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Using the generalized method of moments and a central limit theorem, we
shall describe a large class of thermal dispersion phenomena occurring in
some macrohomogeneous systems. We shall be interested in computing
the macroscale coefficients in terms of the microscale coefficients and
the system geometry. Also, the functional dependence of the effective
coefficients on the velocity and the spatial scale parameters is analyzed.
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1. Introduction

The field of macrotransport processes constitutes a natural extension of
classical Taylor dispersion theory for unidirectional, rectilinear flows (see Tay-
lor, 1953) to a large class of flow and dispersion problems. It is well-known by
now that G.I. Taylor used rather intuitive semi-analytical arguments to prove
the Fickian nature of the mean axial dispersion of a diffusing solute injected
into a viscous fluid flowing through a circular cylindrical tube. He showed that,
asymptotically, in the long-time limit, such a dispersion process is described by
a one-dimensional convective-diffusive equation and the dispersion coefficient
characterizing this axial macrotransport equation governing the cross-sectional
mean solute concentration is

D∗ = D +
a2U

2

48D
(1.1)
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where a is the radius of the tube, U is the mean velocity of flow and D is
the coefficient of molecular diffusion. This new coefficient combines the mi-
croscopically distinct effects of radial molecular diffusion and axial convective
solute flow. Dispersion is caused by the radial inhomogeneity of the Poiseuil-
le velocity field which interacts with the lateral diffusion of solute molecules.
In fact, all macrotransport processes combine such a Brownian (stochastic)
diffusive transport mechanism with an inhomogeneous, convective (determini-
stic) transport mechanism. The stochastic dispersion is assumed to act over
a period of time large enough to allow the sampling of all such velocities by
molecular diffusion across the streamlines of the flow.

Taylor‘s technique, later extended to the case of solute dispersion in turbu-
lent flows, provided the first framework for the generic phenomenon referred to
in the literature as ”Taylor dispersion”. In 1956, Aris (see Aris, 1956) extends
these results for cylinders of noncircular cross-section and develops a rigorous
theory, based on a method of moments scheme. Also, he analyzes the effects
of time-periodic convection on dispersion (see Aris, 1960). In 1971 Horn (see
Horn, 1971) made another important step to put the foundations of the so-
called generalized Taylor dispersion theory. He extended the classical theory
to multidimensional phase spaces. A decisive step was done then by Brenner
(see Brenner, 1980) who developed a paradigmatic dispersion theory for very
general and complex systems. In 1993, recognizing the analogy existing be-
tween the mass transport and other modes of transport phenomena, Brenner
and Edwards extended this theory to non-material transport processes (see
Brenner and Edwards, 1993).

Hence, based upon a rigorous description of microtransport processes oc-
curring in heterogeneous systems, macrotransport theory, alternatively known
in the literature as the generalized Taylor dispersion theory, allows us to descri-
be a large class of material and nonmaterial dispersive phenomena occurring
in macrohomogeneous systems.

Applications of the macrotransport theory are presently recognized in ma-
ny fields of scientific and engineering research. Various other methods have
been developed for obtaining the macroscale behavior and properties of so-
me heterogeneous complex systems. These include homogenization techniques
(see Bensoussan et al., 1978, Sanchez-Palencia, 1980), statistical and volume-
averaging methods (see Koch and Brady, 1985) and probabilistic methods
based on central limit theorems (see Bhattacharya et al., 1989).

In this paper, we shall be especially interested in getting a macrotran-
sport paradigm for a class of thermal transport phenomena occurring in some
complex multidimensional adiabatic systems. We shall deduce simple macro-
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transport equations (and effective coefficients appearing therein) which apply,
for long times, at a coarse-grained level of description of our systems.
Our analysis is based on two alternative methods: the above mentioned

generalized method of moments and a probabilistic method based on a central
limit theorem for Markov processes.
We are also interested in getting the asymptotic behavior of the macrodi-

spersion coefficients as functions of the velocity and the spatial scale parame-
ters which characterize our transport processes.
Specific examples are given in Section 3 to illustrate the computation of

these macrotransport coefficients as functions of the prescribed microscale
data.

2. A macrotransport paradigm for thermal dispersion phenomena
in adiabatic systems

Let us introduce two distinctly different classes of independent coordinate
variables which characterize a generic microtransport process. These will be
designated as global and local variables and denoted by Q and q

Q = [Q1, Q2, ..., Qr ] q = [q1, q2, ..., qs] (2.1)

Together, the vectors (Q,q) define a multidimensional phase space Q∞⊕
q0 within which our transport processes occur. The global subspace Q∞,
representing the domain of the values taken by Q, will be unbounded, while
the subspace q0 (q ∈ q0) will, generally, be bounded. The global coordinate Q
properly corresponds to a long-time scale, while the local variable corresponds
to a short-time scale. They are also called slow and, respectively, fast variables
(see Sanchez-Palencia, 1980).
The generic microtransport equation governing the evolution of the tempe-

rature field T = T (Q,q, t) in continuous adiabatic systems may be represented
as

ρCp
∂T

∂t
+∇Q · J +∇q · j = 0 (2.2)

where the constitutive equations for the global and the local internal energy
flux-density vectors are

J = ρ(q)Cp(q)U(q)T −KT (q) · ∇Q(T )
(2.3)

j = ρ(q)Cp(q)u(q)T − kT (q) · ∇q(T )
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Here, (KT , kT ) denote the global and the local-space thermal conductivities
and (U ,u) the comparable velocity vectors. Here, ρ and Cp are positive
functions and KT and kT are positive definite tensors.
This system of equations is subjected to the following conditions

n · j = 0 n ·KT · ∇qT = 0 on ∂q0

|Q|m{T,J} → {0,0} as |Q| → ∞
∀(q, t ­ 0)
m = 0, 1, ...

(2.4)

T (Q,q, 0) = T0(Q,q)

with the right-hand side a prescribed function.
Note that the energy dissipation and kinetic energy contribution are ne-

glected in the microtransport equation.
We shall limit ourselves to the class of problems for which n · u = 0 on

∂q0 and u · ∇qCp = 0. Also, it will be supposed that the thermal properties
are everywhere nonnegative definite.
It proves useful to reformulate linear microscale problem (2.2) in

terms of a Green’s function. In this context, let us define a quantity
P = P (Q,q, t |Q′,q′, t′) such that ρCpP to be interpreted as the conditio-
nal probability density of having the temperature T (Q,q, t) at the position
(Q,q) at the moment t if we had the temperature T (Q′,q′, t′) at (Q′,q′) at
the earlier moment t′. P will generally depend only on the differences Q−Q′

and t− t′ and so, choosing Q′ = 0 and t′ = 0, we can consider, without loss
of generality, that P = P (Q,q, t |q′).
Since we are modeling the transport of conserved entities, we have

∫

Q∞

∫

q0

ρCpP dqdQ = 1 t ­ 0

and
P = 0 t < 0

Also, the relationship between the temperature field T and the Green function
P is

T (Q,q, t) =

∫

Q′
∞

∫

q′
0

ρ(q′)Cp(q
′)P (Q,q, t |q′)T (Q′,q′, 0) dq′dQ′ (2.5)

and the microtransport equation of energy dispersion in continuous systems
may be represented as

ρCp
∂P

∂t
+∇Q · JP +∇q · jP = δ(Q)δ(q − q

′)δ(t)
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where

JP = ρ(q)Cp(q)U(q)P −KT (q) · ∇Q(P )

jP = ρ(q)Cp(q)u(q)P − kT (q) · ∇q(P )

Defining the macroscale Green’s function

P (Q, t |q′) =
1

ρCp
∗

∫

q0

ρ(q)Cp(q)P (Q,q, t |q
′) dq (2.6)

this will become asymptotically independent of q′

P (Q, t |q′) ∼= P (Q, t)

and, hence, following a moment analysis (see Brenner and Edwards, 1993;
Timofte, 1996), we are led to the following macrotransport equation

ρCp
∗
(∂P

∂t
+U

∗
· ∇QP

)

= kT
∗
: ∇Q∇QP + δ(Q)δ(t) (2.7)

subjected to the conditions

P = 0 t < 0

P → 0 when |Q| → ∞
(2.8)

Here, the macroscale coefficients ρCp
∗
and U

∗
are given by

ρCp
∗
=
1

τ0

∫

q0

ρCp dq (2.9)

where

τ0 =

∫

q0

dq (2.10)

and by

U
∗
=

∫

q0

ρCpP
∞

0 U dq (2.11)

The effective thermal conductivity dyadic has the expression:

kT
∗
= k
M
+ k
C

(2.12)
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where

k
M
=
1

τ0
sim

∫

q0

KT dq (2.13)

is the ”molecular” contribution and

k
C
= sim

∫

q0

[(

P∞0 −
1

τ0ρCp
∗

)

KT + ρCpP
∞

0 B(U −U
∗
)
]

dq (2.14)

is the convective contribution.

These phenomenological coefficients are to be obtained after solving the
associated local problems for P∞0 (q) and B(q)

∇q · j
∞

0 = 0

j∞0 = ρCpuP
∞

0 − kT · ∇qP
∞

0
(2.15)

n ·KT · ∇qP
∞

0 = 0 on ∂q0
∫

q0

ρCpP
∞

0 dq = 1

and

j∞0 · ∇qB −∇q · (P
∞

0 kT · ∇qB) = ρCpP
∞

0 (U −U
∗
)

(2.16)

ρCpP
∞

0 n · kT · ∇qB = 0 on ∂q0

More, we shall require that P∞0 is nonnegative for all q ∈ q0. Also, P
∞
0

and B must be single-valued for all q ∈ q0.

So, we can express the macrotransport coefficients ρCp
∗
, U

∗
and kT

∗

in terms of the prescribed microscale data and the system geometry. It is
worthwhile to notice that, in fact, ρCp, which is inhomogeneous in q, acts like
a biasing potential. This causes a redistribution of the internal energy in the
local space, which is finally reflected in the magnitude of the macrotransport
coefficients U

∗
and kT

∗
.

The coarse-grained macroscale temperature field

T (Q, t) =
1

τ0

∫

Q′
∞

∫

q
′

0

ρ(q′)Cp(q
′)P (Q−Q′, t |q′)T (Q′,q′, 0) dq′dQ′ (2.17)
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will satisfy the macrotransport equation

ρCp
∗
(∂T

∂t
+U

∗
· ∇QT

)

= kT
∗
: ∇Q∇QT (2.18)

subjected to appropriate initial and boundary conditions (see Brenner and
Edwards, 1993; Timofte, 1996).
A similar analysis can be done for the problem of thermal dispersion in

discontinuous adiabatic systems.
The geometrical structure of the discontinuous medium is idealized as being

spatially periodic (porous media, composite materials, laminated media). The
periodic medium is represented as a spatially periodic array in R

3, composed
of topologically indistinguishable unit cells of periodicity, having the same
shape, orientation, volume and ”content”.
If we denote by τ0 the volume of such an elementary cell and by τp the

volume of the solid part, we have

τp = τ0 − τf

where τf is the interstitial fluid volume within such a cell.
Arbitrarily designating one of the elementary cells as being the zeroth cell,

it is convenient to measure the position vector R of any point in space relative
to the centroid of this cell. Denoting by Rn the position vector of the centroid
of the n-th cell relative to the centroid of the zeroth cell and by r ∈ τ0{n}
the local position vector for any point within the n-th cell relative to an origin
at its center, we have

R = Rn + r (2.19)

If we suppose that at the particle-fluid interface Sp we have a local equ-
ilibrium described by a linear partitioning relationship, using similar nota-
tions as in the continuous case and introducing microscale Green’s function
P = P (Rn, r, t | r

′), this will obey the following system of cellular-level equ-
ations (see Brenner and Edwards, 1993; Timofte, 1996)

ρ(r)Cp(r)
∂P

∂t
+∇ · J = δnn′δ(r − r

′)δ(t)

J = ρ(r)Cp(r)U(r)P −KT (r) · ∇P
(2.20)

ν ·∆SpJ = 0 on Sp

|Rn −Rn′ |
mP → 0

|Rn −Rn′ |
mJ → 0

}

as

{

{n− n′} → ∞
m = 0, 1, ...
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In (2.20)3, for an arbitrary tensor field f , ∆Sp defines the ”jump” of f ,
across the discontinuous phase surface Sp and ν is a unit vector which is
normal to this surface.
The thermophysical properties ρ, Cp, KT and the local fluid velocity are

regarded as being spatially periodic.
Following a moment-matching scheme and considering macroscale Green’s

function P

P (Rn, t | r
′) =

1

ρCp
∗

∫

τ0

ρ(r)Cp(r)P (Rn, r, t | r
′) d3r ∼= P (R, t) (2.21)

we get the following macrotransport equation

ρCp
∗
(∂P

∂t
+U

∗
· ∇P

)

= kT
∗
: ∇∇P + δ(R)δ(t) (2.22)

with
P → 0 as |R| → ∞ (2.23)

Here, R is the macroscale (Darcy) position vector of a lattice point relative
to an origin O arbitrarily chosen in the unit periodic cell.
The macroscale coefficients ρCp

∗
, U

∗
and KT

∗
are given by the following

formulas

ρCp
∗
=
1

τ0

∫

τ0

ρ(r)Cp(r) d
3r

U
∗
=

∫

τ0

J∞0 (r) d
3r (2.24)

α∗ =
KT
∗

ρCp
∗ =

∫

τ0

P∞0 (r)(∇B)
⊤(r) · simKT (r) · ∇B(r) d

3r

The fields P∞0 (r) and B(r) satisfy, for r ∈ τ 0, the following boundary-
value problems

∇ · J∞0 = 0

J∞0 = ρCpUP
∞

0 −KT · ∇P
∞

0

ν ·∆SpJ
∞

0 = 0 ∆SpP
∞

0 = 0 on Sp (2.25)

‖P∞0 ‖ = 0 ‖∇P∞0 ‖ = 0 on ∂τ0
∫

τ0

ρ(r)Cp(r)P
∞

0 (r) d
3r = 1
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and

∇ · (P∞0 KT · ∇B)− J
∞

0 · ∇B = ρCpP
∞

0 U
∗

B is continuous across Sp
(2.26)

ν ·∆Sp(KT · ∇B) = 0 on Sp

‖B‖ = −‖r‖ ‖∇B‖ = 0 on ∂τ0

Here, for any tensor-valued field F, ‖F‖ defines the ”jump” in the value of F
between the equivalent points lying on opposite pairs of the cell faces.

In this manner, we can obtain a macrotransport paradigm for a class of
thermal dispersion phenomena occurring in periodic media.

Moreover, for this case, introducing two positive scalars U0 and a, we can
express the fluid velocity U in the form

U(r) = U0V (r/a) (2.27)

U0 and a will be interpreted as being the velocity and the spatial scale para-
meters which characterize our transport processes.

We are interested in getting the functional dependence of the asymptotic
dispersion coefficients α∗ in terms of these two parameters.

Using a central limit theorem for Markov processes, it can be proved (see
Timofte, 1999; Bhattacharya et al., 1989) that for a special case of thermal
dispersion phenomena in periodic media, the macroscale coefficients α∗ij de-
pend only on the product aU0, the result being in accordance with all the
experimental studies that have been done. In fact

α∗(a,U0) = α
∗(U0, a) = α

∗(aU0, 1) (2.28)

This interchangeability of the velocity and spatial scale parameters in the
large-scale dispersion matrix enables us to consider, if needed, that the spatial
scale parameter a is held fixed at a = 1, while the velocity parameter U0 is
allowed to vary.

A more precise analysis of the asymptotic behavior of the dispersion coeffi-
cients α∗ij can be done if the thermophysical properties ρ, Cp, KT are supposed
to be constant and if we make more restrictive assumptions about the velocity
field (see Timofte, 1999).
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3. Applications

As a first example, we shall consider the problem of internal energy di-
spersion in an incompressible viscous fluid moving under laminar flow condi-
tions between two parallel, insulated porous plates separated by a distance h.
The upper plate moves at a velocity U 0 parallel to it in the x-direction. Si-
multaneously, there exists a uniform flow across the channel (in the negative
y-direction) at a constant velocity v0. In this case, the fluid velocity field U
is given by

U =
U0y

h
i− v0j (3.1)

At t = 0, an amount of heat is instantaneously added into our system over
some region of the infinite domain between the plates in the form of some
initial temperature distribution T0(x).
Assuming that the thermophysical properties ρ, Cp and KT are constant,

the evolution of the temperature T (t,x) will be governed by the following
equation

∂T

∂t
+
U0y

h

∂T

∂x
− v0
∂T

∂y
= α∆T (3.2)

with the initial condition T (0,x) = T0(x) and with α = KT /(ρCp).
Introducing the dimensionless parameter

β =
v0h

α
(3.3)

and considering the incomplete gamma function

γ(n+ 1, β) =

β
∫

0

ξn exp(−ξ) dξ n = 0, 1, 2, ... (3.4)

the macroscale thermal velocity U is given by

U
∗
= U

∗
i (3.5)

where

U
∗
=
U0γ(2, β)

βγ(1, β)
(3.6)

If we consider the mean axial fluid velocity

V =
U0
2

(3.7)
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we get
U
∗

V
=
2γ(2, β)

βγ(1, β)
(3.8)

So, the thermal velocity U
∗
is different from the mean axial fluid velocity V .

As the cross flow velocity v0 → 0, corresponding to β → 0, it is easy to
see that

lim
β→0

U
∗

V
= 1

If v0 →∞, then β →∞ and

lim
β→∞

U
∗

V
= 0

Using the general formulas given by the above method of moments, we see
that the only component of the effective thermal dispersivity dyadic α∗ which
is different from zero is

α∗11 = α+ k(β)
h2V

2

α
(3.9)

with

k(β) =
4

β4

[γ(2, β)

γ(1, β)

]2[

2
γ(2, β)

γ(1, β)
+ 3
γ(3, β)

γ(2, β)

]

(3.10)

We notice that if v0 = 0 we get a formula which is similar to classical formula
(1.1) for the case of Taylor’s solute dispersion.
As a second example, let us consider the problem of internal energy disper-

sion in a layered periodic porous medium, saturated with a viscous incompres-
sible fluid. We shall choose as a periodic cell the parallelepiped τ0 having the
sides lx, ly and lz. Let us suppose that the thermophysical properties ρ, Cp,
KT are constant and the velocity field U is periodic, with the period lz

U =
[

U0
(

1 + sin
2πz

lz

)

, U0 sin
2πz

lz
, U0ω

]

(3.11)

Here, U0 and ω are given real parameters (see Timofte, 1996).
Initially, the medium has an uniform temperature T0 (we can choose

T0 = 0). At t = 0, an amount of heat Q is instantaneously introduced in-
to the system as the initial distribution of temperature T (0,x) = T0(x).
With α = KT /(ρCp), the evolution of the temperature T (t,x) will be

governed by the following equation

∂T

∂t
= α∆T − U0

(

1 + sin
2πz

lz

)∂T

∂x
− U0 sin

2πz

lz

∂T

∂y
− U0ω

∂T

∂z
(3.12)
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subjected to the initial condition T (0,x) = T0(x).

Obviously

U
∗
= (U0, 0, U0ω) (3.13)

Following the general scheme offered by the above method of moments, we
can compute the macroscale coefficients α∗ij

α∗11 = α
∗

22 = α+
αl2zU

2
0

2[(2πα)2 + (U0lzω)2]

α∗33 = α
(3.14)

α∗12 = α
∗

21 =
αl2zU

2
0

2[(2πα)2 + (U0lzω)2]

α∗13 = α
∗

31 = α
∗

23 = α
∗

32 = 0

It is simple to see that for small values of lzU0, α
∗
ij depend quadratically on

lzU0. However, as lzU0 →∞, each α
∗
ij becomes asymptotically constant.

As the final example, we shall consider the problem of internal energy
dispersion in a periodic porous medium, saturated with an incompressible
viscous fluid having the velocity field U(x) = U0V (x) given by

V = [0, 2 + sin 2πx, 2 + cos 2πx cos 2πy] (3.15)

We assume that the spatial scale parameter a is fixed at a = 1 and the
phenomenological coefficients ρ, , Cp and KT are strictly positive constants.
Obviously

U
∗
= [0, 2U0, 2U0] (3.16)

It is easy to see that in this case

α∗11 = α
(3.17)

α∗12 = α
∗

21 = α
∗

13 = α
∗

31 = α
∗

23 = α
∗

32 = 0

For this example, closed-form solutions of the macrotransport coefficients α∗22
and α∗33 cannot be obtained. However, the analytical theory developed by
Timofte (1999) and Bhattacharya et al. (1989) shows that, as U0 → ∞,
α∗22 = α+O(U

2
0 ) and α

∗
33 = α+O(1).

This example reflects the influence of the geometry of the flow curves on
the asymptotic behavior of the macrotransport coefficients.
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O asymptotycznej naturze procesu termicznej dyspersji Taylora
w ośrodkach periodycznych

Streszczenie

W pracy dokonano przeglądu szerokiej klasy zjawisk związanych z termiczną dys-
persją w wybranych układach jednorodnych w skali makro. W opisie wykorzystano
uogólnioną metodę momentów i twierdzenie o granicy centralnej. Jako szczególnie
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interesujący przedstawiono problem obliczania współczynników makroskali w funkcji
współczynników mikroskali i geometrii badanego układu. Ponadto przeanalizowano
funkcjonalną zależność współczynników efektywnych od pola prędkości i przestrzen-
nych parametrów skali.
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