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The aim of this research is to investigate experimentally as well as nume-
rically active damping effects of cantilever beam transverse vibrations. The
control system under consideration consists of collocated piezoceramic sensor
and actuator patches, which are coupled with velocity feedback. Experimental
results of free and forced vibrations confirmed the effectiveness of the control
circuit with the analog derivative controller for suppression of low-frequency
beam motion. The numerical simulation is performed to verify the theoretical
models of the tested mechanical system. The analysis is based on the simpli-
fied pure bending interaction between the perfectly bonded piezoactuator and
the beam, which has a constant equivalent stiffness or is locally stiffened by
the piezoceramic patches. The applied dynamic coupling model includes the
effects of the actuator tangential inertia forces and the bonding layer with a
finite shearing stiffness. The results of the simulation are in a good agreement
with the experiment taking in the simplified model of the system. Conside-
ring the bonding layer and the actuator longitudinal movement decreases the
active damping effectiveness even for a relatively stiff glue layer.

Key words: transverse vibrations, active damping, piezoelectric elements,
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1. Introduction

Piezoelectric materials such as lead zirconate titanate (PZT) ceramics and
poly vinylidene fluoride (PVDF) polymers become popular in the use for fle-
xible structure controlling. Applications of distributed piezoelectric sensors
and actuators for active damping of beams and thin plates are investigated
theoretically and verified experimentally by numerous researchers (cf Bailey
and Hubbard, 1985; Clarc et al., 1991; Kapadia and Kawiecki, 1997; Chou
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and Ho, 1998; among others). The applicable concepts of transverse motion
control of a beam structure under moving inertial loads confirmed by experi-
ments are reported by Bogacz and Popp (1997) and Frischgesell et al. (1999).
An analysis of a system with bonded or embedded piezoelements is commonly
based on a pure bending interaction of a perfectly bonded massless actuator
(static approach) for both one dimensional and two dimensional piezoelectric
effects (cf Bailey and Hubbard, 1985; Clarc et al., 1991; Dimitriadis et al.,
1991; Tylikowski, 2000; Pietrzakowski, 2001a). The dynamic coupling model
including the longitudinal motion of the actuator and a shear bonding layer
is formulated by Tylikowski (1993) and developed and applied for the beam
vibration control by Pietrzakowski (1997, 2001b) and Tylikowski (2001). The
comparison of different models of the actuator/substructure interaction pre-
sented by Pietrzakowski (2000) shows that the static approximation is quite
good for sufficiently thin piezoelectric patches, which are bonded to the main
structure by stiff glue layers.

The presented study deals with the experimental investigation and theore-
tical analysis of a cantilever beam with the control system designed for active
damping, which is composed of collocated piezoceramic sensors and actuators
bonded to the beam surface. The basic mechanical and electrical parameters
of the tested system have been identified. The experiments show that the be-
am transverse vibrations are reduced significantly by using the analog control
circuit with velocity feedback. The experimental results of the active control
of free and forced vibrations are compared with results of numerical simula-
tions, which are performed using the static as well as dynamic model of the
interaction between the piezoelectric actuator and the beam. In the case of
steady-state vibrations the effects of the applied actuator/beam coupling mo-
dels are demonstrated by means of the resonant curves corresponding to the
first vibration mode.

2. Experimental setup

Experiments on active damping of vibration using a piezoelectric control
system were conducted on a cantilever beam. The geometry of the tested beam
is shown in Fig. 1.

The beam is constructed of a stainless steel strip of the length [ = 270 mm,
width b = 25mm and thickness ¢, = 1 mm, clamped at one end and free at
the other. The clamped boundary conditions of the actual beam are confirmed
measuring displacements at the point 2mm far from the fastened edge. The
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Fig. 1. Scheme of the tested beam

results are found less than 0.1% that of the tip-beam deflection. The sensor and
actuator formed by a pair of piezoceramic patches are bonded on the opposite
sides 46 mm from the root of the beam. A pair of ”QickPack” piezoceramic
transducers is used, QP10N type (50.8 x 25.4 x 0.381 mm) as the actuator and
QP15N type (50.8 x 25.4 x 0.254mm) as the sensor. They are attached to
the beam surface using a two-part epoxy resin recommended for ”QickPack”
products.

The experimental investigation concerns suppression of the low frequency
vibrations referred to the first-mode. The fundamental frequency of the beam
specimen with the piezoceramic patches was measured to be w; = 73.81/s.

The control loop is composed using analog techniques. The signal from the
piezoelectric sensor is fed to the pre-amplifier and then transformed by the
derivative (D) controller due to the velocity feedback control strategy. Diffe-
rentiation of the sensor signal introduces a time delay in the control system,
which can be significant for higher natural frequencies. Therefore, filtering is
necessary to remove high-frequency components of the control signal to avoid
instability of the beam vibrations. The filter is installed between the pre-
amplifier and the controller and is designed to eliminate any electrical signal
with frequencies above 200 1/s. The signal from the controller is finally ampli-
fied via the power amplifier and is then fed to the actuator to generate control
action to suppress vibrations of the beam.
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For the detection of the beam motion, a strain gauge system mounted
near the clamped end is applied. The signal from the gauges working in a half
bridge is sent to the measure amplifier (Spider 8 from HBM) with an analogue
to digital (AD) converter installed and then recorded on a hard disk in a PC.
The "Catman” data acquisition system is used for analyzing the data and
visualizing the results.

The experimental setup for active control of the cantilever beam is shown
in Fig. 2.
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Vs (D)
Function
Generator

SEnsor

exciter transducer
A

™

“._actuator “\_beam
y
CATMAN
Measure Amplifier
SPIDER B PC Printer

Fig. 2. Experimental setup

Experiments were performed for a harmonic excitation at a natural frequ-
ency and free vibrations of the beam; first without and then with the active
control system. The transverse motion of the near-tip beam point at 2mm
from the free end is detected.

The steady-state vibrations of the beam are induced by the exciter transdu-
cer MM 0002 type (B&K) supplied by the function generator G 5010 (Ortel).
For the distance between the transducer head and the beam surface recommen-
ded by the producer, the vibration amplitude depends mainly on the voltage
applied to the exciter.

The time domain response of the beam excited at the first-mode natural
frequency (w; = 73.81/s) without and with the control is presented in Fig. 3.
This figure shows the histories of transient and steady-state vibrations after
the control system was switched on with the gain x = 10 (a) and the ga-
in K = 25 (b), respectively. The control gain & is defined as a ratio of the
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magnitude of the output voltage V, applied to the actuator and the input
voltage V; generated by the sensor, x = V,/V,. The improvement in reducing
the amplitude of steady-state vibrations, which is measured as a ratio of the
amplitudes without and with active damping, changes from 3.7 to 12.8 for the
applied control gain values (k = 10 and 25).
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Fig. 3. Vibrations of the beam excited at the fundamental frequency without and
with control (a) with gain x = 10, (b) with gain x = 25

To initiate free vibrations, the tip of the beam is deflected by about 3 mm
and then released. The transient vibrations of the beam point represented
the uncontrolled system and the actively damped beam with various control
gains k are shown in Fig. 4. It can be clearly noticed that the damping ratio
increases significantly with increase in the control gain parameter. But the
control system effectiveness is limited because of the high vibration modes,
which are generated for sufliciently great values of the gain.

The passive suppression observed for the uncontrolled beam response (see
Fig. 4, no control) is a combined effect due to material damping, air damping
and damping created by the measuring and control equipment. The level of
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Fig. 4. Free vibrations of the beam without and with active damping. Effects of
passive damping and variations in the control gain

the high frequency components is low even for the controlled vibrations, ma-
inly due to the control signal filtering (low-pass filter installed in the control
circuit). Therefore, the estimation of the damping coefficient, both for passive
and active cases, can be based on the classical logarithmic decrement concept.
The logarithmic decrement ¢ is expressed by the well-known relation

1. A,
= -1
g i . An—i—i

(2.1)

where A,, A,+; — free vibration amplitudes ¢ periods apart.

Results of the logarithmic decrement calculations for passively damped
transient vibrations are presented in Fig. 5.

The doted line is obtained for amplitudes recorded after one period (i = 1).
The differences between the values of the logarithmic decrement are caused
by measurement errors and also by the influence of the second and higher
modes on the beam response. The solid line refers to the averaged logarithmic
decrement computed for a sequence of peaks 5 periods apart (i = 5). Taking
into account the locally averaged values and neglecting a slight tendency of
their decreasing for lower amplitudes, the energy dissipation of the tested
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Fig. 5. Evaluation of passive damping

beam can be approximated by the equivalent logarithmic decrement of the
value ¢ = 0.0435.

The experimental results both for the excited and the free vibrations show
that the active damping effect is evident. As expected, the intensity of reduc-
tion of the free vibration amplitude increases significantly for greater control
gain parameters. A disadvantage of the used analog control system is an exci-
tation of high vibration components observed for extremely great gain values.

3. Theoretical relations for the actively damped beam

3.1. Model of the actuator/beam interaction based on the idea of static
relations

The dynamic analysis of the considered system can be simplified by impo-
sing a pure bending model of the coupling between the beam and the perfectly
bonded, massless piezoelement. Due to this model the actuator action caused
by the applied voltage is reduced to bending moments at both ends of the pie-
zoceramic patch. The transverse motion w(z,t) of the controlled viscoelastic
beam with a uniform bending stiffness and mass density, which is excited by
the point force F'(t) can be described as follows

*w oPw

3210 82Ma($: t)
524 Fazia

) + pbbtba—tz— = F(t)d(x —xy) — 52

Ebe( (3.1)

where
Ey,pp — beam Young’s modulus and mass density, respectively
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i - viscous internal damping parameter of the Voigt-Kelvin model
Jp —  cross-sectional moment of inertia

b,t, — beam width and thickness, respectively

xf  — co-ordinate of the point force

d(x) - Dirac function.

The bending moment M,(z,t) is distributed along the actuator and can
be calculated taking into account the constitutive equation of the piezoelectric
material and the moment equilibrium of the resultant forces acting in the cross-
section of the beam (cf Bailey and Hubbard, 1985; Pietrzakowski, 2000; among
others)

M, (z,t) = Coby(z)Va(t) (3.2)
where
Vo(t) — voltage applied to the actuator
bp(z) — piezoelectric patch width described using the Heaviside func-
tion b,(z) = b[H(z — z1) — H(z — z2)|
C, — actuator constant given by the relation
S EoEp(th + tat
Ca — 314a b( b + a b) (3.3)
2(Epty + Egto + Ests)
and
31 — piezoelectric constant of the actuator
E.,Es — Young’s moduli of the actuator and the sensor, respectively
ta,ts — thicknesses of the actuator and the sensor, respectively.

The input voltage V,(t) is generated by the piezoceramic sensor as a result
of its deformation and then transformed via the controller due to the applied
control function. Assuming the sensor strains to be the same as those of the
beam surface, and after integrating the charge over the sensor electrode, the
voltage produced by the sensor can be given as

l
0w
Vi(t) = —C, f Saby(@) do (3.4)
0
where C; is the sensor constant
lp+1
Cs = 311*15:'—25E (3.5)
where
31 — Dpilezoelectric constant of the sensor
C - total sensor capacitance, C = Asess/ts
A; — electrode area of the sensor

ess — permittivity of the sensor material.



EXPERIMENT ON A CANTILEVER BEAM CONTROL... 675

Assuming velocity feedback and after substituting Eq. (3.4), the control
bending moment, Eq. (3.2), can be rewritten as follows

!
© QPw

Ma(l‘,t) — deaCpr(:z:) mbp
0

(z) dx (3.6)

where kg is the velocity gain factor of the controller.

The response of the actively damped beam subjected to a harmonic exci-
tation can be expressed in terms of a transfer function. The block diagram
with the velocity feedback is shown in Fig. 6.

F(t w (A',f) W(X,f)
—&-)—' G“‘f f =
W, (x,t)
VLt Vi (t
PR RAC] pr A gy
Actuator Controller Sensor

Fig. 6. Block diagram of the system

The steady-state solution to Eq. (3.1) can be written using the modal
superposition

w(w,t) =Y CoWa(z)exp(iwt) (3.7)
n=1
where
Cn — amplitude coefficients
w ~ frequency of the excitation
Wy,(z) - modal shape functions.

The modal functions are determined by the boundary conditions and for
the cantilever beam of the length [ having one end fixed and the other free
are expressed in the well-known form

Wh(z) = (sink,l + sinhkyl)(cosh kpz — cos kpz) — 35)
3.8

— (cos kpl + cosh k,l)(sinh ky,z — sin k,z)

where k, are the roots of the frequency equation cos k,lcosh k,l = —1 with
the values of k,l = 1.875, 4.694, 7.855,..., 0.5(2n — 1)m.
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The transfer function G, s relating the beam deflection to the loading force
is given by the formula

w(z,w) 1 o~ Wulzy)Wa(z)
Gz, w) = - : 3.9
wy(7,w) F(w) ppbty n;l Y2 (w2 — w? + ijpuwiw) (39)
where wy, is the nth natural frequency
EyJy
= k2, == 3.10

and z
2= [ W) da
0

The transfer function of the output beam deflection to the input actuator
voltage has the form

“ w(z,w) Co & ToWh(z)
— fu— . ]_
Conle) =TT = bty 22 AR -2 i) O
where T}, is the actuator shape factor
l
d?b,(z) dWhp,(z) AW, (z)

= =b - 12

Tn b/ d$2 Wn(m) dz ( dx T2 dx Il) (3 )

The output voltage of the sensor caused by the beam deflection is given by

the relation .
V's(w) . Gv f (Ld)

Gf}w(x’w) - w(m,W) B wa(:l"’w)

(3.13)

where G f describes the response of the sensor voltage to the input external
force and has the form

. _ Viw)  Cs & SaWha(zy)
vf (W) = F(w) — ppbty ; Y2 (w2 — w? + ipwiw)

(3.14)

where S, is the sensor shape factor

l

Wi (z
Sp = [ %—)-bp(x) dx (3.15)
0
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Considering the velocity feedback, the controller transforms the input voltage
signal according to the transfer function

Ga(w) = ikqw (3.16)

where ky is the derivative gain factor.
The closed-loop transfer function of the controlled beam is given by the
well-known equation

wa
G, = A7
1+ G, (3.17)
where (, is the open-loop transfer function defined as the following product
G, = G, GaGe (3.18)

Free vibrations of the beam can be analysed using the impulse transfer
function. The time-response of the system to the impact F(t) = §(¢) is defined
as the inverse Fourier transform of the transfer function G.(z,w)

he(z, t)=% [ G, ) exp(icot) duw (3.19)

The model of the system based on the static coupling concept can be
modified by dividing the beam into segments due to its geometry. In this case
the activated section is treated as a laminated beam composed of mechanically
isotropic layers. Hence, the bending stiffness FEjJ, can be replaced by the
equivalent stiffness E.J defined as follows

3
EJ =Y EpJx (3.20)
k=1
where
Er. - Young’s modulus of the kth layer
Jr = cross-sectional moment of inertia of the kth layer relative to

the midplane.

The governing equations for the beam sections can be written in the form:
— for the activated sections

— 0% dPw . Q%w
EJ(8I4 +}.L8$48t) +pbfba"§— =0 (321)
— for the classical beam sections
L0t Pw 9w
Byl (g + gz ) + oty =0 (3.22)
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where p denotes the equivalent density of the activated section

oty + pp(ta + ts)
p

ﬁ:

with p, being the density of the piezoelectric elements.

The boundary conditions corresponding to the clamped-free ends and the
continuity conditions between particular sections of the beam can be written
as the following system of equations

ow 0%w Bw
W(O,t):%$=0- -555$=5__6;§-3::Z_0
war, ) =ueh)  wen)=w@ht) et =w@)
v _ow ou _ow ou| _w
Oz lz; — Oz la} Oxlzy — Oz lzt Oxlz; — Oxlaf

M(z7,t) = M(z},0)  M(a7,t) = M(at,t)  M(ay,t) = M(z3,1)

T(z7,t) = T(x},t) T(zy,t) = T(xf,t) T(z3,t) = T(z3,1)
(3.23)
It should be noticed that the continuity of the bending moment between the
activated and classical beam sections (z = x; and z3) yields

0w EJ 0%*w M,
922 lo; = EJ 822 lat | EJ
(3.24)
EJ d*w M, O%w
ﬁ@ T, * -ETj B @ :ci,"

The continuity of the transverse force in the cross-section = = z, where the
point force F'(t) is applied, is given by the relation

+ L
zf  EpJy

_ Bw
zy 923

o
oz3

(3.25)

The governing equations, the boundary and continuity conditions state the
boundary value problem.

3.2. Model of the system based on the dynamic concept of the actu-
ator/beam interaction

The advanced model of the system is formulated on the consideration of
an elastic bonding layer between the actuator and the beam. Assuming the
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actuator extension with inertia forces and the one-dimensional shearing effect
in the bonding interlayer the dynamic relations are obtained for particular
sections of the beam (cf Tylikowski, 1993; Pietrzakowski, 1997, 2001b).

The motion of the activated section is described by two coupled equations
expressed in the beam transverse displacement w(z,t) and the pure longitu-
dinal displacement wu,(z,t) of the actuator

Itw Pw

Pw kbt O ty Ow
EyJy (22X bty _ fgdt O BOWY
o (Gt + Hagiar) * PP g — 5 g (%t 5 95) 0(3 2)
0%u, 0%u, t, Ow
Eaia"b—m? - ppta—a"t—é— - !{g(ua + -23-55) =10

where k4 is the shearing factor defined as the ratio of the shear modulus and
thickness of the glue interlayer, kg = G/t,.

The motion of other beam sections is given by the Bernoulli-Euler equation
for viscoelastic beam, Eq. (3.22).

The equations of motion have to satisfy the above mentioned boundary
conditions of the cantilever beam at z = 0 and x = [, continuity of the beam
deflection, slope, curvature and transverse force at the borders of the sections,
and also the free stress condition for the ends of the actuator. The continuity
of the transverse force at the actuator border co-ordinates z; and zy should
be obtained taking into account the shear stresses transmitted through the
bonding layer. For example, the above relation at z; can be expressed by the

equation
Bw Bw

K,gbtb
ool = Blvggalay

ot T(u“ - ub)|xf (3.27)

where uy is the beam surface longitudinal displacement

ty, Ow
Up = ———
b 2 Ox
The free stress condition at the actuator borders is based on the stress-strain

relation g, = E,(e, — A) and has the form

= A j=1,2 (3.28)

where the actuator strain A is given by the strain-voltage relation characteri-
stic for the piezoelectric material

117
A= %Va (3.29)
a
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The voltage V, supplying the actuator is proportional to the time derivative
of the voltage generated by the sensor, according to the feedback rule.

Assuming the harmonic loading force, F'(t) = Fpexp(iwt), the steady-state
solutions to the dynamic equations can be written as

w(z,t) = W(z) exp(iwt)
(3.30)

uq(z,t) = Uy(z) exp(iwt)

The displacement distributions W (z) within the beam sections and U,(z)
along the actuator are obtained by solving the boundary value problem formu-
lated by the governing equations and the boundary conditions. These spatial
functions determined for every frequency w enable calculation of the frequen-
cy characteristics of the transverse displacements of the beam controlled by
the piezoelectric system.

4. Results of simulation

The numerical simulation was performed for a model of the system whose
geometry is described in Section 2. It is assumed that the Young modulus of
the stainless steel beam is Fj, = 2.05-10'" N/m?. The material viscous damping
(Voigt-Kelvin model) is calculated for free vibrations of the tested beam due
to the relation p = §/(7w;). Substituting the fundamental frequency w; =
73.81/s and the equivalent logarithmic decrement ¢ = 0.0435, the damping
parameter is estimated to be = 1.88-107%s.

Applying the simple static coupling model with the constant stiffness and
mass density along the beam (Section 3.1), the Young modulus is derived to be
Ey = 2.19-10" N/m? in order to match the theoretical first natural frequency
of the beam with the measured one. The increase of the beam stiffness is
justified because of the local stiffening effect of the piezoceramic patches.

The electro-mechanical parameters of the piezoceramic transducers are de-
termined basing on the technical data given in ”QickPack piezoelectric actu-
ators” (1997). The equivalent Young modulus of the actuator and sensor pat-
ches are calculated applying the mixture rule for the piezoceramic PZT mate-
rial with E, = 6.3-10'° N/m? and the resin covering with E,, = 2.8-10° N/m?.
The piezoelectric coefficient ds; refers to the linear estimation of the strain-
voltage characteristic of the piezoceramic devices for voltage amplitudes less
than 60 V. The electro-mechanical parameters used in calculations are listed
in Table 1.
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Table 1. Material parameters of transducers

Material Actuator Sensor
parameter QPION QP15N
p [kg/m3) 5780 6900
E [N/m?] 3.3-10° | 2.5-10°
d3; [m/V] or [C/N] [ 2.3-10710 | 2.,5-10710
C [uF] 0.06 0.10
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The amplitude-frequency characteristics at the first mode region depending
on the applied model of the system are shown in Fig. 7. The dynamic responses
are calculated at the measure point (z = 268 mm). The amplitude of resonant
vibrations for the uncontrolled beam is determined by matching it with the
measured amplitude of the steady-state vibrations presented in Fig.3. The
frequency response of the actively damped beam is obtained assuming the
derivative gain factor k; = 0.135s, which for the fundamental frequency w;
refers to the control-loop gain x = 10 due to the relation k = wiky. For the
applied models of the system the ratios of the uncontrolled and the actively
damped resonant amplitudes are close to the measured ones. The amplitude
reduction is almost the same as that of the experimental result (about 3.4
times) when the segmented beam with the static coupling model is used. By
comparing the plots, it can be noticed that the characteristics become slimmer
and the control effectiveness decreases for more comprehensive models of the
system. These effects are clearly exposed for the dynamic coupling model with
a bonding layer. Even a relatively high value of the shearing stiffness parameter
Kg =0 - 102 N/m? cannot improve the active damping ratio enough because
of the dynamic interaction of the actuator.

To obtain free vibrations, the beam end is subjected to an impulse excita-
tion. The beam response is calculated according to Eq. (3.19) derived for the
simplified model. For comparison of the simulation and experimental results
the impulse value is determined by matching the beginning response amplitu-
des with the initial displacement of the tested beam. The results of simulation
obtained for the uncontrolled system and for several values of the gain factor
kg = 0.135s (k = 10), kg = 0.203s (k = 15), kg = 0.338s (k = 25) are
presented in Fig. 8.

As mentioned above, the passive damping refers to the Voigt-Kelvin mo-
del with the retardation time p = 1.88-107%s, which quite well describes the
energy dissipation of the tested beam (compare the time histories for the un-
controlled beam, Fig. 8 and Fig. 4). In the plots corresponding to the actively
damped beam the effect of the gain factor increasing is obvious. The compari-
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Fig. 7. Active damping effect depending on the model of the system; (a) static
coupling model with a constant beam stiffness, (b) static coupling model with the
segmented beam, (¢) dynamic coupling model
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Fig. 8. Impulse response for the beam simplified model without and with active
damping. Effects of passive damping and variation in the control gain

son of the results of simulation and the free vibration time histories obtained
experimentally leads to the conclusion that the active damping effectiveness is
generally similar but it is noticeably greater for the theoretical evaluation with
the lower control gain values k = 10 and 15. The reason for this behaviour can
be the applied simple model of the system with the additional stiffness of the
activated segment neglected and the perfect bonding assumed. As shown in
the case of steady-state vibrations (Fig.7) the performance of active damping
depends, among others, on the bonding layer parameters and shear strains in
the layer (cf Pietrzakowski, 2001b).

The influence of the control gain factor on the logarithmic decrement wi-
thin the applicable range of the control gain values for both the experiment
and the simulation is demonstrated in Fig. 9. Each indicated point of the plots
refers to the mean logarithmic decrement calculated for the sequential am-
plitudes 1 period apart. The number of recorded peaks varied from 5 to 15
for the high and low control gains, respectively. As expected, the logarithmic
decrement is a linear function of the gain for the considered theoretical model
of the system. The curve related to the experiment shows that the damping
intensity increases slightly for low and extremely high control gains. Within
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the applicable gain range, the logarithmic decrement of the tested beam is
generally less than its theoretical approximation except for the relatively high
gain values (k = 20 -+ 25). The discussed relation results not only from the
mechanical behaviour of the real system but also from the electrical properties
of the control loop with the analog devices.
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Fig. 9. Logarithmic decrement versus control gain for the experimental and
numerical simulation

5. Final remarks

The active damping technique using piezoceramic sensors and actuators
was demonstrated by the experiment and described theoretically. The investi-
gation was focused on suppression of low frequency vibrations of a cantilever
beam. The experimental results of free as well as forced vibrations confirmed
that even a simple analog feedback with the derivative controller is effective
for the active damping of the beam transverse motion. Increasing the gain of
the control circuit the vibration amplitude reduction can be significantly in-
creased. In practice, the gain values are limited because of the tendency of the
control system to amplify unwanted high vibration components. The simula-
tion results showed a quite good agreement with the experiment even for the
simplified model of the controlled beam. The model quality can be improved
by taking into account the local stiffening of the activated beam. Conside-
ring the dynamic model of the interaction between the actuator and the beam
the influence of the bonding layer properties on the control effectiveness was
pointed out.
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Badania doswiadczalne i symulacyjne sterowania drganiami belki
wspornikowej

Streszczenie

W pracy przedstawiono rezultaty badan dodwiadczalnych i symulacyjnych ak-
tywnego tlumienia poprzecznych drgan belki wspornikowej. Zastosowany uklad ste-
rowania sklada si¢ z piezoceramicznych elementéw tworzacych pare pomiarowo-
wykonawcza, potaczonych petla predkosciowego sprzezenia zwrotnego. Wyniki ekspe-
rymentu, dotyczace zaréwno drgan swobodnych, jak i drgan wymuszonych w zakresie
niskich czestosci, potwierdzaja skutecznoé¢ ukladu sterowania z analogowym regu-
latorem rézniczkujacym. W celu weryfikacji teoretycznych modeli badanego ukladu
przeprowadzono symulacje numeryczna. W ramach analizy wprowadzono uproszczo-
ny model uktadu mechanicznego (podejscie statyczne), w ktérym oddzialywanie ele-
mentu wykonawczego idealnie polaczonego z belka ograniczono do czystego zginania,
przyjmujac belke o stalej zastepezej sztywnoscei lub belke lokalnie usztywniong przez
naklejone elementy piezoelektryczne. W zastosowanym dynamicznym modelu pola-
czenia uwzgledniono bezwladnos$é¢ elementu wykonawczego dziatajacego na belke za
posrednictwem warstwy kleju o skonczonej sztywnosci na Scinanie. Wyniki symulacji
do$¢ dobrze pokrywaja si¢ z wynikami uzyskanymi na drodze do$wiadczalnej takze
w przypadku uproszczonego modelu ukladu. Uwzglednienie w obliczeniach warstwy
kleju oraz wzdtuznego ruchu elementu wykonawczego powoduje obnizenie skuteczno-
sci aktywnego tlumienia nawet dla warstw o stosunkowo duzej sztywnosci.
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