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This paper deals with a surface-related shell theory and its conversion
into the finite element method for the investigation of composites and
contact problems. In particular, composites made of a textile reinforced
concrete are examined for the strengthening of existing shell structures.
The interaction between the existing structure and the strengthening
layer is considered as a contact problem involving adhesion.
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1. Introduction

For the design of textile reinforcement for the structural strengthening
and restoration in static and dynamic applications suitable mechanical models
need to be established. Basic features of the textile reinforced concrete can be
found in Curbach (1998). As a possible application, the strengthening of a
cylindrical tank, cp. Fig. 1, is considered. Reasons for the modification of the
existing structural member could be the storing of a substance with a higher
density or the increase of the filling height. If the load carrying capacity of
the existing structure is not sufficient for the higher loading, an additional
layer added to the outer surface might be the best way to improve the tank.
Since, generally, the strengthening layer is thin, its mechanical description is
favorably based on a shell theory. The present contribution to the develop-
ment of a new composite material, textile reinforced concrete, is focused on
the derivation of a suitable material description and shell theory. With respect
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to the framework of application, the advantage is taken of the free, by princi-
ple, choice of the reference surface position by attaching the reference surface
to one of the outer surfaces. The shell theory using an outer surface as the
reference surface, which is therefore called the surface-related shell theory, is
a natural approach for several reasons. Hereby the interface behavior is mo-
delled as a contact problem which can take adhesion into account. The idea
of surface-related shell theories was already pursued by one of the authors
many years ago, cp. Rothert and Zastrau (1981), Zastrau (1983). Unlike in
the standard shell theories, which refer to the middle surface of the shell, the
models introduced here offer among others the following advantages:

• Contact problems can be considered without the usual difficulty of map-
ping the middle surface data onto the outer shell surface.

• The discretization of the contact surface and therewith the complete
discretization may remain unchanged, in contrast to the classical appro-
ach. In an optimization of e.g. the utilization of a material, only the
elements of those matrices which belong to elements coordinate to the
surface, have to be changed iteratively.

• Discontinuities of the stress field, caused e.g. by concentrated loads oc-
curring on the surface, which is peculiar to contact problems, can be
directly determined where they occur.

• Easier detection of compound failure and delamination becomes possible.

Fig. 1. Picture of an existing structural member and the model of a cylindrical tank
with a strengthening structure made of the textile reinforced concrete

In this context the paper by Zastrau et al. (2000) is also referred to, where
a very general series expansion in the thickness-direction is proposed. If an
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insufficient or a wrong set of terms for the series expansion is used, this so
called Naghdi-model does not permit the usage of a three-dimensional, in
general, constitutive relation without manipulating the constitutive relation
itself. The application of the degeneration concept alone does not permit the
usage of a three-dimensional constitutive relation, if for the semidiscretization
of the displacements a linear series expansion in the thickness-direction is
used. But in combination with the enhanced assumed strain (EAS) method its
application becomes possible. This combination could be understood as a shell
theory which comprises the minimal number of kinematic equations necessary
to operate with a three-dimensional constitutive relation, cp. Bischoff (1999).

2. Continuum mechanical considerations

The starting-point for the mechanical description of a strengthening struc-
ture is the Boltzmann continuum in Lagrangian representation, cp. Eringen
(1989). Within the context of this paper, the description of the material beha-
vior is restricted to isothermal and reversible processes. From this, the number
of unknown fields is reduced to three: the displacement field U , the Green-
Lagrange strain tensor E and the second Piola-Kirchhoff stress tensor S,
where these fields are not independent from each other. They are related to
each other by:

— kinematic field equation

E− 1
2
(F⊤ · F− G) = E− Eu = 0 in B (2.1)

— constitutive relation

S = ρ0
∂f

∂E
= C : E with C = λG⊗ G+ 2µI in B (2.2)

— equilibrium equation

Div (F · S) + ρ0f = ρ0Ü = 0 in B (2.3)

Herein B is the body in the reference configuration, F = Gradx – the
deformation gradient, G – the metric tensor of the reference configuration,
E
u = (F⊤ · F − G)/2 – the displacement compatible Green-Lagrange strain
tensor, f – the Helmholtz free energy, ρ0 – the density in the reference con-
figuration, C – the forth order elasticity tensor of the St. Venant-Kirchhoff
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material, I = G ⊠ G – the forth order identity tensor, and f – the body
force per unit mass. In the definition of the identity tensor ⊠ symbolizes
the squared tensor product, cp. Halmos (1948), del Piero (1979), defined by
A⊠ B : C := A · C · B⊤. Additionally:
— dynamic boundary condition

F · S ·N = t0 on ∂σB (2.4)

— geometric boundary condition

U −U = 0 on ∂uB (2.5)

are stated to characterize the complete boundary-value problem. In (2.4) ∂σB
is the part of the surface of the body in the reference configuration where the
surface force per unit area of the boundary t0 is prescribed, and in (2.5) ∂uB
is the part of the boundary of the body in the reference configuration where
the displacements U are prescribed. The superposed bar indicates prescribed
quantities. In addition, N is the outer normal vector to the surface of the
body in the reference configuration.

The weak form of the equilibrium equation leads to the principle of virtual
displacements, which is the foundation for pure displacement finite elements. If
the kinematic field equation (2.1) and the geometric boundary condition (2.5)
are not eliminated but introduced into the principle of the minimum of poten-
tial energy by Lagrangian multipliers S and t0, the augmented Hu-Washizu
functional is obtained. The demand for a minimum of the total energy in the
principle of the minimum of the potential energy changes to a stationarity con-
dition in the Hu-Washizu functional. It describes the following saddle point
problem

Π(E,U ,S, t0) =

∫

B

ρ0f dV +

∫

B

S : (Eu − E) dV −
∫

B

ρ0f ·U dV
(2.6)

−
∫

∂σB

t0 ·U dA−
∫

∂uB

t0 · (U −U) dA = stat

To simplify the four field functional (2.6) and to avoid an explicit interpo-
lation for the stress field S the second term on the right-hand side is forced
to vanish. This procedure characterizes the above mentioned EAS method
which was first presented in the context of a variational formulation of conti-
nuum problems by Simo and Rifai (1990), and demands that the additional
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strain tensor is orthogonal to the stress tensor. This results in the fact that
the orthogonality condition

∫

B

S : (E− Eu) dV =
∫

B

S : Ẽ dV = 0 with Ẽ = E− Eu (2.7)

in the discretized form must be fulfilled. The additional strain tensor Ẽ enri-
ches additively the displacement compatible strain tensor Eu to avoid locking
phenomena in the shell theory and in the finite element formulation, respecti-
vely. This aspect will be discussed later on in conjunction with the formulation
of the shell theory. The discretized additional strain tensor Ẽ has to be linear
independent of the displacement compatible strain tensor Eu to avoid singular
stiffness matrices, see for details cp. Simo and Rifai (1990). In contrast to the
hybrid stress concept, the EAS concept preserves the basic features of pure
displacement finite elements, because the resulting additional strain parame-
ters need not be compatible across the element boundary. They can be elimina-
ted on the element level by condensation. The fulfillment of the orthogonality
condition reduces four field Hu-Washizu functional (2.6) to a modified three
field functional, which is the underlying principle for the surface-related shell
theory and the finite element formulation

Π(Ẽ,U , t0) =

∫

B

ρ0f dV −
∫

B

ρ0f ·U dV −
∫

∂σB

t0 ·U dA−
∫

∂uB

t0 ·(U−U) dA = stat

(2.8)

3. Surface-related shell theory

Since every shell theory is an approximation of the three dimensional con-
tinuum theory, basic assumptions have to be made, cp. Naghdi (1963), Başar
and Krätzig (1985). The most serious assumption is related to the kinematics.
Before the chosen kinematics is discussed in detail, the differential geometry
of the shell continuum has to be described, cp. Fig. 2.

To reach this, a general curvilinear, convected coordinate system Θ1, Θ2

and Θ3 is introduced in the shell continuum. With the aid of this parametriza-
tion, every point in the shell continuum is uniquely identified by the position
vector X . With the position vector X one obtains the base vectors Gi and
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Fig. 2. Differential geometry of the shell

Gi as well as the Riemann metric tensor G of the shell space in the reference
configuration as

Gi =X ,i
(3.1)

G = Gi ·GjGi ⊗Gj = GijGi ⊗Gj = δjiGj ⊗Gi = Gi ⊗Gi

where δji is the Kronecker symbol and the comma is the partial derivation
with respect to the convective coordinate Θi. With

Gi ·Gj = δji G = det(Gij) dV =
√
GdΘ1dΘ2dΘ3 (3.2)

the contravariant base vectors and the volume element of the undeformed shell
space are also introduced. Additionally, a space tangent to the shell reference
surface is required. Analogous to (3.1) and (3.2) this leads to

Aα =X ,α
(3.3)

A = Aα ·AβAα ⊗Aβ = AαβAα ⊗Aβ = δβαAβ ⊗Aα = Aα ⊗Aα
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and

Aα ·Aβ = δβα A = det(Aαβ) dA =
√
AdΘ1dΘ2 (3.4)

where X =X(Θα, 0) is the position vector of the reference surface, see Fig. 2.
In order to make the decomposition of tensors with components perpendicular
to the shell reference surface possible, a third vector is introduced as

A3 =X ,3
∣∣∣
Θ3=0

=
A1 ×A2
|A1 ×A2|

(3.5)

and is called the unit normal vector. Since normal coordinates are used for Θ3,
it has the following properties

A3 ·Aα = 0 A3 ·A3 = 1 A3 = A
3 (3.6)

If the partial derivative of X =X+Θ3A3 is formed, the following relationship
between the base vectors Gi in the shell space and the base vectors Ai located
in the reference surface can be established

Gi = Z ·Ai (3.7)

introducing the shell shifter tensor in the following way

Z = Gi ⊗Ai = µjiAj ⊗Ai (3.8)

Therewith holds also

µ = detZ =

√
G

A
= 1− 2Θ3H + (Θ3)2K (3.9)

and it follows
dV = µ

√
AdΘ1dΘ2dΘ3 = µdΘ3dA (3.10)

where H = ( trB)/2 and K = tr
+

B are the mean curvature H and the
Gaussian curvature K of the surface respectively calculated from the curvature
tensor B = −Aα ·A3,βAα⊗Aβ and its adjoint tensor. The shell shifter tensor
is a two point tensor, cp. Ericksen (1960), allowing to replace the base vectors
Gi and G

i with the base vectors Ai and A
i. The shifter tensor is used to

define so-called surface-related tensors which are labelled with hats. Firstly, it
is used to shift the Green-Lagrange strain tensor E

E = Z−⊤ ⊠ Z
−⊤ : Ê = EijG

i ⊗Gj

Ê = Z⊤ ⊠ Z
⊤ : E = EijA

i ⊗Aj
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and, secondly, to shift the second Piola-Kirchhoff stress tensor S

S = Z⊠ Z : Ŝ = SijGi ⊗Gj
Ŝ = Z−1 ⊠ Z

−1 : S = SijAi ⊗Aj
The orthogonality condition can be transformed into the following notation

∫

B

S : Ẽ dV =

∫

B

(Z⊠ Z : Ŝ) : (Z−⊤ ⊠ Z
−⊤ :

̂̃
E) dV =

(3.11)

=

∫

B

Ŝ :
̂̃
E dV =

∫

B

SijẼij dV = 0

which shows that the shifted quantities can also be used to evaluate the or-
thogonality condition.

Fig. 3. Undeformed and deformed part of the shell continuum and shell kinematics

Due to the displacement field U , the shell continuum is deformed from the
reference configuration into the actual configuration, see Fig. 3. This general
deformation is restricted by a kinematical assumption. Within the scope of
the presented shell formulation, it is assumed that the displacement field is a
sum of two parts

U = V +Θ3W (3.12)

first, the displacement field V of the reference surface and, second, a part in
the direction of W being linear in the normal coordinate Θ3. Here W is a
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vector field describing the displacement of points along the normal vector. In
general, the resulting vector a3 is no longer perpendicular to the deformed
reference surface a. Introducing the restricted displacement field (3.12) in the
definition of the displacement compatible strain tensor, it can be determined
as follows

Ê
u

= [αuij +Θ
3βuij + (Θ

3)2γuij ]A
i ⊗Aj = αu +Θ3βu + (Θ3)2γu (3.13)

with the sub-strain tensors

αu = αuijA
i ⊗Aj βu = βuijA

i ⊗Aj
(3.14)

γu = γuijA
i ⊗Aj

and the sub-strain components

αuαβ(V ,W ) =
1

2
(V ,α ·Aβ + V ,β ·Aα + V ,α ·V ,β )

βuαβ(V ,W ) =
1

2
[V ,α ·(A3,β+W ,β ) + V ,β ·(A3,α+W ,α )+W ,α ·Aβ +W ,β ·Aα]

γuαβ(V ,W ) =
1

2
(W ,α ·A3,β +W ,β ·A3,α+W ,α ·W ,β )

αuα3(V ,W ) =
1

2
[V ,α ·(A3 +W ) +W ·Aα] (3.15)

βuα3(V ,W ) =
1

2
[W ·A3,α+W ,α ·(A3 +W )]

γuα3(V ,W ) = 0 α
u
33(V ,W ) =

1

2
W · (2A3 +W )

βu33(V ,W ) = 0 γ
u
33(V ,W ) = 0

The disadvantage of the used 6-parameter shell kinematics is that it suffers
from the so-called Poisson thickness locking, which will be shortly discussed. To
explain the Poisson thickness locking, a beam with a rectangular cross-section
as shown in Fig. 4 is examined. The material of the beam has a Poisson’s ratio
being unequal to zero. Due to pure bending a linear normal stress distribution
over the beam thickness is obtained, for instance tension above the neutral axis
and compression below. This results in transverse contraction in the upper half
and transverse extension in the bottom half of the cross-section. According to
the stress distribution the transverse normal strain is linearly distributed as
well, while the overall thickness of the beam or of the shell, respectively, will
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Fig. 4. Description of the origin of the Poisson thickness locking

remain unchanged. The material center line, that is the line of material po-
ints which are in the undeformed state located on the geometrical center line,
moves up and is no longer located on the geometrical center line. Due to the
chosen kinematics (3.12) such a linear distribution of the normal strain can not
be represented. The corresponding transverse strain component βu33, cp. last
Eq. (3.15), is equal to zero. This causes a constraint which prevents the mate-
rial center line from motion and produces artificial transverse normal stresses.
These so-called parasitical stresses contribute to the internal energy and fi-
nally to an increase in the stiffness of the pure displacement finite element.
This means that, in bending dominated cases, a relative error of the order
of ν2 occurs, even in linear analysis, cp. Büchter (1992), Bischoff (1999). It
is obviously not adequate to approximate the deformation of a shell with un-
changing thickness by the kinematics (3.12), because this leads to β33 = 0. To
avoid this locking effect an enhancement of the Green-Lagrange strain tensor
is made using the EAS method. The enhancement is the following

Ẽ33 =
(H
2
−Θ3

)
β̃33 (3.16)

Accordingly, the enrichment of the strain field has only one component. It is
important to note that this single component is sufficient to avoid the Poisson
thickness locking, because it introduces the missing, in Θ3 linearly varying,
expression into the transverse normal strain. Due to the special position of the
reference surface, a shift about the half thickness H/2 of the shell is necessary
to ensure that the additional strain is zero, if it is calculated in the location of



On surface-related shell theories... 633

the middle surface. Before the additional strain Ẽ33 can be determined, some
additional notations and definitions have to be introduced.
The integration of the shifted second Piola-Kirchhoff stress tensor Ŝ over

the thickness H of the shell defines the stress resultant tensors of the shell
theory

n = nijAi ⊗Aj =
H∫

0

Ŝ(Θ3)0 detZ dΘ3 =

H∫

0

Sij(Θ3)0µ dΘ3Ai ⊗Aj

m = mijAi ⊗Aj =
H∫

0

Ŝ(Θ3)1 detZ dΘ3 =

H∫

0

Sij(Θ3)1µ dΘ3Ai ⊗Aj(3.17)

s = sijAi ⊗Aj =
H∫

0

Ŝ(Θ3)2 detZ dΘ3 =

H∫

0

Sij(Θ3)2µ dΘ3Ai ⊗Aj

It should be mentioned that it is characteristic to the presented surface-related
shell theory to integrate from zero to H corresponding to the particular po-
sition of the reference surface. The stress resultants are called the membrane
(n), the moment (m) and the bi-moment (s) stress resultant tensor, respecti-
vely.
If the constitutive relation (2.2) is also shifted to the reference surface and

introduced into the formerly stated definitions of stress resultants (3.17)1 to
(3.17)3, the pre-integration over the shell thickness is accomplished and the
decomposition into sub-strain tensors (3.13) is used, the constitutive relation
can be expressed by the components of the stress resultants and of the sub-
strain tensors




nij

mij

sij


 =




Dijkl0 Dijkl1 Dijkl2

Dijkl1 Dijkl2 Dijkl3

Dijkl2 Dijkl3 Dijkl4







αkl

βkl

γkl


 (3.18)

Herein, the matrix elements Dijkl0 to Dijkl4 are defined by the following inte-
grals

DijklK =

H∫

0

(Θ3)KCijklµ dΘ3 with K ∈ {0, 1, 2, 3, 4} (3.19)

For an efficient determination of the integral the determinant of the shell
shifter tensor µ is often set equal to one, and the last row and column are also
often neglected in the constitutive matrix (3.18).
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With the aid of these definitions, it is now possible to determine the value
of the additional strain parameter β̃33 by exploiting thr orthogonality condi-
tion (3.11) ∫

V

S33Ẽ33 dV = 0 (3.20)

Furthermore this yields to

m33 − n33H
2
= 0 (3.21)

The herein enclosed coupling of the membrane (n33) and moment (m33) stress
resultant tensor is characteristic to surface-related shell theories. If the referen-
ce surface is identical with the middle surface, the evaluation of orthogonality
condition (3.20) leads to m33 = 0, which is likewise equivalent to the state-
ment that in the case of pure bending no transverse normal stresses occur.
Consequently, the Poisson thickness locking is avoided with the aid of the
EAS method. As desired no parasitical transverse normal stresses occur in the
case of pure bending. With equation (3.21) the value of the additional strain
parameter β̃33 can finally be determined from

β̃33 =
[D33kl1 ,D

33kl
2 ,D

33kl
3 ]− H2 [D33kl0 ,D33kl1 ,D33kl2 ]

−D33330 H2

4
+D33331 H −D33332




αukl
βukl
γukl


 (3.22)

The value of β̃33 depends on the elements of the constitutive matrix (3.18) and
the displacement compatible sub strains (3.15). Interpreting the additional
strain parameter as a kinematical variable one can speak of a 7-parameter
shell theory. This is valid, because the strain parameter can be determined in
any point of the reference surface. However, it should be mentioned that this
seventh parameter can be eliminated on the element level. This results again
in a 6-parameter shell theory. Hence, an expansion of the element stiffness
matrix and the system stiffness matrix is prevented by the aforementioned
elimination.

4. Contact mechanics

For the investigation of the behavior of the textile reinforced concrete
strengthening of an existing load-carrying structure, the contact mechanics,
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which is described extensively in Laursen and Simo (1993), Wriggers (1995), is
utilized. The aim is to build the tangential stiffness matrix for the normal and
tangential contact with the help of contact segments which are placed on the
outer surface of the shell element. These segments can be easily used with a
body situated in contact that is discretized by volume elements. The difficulty
in the middle surface related shell elements is the estimation of the stiffness
for tangential and normal displacement degrees of freedom determined by the
segments, because they directly effect the stiffness affiliated to the rotational
degrees of freedom of the shell element. Using shell theories with higher order
kinematics, this mapping from surface data on the middle surface is connected
with considerable effort. Furthermore, it is necessary to know the geometry of
the shell element connected with the contact segment. A combination of the
contact segment and the shell element becomes unavoidable. Using surface-
related shell theories, the assignment of the segments can be performed in the
same manner like using volume elements, because only the stiffness correspon-
ding to the three displacements has to be calculated. The coordinate systems
of the contact segment as well as of the shell element are both situated in the
contact area.
The principle of the virtual work can be utilized to derive the tangential

stiffness matrix of the shell element because of the normal and tangential
contact conditions in the case of sticking contact partners. If the tangential
contact stress exceeds a static limit, which can either be dependent on the
contact normal pressure p in the form τmax = µp with µ as the coefficient of
friction or be independent with τmax = τstick, then the shear stress

τ (gN ,gT ) = −
gT
|gT |
[µp(gN ) + k(gT )] (4.1)

is used in the case of slipping. It depends on the gap function gN and the
tangential relative displacements represented by the slip vector gT . The first
part in (4.1) states Coulomb’s friction law. The resulting stiffness k(gT ) can
be regarded as the tangential compound stiffness, e.g. adhesion within the
contact area. This offers the possibility to describe compound problems within
the scope of contact mechanics.

5. Locking phenomena

Among others, the kinematical restriction (3.12) and the interpolation
of the degrees of freedom, which is realized by Lagrangian polynomials, are
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the source of several locking phenomena, cp. Bischoff (1999), Bischoff and
Ramm (1997). In particular, the following phenomena should be named in this
context:

• Poisson thickness locking
• membrane locking
• volume locking
• curvature thickness locking
• shear locking

Hence, arrangements have to be made to reduce or avoid these locking effects,
because all the artificial stiffening effects cause a significant deviation from the
continuum mechanical solution. In this context the appropriate concepts shall
only be stated. For more details the reader is referred to the cited literature.
As described before, in connection with the formulation of the shell theory the
EAS method is used to prevent the Poisson thickness locking. The described
specialization is in close relation to Büchter and Ramm (1992), Büchter et al.
(1994). Furthermore, the EAS method is used to prevent or reduce the mem-
brane and volume locking. An effective concept against the curvature thick-
ness locking is the ANS method having a variational justification, cp. Simo
and Hughes (1986), whereas the discrete shear gap (DSG) method, cp. Blet-
zinger et al. (1998), shows high efficiency to avoid the shear locking. With a
combination of the aforementioned concepts a very efficient finite volume shell
element has been developed. The applicability of the presented finite element
is demonstrated in the following numerical examples.

6. Numerical examples

The first example is a square plate with build-in edges and a central point
load. The geometry and material data are given in Fig. 5. The geometry, the
material data and the value of the central point load are selected in such a way
that the central deflection of the plate is 0.01m, if the Kirchhoff plate theory is
used to calculate the deflection. Making use of the symmetry, only one quarter
of the plate is dicretized with 8-node shell elements. The number of elements
per edge is varied, thus the fineness of the discretization varies as well. Because
this example represents a bending dominated problem, the Poisson thickness
locking and shear locking are expected even in the considered linear analysis.
The results of this example are shown in Fig. 6. The diagram shows that the
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pure displacement element does not reach the exact solution, even if more than
ten elements per edge are used. That is, a too coarse discretization results in
entirely useless results.

Fig. 5. Square plate with build-in edges and a central point load

Fig. 6. Central deflection of the plate as a function of the number of elements per
edge

However, the results can obviously be improved, if the EAS method and
the DSG method come into operation. A discretization with 2 × 2 elements
is fine enough to reach very good results in comparison with the analytical
solution. Even if only one element is used and the relative error of approxima-
tely 10% can be accepted, the element leads to good results in the framework
of application. Additionally performed numerical tests show in this example
that the developed shell element is also insensitive to distorted discretizations.
That is, the element gives reliable results in bending dominated plate problems
even in coarse as well as in distorted discretizations.
For a further numerical test a circular plate with a circular hole as shown

in Fig. 7 is analyzed, which was also examined by Başar and Ding (1990). The
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Fig. 7. Perspective view of a circular plate with a circular hole at the center
according to Başar and Ding (1990)

material data, the geometry and the load are given in Fig. 7. The circular plate
is coarsely discretized by one element in the radial direction and 16 elements in
the circumferential direction. The vertical deflection of the points A and B is
examined. The calculated results are nearly equal to those given in literature,
Büchter (1992), Klinkel (2000).

Fig. 8. Diagram of the vertical deflection of the points A and B

The maximum relative deviation is less than 2%. The vertical deflections
of the points A and B are depicted in Fig. 8 as a function of the load factor λ.
The reference solution is taken from Büchter (1992), and is calculated with a
discretization of 30× 6 4-node shell elements.
Figure 9 shows an unscaled drawing of the deformed configuration of the

circular plate under the maximum load. The gray shading illustrates the ab-
solute value of the displacement.
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Fig. 9. Deformed circular plate under maximum load

The last example should show the application of the contact mechanics.
We choose a square plate, 7.20× 7.20× 0.20m3, with simply supported edges
and a central point load. The plate is made of St. Venant-Kirchhoff material
with Young’s modulus E = 2.5 · 107 kN/m2 and Poisson’s ratio ν = 0.2. The
plate is strengthened by a symmetrically applied textile reinforced concrete ply,
6.30 × 6.30 × 0.02m3, that is pressed against the plate by a contact pressure
of 0.1 kN/m2 to establish the contact.

Fig. 10. Contact area and contact pressure (a) and contact shear stress
distribution (b) F = 3.75kN

For the maximum shear stress the friction coefficient µ0 = µ = 0.15 is as-
sumed, cp. (4.1). Young’s modulus of the strengthening is E = 2.0 ·107 kN/m2
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Fig. 11. Contact area and contact pressure (a) and contact shear stress
distribution (b) F = 10.0kN

and Poisson’s ratio is ν = 0.2. Making use of the symmetry, only one quarter
of the plate is dicretized with 4-node shell elements. In the first step, the cen-
tral point load of F = 3.75 kN was applied, see the results in Fig. 10, and in
the second step to central point load F was 10 kN, see the results in Fig. 11.
The white areas in the contact domain represent delaminated regions of the
strengthening layer. The size of the delaminated regions grows extensively with
an increase in the load F . Only a quadratic region in the plate center and a
strip near the edge stay in contact.

7. Conclusions

The formulation of surface-related shell theories allows an efficient simu-
lation of the compound behavior of textile reinforced concrete layers for the
strengthening of shell structures. Due to the particular position of the refe-
rence surface, the well established concepts against the locking phenomena
are extended and implemented, which leads to a reliable surface-related finite
volume shell element. With the aid of several different nonlinear examples, the
efficiency of the developed shell and contact formulation is demonstrated.
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Powierzchniowe teorie powłok w numerycznej symulacji problemu
kontaktowego

Streszczenie

W pracy omówiono problem powierzchniowej teorii powłok i jej konwersji do me-
tody elementów skończonych w kontekście badań kompozytów i zagadnienia kon-
taktowego. W szczególności zajęto się kompozytami osnową cementową wzmacnianą
materiałem tekstylnym jako komponentem nośnych konstrukcji powłokowych. Uwagę
skoncentrowano na oddziaływaniu, jakie zachodzi pomiędzy strukturą nośną i wzmac-
niającą w takich powłokach. Przedstawiono analizę tego oddziaływania jako zagad-
nienia kontaktowego z włączeniem zjawiska adhezji.
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