain, calculated at the instant of the maximum flow rate is presented
in Fig. 4a, while the corresponding field of the velocity magnitude is shown in
Fig. 4b. It is clearly seen that most of the hydraulic pressure loss is located (as
expected) in the area of pipe connection.

Fig. 3. The volume flux of the test flow plotted as a function of time, calculated for
different grids and collocation meshes: grid A with (5,3) mesh (solid line), grid A
with (6,4) mesh (thicker dashed line) and grid B with (5,3) mesh (thinner dashed
line). The thick grey line corresponds to reference result obtained with FIDAP. The
dashed-dotted line depicts the time dependence of the prescribed inlet pressure

(formulae (7.1) in the text)

In order to verify the obtained results, analogous tests have been done at
the Foundation of Cardiac Surgery Development with the use of the finite-
element FIDAP package. The calculations have been carried out on a hexahe-
dral grid containing about 38 thousands of elements. The boundary conditions
at all inlet/outlets have been formulated in terms of the static pressure: it has
been assumed transversally uniform at each section, with the temporal varia-
tion as described above. Additionally, the tangential component of the velocity
field was assumed to be zero identically at all inlet/outlet sections. Such setting
of the inlet/outlet data seems to be most similar (although not equivalent) to
the integral boundary conditions implemented in the spectral solver. Indeed,
the results obtained with FIDAP and the spectral solver were in very good
agreement (see Fig. 3). In certain aspects, the spectral solver is superior, espe-
cially as far as the accuracy of the mass (or volume) balance of the fluid is
concerned. Indeed, the relative error of the mass balance in the spectral so-
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Fig. 4. Instantaneous patterns of the static pressure (a) and the magnitude of the
velocity field (b) calculated at the symmetry plane of the test domain, at the time of

the maximal flow rate

lver remains of the order of 10−12, while in the FIDAP calculations it was
practically difficult to achieve the accuracy level of 1%. Some improvement of
FIDAP accuracy would be certainly achieved with further reduction of con-
vergence tolerances, but at the expense of excessive CPU time. Surprisingly
enough, the overall performance of the FIDAP and spectral solver turned out
to be comparable.

Fig. 5. Simple geometric model of the modified Blallock-Taussig (mBT) shunt,
covered with the grid containing 1672 spectral elements

The numerical simulation of a pulsatile flow in a more complicated flow do-
main depicted in Fig. 5 has also been attempted. The presented configuration
of the ducts can be viewed as a geometric model of the (modified) Blallock-
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Taussig shunt. The calculations have been performed using a grid with 1672
spectral elements and (5,3) inner collocation meshes (3 · 101231 and 45144
unknowns for the velocity and pressure, respectively). The AP -type condi-
tions have been set for all inlet/outlet sections. The section-averaged static
pressure applied at sections 1 and 2 was zero, while at sections 3 and 4 it
changed in time similarly to real physiological pressure pulses at 120 heartbe-
ats per minute (Fig. 6). The fluid motion has been accelerated from rest. The
remarkable observation is that, initially both sections 3 and 4 are the inlets,
while at later time the flow direction at section 4 reverses and this section
remains the flow outlet for the rest of the simulation. Instantaneous patterns
of velocity and pressure fields in the symmetry plane, calculated at during the
maximum flow rate, are presented in Fig. 7.

Fig. 6. Temporal variation of the volume fluxes calculated for the computational
domain in Fig. 5 using AP -type conditions at all inlet/outlet sections. The lines V3
and P3 show, respectively, the volume flux and static pressure at the inlet section 3.
The lines V4 and P4 represent the same data for the outlet section 4. The lines V1
and V2 show the temporal variations of the volume fluxes at the outlet sections 1
and 2, respectively. The pressure applied at these outlets was fixed in time and

equal to zero

Finally, the numerical simulations of a pulsatile flow with the V F -type
inlet/outlet conditions have been performed. The results shown in the paper
have been obtained for the geometric model of the mBT shunt divided into
3760 spectral elements with (5,3) internal mesh of collocation points. The al-
gebraic problems solved at each time step contained 3 · 230303 and 101520
unknowns for the velocity and pressure fields, respectively. The V F -type con-
ditions were formulated as follows:

• section 3 was the V F -type inlet. The time variation of volumetric flow
rate is depicted in the top part of Fig. 8
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Fig. 7. Pulsatile flow in the mBT shunt calculated using AP -type conditions at all
inlet/outlet sections: instantaneous patterns of the magnitude of the velocity (a) and
the static pressure (b) calculated in the symmetry plane, at the instant of the

maximal flow rate

• sections 1 and 4 were the V F -type outlets. It was assumed that the flow
distribution between all outlets was fixed in time: 25% of the incoming
volume flux was leaving the computational domain through section 4,
while remaining 75% were divided equally between outlets 1 and 2. The
latter one was of the AP -type (with the average static pressure set to
zero) in order to make the pressure problem uniquely solvable.

As described earlier in the text, the Lagrange multipliers calculated at each
time step along with the flow field correspond to instantaneous values of the
section-averaged static pressure at all V F -type inlets/outlets. The obtained
results are shown in Fig. 8 (bottom part). The reader may note that, initially,
the large pressure difference between sections 3 and 4 is necessary in order to
avoid the transient reversed flow through section 4, observed in the simulation
with pure AP -type conditions described above. Since outlets 1 and 2 are
located nearly symmetrically with respect to the shunt’s downstream end, the
corresponding pressure difference is very small. For presentation purposes, the
pressure at outlet 1 shown in Fig. 8 has been multiplied by a factor of −100
(it is actually slightly smaller than the ”reference” pressure at outlet 2, equal
to zero). Figure 9 shows patterns of the velocity magnitude and pressure fields
calculated at the time when the maximum flow rate is attained ( t = 0.6).

One of the major problems with numerical simulations of three-dimensional
flows is computational efficiency. The spectral element discretization in space
is an efficient method in the sense that a sufficient spatial resolution can be
achieved with a relatively small number of unknowns. On the other hand, the-
re is an ”overhead” caused by more complicated forms of data structures and
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Fig. 8. Time histories of the volume fluxes and the averaged static pressures at the
inlet/outlet sections of the geometric model of the mBT shunt, obtained in the
simulation with V F -type inlet/outlet conditions. The corresponding fluid density is

ρ = 103 kg/m3 and the kinematic viscosity is ν = 10−5m2/s2

Fig. 9. Pulsatile flow in the geometric model of mBT shunt using V F -type
inlet/outlet conditions: instantaneous patterns of the velocity magnitude (a) and the
pressure (b) fields in the symmetry plane, calculated at the instant of the maximal

flow rate

operations performed on the elementary level, in comparison with ”ordinary”
FEM. Consequently, the algebraic problems appearing during the solution pro-
cess are smaller but less sparse and more difficult for efficient preconditioning.

In the current study, most of the numerical simulations described above
have been carried out on a Pentium 4 2.6GHz personal computer. The com-
putational efficiency can be evaluated using a CPU time required to perform
one time step of numerical simulation. Clearly, it depends on the number of
spectral elements, the dimension of the local collocation mesh and the length
of the time step. The most time consuming part of each step is the pressure
solver, thus it is essential that it works as quickly as possible. This is achie-
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ved by using the two-level preconditioning procedure (Sections 4 and 5) and
”smart” selection of the initial approximation based on the projection method
(Section 6) originally suggested by Paul Fisher. The pressure preconditioner
has been tested on the smaller grid used in the mBT flow simulation (1672
spectral elements, (5,3) internal collocation meshes), at the occasion of deter-
mination of particular Stokes solutions (2.12). It has been established that the
efficiency of the preconditioning depends on the number of iterations admitted
for the internal FDM-based preconditioner (Section 5).

Fig. 10. Convergence history of the pressure preconditioner P5 working with
different numbers of iterations of the FDM-based low-level preconditioner

The convergence histories for different numbers of internal iterations are
shown in Fig. 10. The use of 15-18 iterations gives effective reductions of CPU
times by the factor of 10. Spectacular effects on the computational efficiency
are brought also by the Fisher’s ”trick” (Section 6). We have found it extremely
advantageous to use long (even up to 100) sequences of previous pressure
states to predict the optimal initial approximation. Only in a few initial steps
of each sequence, the pressure solver requires a larger number of iterations to
converge. Typically, 8-15 iterations are necessary for the first few steps after
the re-start, and after that the number of steps drops immediately. In most
of the later steps during each sequence, the pressure solver makes only one
or three iterations. This typical behaviour is shown in the Fig. 11. A thick,
almost horizontal line corresponds to linear regression, giving an idea about
the average numerical cost per one time step. For the case of the T-shape region
with 1648 spectral elements and (5,3)-collocation mesh, the average time for
one step is around 16 seconds. It also grows almost linearly with the number
of spectral elements and the number of local collocation nodes. Convergence
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of the pressure solver has found to be slower if the dimension of the local
collocation mesh was larger. Consequently, the method performs better with
a larger number of spectral elements having smaller collocation meshes than
in the case of a smaller number of spectral elements having larger collocation
meshes.

Fig. 11. The figure shows the effect of the Fisher’s projection method for predicting
an initial approximation for the PCG iterations in the pressure solver. The black
line shows the history of the CPU’s time of consecutive time steps corresponding to
the simulation of flow in the test domain (grid A and (5,3) collocation mesh),
carried out on Pentium 4 2.6GHz workstation. The peeks occur when the pressure
base is restarted (every 100 steps), then the ”saturated state” is achieved and
maintained for the rest of each cycle. The result is significant reduction of the
average CPU time per one time step. The thick grey line presents the linear

regression of the black-line relation

Another issue is the choice of the time step. If the time step is small, the
convergence of the iterative process for the Helmholtz problem is faster since
the matrix A is more diagonally dominant. Consequently, also the pressure
solver runs more efficiently. On the other hand, the overall number of time steps
needed to cover a certain time interval is larger. Certainly, some restriction
on the admissible time step comes from numerical stability since the time-
integration method is based on a mixed explicit-implicit approach and, as
such, it is only conditionally stable. Typically, the stability limits are due to
an explicit treatment of the convection part of the Navier-Stokes equations.
However, during the numerical test we encountered unstable behaviour that
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may be rather related to the ”integral” nature of the inlet/outlet conditions
used in the study. The characteristic pattern of development of the numerical
instability is presented in Fig. 12. Initially, small regions of rapidly growing
velocity appear at one or more inlet sections. Later, these regions penetrate
the flow domain, merge and lead to a ”blow-up” of the numerical solution. It is
interesting that the rapid increase of the velocity magnitude is driven mostly
by its transversal components. The mechanism of this instability has not yet
been resolved, and further computational tests are necessary.

Fig. 12. Characteristic pattern of the initial stage of numerical instability
encountered in computations with larger flow rates: small regions of large local

velocity appear at one or more inlet/outlet sections

In view of computational complexity of the solver, the parallelization of
the code, using the MPI message passing library (version 1.2 of the standard)
has been attempted. The parallelization had to be performed in two different
ways, due to significant structural differences between various part of the se-
quential code. During each time step, most of the calculations are organized
in the loops running over spatial dimensions and over all spectral elements.
In some parts of the code, the spatial-dimensions order is superior meaning
that the loops over the elements run as lower-level calculations. Such parts
of the code consume about 40% of the computational time. In the remaining
60%, the hierarchy of the computations is reversed: the loops running over the
elements are external, and lower-level operations are now spatial-dimensions
oriented. Another difficulty is imposed by the data model used in the sequen-
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tial solver which requires disassembling and assembling of local data from and
to global data structures several times in each time step. Moreover, the global
structures are used for permanent storage of the velocity and pressure repre-
sentation, which allows one to avoid the redundant storage of the interfacial
data but, on the other hand, may be another source of problems with efficient
parallelization.

After the code profiling, the parallelization has been performed on 14 sub-
routines, which take up approximately 99% of the computational time. The
parallelization of the remaining parts of the code was impossible (input/output
and indivisible operations), or not sufficiently profitable. The efficiency of the
current implementation is summarized in Table 1.

Table 1

Number of CPU’s Efficiency Acceleration

1 1.00 1.00

2 0.83 1.66

4 0.71 2.84

8 0.53 4.26

The efficiency is defined as the ratio between the parallel code execution
time divided by the number of utilized CPUs, and time of execution of a sin-
gle CPU code. The tests have been performed on four dual Athlon MP2200+
computers, with the Gigabit Ethernet interconnection. To simulate the scala-
bility for 8 separate computers, the communication between 2 CPUs located
in the same computer was also routed through the Gigabit Ethernet network,
instead of using shared memory.

When using faster interprocessor communication in the computer, the fol-
lowing performance results have been obtained (Table 2).

Table 2

Number of CPU’s Efficiency Acceleration

1 1.00 1.00

2 0.91 1.81

4 0.76 3.03

8 0.65 5.19

The communication model used in the parallel solver is the synchronous
message passing. Due to the large communication overhead in such a model,
we develop an asynchronous parallel code that should allow larger speedups
and better efficiency.
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To improve the performance, we consider re-implementing of the interpro-
cessor communication in one computer with OpenMP, and replacing global
data structures by local ones. Such a modification would impose a smaller
communication overhead, though some global data relocations may still be ne-
cessary, due to changing the order of space- dimensions-oriented and spectral-
elements-oriented calculations in each time step.

8. Summary and final remarks

The obtained results prove correctness of the formulation of the numerical
method and its spectral element implementation. On the other hand, numeri-
cal computations revealed some weak points, which restrain practical usability
of the code in the current version. The most important limitation is due to
numerical instability of the time integration scheme. The mechanism of this
instability has not yet been recognized, although the obtained results may in-
dicate that the source of unstable behaviour lies in the integral inlet/outlet
conditions rather that explicit treatment of convection terms. To resolve this
vital issue, a further theoretical work and numerous test calculations are neces-
sary. The latter task can be accomplished within a reasonable time only when
an efficient parallel version of the code is developed. The MPI-based version
using synchronous communications can work efficiently on systems with only
a few processors. The performance of such implementation might be slightly
improved with appropriate reorganization of source codes (modification of da-
ta structures, unified ordering of the element-oriented and coordinate-oriented
part of the code, etc.). However, an essential enhancement of the computa-
tional efficiency will be achieved when the asynchronous communication is
implemented. Such a version of the code is currently tested and the expected
speed-up on 32 processors has been estimated to be 20 times. This ratio will
certainly increase when appropriate code modifications are made. Further de-
velopment of the algorithms used in the code is also planned. In particular,
the option of curvilinear spectral elements will be incorporated and more so-
phisticated versions of the pressure solver preconditioning, based on domain
decomposition, will be considered.

Appendix A. The Method of Preconditioned Conjugate
Gradients

For the completeness of the exposition, we present here a description of
the PCG method.
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Consider a symmetric and positive definite system Ax = b. The PCG
method can be summarized as follows
Choose x(0), compute r(0) = b−Ax(0), compute r̃(0) = R−1r(0) (precon-

ditioning), p(0) = r̃(0).
For k = 1, 2, ...

αk = −
(r̃(k), r(k))

(p(k),Ap(k))
x(k+1) = x(k) − αkp

(k)

r(k+1) = r(k) + αkAp
(k) → convergence test

r̃(k+1) = R−1r(k+1) (preconditioning)

βk =
(r̃(k+1), r(k+1))

r̃(k), r(k))
p(k+1) = r̃(k+1) + βkp

(k)

Appendix B. Fast Diagonalization Method (FDM)

The Fast Diagonalization Method (see, for instance Couzy and Deville,
1994) is an algorithm for rapid solving of linear algebraic systems with a
special tensor-product structure.
Consider a linear algebraic operator

L = L1 ⊗ I⊗ I+ I⊗ L2 ⊗ I+ I⊗ I⊗ L3 (B.1)

where the square matrices Lα, α = 1, 2, 3 are given, the symbol I refers to the
identity matrix and the symbol ⊗ denotes the tensor product. The dimension
of all matrices in (B.1) is equal to N .
The operator L can be written in an index notation as follows

(L)iα,jβ,kγ = (L1)iαδjβδkγ + δiα(L2)jβδkγ + δiαδjβ(L3)kγ (B.2)

This operator acts on triple-index structures and returns triple-index results
according to the formula

(Lw)i,j,k =
N−1∑

α=0

(L1)iαwα,j,k +
N−1∑

β=0

(L2)jβwi,β,k +
N−1∑

α=0

(L3)kγwi,j,γ (B.3)

Assume that the matrices Lα, α = 1, 2, 3 have complete sets of linearly inde-
pendent eigenvectors. Then, following equalities hold

LαPα = PαΛα α = 1, 2, 3 (B.4)
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where Pα is the fundamental matrix for Lα and Λα is a diagonal matrix
containing the corresponding eigenvalues. Then, the following formula for the
inverse operator L−1 can be proved

L−1 = (P1 ⊗ P2 ⊗ P3)Λ
−1(P−11 ⊗ P

−1
2 ⊗ P

−1
3 ) (B.5)

where the operator Λ is defined as

Λ = Λ1 ⊗ I⊗ I+ I⊗Λ2 ⊗ I+ I⊗ I⊗Λ3 (B.6)

Consider a system of tlinear equations expressed by the operator L

Ly = r (B.7)

According to formulas (B.5) and (B.6), the above system can be solved in the
following way

• compute the product r′ = (R−11 ⊗ R
−1
2 ⊗ R

−1
3 )r, with the formula

(r′)ijk =
N−1∑

α=0

(R−11 )iα
{N−1∑

β=0

(R−12 )jβ
[N−1∑

γ=0

(R−13 )kγ(r)αβγ
]}

(B.8)

i, j, k = 0, ..., N − 1

• find the solution to the ”diagonal” linear system

(Λ1 ⊗ I⊗ I+ I⊗Λ2 ⊗ I+ I⊗ I⊗Λ3)r
′′ = r′

which is
(r′′)ijk = (λ

3
i + λ

2
j + λ

1
k)
−1(r′)ijk (B.9)

• compute the product y = (R1 ⊗ R2 ⊗ R3)r
′′ with the formula

(y)ijk =
N−1∑

α=0

(R1)iα
{N−1∑

β=0

(R2)jβ
[N−1∑

γ=0

(R3)kγ(r
′′)αβγ

]}

(B.10)

i, j, k = 0, ..., N − 1

The most important feature of the above procedure is its computational
efficiency. It can be noticed that the total numerical cost can be estimated
as, roughly, 6 · N 4 floating point operations. It means that solving linear
system (B.7) is only twice as expensive as the calculation of the ”matrix-
vector” product (B.3).
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Wyznaczenie nieustalonych przepływów cieczy lepkiej
w trójwymiarowym układzie przewodów. Część II: Implementacja
metody spektralnych elementów skończonych i przykładowe wyniki

Streszczenie

Druga część pracy omawia zagadnienia związane z implementacją metody spek-
tralnych elementów skończonych oraz prezentuje wybrane wyniki obliczeń. Przedsta-
wiono również wybrane algorytmy: skalowanie (ang. preconditioning) procesu iteracyj-
nego dla ciśnienia, metodę FDM oraz metodę efektywnego rozwiązywania sekwencji
układów liniowych dużych rozmiarów z ustaloną macierzą. Omówiono wyniki obli-
czeń testowych. Przedyskutowano trudności i ograniczenia aktualnej implementacji
oraz zaprezentowano wstępne efekty paralelizacji solwera spektralnego.
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