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The principal aim of the present paper is to analyse influence of shear
stress on deformation of thin-walled beams with open cross-sections. In
particular, the text presents critical remarks on the hitherto existing
attempts to consider the shear effect by substituting function defining
warping of a beam within Vlasov’s theory with a new function θ(x). The
paper is also aimed at a quantitative analysis of influence of shear-force
on the displacement field which fulfils Bernoulli’s assumptions. Contrary
to solid bars, where the quantitative analysis shows that the influence of
the shear forces on the deformation is negligible, this influence can be
significant in thin-walled beams.
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1. Introduction

The problem of recognising the influence of shear-force on the deflection
of the centre line of a solid bar was presented by Timoshenko (Gere and Ti-
moshenko, 1984). The analysis of the so-called Timoshenko bar and numerical
examples are given by Piechnik (1999).

In the papers by Gunnlaugsson and Pedersen (1982), Chen and Blandford
(1989), Kim et al. (1994), where thin-walled beams are considered, the displa-
cement field, which takes into account the shear effect on bars deflection and
displacement in the direction of their centre lines is used. Gunnlaugsson and
Pedersen (1982) and Chen and Blandford (1989) focus on building a finite

1Research related to the paper was financially supported by the State Committee for
Scientific Research, Grant No. PB-0965/T07/98/15



270 S.Gawłowski, S. Piechnik

element for a thin-walled beam, which makes them ignore Bernoulli‘s law,
like in the case of Timoshenko’s solid bar, and establish a new form of the
function describing beam warping in Vlasov‘s theory. The second idea consists
in substituting the expression α′(x)ω(s) with θ(x)ω(s). The authors of the
present paper consider this idea in question to be of doubtful value, because
it was introduced without a physical analysis of the new quantity θ(x), which
is the seventh degree of freedom. Kim et al. (1994) analysed spatial stability
and free vibration of thin-walled beams, but these problems permit us to oust
the new quantity, which makes the analysis of θ(x) unnecessary.

The present paper is based on the work by Piechnik (2000), which is a
source of notations of kinematics and static quantities as well as of auxiliary
relations referring to thin-walled beams with open cross-sections. Gunnlaugs-
son and Pedersen (1982) provides a basis for the notations of new quantities
resulting from the recognising of the shear effect on a thin-walled beam de-
formation, while paper Chen and Blandford (1989) provides a basis for the
algorithm allowing one to consider the skew symmetric shear stresses, the
influence of which in thin-walled beams with open cross-sections is significant.

2. Basic assumptions

Fig. 1.
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Let us consider a thin-walled prismatic beam of any open cross-section as
shown in Fig. 1.

Let us assume the following co-ordinate systems: global xyz and local
xsn. The x-axis of the global system is the beam centre line, while the y and
z-axes are the principal axes of inertia. The co-ordinate system xsn can be
defined at any point of the middle surface P – it consists of the x-axis parallel
to the beam centre line, the s-axis tangential to the middle line, and the n-
axis perpendicular to the x and s-axes. C denotes the cross-section centre
of gravity, R denotes the shear centre and Q is the origin of the curvilinear
co-ordinate s.

3. Displacement fields

Displacement fields – the foundamental concept of the present paper – are
modifications of the field of Vlasov’s theory. The displacement field Vlasov’s
theory is defined by relations

ux(x, s) = α
′(x)ω(s)− v′(x)y(s)− w′(x)z(s) + u0(x)

us(x, s) = v(x)ẏ(s) + w(x)ż(s)− α(x)ρn(s) (3.1)

un(x, s) = −v(x)ż(s) + w(x)ẏ(s) + α(x)ρs(s)

Equations (3.1) are related to the local co-ordinate system. α(x) is a function
of the cross-section rotation about the shear centre. The quantities v(x) and
w(x) are displacements of the shear centre in the directions y and z, while
the function u0(x) is the displacement of the neutral axis in the x-direction.
In the case when the shear influence is recognised only in the beam deflection,
the displacement field is built by substituting the quantities w′(x) and v′(x)
by the functions ϕ(x) and ϑ(x), respectively. This substitution is equivalent
to ignoring Bernoulli’s law. It leads to the following new displacement field

ux(x, s) = α
′(x)ω(s)− ϑ(x)y(s) + ϕ(x)z(s) + u0(x)

us(x, s) = v(x)ẏ(s) + w(x)ż(s)− α(x)ρn(s) (3.2)

un(x, s) = −v(x)ż(s) + w(x)ẏ(s) + α(x)ρs(s)

The displacement field desribed by Gunnlaugsson and Pedersen (1982), Chen
and Blandford (1989) and Kim et al. (1994) originates from an additional
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operation, namely the substitution of the quantity α′(x) with a more general
function θ(x). Thus, the second approach takes into account the shear effect
also on the warping, which is defined according to Vlasov’s theory. In this case,
the displacement field takes the form

ux(x, s) = θ(x)ω(s)− ϑ(x)y(s) + ϕ(x)z(s) + u0(x)

us(x, s) = v(x)ẏ(s) + w(x)ż(s)− α(x)ρn(s) (3.3)

un(x, s) = −v(x)ż(s) + w(x)ẏ(s) + α(x)ρs(s)

The quantities ẏ(s) and ż(s) in relations (3.1) ÷ (3.3) are derivatives with
respect to the s co-ordinate of the functions y(s) and z(s), which define the
parametric equation of the middle line.

4. Solution of the problem when Bernoulli’s law is disregarded

Strains at points of the middle surface are calculated from equations of
displacement field (3.2) by means of Cauchy’s equations. These strains assume
the following form

εx(x, s) = α
′′(x)ω(s)− ϑ′(x)y(s) + ϕ′(x)z(s) + u′0(x)

(4.1)

γxs(x, s) = γsx(x, s) =
(
v′(x)− ϑ(x)

)
ẏ(s) +

(
w′(x) + ϕ(x)

)
ż(s)

Stresses at points of the middle line are calculated from (4.1) by means of
Hooke’s equations. It is assumed that the longitudinal stress does not change
with thickness, and the shear stress changes linearly with the thickness, which
permits us to write: τxs(x, s, n) = τω(x, s) + τs(x, s, n), where τω(x, s) is
the average stress and τs(x, s, n) is the linear skew symmetric stress (Saint-
Venant’s stress). Then, it is also assumed that τxn(x, s, n) ≡ 0. So the stresses
take the form

σx(x, s, n) = Ẽ
[
α′′(x)ω(s)− ϑ′(x)y(s) + ϕ′(x)z(s) + u′0(x)

]

(4.2)

τxs(x, s, n) = G
[(
v′(x)− ϑ(x)

)
ẏ(s) +

(
w′(x) + ϕ(x)

)
ż(s) + 2α′(x)n

]

where

Ẽ
def
=

E

1− ν2
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The equations governing the problem in question are calculated with the help

of the stationary potential energy theorem; i.e. Lagrange’s theorem. The total
potential energy for a beam is determined by the following formula

Π = U − L

where U is the internal energy and L is the external one.

The formula determining the internal energy that is used in the present
procedure, has the form

U =
1

2

∫∫∫

V

(σ2x(x, s)
Ẽ

+
τ2xs(x, s, n)

G

)
dV (4.3)

Substituting stresses (4.2) into Eq (4.3) and transforming this equation, we

obtain

U =
Ẽ

2

l∫

0

{
[α′′(x)]2Iω + [ϑ

′(x)]2Iz + [ϕ
′(x)]2Iy + [u

′

0(x)]
2A
}
dx+

+
G

2

l∫

0

{
[v′(x)− ϑ(x)]2Ipp + 2[v

′(x)− ϑ(x)][w′(x) + ϕ(x)]Ipq + (4.4)

+[w′(x) + ϕ(x)]2Iqq + [α
′(x)]2Is

}
dx

In Eq (4.4), apart from the cross-sectional property constants well-known from
Vlasov’s theory, there are new cross-sectional property constants:

— shear areas in y and z directions

Ipp
def
=

∫

d

ẏ2(s)δ(s) ds Iqq
def
=

∫

d

ż2(s)δ(s) ds

— mixed shear area

Ipq
def
=

∫

d

ẏ(s)ż(s)δ(s) ds

The formula that determines the external energy (the work of the external
forces: bω, mz, my, qx, qy, qz, mRx, Bω, Mz, My, Fx, Fy, Fz , MRx on the
displacements: α′, ϑ, ϕ, u0, v, w, α) has the following form
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L =

l∫

0

[
α′(x)bω9x) + ϑ(x)mz(x) + ϕ(x)my(x) + u0(x)qx(x) + v(x)qy(x) +

+w(x)qz(x) + α(x)mRx(x)
]
dx− α′(0)Bω(0)− ϑ(0)Mz(0) − ϕ(0)My(0) +

(4.5)

−u0(0)Fx(0) − v(0)Fy(0)− w(0)Fz(0) − α(0)MRx(0) + α
′(l)Bω(l) +

+ϑ(l)Mz(l) + ϕ(l)My(l) + u0(l)Fx(l) + v(l)Fy(l) + w(l)Fz(l) + α(l)MRx(l)

The static quantities in relation (4.5) indicated by small letters are the distri-
buted line forces, while the capital letters are used to indicate the concentrated
forces acting on the ends of the beam. If we combine relations (4.4) and (4.5)
and then calculate the variation and equate it to zero, we will obtain a sys-
tem of six ordinary differential equations and boundary conditions creating a
solution of the problem of a thin-walled beam with open cross-sections. The
resultant system of the equations consists of the following:
— the equations related to the condition that the expression with the multi-

plier δ
(
α′(x)

)
is zero

ẼIωα
′′′(x)−GIsα

′(x) + bω(x) +MRx(x) = 0
(4.6)

ẼIωα
′′(0) = Bω(0) ẼIωα

′′(l) = Bω(l)

— the equations related to the condition that the expression with the multi-
plier δϕ(x) is zero

ẼIyϕ
′′(x)−GIpq[v

′(x)− ϑ(x)]−GIqq[w
′(x) + ϕ(x)] +my(x) = 0

(4.7)

ẼIyϕ
′(0) =My(0) ẼIyϕ

′(l) =My(l)

— the equations related to the condition that the expression with the multi-
plier δϑ(x) is zero

ẼIzϑ
′′(x) +GIpp[v

′(x)− ϑ(x)] +GIpq[w
′(x) + ϕ(x)] +mz(x) = 0

(4.8)

ẼIzϑ
′(0) =Mz(0) ẼIzϑ

′(l) =Mz(l)

— the equations related to the condition that the expression with the multi-
plier δu0(x) is zero

ẼAu′′0(x) + qx(x) = 0 ẼAu′0(0) = Fx(0) ẼAu′0(l) = Fx(l)
(4.9)



Thin-walled beam with open cross-sections... 275

— the equations related to the condition that the expression with the multi-
plier δv(x) is zero

GIpp[v
′(x)− ϑ(x)]′ +GIpq[w

′(x) + ϕ(x)]′ + qy(x) = 0

GIpp[v
′(0)− ϑ(0)] +GIpq[w

′(0) + ϕ(0)] = Fy(0) (4.10)

GIpp[v
′(l)− ϑ(l)] +GIpq[w

′(l) + ϕ(l)] = Fy(l)

— the equations related to the condition that the expression with the multi-
plier δw(x) is zero

GIpq[v
′(x)− ϑ(x)]′ +GIqq[w

′(x) + ϕ(x)]′ + qz(x) = 0

GIpq[v
′(0)− ϑ(0)] +GIqq[w

′(0) + ϕ(0)] = Fz(0) (4.11)

GIpq[v
′(l)− ϑ(l)] +GIqq[w

′(l) + ϕ(l)] = Fz(l)

By solving the system of the equations, we obtain the following relations that
determine the desired functions of x in displacement field (3.2)

u0(x) = −

x∫

0

( η∫

0

qx(ξ)

ẼA
dξ
)
dη + C1x+C2

α(x) = C3e
kx +C4e

−kx + C5 + αp(x)

ϕ(x) = −

x∫

0

[ ψ∫

0

( η∫

0

qz(ξ) +m
′

y(ξ)

ẼIy
dξ
)
dη
]
dψ + C6

x2

2
+ C7x+ C8

(4.12)

ϑ(x) =

x∫

0

[ ψ∫

0

( η∫

0

qy(ξ)−m
′

z(ξ)

ẼIz
dξ
)
dη
]
dψ + C9

x2

2
+ C10x+ C11

v(x) =

x∫

0

( η∫

0

detK1
detK3

dξ
)
dη + C12x+ C13

w(x) =

x∫

0

( η∫

0

detK2
detK3

dξ
)
dη + C14x+ C15

where k =
√
GIs/(ẼIω), αp(x) is the particular integral of the heterogeneous

equation, and

K1 =




GIppϑ

′(ξ)−GIpqϕ
′(ξ)− qy(ξ) GIpq

GIpqϑ
′(ξ)−GIqqϕ

′(ξ)− qz(ξ) GIqq




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K2 =




GIpp GIppϑ

′(ξ)−GIpqϕ
′(ξ)− qy(ξ)

GIpq GIpqϑ
′(ξ)−GIqqϕ

′(ξ)− qz(ξ)





K3 =




GIpp GIpq

GIpq GIqq





The constants in (4.12) are determined from static boundary conditions
(4.6)2 ÷ (4.11)2 and from the kinematic boundary conditions dependent on
constraints. By finding the quantities defined by (4.12), we obtain the di-
splacement field, and thus the strain and stress fields. Before considering the
possibility of recognising the effect of shear forces also by substituting α′(x)
with the new unknown function θ(x), which is presented by Gunnlaugsson
and Pedersen (1982), Chen and Blandford (1989) and Kim et al. (1994), we
will first show a numerical example where the quantitative influence of the
shear forces without the above substitution is analysed.

5. Numerical example

Let us consider a channel section cantilever beam, which is loaded as shown
in Fig. 2. The analysis will quantitatively show the shear effect on the defor-
mation of a thin-walled beam with open cross-sections.

Fig. 2.

Let us use the following numerical data: length of beam l = 2.0m, load
q = 1.0 kN/m, material constants E = 205GPa, G = 80GPa, ν = 0.3, height
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of the cross-section h = 180mm, width of the cross-section b = 70mm, its
thickness δ = 6mm.

Relations resulting from the equations of constraint and the boundary
conditions for (4.12), take the following forms

ux(0, si) = α
′(0)ω(si)− ϑ(0)y(si) + ϕ(0)z(si) + u0(0) = 0 i = A,B,C,D

uy(0, yD, zD) = v(0) − α(0)(zD − zR) = 0

uz(0, yC , zC) = w(0) + α(0)(yC − yR) = 0

uz(0, yD, zD) = w(0) + α(0)(yD − yR) = 0

In order to simplify the analysis, the equations determining the displace-
ments in the cross-section plane are written in the global co-ordinate system.
The above system of seven equations contains seven unknown quantities, so
the boundary conditions required for solving the problem must be calcula-
ted at the some. The remaining constants in (4.12) can be determined from
the static boundary conditions, which contain the following static quantities:
Fx(l), Bω(l), My(0), My(l), Mz(0), Mz(l), Fy(0) and Fz(0).

As can be seen from the above general solution, only the functions w(x)
and v(x) can differ from those in Vlasov’s theory. So, the shear forces effect
only these functions. In the above example, only the functions w(x) will differ
in both theories. Let us denote by 1 the results of Vlasov’s theory and by 2
the results of the new theory. The solutions in both cases have the following
forms

w1(x) = −
q

24ẼIy
x4 +

ql

6ẼIy
x3 −

ql2

4ẼIy
x2

w2(x) = −
q

24ẼIy
x4 +

ql

6ẼIy
x3 +

(
−

ql2

4ẼIy
+

q

2G̃Iqq

)
x2 −

ql

GIqq
x

As can be seen, both relations differ in terms of the new stiffness GIqq.
After substituting the numerical values, both deflection functions assume the
forms mentioned below. The dependent variables of these functions (at five
points) and proportional differences are presented in the table:

w1(x) = −1.905 · 10
−5x4 + 1.524 · 10−4x3 − 4.572 · 10−4x2

w2(x) = −1.905 · 10
−5x4 + 1.524 · 10−4x3 − 4.515 · 10−4x2 − 2.315 · 10−5x

r(x) =
w2(x)− w1(x)

w1(x)
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x [m] w1(x) [m] w2(x) [m] r(x) [%]

0.0 0 0 –

0.5 −9.644 · 10−5 −1.066 · 10−4 10.525

1.0 −3.239 · 10−4 −3.413 · 10−4 5.388

1.5 −6.108 · 10−4 −6.327 · 10−4 3.586

2.0 −9.144 · 10−4 −9.379 · 10−4 2.570

The increase of the deflection is not negligible after taking into account
the shear effect. It equals 10.5%.

6. Second approach

In this section the authors present another approach which takes into ac-
count the shear effect on the beam deflection and warping measure.

If we use relations (3.3) instead of (3.2) in the algorithm for deriving the
equations governing the considered problem, we will obtain a system of seven
differential equations. These equations will not be presented but discussed,
because the analysed approach is incorrect – which will be demonstrated –
so these equations have no practical application. The considered differential
equations – except for the equation determining the quantity u0(x) – are
coupled. When this system of equations is uncoupled, it appears that the qu-
antities ϑ(x) and ϕ(x) are determined by third order differential equations,
while the quantities α(x), v(x), w(x) and u0(x) are determined by second
order differential equations. The constants occurring in the solutions of the
above-mentioned differential equations are calculated from the static boun-
dary conditions obtained from Lagrange’s theorem, and from the kinematic
boundary conditions resulting from the applied constraints.

The last desired function is θ(x). The uncoupled differential equation
involving this function has the form
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−ẼIω
(
detK3 +

detK4
GIs

)
θ′′′(x) + detK4θ

′(x) =

= detK4
b′ω(x)−mRx(x)

GIs
− det



GIpq GIpr

GIqq GIqr


 qy(x) + (6.1)

+det



GIpp GIpr

GIpq GIqr


 qz(x) + det



GIpp GIpq

GIpq GIqq


 b′ω(x)

where

K4 =




GIpp GIpq GIpr

GIpq GIqq GIqr

GIpr GIqr GIrr




The stiffnesses GIpr, GIqr and GIrr in (6.1) result from the determination
of the shear effect on the warping measure. It is clear that the order three of
(6.1) implies three independent boundary conditions to be set forth before fin-
ding the function θ(x). Two conditions result from Lagrange’s theorem; they
have static character and are the consequence of knowledge of the bimoments
at the beam ends. The third condition – as the structure of (6.1) prompts –
needs knowing the dependent variable of the function θ(x) at one point, so it
has kinematic character. As it was mentioned in the introduction, we do not
have a physical interpretation of θ(x), so we cannot formulate the required
boundary condition. Although we can determine the dependent variable of
the function θ(x) for x = 0 with the constraint equations from the nume-
rical example presented above2, we can do so at the cost of not knowing the
hyperstatic reaction and not knowing the bimoment at the beam end. If we
consider the above example as statically determined, i.e. if we know all forces,
which are applied to the beam ends, we cannot have the above-mentioned ki-
nematic boundary condition (we cannot determine seven unknowns from six

2The constraint equations for the considered approach differ from the equations,
which were presented in the previous theory, only in the occurrence of the quantity
θ(0) instead of α′(0), i.e. only in the notation of the unknown, which does not affect
the solution.
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constraint equations). So, regardless of type of example, we cannot determine
the function θ(x), because we lack one boundary condition in each case.

The conclusion of the analysis is that a mistake was made at the beginning
of the procedure of the incorporated kinematic approach, therefore it was made
during the formulation of the supposed displacement functions. The mistake
consists in using an excessive number of unknowns and no physical interpreta-
tion of θ(x). Since it is impossible to determine the function θ(x), we cannot
calculate the displacement, strain and stress fields. Thus, it is impossible to
find the complete solution.

7. Conclusions

The paper presents a scheme of an algorithm for deriving equations which
govern the problem of shear effect on static and on kinematic quantities in
a thin-walled beam with open cross-sections by omitting Bernoulli’s law and
solving a system of differential equations. The algorithm shows an original
manner of transforming the constraint equations into the boundary conditions,
necessary to solve the problem. The analysis of results of a numerical example
shows that the contribution of deformation due to shear is significant.

The important result of this paper consists in proving that the approach
existing so far – which takes into account the shear effect on the deflection
and also on warping measure – is incorrect. Since it is impossible to determine
the required boundary conditions in this case, the replacement of the quantity
α′(x) with the function θ(x) – the fundamental one in the considered approach
– seems to be an inappropiate idea.
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Pręt cienkościenny otwarty jako belka Timoszenki

Streszczenie

Celem pracy jest analiza wpływu sił poprzecznych na deformację prętów cienko-
ściennych o profilu otwartym. W artykule zaprezentowano szkic algorytmu wprowa-
dzania wzorów rządzących problemem wpływu sił poprzecznych na wielkości statyczne
i kinematyczne belki cienkościennej o profilu otwartym, czyniąc jedynie odstępstwo
od zasady Bernoulliego oraz przedstawiono rozwiązanie otrzymanego układu równań
różniczkowych. Szczególną uwagę skupiono na krytycznej analizie dotychczasowego
podejścia uwzględniającego wpływ ścinania nie tylko na ugięcie belki, ale także na mia-
rę spaczenia. Brak możliwości określenia potrzebnych warunków brzegowych w tym
przypadku powoduje, iż podejście to jest niepoprawne. W pracy przeprowadzono tak-
że analizę jakościową wpływu sił poprzecznych na wartości pola przemieszczeń, które
spełnia założenia Bernoulliego. W przeciwieństwie bowiem do belek litych, w których
analiza ilościowa wskazuje na możliwość pominięcia tych sił przy obliczeniu deforma-
cji, belki cienkościenne w wielu przypadkach mogą doznawać znacznych deformacji
wywołanych naprężeniami ścinającymi.
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