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This paper is concerned with an orthotropic thin plate containing a crack
perpendicular to its surfaces. It is assumed that the transient thermal
stress is set up by the application of a heat flux as a function of time
and position along the crack edge and the heat flow by convection from
the plate surfaces. The exact analytical solutions for the stress intensity
factor and crack-opening displacement are derived. Numerical examples
show, among others, a dependence of the stress intensity factor on the
thermal and elastic constants of the orthotropic material.
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1. Introduction

The study of thermoelastic problems has always been an important branch
in solid mechanics (see Nowacki, 1986; Nowinski, 1978). In particular, the ther-
moelastic fracture problems subjected to various types of thermal boundary
conditions have been discussed extensively in the literature. Most of rese-
arch works discuss the steady-state crack problems and axisymmetric cases
for which the Hankel transform technique and the theory of dual integral
equations were usually employed (Sneddon, 1966). Recently, a report on a
penny-shaped or external crack subjected to temperature and heat flux, arbi-
trarily acting in a transversely isotropic medium, was presented by the author
(Rogowski, 2003). The corresponding fundamental solution can play an impor-
tant role in the boundary element method of thermoelastic fracture analysis.
Some metallic materials, such as zinc, magnesium, cadmium are transversely
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isotropic (Hearmon, 1961). Many fibrous composites may also be modeled as
transversely isotropic materials (Christensen, 1979). There have been many re-
ports on crack analysis in transversely isotropic and orthotropic thermoelastic
materials. Among the studies, Tsai (1983a,b) calculated the stress intensity
factors of a penny shaped crack in a transversely isotropic material due to a
thermal loading, while Rogowski (2001a,b) presented analysis of a crack sys-
tem in transversely isotropic materials. Many of research works discuss the
two-dimensional thermal crack problem in the literature. Sumi (1981, 1982),
Akoz and Tauchert (1972), Atkinson and Clement (1977), Ghosh (1977), Cle-
ments and Tauchert (1979), Clements (1983), Tsai (1983a,b) and Rogowski
(1982) solved various problems in anisotropic thermoelastic solids. Gladwell et
al. (1983) considered the radiation boundary conditions. But, perhaps because
of mathematical complexity, the three-dimensional crack problem of an ani-
sotropic medium under transient thermal loading have not yet received much
attention. Among the studies, Koizumi and Niwa (1977) performed the ana-
lysis of an edge crack in a semi-infinite plate under transient thermal loading.
Noda and Matsunaga (1986) investigated the transient crack problem in an
infinite medium, while Ishida (1987) calculated the stress intensity factor for
a transient thermal loading in a transversely isotropic material. Ting and Ja-
cobs (1979) solved the problem for transient thermal stress in a cracked solid.
Many problems of thermoelasticity were solved in a book by Podstrigach and
Kolyano (1972).

This paper considers the transient thermal problem of a crack in an or-
thotropic thin plate. The method of solution involves the use of Fourier and
Laplace’s transforms and displacement potentials to reduce the mixed boun-
dary value problem to a pair of dual integral equations. The solution is given in
an exact analytical form. The stress intensity factor of mode I and the crack-
opening displacement for a heat flux arbitrarily acting on the crack surface,
are determined. The numerical results are shown graphically to demonstrate
the influence of thermal and mechanical anisotropic parameters.

2. Analysis

2.1. Temperature field

Consider an orthotropic thin plate of thickness 2h containing a crack. Fi-
gure la shows the geometry of the problem where the position of the point
is defined by Cartesian co-ordiantes (z,y,z). In this co-ordinate system, the



ON THE STRESS INTENSITY FACTORS... 741

crack occupies the region y = 0, |z| < a, |z| < h. We shall suppose that the
crack is opened out by the heat flux depending on time and position applied
to its surfaces. Referring to the semi-infinite region y > 0, the boundary con-
ditions in the problem can be assumed as shown in Fig. 1b, since the thermal
and mechanical conditions on y = 0% are identical with those on y = 0.
Additionally, for a thin plate the unknown temperature distribution 7T'(x,y,t)
is assumed to be constant over the thickness, giving the heat exchange by
convection on both surfaces of the plate, which equals —2~T', where T is the
temperature change and -+ is the heat transfer coefficient on the plane surfaces.

(@) (b)

Oyy=0=0y,

A

B
%4

Fig. 1. Geometry and co-ordinate system (a) and boundary conditions (b)

The equation heat conduction governing an unsteady-state temperature
field in an orthotropic thin plate with heat dissipation at both plane surfaces
is (Nowacki, 1986)

02T PT oT
W + )\228_y2 — ET = CPp—= (21)

A
11 ot

where c is the specific heat, p is the mass density and Aj; and A9y are the
thermal conductivities in the z- and y-directions, respectively.
The initial and boundary conditions for the temperature field are

T=0 at t=0

da S = @ Ha—lel) o y=0 22)

where ¢o is the heat flux per unit area and unit time, and H(-) denotes
Heaviside’s step function. The problem is symmetric with respect to the plane
y = 0, the temperature T'(z,y,t) is an even function of y and differentiable
with respect to y at y = 0; in consequence, the heat flux is equal to zero
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for y = 0, |x| > a. Applying Laplace’s transform to time and Fourier cosine
transform to the variable x, and using the convolution theorem for inverse
Laplace’s transform, the solution to (2.1) which satisfies (2.2) and (2.3) may
be expressed by

/ o
4 22
T:/g(t - 7')[ = qO)\X /f coS(Sx)dS/COS(py)e X(m2+52+X2?)T }d
T 22
0 0 (2.3)
/ /9 s,p,t) cos(py) dp] cos(sx) ds
0
where
4 g )2
0(s,p.t) = ) qo)\X /g (t—rT1)e —x(m2+s2+22p%)T dr
22 /
_ /f cos(sz) dx (2.4)
0
? 7 A1 9 A
L W =— A2 = 22
1h X cp ™

From (2.4)3 it follows that only the symmetric problem with respect to the y
axis is considered, since it is assumed that f(x) is an even function. For the
general case of the function f(z), its odd part will be associated with Fourier’s
sine transform and the solution can be obtained in a similar manner; formally
by replacement of cos(sz) with sin(sz) functions in Eq. (2.4)2.

2.2. Thermal stress and displacement

We consider the stress and displacement field. The stress-strain equations
for an orthotropic medium under a plane stress state are

Ozz = Cll1€zz 1+ Cl2€yy — /T
Oyy = C12€gz + C22€yy — BT (2.5)

Oy = 2Gegy

where e;; are the strain components, o;; are the stress components, c;; are the
moduli of elasticity of the material, G is the shear modulus, 81 = c11a1+c1200,
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Bo = c1a01 + coop and «q, ao are the thermal expansion coefficients along
the z- and y-directions, respectively. The strain components are

Ouy Ouy 1/0u; = Ouy
Cxp = Eyy = ——— Ery = = — 2.6
T Ox W oy Y 2( oy * ax) (26)
where u, and u, are the displacement components along the axis. The equ-
ations of equilibrium for the plane stress in the absence of the body forces
are

004p 004y 00zy  Ooyy

= = 2.
ox oy 0 ox oy 0 27)
From (2.5), (2.6) and (2.7), it follows

0%uy 0% uy 82uy oT
g g+ G 52 + (c12 + G) 9xdy 51%

(2.8)
82uy 82uy D%, orT
G 5a2 T 22 7 + (c12 + G) 9xdy ﬁza—y

The general solution to equilibrium equations (2.8) may be obtained as the
superposition of two fields. The first corresponds to the solution to homoge-
neous equation (2.8), for which (Rogowski, 1975)

0 0
Uz = 5 (ko1 + ¢2) Uy = 8—y(901 + kp2)
0? 0?
Ozz = —G(k + 1)3—y2(¢1 + 2) oyy = —G(k+ 1)@(@1 + 2)
s Poi 1P
- 1 "l = =1,2
Ozy G(k + )6x8y ((101 + (702) axQ 812 8y2 0 (Z ) )
(2.9)
where (i =1,2)
2 _
GCQQS? — (611622 — C%Q — 2612G)812 4+ Gep1 =0 k= M (210)
ci2+G

The second may be obtained in terms of the thermoelastic displacement po-
tential function (x,y,t), defined as follows

oY oY
Us = 5o Uy = l— (2.11)
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Equations (2.8) are satisfied if

0? 0? 0?
C11—Q§+G Qé) +1(c12 + G) Q’Z)—@T
Ox oy 0y?
(2.12)
52 52 o2
Glaf+022laf (12+G)81§ BT

A suitable expression for 1 defined by (2.12) for temperature distribution in
(2.3) is in the form

P = / /C s,p,t) cos(py) dp} cos(sz) ds (2.13)
0

This satisfies both equations (2.12) providing

C(S,p, t)[61182 + sz + lp2(612 + G)] == _610(371)7 t)

(2.14)
C(s,p,t)[l(caop® + Gs?) + s*(c12 + G)] = —B20(s,p, 1)
i.e.
I(s,p) = Bis%(c12 + G) — Ba(c118® + p*G)
P Bap?(c12 + G) — Bi(caap? + s2G) (2.15)

Bap®(c12 + G) — Bi(coop? + s2G)

Cls,pt) = 0(s,p,t) (c1152 4+ Gp?)(c22p? + Gs?) — (c12 + G)?p?s?

Appropiate solutions to Eqgs (2.9)¢ are

_ 52 -1 —518Yy
o1(z,y) G (s =) O/s A(s)e cos(sx) ds
(2.16)
wo(z,y) = 51 /5713(5)673233, cos(sx) ds

G(k‘ + 1)(81 — 82) ;
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Using the above obtained potentials, we find

ug(2,y,t) = Gl 1)1 = 5) O/kSQA Y — g1 B(s)e” *?%]sin(sx)ds —

— / /SC s,p,t) cos(py) dp} sin(sx) ds
0

(2.17)
Uy(.’E, y,t) = Gk + ilsil — 59) 0/ e " — kB(s)e”***] cos(sz) ds —
~ [ pCs.p 00 psin(py) d] cos(sa) ds
0 0
Ogz(T,y,t) = 5181—8252/ s[s1A(s)e” 1% — s9B(s)e” *2%Y] cos(sx) ds +

0
b6 [ [ 2O 001.5) + 1) costn) dp) st s
0

0
1 o
oyy(z,y,t) = o /S[SQA(S)G_Slsy — 51B(s)e” %] cos(sx) ds +
1— 52
(2.18)
+ G/ /SQC s,p, t)[L(p, s) + 1] cos(py) dp} cos(sx) ds
0 0
_ 5152 —s18Y —828YT o
Ouy(z,y,t) = — s[A(s)e — B(s)e |sin(sx) ds +
S1 — 89
+ G/[/psC(s,p, t)[l(p, s) + 1] sin(py) dp} sin(sx) ds
0
The mechanical boundary conditions on the plane y = 0 are
Ogy = 0 (219)
ow=0 on |z[]<a Uy =0 on |z|>a (2.20)

Applying (2.18)3 to boundary condition (2.19), we obtain A = B.
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Substituting (2.17)2 and (2.18)9 into boundary conditions (2.20) and using
A = B, we obtain the following dual integral equations for A(s)

/sA(s)cos(sx) ds = /SQF(S,t) cos(sx) ds on |z|]<a
o 0 (2.21)
1
—@/A(s) cos(sx) ds =0 on |z|>a
0
where

F(s,t) = —G/C(s,p, Hli(p, s) + 1] dp
0

(2.22)
C=k+1)(k-1)" (s =571
Equation (2.21); may be replaced by the following equation
/A(s) sin(sz) ds = /SF(S,t) sin(sx) ds (2.23)
0 0
We introduce an integral representation of the function A(s)
Als) = / & h(x) Jo(sa') da’ (2.24)

0

where Jy(sz’) is the Bessel function of the first kind and zero order, and h(z’)
is a new unknown function. This representation satisfies equation (2.21)4 and
converts equation (2.23) to the Abel integral equation for h(z’)

' h(z")
N
0

The solution to this equation is

dx’ = /sF(s,t) sin(sx) ds lz] < a (2.25)

W) = / 2 F(s, 1) Jo(sa") ds (2.26)
0

where the following integral were employed

21 d 1 xsin(sx)

o /
;:C/ d,CC/ / ﬁ d.CC = SJ()(SCL‘) (227)
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Thus, the solution to the dual integral equations of form (2.21) is

A(s) = /SC/J()(S.T/) {/ ¢*Jo(qz')F(q,1) dq} dz’ (2.28)
0 0

The above formula is exactly the same as that obtained by Sneddon (1966,
p.98) for dual integral equations of type (2.21). Therefore, we obtain the com-
plete solution to the problem by substituting (2.28) and (2.22); into (2.17)
and (2.18).

The singular stress oy, (x,0) is obtained as follows

_ zh(a) x T 9 n
oyy(z,0) = Vg R = /5 F(s,t)Jo(sa) ds as T —a

(2.29)
Therefore, the stress intensity factor K of mode I is defined as

z—at

Kr= lim /2n(z — a)(0yy)y—0 = V74 / PF(s,t)Jo(sa)ds  (2.30)
0

Note that

0411?2 + 0421?2

1 —_ —
GC(S,p,t)[l(p,8)+ ] 152S4+2,u32p2 +p4

H(Svpv t) -
(2.31)

a1 + ¢y Co
— 0 t
! (5%82 +p2 sds? +p2> (5,p:1)

where s? and s3 are the roots of algebraic equation (2.10)1, which may be
written in an equivalent form

E E
st —2us?4+62=0 w= i — v 6% = fl (2.32)
2

and

aiss —as  ar(p— Vit —6%) —as

Cy) — = (233)

st — 83 2/ p? — 62

Here F; and FEs are Young’s moduli in the z- and y-directions, respectively,
and 191 is Poisson’s ratio.
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The stress intensity factor K7 is calculated from (2.30), and we get the
formula

[e.e]

4y/a QOX)\ Eq / 9% / al +co co
Kr— )Jol( _ )
=0 m ) f(s)Jo(as ) 22 4 | 5257 +p2>

(2.34)
t
/ g(t — 7)e X THNPIT g g dp
0

For an isotropic material we have s1 =so =1, a1 = as = a, A =1, and
stress intensity factor (2.34) assume the form

[e.e]

_ 4/a goxEa / - / 1
Ki)iso = J -
(K1)iso \/— Niso / f(s) 0(@8)0 s2 4 p2
(2.35)
¢
-/g(t - T)67X(m2+52+p2)7 dr ds dp
0
The displacement u,(z,0) is obtained in the form
a
42 qox N30/t £+ 0 x’ da’
uy(2,0) = — /\/ 72 s (s)Jo(sa’)
m — x?
(2.36)
00 n t
C¥1 Co Co _ 2, 24 12,2
/ s 82+p 8282+p2>/g(t_7')e X(m +s +/\p)7’ deSdp
0 2 0
The displacement u,(x,0) is given by the formula
4 (JOX)\2 — V1) T
Uy (z,0) = /s sin(sx)
2 Xoa(s3 + va1) J
(2.37)
00 n t
C1 T C2 C2 _ 2, 24 12,2
/ s 82+p S%Sz+p2>/g(t_T)e x(m?+s?+X?p?)T deSdp
0 0
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where
G G
al = 2 — E—ll/lg bl = E_1 Cl = a1 — blag
G G 618% — bgal — a0
—1_- = by — — _ (2.38)
ag E2 V12 2 E2 C2 S% — S%
vz _ Va1
E, By

3. Numerical results

In calculating the temperature and the stress intensity factors, the follo-
wing dimensionless quantities are introduced

x Y t
£=~— n== t'=x—
a a a
2 A Q
M2 =a2m2 = 12 )2 = 222 a=22
A1nh A11 aq
E FE —  TAoyo
P =F=_"" == _ T =
EQ a 2G = qoa
= K ——_— TyyA22
ar1Eraqov/a Y arErago

Numerical calculations were carried out for two types of the heat supply ¢

Case 1: ¢ = qog(t)f(z) = qo
Case 2: q = qog(t)f(z) = qoe™"
where t' is the Fourier number.

Figure 2 shows the temperature at 1 = 0 for various values of \%. The
temperature at 1 = 0 increases with the ratio of thermal conductivity. Figures
3a,b show the effects of A\? and « on the normal stress 7, at 7 = 0 for case 1
of thermal loading.

Figures 4a-d show the effects of anisotropies of the material constants on
the stress intensity factor for case 1 and case 2. It is assumed that only one
of the material constants A%, a, E, p indicates various anisotropies, while the
other constants are kept equal to those of isotropic conditions.

Figures 2-4 show that the anisotropy effects of the material constants A2,
a, F and p on the stress intensity factor are large. In the figures we can notice
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e |
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-0.1 -0.1 —
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Fig. 3. Variation of normal stress 7, at 7 =0 with ¢ for various values of A\? (a)
and « (b)

that the stress intensity factor increases with the thermal conductivity, Young’s
modulus and thermal expansion coefficient in the direction perpendicular to
the crack plane.
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0.6

0.4

0.2

[—q=qo —————— q=qp¢" ]

Fig. 4. Variation of stress intensity factor with ¢’ for various values of \? (a), a (b),
E (c) and p (d)
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O wspolczynnikach intensywnosci naprezenia dla nieustalonego
termicznego obciazenia w ortotropowej cienkiej plycie ze szczeling

Streszczenie

Rozpatrzono zagadnienie ortotropowej cienkiej plyty zawierajacej szczeline pro-
stopadla do jej brzegéw. Zalozono, ze nieustalone naprezenia termiczne powstaja
w wyniku przeplywu przez powierzchnie szczeliny strumienia ciepta bedacego funkcja
czasu, miejsca i konwekcyjnego przeplywu ciepta przez powierzchnie plyty. Znaleziono
$cisle, analityczne rozwiazanie okreslajace wspotczynnik intensywnosci naprezen i roz-
warcie szczeliny. Przyklady numeryczne pokazuja zaleznosci temperatury, naprezen
i wspélczynnika intensywnosci naprezenia od parametréow geometrycznych i staltych
okredlajacych wtasnosci termiczne i sprezyste materialu.
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