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In the paper a method of load positioning and minimization of load
final oscillations in rotary cranes has been presented. Drive functions of
the slewing of an upper structure have been determined by means of
dynamic optimisation. In the optimisation task a simplified model has
been used. A completely stiff supporting structure of the crane has been
assumed. A feedback control system has been proposed to compensa-
te for influences of flexibilities that have not been taken into account
during the optimisation and for inaccurate knowledge of parameters of
the model. The effectiveness of the control system for two different con-
trolled variables has been analysed. A special coefficient for quantitative
analysis has been proposed. Results of numerical simulations have been
presented.
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1. Introduction

The limitation of load oscillations during the slewing motion of a crane
upper structure and, especially, during the final load positioning is a vital
problem for the effectiveness and occupational safety of the reloading and
assembly work. This explains why the problem of minimization of load oscilla-
tions in rotary cranes is taken up in many papers (Abdel-Rahman and Nayfeh,
2002; Balachandran et al., 1999; Bednarski et al., 1997; Kłosiński, 2000; Parker
et al., 1995; Sakawa et al., 1981). Mobile cranes belong to the kind of cranes
for which accident hazard is extreme (Neitzel et al., 2001; Yow et al., 2000).
That is why the author has been carrying out research connected with load
positioning at the end of the slewing motion of a mobile telescopic crane for
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several years. One of the most important assumptions in author’s investiga-
tions is that it is possible to determine the drive functions which minimize the
final load oscillations by using optimisation methods and a simplified model.
In this simplified model, a completely stiff supporting structure of the crane
may be assumed. The influence of flexibilities that are not taken into account
during the optimisation, and inaccurate knowledge of parameters of the model
can be compensated by a feedback control system with a PID controller. The
appropriate choice of a controlled variable is fundamental for the operation
efficiency of the control system. This variable should also be easily measured.
Comparison of the control system effectiveness for two different controlled
variables is presented in the paper.

2. Determination of functions of the upper structure slewing.

The dynamic model of a crane

Drive functions of the upper structure slewing have been determined from
the point of view of minimization of final load oscillations and, simultaneously,
load positioning (Maczyński and Wojciech, 2000). In this task a simplified mo-
del, taking into account the complete stiffness of the crane supporting structu-
re, has been used. The Nelder-Meads method has been applied. The objective
function is defined as follows
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and
mL – mass of the load
rLF – vector of expected load coordinates at the moment t = T
rL – vector of load coordinates
vL – velocity of the load
T – time of the upper structure’s slewing
C1, C2 – coefficients (weights).

This objective function means that one can expect that at the end of the
slewing motion the load is at a particular point in space and, furthermore,
its kinetic energy is minimal. Values of the coefficients C1 and C2 have been
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determined during numerical simulations. The main criterion of this deter-
mination was the best quality of load positioning at the end of the slewing
motion.

Fig. 1. Flexible model of a mobile crane

Figure 1 shows the model of a crane that has been used to perform numeri-
cal simulations presented below. It is a 3D model which takes into account the
flexibility of the crane supporting structure and damping in selected subsys-
tems. It allows dynamic analysis of a telescopic mobile crane in every respect,
and is described in detail in Maczyński and Szczotka (2002).

3. The feedback control system – determination of controlled

variables

In this section the feedback control system, which compensates for the
influence of the flexibilities ignored during the optimisation of load positioning,
is briefly discussed. The control system can also eliminate the influence of
inaccurate knowledge of parameters of the model.
Figure 2 presents a block diagram of the control system. It is a programmed

control system. Functions of the controlled variable Φt have been calculated
for the simplified model, the optimal drive function and for certain operating
parameters. The analysis has been carried out for two different controlled
variables Φt:

• angle ϕL of deflection of the load

• angle τ of tangential deflection of the load.
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Fig. 2. Block diagram of the control system; ϕO – slewing angle of the crane
determined according to Maczyński and Wojciech (2000) (optimal for the simplified
model), Φt – controlled variable determined for the simplified model, Φb – actual

value of the controlled variable

3.1. Angle ϕL of deflection of the load as the controlled variable

The definition of the angle ϕL of deflection of the load is presented in
Fig. 3. The plane marked out by the coordinate system 0′X ′Y ′ is parallel to
the ground. The origin of the coordinate system lies on the axis of rotation
of the crane upper structure, the axis 0′X ′ is parallel to the axis X in Fig. 1.
Points G′ and L′ define the projections of the end of the jib and the load on
the plane X ′Y ′, respectively.

Fig. 3. Angle ϕL of deflection of the load

Author’s earlier research demonstrates that assuming the angle ϕL as the
controlled variable can give satisfactory results of numerical analysis. The ti-
me course of the angle ϕL corresponds well with load oscillations, especially
tangential ones, and enables them to be effectively eliminated. However, me-
asurement of the angle ϕL in a real crane is inconvenient and requires the
use of expensive measuring devices, for instance laser devices. This solution
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would mean a significant increase in the price of the crane, especially in the
case of small simple versions. Therefore, another parameter that could be used
as the controlled variable has been sought; it is assumed that the angle τ of
tangential deflection of the load can be treated as the controlled variable.

3.2. Angle τ of tangential deflection of the load as the controlled variable

The diagram in Fig. 4 shows the end of the jib (point G) and the load L
that are linked by the rope (GL). The angles τ of tangential and β of radial
deflection of the rope are marked in the figure.

Fig. 4. Angle τ of tangential deflection of the load

4. Numerical calculations

Masses and geometrical parameters of the model have been chosen for nu-
merical calculations based upon the technical documentation of the DUT 0203
crane. The mass of the load was equal to 3000 kg, the crane radius about 8.7m.
The control system efficiency in compensating the influence of the flexibilities
of the crane supporting structure has been analysed for both controlled varia-
bles for the following cases of motion:

• slewing by 60◦ over a period of 12 s

• slewing by 75◦ over a period of 13.5 s

• slewing by 90◦ over a period of 15 s.
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In graphs presented in this paper, PID I denotes courses obtained for the
control system with the angle ϕL as the controlled variable, PID II – with
the angle τ . The selection of controller settings has been carried out using
the criterion of minimizing load oscillations based on the positioning efficiency
coefficient

PEG =
√

x20 + y
2
0 (4.1)

where

x0 = |xL − x
′

LF |max y0 = |yL − y
′

LF |max

and

xL, yL – coordinates of the load
x′
LF
, y′
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– expected load coordinates for t = T
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′
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′

LF
|max – maximal absolute value of the diffe-

rence between the coordinates after
the end of the slewing motion.

The load coordinates x′
LF
, y′
LF
expected at the time t = T have been

determined for the static load of the crane for a given final angle of the slewing
and mass of the load. During calculation of the coefficient value, it is important
that the time of load observation after the end of the crane slewing must be
longer than the time of load oscillations.

Numerical simulations showed that good quality of load positioning, for
all three analysed motions, can be obtained using the controller type P . Ap-
plication of integrating and/or differential elements of the controller did not
cause significant improvement of the positioning efficiency. In the analyses it
has been assumed that the proportional gain Kc was equal to 20 for PID I
and 0.95 for PID II.

Figure 5 shows the final parts of the load trajectories for motions 1-3,
respectively. In graphs, besides curves denoted by PID I and PID II, the curve
obtained for the drive without the feedback control system is also presented.
Additionally, point � is the theoretical point at which the load should stop
at the end of the slewing motion. This theoretical point has been determined
for the static load and for the model taking into consideration the flexibilities
of the crane supporting structure.

In Table 1 values of the PEG coefficient for the analysed cases are com-
pared.
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Fig. 5. Slewing by 60◦ (a), 75◦ (b) and 90◦ (c)

Table 1. Comparison of PEG coefficient values

Angle
PEG coefficient value [cm]

without control system PID I PID II

60◦ 4.37 2.57 1.56

75◦ 4.59 2.71 1.81

90◦ 4.42 2.70 2.21

The data in Table 1 show considerable differences between the values ob-
tained for the control system PID I and PID II. According to the case of the
slewing analysed, the differences range from 22% to 65%. The assessment of
the final load positioning carried out by means of observation of the load tra-
jectories does not confirm these differences (Fig. 5). The quality assessment
in fact shows that the final load oscillations are more or less equal for both
feedback control systems. However, a certain displacement between the load
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trajectories after the end of the crane slewing can be seen. This displacement
causes differences in values of the coefficient PEG, as shown in Table 1.
The PEG coefficient was defined for the drive without the feedback control

system. In this type of drive, the expected load position after the end of the
motion is identical to the load position in static conditions. However, in the
case of the drive with the feedback control system, the expected load position
depends on the controlled variables. The angle ϕL contains information about
the load position in static conditions. When determining the desired value
of the angle ϕL, the simplified model omitting the flexibilities of the crane
structure is used. Thus, the feedback control system tries to change the final
load position and to place the load as in the simplified model. However, the
angle τ contains information only about the relative position of the load and
the end of the jib. In this case, the expected load position after the end of the
motion is in agreement with the state of equilibrium for the model taking into
account the flexibilities. The graph in Fig. 6 confirms this hypothesis. Figure 6
shows the upper structure slewing by 90◦. In addition to curves from Fig. 5c,
the projection of the load trajectory for the drive without the control system
obtained for the simplified model is presented. It is denoted as ”simp”.

Fig. 6. Comparison of load trajectories for slewing by 90◦

The differences occurring between the values of the positioning efficiency
coefficient PEG led the author to define the coefficient once again. This new
coefficient is denoted as PE

PE =

√

(xmax − xmin
2

)2

+
(ymax − ymin

2

)2

(4.2)
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where xmax, xmin, ymax, ymin – maximal and minimal values of the load coor-
dinates registered after the end of the slewing of the upper structure, Fig. 7.

Fig. 7. Geometrical interpretation of the PE coefficient

A geometrical interpretation of the PE coefficient is presented in Fig. 7. It
is the radius of the circle circumscribed onto the rectangle in which the load
trajectory (after the end of slewing) is inscribed. Values of the PE coefficient
calculated for described motions are compared in Table 2.

Table 2. Comparison of PE coefficient values

Angle
PE coefficient value [cm]
PID I PID II

60◦ 1.64 1.51

75◦ 1.86 1.76

90◦ 2.25 2.19

Results presented in Table 2 show that the PE coefficient lacks the PEG
coefficient error. It is in agreement with the quality assessment performed by
means of observing the load trajectories.

Figure 8 presents dependencies of the PE coefficient values on the pro-
portional gain Kc. The curves have been obtained for cases of motion 1 - 3.
Graphs in Fig. 8a and Fig. 8b relate to the PID I control system (in Fig. 8b
the proportional gain Kc is held within the range 0÷ 5), Fig. 8c relates to the
PID II control system.
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Fig. 8. PE coefficient versus proportional gain Kc; (a) – PID I, (b) – PID I and
Kc = 0÷ 5, (c) – PID II

Graphs in Fig. 8 show that the control system with the angle ϕL (PID I)
as the controlled variable is less sensitive to the selection of the proportional
gain Kc. For the proportional gain Kc in the range 5 ÷ 50 and for all three
analysed motions, the PE coefficient maintains an almost constant value. This
value is only slightly greater than the minimal value of the PE coefficient. The
minimal values of the PE coefficient are obtained for lower values of the pro-
portional gain Kc. The proportional gain Kc that ensures the minimum of the
PE coefficient is different for every slewing. Thus, it is impossible to obtain
the minimal value of the PE coefficient for one value of the proportional gain
Kc and for all cases of motion. When the value of the proportional gain Kc
exceeds 60, then sudden deterioration in the positioning quality occurs. In the
case of the control system with the τ angle (PID II) as the controlled varia-
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ble, the most advantageous values of the PE coefficient are obtained for the
following ranges of the proportional gain Kc: motion 1 – 〈0.8, 1.05〉, motion 2
– 〈0.7, 1〉 and motion 3 – 〈0.6, 1〉. For the PID II, sudden deterioration in the
positioning quality occurs when the proportional gain Kc exceeds 1.05.

5. Summary

Numerical simulations prove that the feedback control system presented
in the paper effectively compensates for the influence of the flexibility of the
crane supporting structure on the final load positioning. Its effectiveness does
not depend on the choice of the controlled variable. Results obtained for both
angles: ϕL of deflection of the load, and τ of tangential deflection, are com-
parable. The feedback control system minimizes the load oscillations in the
tangential direction very effectively but it leaves some in the radial direction.
It is impossible to completely eliminate the load oscillations in two directions
using for this purpose only one drive motion – the slewing motion of the upper
structure. In his future research, the author plans to elaborate a conception
of a simple supplementary system that should eliminate the remaining radial
oscillations.

From the practical point of view, it is important that taking the τ angle as
the controlled variable has effects similar to those obtained for the angle ϕL.
The only real difference between the results obtained is the small displacement
discussed in Section 4. The value of the displacement does not exceed 2 cm, so
it is a negligible variable for an operator. The operator is mainly interested in
elimination of the final load oscillations. Fig. 8 shows that the PID I system is
more convenient in terms of the controller setting selection; it enables the posi-
tioning quality to be improved over a wide range of values of the proportional
gain Kc. For the PID II, this range is much narrower and, even if exceeded
only slightly, can cause clear deterioration of the load positioning quality.

The analysis of the results shows that the positioning efficiency coeffi-
cient PEG, used so far by the author, can, in the case of the drive with the
feedback control system, be misleading. That is why the new universal coef-
ficient PE has been proposed. This new coefficient can be useful during the
assessment of the load positioning for drives with or without the control system
and any controlled variable. On the basis of the graphs showing dependence of
the PE coefficient on the Kc proportional gain (Fig. 8), it is easy to determine
the most advantageous settings of the controller. Simulations indicate that a
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considerable improvement in the quality of the load positioning is possible for
a wide range of drives, using only one value of the controller settings.

The proposed method of the load positioning and oscillation minimization,
which has been discussed using the example of a telescopic mobile crane, can
be also utilised in the case of other rotary cranes.
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Pozycjonowanie i minimalizacja wahań ładunku w żurawiach obrotowych

Streszczenie

W pracy zaprezentowano metodę pozycjonowania i minimalizacji końcowych wa-
hań ładunku w żurawiach obrotowych. Funkcja napędowa obrotu nadwozia została
dobrana na drodze optymalizacji dynamicznej dla uproszczonego modelu zakładają-
cego całkowitą sztywność układu nośnego żurawia. Zaproponowano układ regulacji
kompensujący wpływ nieuwzględnionych podczas optymalizacji podatności i niedo-
kładnej znajomości parametrów modelu. Analizowano działanie układu regulacji dla
dwóch różnych wielkości zadanych. Do ilościowej oceny jakości pozycjonowania za-
proponowano specjalny wskaźnik. Zaprezentowano wyniki symulacji numerycznych.
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