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In the paper the problem of the modelling of machine systems by ma-
king use of the hybrid bond graphs method in a matrix representation
and in terms of differential equations has been formulated. The presen-
ted method of the dynamic analysis of mechatronical machines models
on the basis of the hybrid network graphs constitutes a very efficient
algorithm. Such a method consists in the modelling of the given mecha-
tronical model in terms of the hybrid bond graphs with a neural net and
the Mason signal flow as subgraphs. Using the impedance method frequ-
ency characteristics and natural frequencies for the vibrating model of a
machine are analysed on an example of a railway vehicle. In the paper,
the sensitivity model and its dynamic characteristics are formulated and
examined with the help of the hybrid bond graphs method.
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1. Introduction

In the paper, the problem of the analysis of dynamic machines models in
terms of the network graphs, in particularl by the use of the bond graphs me-
thod (Ford and Fulkerson, 1969; Korzan, 1978; Wojnarowski and Nowak, 1989;
Wojnarowski, 1985) in a matrix representation has been formulated. The topo-
logical way of the analysis of the dynamics of mechatronical machines models
on the basis of the network is characterised by algorithms of great efficiency
(Bukowski, 1959; Robichaud et al., 1968). In our paper, mathematical prin-
cipies of the hybrid bond graphs method for the modelling of a mechatronic
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system is presented. Such a method gives possibility to formulate a general
mechatronical model of machine systems by coupling the bond grahs and the
neural net with the Mason flow graphs, which yields a single universal graph
model. In the numerical algorithm the mathematical model of the machine dy-
namic characteristics in a matrix representation is formulated on the basis of
the global stiffness matrix and the global flexibility matrix of the system. Using
the impedance method, frequency characteristics and natural frequencies for
the dynamic model of a machine in terms of the network graphs are analysed.
The goal of the analysis in this paper consists in the formulation of the sen-
sitivity model of the dynamic characteristics of the machine by applying the
hybrid bond graphs method. Such a method gives one the possibility to elabo-
rate the complex and the unit bond graph model of the mechatronical model
of the machine with regard to the sensitivity parameters of the system. In the
paper, the unit hybrid bond graph on an example of the dynamic model of a
railway vehicle with the driving system and the electrical motor is presented
(Bukowski, 1959; Robichaud et al., 1968; Wojnarowski, 1999).

By the hybrid bond graphs (HBG) we name the bond graph (BG) that
includes one or more subgraphs (S) in terms of the Mason signal flow graph
(M) or in terms of the neural network graph (N), connected with the BG by the
use of the branches with analogy elements (integrator, summator, invertor).

For the modelling of a mechatronical system with a neural network sub-
system represented by the hybrid bond graphs, we introduce the logic element
(Fig. 1a) by the logister element named. For the modelling of nonlinear func-
tions (dependencies between the input and the output signals) the activator
element is introduced (Fig. 2).

Fig. 1. Bond graph of the logister element (a) and its characteristic (b)
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Fig. 2. Bond graph of the activator element (a) and sigmoidal function (b)

2. Modelling of the driving system

We assume the dynamic model of a driving system with a flexible coupling
and steady-current electric motor (Fig. 3a). The block scheme of the driving
system in the form of a model of the hybrid bond graph with a subsystem in
terms of the neural network graph is presented in Fig. 3b.
The detailed model of the neural network for the modelling of the electric

driving system with the steady-current motor in aspect of the identification
process of its parameters is illustrated in Fig. 3c. The both graphs, i.e. the
bond graph and the neural network by the Mason flow signals are connected
with summators, potentiometers and invertors elements. Then we consider the
sensitivity model of the driving system with regard to the spring of the coupling
and the resistance of the electric motor in terms of the hybrid bond graph, as
shown in Fig. 6. There, the integrator element is applied for calculation of the
input signal from the bond graph to the sensitivity subgraph.

3. Models of hybrid bond graphs of the railway vehicle

By making use of the hybrid bond graphs method, sensitivity models of
mechatronical and dynamical systems can be constructed in the network gra-
phs representation. For example, we consider a dynamic model of the railway
vehicle powered with an electrical driving system in which the effect of the
stiffnesses of its elements is examined.
The global dynamic model of the vehicle consists of the following sub-

systems: the driving system, the four wheelset assembly, the car body of the
vehicle and the road with rails. The global dynamic model of the railway vehic-
le with the driving system and a steady-current motor is presented in Fig. 5.
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Fig. 3. Model of the driving system (a), hybrid bond graph (b), and neural
network (c)
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Fig. 4. Sensitivity hybrid bond graph of the electric driving system

In this model a horizontal distribution of the loads is given. Motion of the
vehicle is expressed in terms of the hybrid bond graph, as shown in Fig. 6.
On the basis of the formulated physical and mathematical models of the

railway vehicle a numerical procedure was prepared for particular calculations.
For the assumed vibraiting model and for the input harmonic forces with pa-
rameters Z0i = Z0 = 0.01m, and ω ∈ 〈0, 600〉 rd/s in the range of frequencies
f ∈ 〈0, 100〉Hz, one may calculate the natural frequencies and characteristics
of the system. As a result of the analysis of the fully loaded the following
natural frequencies of the system were determined

f1 = 1.57 Hz f2 = 3.55 Hz f3 = 4.65 Hz

f4 = 6.07 Hz f5 = 7.88 Hz f6 = 10.4 Hz

The natural frequency f1 corresponds to the torsional vibration mode,
whereas the frequency f2 describes the vertical vibrations about the axis Oz.
In Fig. 7a the amplitude-frequency characteristics of the car body of the vehicle
in a logarithmic scale for the shock absorbers parameters ca = 200, 500, 800,
1100 kN/m are presented (corresponding curve number are 1, 2, 3, 4). The
diagrams of the acceleration frequencies for the wheelset are shown in Fig. 7b.
On the basis of the calculated natural frequencies, and for the wheel radius
r = 0.6m and the transmission ratio of the driving system p = 2, the critical
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Fig. 5. Dynamic model of the railway vehicle with the electric driving system
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Fig. 6. Hydrid bond graphs of the model of the railway vehicle with the electric
driving system
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Fig. 7. Frequency characteristics (a), and acceleration frequency characteristics (b)

drive velocities of the fully loaded railway vehicle were determined as in the
following

v1 = 33.75 km/h v2 = 56.9 km/h v3 = 80.6 km/h

v4 = 90.65 km/h v5 = 152.1 km/h

4. Modelling of the flows in hydraulical systems by use of the

network graphs

In the paper the problem of the analysis of dynamic network flows by
making use of the graphs method (Bukowski, 1959; Wojnarowski and No-
wak, 1989; Kaczmarek and Nowak, 2000, 2001) in a matrix representation
has been formulated. The classisal model of the flows, which incorporates the
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Ford-Fulkerson algorithm, was formulated for the stationary case (Ford and
Fulkerson, 1969; Korzan, 1978). In our paper, the model of the dynamic flows
is defined by flow intensities in function of the potential variables in the ver-
tices of the network graph at network branches. The elementary capacities of
the branches are expressed in terms of the differential operator s = d/dt. Such
a method gives one the possibility to describe viscous dampings and inertial
resistancies in the network graph with side branches. The dynamical flows are
realized by impulse and harmonic input flows. The mathematical model of the
dynamic network flows in a matrix representation is formulated on the basis
of the global matrix capacity of the system. Using the impedance method, the
frequency characteristics and the natural frequencies for the resonance flows in
the potential network system are analysed. The potential network is isomor-
phous with different physical systems, in particular with mechanical vibrating
systems, electric and hydraulic ones.

Fig. 8. Model of the dynamic flow network

We assume a model of the network with only one input and output node
(Fig. 8). For each vertex xi, i = 1, 2, ..., n, the potential variable qi (general
variable) is defined. For each branch uj, j = 1, 2, ..., N with the capacity cj,
the flow variable Qj is given in terms of the formula

Qj = cj∆qj = cj(qj1 − qj2) (4.1)

In the network graph, we define a potential function of the flows

V =
1
2

N∑

j=1

cj |∆qj|
2 =
1
2

N∑

j=1

cj(qj1 − qj2)2 (4.2)

Using the Lagrange method, the column matrix of the network flows is deter-
mined

Q = (ACA⊤)q = Zq (4.3)
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where
Z = ACA⊤ (4.4)

C is the global capacity matrix of the network, Z is the global stiffness matrix
of the flow system, and A denotes the structural matrix of the network graph.
Using formula (4.3), the matrix equation for the equilibrium of the network

flows is
Zq = Q0 (4.5)

where Q0 is the input flow in the network. We consider the potential network
with:
— viscosity dampings (for the first order edges)

Qi(t) = ciqi + biq̇i ⇔ Qi(s) = ziqi = (ci + bis)qi (4.6)

— inertial resistances (for the second order edges)

Bi(t) = aiv̇i ⇔ Bi(s) = ais2qi or Bi(jω) = −aiω2qi (4.7)

where ai is the inertia capacity coefficient.
In the input vertex of the network, we consider the harmonic input flow

signal
Qs = Q0 +Q1 sin(ωt) Q1 ≪ Q0 (4.8)

The introduced notions of the first and second order branches define the
dynamical potential network. The corresponding equations of the model are as
in the following

Mq̈s + Bsq̇ + Csq = Q0s(t)
(4.9)

Bmq̇ + Cmq = Qom(t)

with the initial conditions:

q0(0) = q0 q̇0(0) = vs0

where q = [q1, q2, ..., q5]⊤ is the column matrix of the general coordinates.
In the free dynamical network without the input flow, the dynamic flows in

the branches should be shown in terms of the natural modes, i.e. expressed by
a series of harmonic signals with natural frequencies ωk and phase shifts ϕk

Q
(k)
i (t) =

s∑

i=

Qik sin(ωkt+ ϕk) (4.10)
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Equations (4.9) are the second order differential equations for the sth
degree of freedom of the flow system, and for the mth (m = n − s) degree of
freedom in the case of the first order differential equations. Reducing equations
(4.9) eith respect to the general coordinates, we obtain the second order matrix
equation expressed by such coordinates

Msq̈s +Bsmq̇s + Csmqs = Qsm(t) (4.11)

where

Bsm = B1s − B1mBms Csm = C1s − C1mBms
(4.12)

Qsm(t) = Q0s(t)− C1mC
−1
2mQ0m(t)− B2mC

−1
2mQ̇0m(t)

For the harmonic input signals, we can determine the frequency characte-
ristics of the flow system

Xs(jω) = Ys(jω)Q0sm(jω) (4.13)

where Ys(jω) = Zs(jω)−1 is the global flexibility matrix of the flow system.
Next, we define the frequency characteristics of the flow intensities for the

network branches

Q(jω) = [A⊤Z(jω)]X(jω) Q0i (jω) = |Qi(jω)| (4.14)

The absolute values of the complex flows are determined on the basis of
actual frequency characteristics of the network system.
For each potential network, we can construct an isomorphous physical

system with a similar structure. For example, for the potential network given
in Fig. 9a with second order branches, one can propose a series of isomorphous
systems, in particular the vibrating mechanical system that consists of the base
elements: masses, viscous dampings, springs (Fig. 9b), and the electric system
(Fig. 9c).

5. Analysis of dynamical flows in the network model of a

hydropneumatical vibroisolation system

The object of the investigations is a hydropneumatical vibroisolation sys-
tem of the operator’s seat, whose model is shown in Fig. 10a. In the scheme the
stiffness of the hydropneumatical element is denoted by cs. The servo-motor is
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Fig. 9. Potential network graph (a), isomorphous mechanical system (b),
isomorphous electric system (c)
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Fig. 10. Model of the vibroisolation system (a), the network (b), and the bond
graph (c)
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Fig. 11. Results of calculations for the vibroisolation system of the operator’s seat
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moved by the force Fs, generated in the hydraulic pump system. The network
and bond graphs of the hydraulical system in terms of the potential is formu-
lated, see Fig. 10b,c. As a result, the influence of the accumulator pressure pa
on the displacement-acceleration criterial function (Fig. 11a) and on the po-
wer criterial function (Fig. 11b) has been found. The minimum of the criterial
functions for the pressure pa = 2.8MPa has been determined. In such a case,
the displacement (Fig. 11c) and the acceleration (Fig. 11d) of the operator’s
seat have been calculated for a harmonic force with the frequency f0 = 3.0Hz
acting on the mass m1.
The frequency characteristics of the vibroisolation system are shown in

Fig. 11e. The pressure function in the cylinder of the servo-motor is given in
Fig. 11f.
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Modelowanie drgań modeli maszyn metodą hybrydowych grafów wiązań

Streszczenie

W pracy sformułowano zagadnienie modelowania modeli dynamicznych układów
maszyn z zastosowaniem metody hybrydowych grafów wiązań w reprezentacji macie-
rzowej i w postaci układu równań różniczkowych ruchu. Opracowana metoda hybry-
dowych grafów wiązań stanowi efektywny sposób analizy układów mechatronicznych
maszyn. Metoda polega na sformułowaniu globalnego grafu wiązań z uwzględnieniem
grafu przepływu sygnałów Masona lub sieci neuronowej jako podgrafów. Stosując
metodę impedancji wyznaczono charakterystyki amplitudowo-częstotliwościowe oraz
częstości własne na przykładzie modelu dynamicznego pojazdu szynowego. W pracy
opracowano także modele wrażliwości ruchu maszyn i ich charakterystyk dynamicz-
nych przy zastosowaniu metody hybrydowych grafów wiązań.
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