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Linear stability analysis of incompressible attachment-line flow is presen-
ted within temporal and special frameworks. The global solution method
used for solving the eigenproblem yields a full spectrum of the least dam-
ped waves. Analyses are made for the cases with blowing and suction.
The equations of linear stability theory are solved using the spectral
collocation method. The results obtained are compared with those pre-
sented by Hall (1984), Spalart (1988) and Theofilis (1998) and with the
available experimental data.
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1. Introduction

Recent studies a special advanced technology project such as a laminar
flow around the aircraft have highlighted the importance of the flow in the
vicinity of swept leading edge and in particular at the attachment-line. The
research aims at minimisation drag and hence reduction of fuel consumption
using suction to control the development of the laminar wing boundary layer
and delay the transition to turbulence. Many instability mechanisms may aris
which cause the breakdown of laminar flow to the turbulent one on swept
wings. Among others, the laminar-turbulent transition on a swept wing can
be caused by crossflow instability, Tollmien-Schlichting waves, Gortler vortices
and the instability of attachment-line.

The present consideration will focus on those disturbances which evolve
close to the attachment-line region. The boundary layer which develops along
the swept attachment-line can be either laminar or turbulent. There are two
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main ways of transition from the laminar to turbulent flow. The first one arises
if the attachment-line is contaminated by turbulent structures originating from
the fuselage. In this case the boundary layer can be turbulent directly at the
attachment-line which is unfavourable from the technological point of view.
The leading edge contamination is a fully nonlinear phenomenon of "bypass”
type. The leading edge contamination may occur when the Reynolds number
exceeds a value about Re = 250, where

WA

Re (1.1)
v
and
Woeo - free-stream spanwise velocity (Fig.1)
A - length scale, A = +/v/(dU./dz)
dU./dz - velocity gradient at the attachment-line
v - kinematic viscosity.

external streamline
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=

Fig. 1. Scheme of the attachment-line boundary layer, Theofilis (1998)

The leading edge contamination will not be investigated in this paper.

If the swept model is not in contact with a solid surface (Fig.2) we deal
with the so called "natural” transition (second way). In such a case the laminar
boundary layer starts to develop at the point A4 (Fig.2). The transition results
from amplification of the disturbances inside the boundary layer which are
generated by small disturbances in the free-stream flow. This situation arises
in the swept wing flow if the leading edge contamination is avoided by suction.

The problem of the attachment-line instability has been considered by
many authors. Gaster (1967) was the first who investigated experimen-
tally the small-amplitude development by using acoustic excitation along the
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Fig. 2. "Natural” transition on a swept model and hot wire records, Pfenninger and
Bacon (1969)

attachment-line of a swept cylinder. He concluded that the small-amplitude
disturbances in the attachment-line boundary layer were stable for the
momentum-thickness Reynolds number Reg not exceeding 170 (Re = 420).
Pfenninger and Bacon (1969) used a 45° swept wing to study the attachment-
line ingtabilities in a wind tunnel and they observed regular sinusoidal oscilla-
tions (Fig.2) at the frequencies comparable to those appearing at most unsta-
ble 2D modes of the theory. Poll (1979, 1985) performed many experiments
with the attachment-line of swept wing. He concluded that in a quiet environ-
ment with a smooth surface (natural transition) the attachment-line remained
laminar up to Re = 570. The hot wire measurements showed that the 2D
disturbances developed in the attachment-line boundary layers and that the
whole laminar-turbulent transition process was very similar to that observed
in the 2D boundary layers.

Theoretically, Poll (1979) predicted the critical Reynolds number Re. to
be 670 using the linear parallel stability theory. Then Hall et al. (1984) obta-
ined Re. of 583 which was very close to the experimental results of 570. They
used the non-parallel stability theory for the generalised Hiemenz flow within
the so-called Gortler-Hammerlin framework. This result was confirmed by Spa-
lart (1988) who made direct simulation of the flow near the attachment line of
a swept cylindrical body by solving numerically (DNS) the full Navier-Stokes
equations. Lin and Malik (1996) considered the general three-dimensional di-
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sturbances whose eigenfunctions depended on the normal and chordwise co-
ordinates. They confirmed that the dominant instability was that analysed
by Hall et al. (1984). Stability of the incompressible swept attachment-line
boundary layer was studied by Theofilis (1998) within the Gortler-Hammerlin
framework, in both linear and nonlinear two-dimensional regimes. He sho-
wed that the linear initial-boundary-value problem formulation yielded results
being in excellent agreement with the results obtained by the use of linear
stability theory. Balakumar (1998) computed the 2D nonlinear equilibrium
solutions for the swept Hiemenz flow attachment-line boundary layer by so-
Iving the full Navier-Stokes equations as a nonlinear eigenvalue problem. He
found that the nonlinear critical point occured at the Reynolds number of 511.
Bertolotti (1999) analysed the relation between the attachment-line instability
and crossflow instability.

In this paper we investigate the stability of the incompressible swept
attachment-line boundary layer within the Gortler-Hammerlin framework. The
equations of linear non-parallel stability theory create an eigenvalue problem
which is solved in a global manner; the global approach allows for recovery of
the full spectrum of eigenmodes not only the most unstable one. Calculations
are performed for zero suction and for the boundary layers in which blowing
and suction are applied to demonstration of the possibility of controlling the
attachment-line boundary layer. OQur results are compared with the results
obtained by Hall et al. (1984), Spalart (1988), Theofilis (1998) and with the
experimental data of Pfenninger and Bacon (1969), Poll (1979) and Powilleit
(1992). In this paper we collected the results of research into the attachment-
line instability obtained by different authors taking different approaches. The
aim was to check the accuracy of our results as well as to justify the use of
the Gortler-Haminperlin form of disturbances in this and planed work.

2. Basic state equations

We consider the attachment-line boundary layer at long distances from
its origin (point A in Fig.2). Pfenninger and Bacon (1969) showed that the
parallel boundary layer could be reached even within a small spanwise distance
from point A so that, it can be assumed that the main properties of the basic
state (shape factor, skin friction coefficient, integral thickness are constant) do
not depend on the spanwise location at long distances from its origin. For this
kind of flow it is possible to obtain the exact solution of the incompressible
Navier-Stokes equations (which is the so-called generalised Hiemenz flow).
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In the paper we consider the incompressible viscous flow over an infinite flat
plate which is located at y = 0 in the Cartesian co-ordinate system (z,y, z;
Fig.1). The z-axis coincides with the chord direction, y-axis is normal to the
plate and z-axis overlaps the attachment-line. The velocity components are
u,v and w.

The inviscid velocity distributions for this flow are defined as

Uz
T
where [ is the length scale in the z direction and Uy, Wy are the independent
velocity scales. We seek for a similarity solution of the following form

w=U(Datm  v=w($)m  w=wal) (29

where 7 = y/A. Substituting these structures into the incompressible Navier-
Stokes equations we obtain the system of ordinary differential equations

Ue We = Wy = const (2.1)

T+7 =0

7"+ @) - -1=0 (2.3)

The boundary conditions are

7(0) =k 7(0)=0 w(0) =0

(2.4)

7' (00) = —1 w(oo) =1
In the above equations x denotes the non-dimensional parameter used for
suction control in the attachment-line boundary layer. The obtain the velocity
profiles the non-linear systems of equations (2.3) with boundary conditions
(2.4) is solved iteratively using the fourth order Runge-Kutta method. To so-
Ive above system of equations iteratively the very precise first assumption for
7" and W' at the wall is necessary. For k = 0 we have: 7’'(0) = —1.23258765,
w'(0) = 0.57046525. For more details of the generalised swept Hiemenz solu-
tion, the Readers are referred to Rosenhead (1963).

The velocity profiles %, w,7 and their first derivative obtained for
£ = 0 are shown in Fig.3. The main characteristic values of the two
boundary layers (in z and 2 directions) are: displacement thickness
dr, = 0.6479004743977949, 6, = 1.026227542367512, momentum thick-
ness O, = 0.2923435912116265, ©, = 0.4042302941011554 and shape
factor H, = 2.216229443281285, H, = 2.538720025052618. These inte-
gral quantities have been used to check accuracy of the obtained basic state
profiles.
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Fig. 3. Basic state profiles. The velocity profiles %, 7, w and their first derivative
obtained for £ =0

3. Perturbed flow

In the perturbed flow analysis all the parameters are nondimensionalized:
— velocity components u,v and w by W,

u=WU(X,Y, Zt) v=W.V(X,Y, Z,1)
(3.1)
w=WW(X,Y, Z,1)
— pressure p by pW2
p=pWP(X,Y,Z,1) (32)
The co-ordinates z,y and 2 are nondimensionalized by A
z=AX y=A4n =AY z2=AZ (3.3)

The disturbance equations are obtained by representing the velocity and
pressure fields as a superposition of the basic and perturbation flows. The
simplest idea is to introduce disturbances of the Tollmien-Schlichting waves
form. The linear Tollmien-Schlichting disturbances are of the form

(U, V' W' P'Y(Y, Z,t) = {§, D, D, p} (Y )elBZ-wD) (3.4)
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The parallel flow approximation is then applied and finally we obtain the
fourth-order Orr-Sommerfeld equation written for the attachment line pro-
file @. In such an approach the Orr-Sommerfeld equation describes the deve-
lopment of small disturbances in the attachment-line boundary layer.

It is possible to follow a more rigorous approach by considering a spe-
cial class of disturbances, first introduced by Hammerlin (1955) and Gortler
(1955). Following Hammerlin and Gortler we assume that the perturbations
U,V',W' and P’ are functions of Y and Z, however, the velocity in the
chordwise direction varies linearly with X

1
= —Xu(Y)+ XU'(Y, Z,t
W=wY)+W'(Y,Z1t)
(3.5)
1
=—o(Y)+V'(Y,Z,t
V=g oY)+ VY, 2,0
P=—_t x4t Py(Y)+ P'(Y, Z,1)
T 2Re? Re? "’ o

We substitute the above equations into a non-dimensional form of the
incompressible Navier-Stokes equations and the continuity equation.

Vi+(V-V)/V=-VP+ -é—v2v
¢ (3.6)

V-V=0

where V(U,V, W) is the velocity vector. After substituting Eqgs (3.5) into the
Navier-Stokes equations, eliminating pressure by cross differentiation and sub-
tracting of the basic state we obtain the system of partial differential equations

oV  ow!
! —

U + E3% + £y =0
U’ 8y’ U’ oy _au ., o0u_,
gyt oz ~Regy TRUGy Uy mHU — V=

U’ U’
_ 12 el !
—Re(U +V'S5 W BZ)

(3.7)

PwW! +9 FwW! R 2w’ _o*w' gwow'  _9tw!

ay® T 2avaz Rava MVvez “avay  CavEr T
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We can seek for the solution of the above equations in the form of Fourier
series (such an approach was used by Balakumar (1998) and Herbert (1977))

n=0C
U V' W, PYY,Z,t) = > {fin,0n, B, Pa}(Y)eBZ7w8) (3.8)

n=—0oo

In this paper we pay our attention only to the linear stability of the flow (2.3).
As for the Tollmien-Schlichting waves, the amplitudes «,,w,p of disturban-

ces read .
(U, V' \ W', P'}Y,2Z,t) = {4,D, D, p}(Y)el#Z~) (3.9)

The X-dependence of the disturbances in Eq (3.5) does not seem justified at
first sight. Hammerlin and Gortler chose it for the reason of ”mathematical
feasibility”. The X-dependence of the disturbance enables one to find a solu-
tion of the linear stability equations by solving ordinary differential equations.
In most cases the non-parallel linear stability analysis leads to a partial diffe-
rential system. However, recent investigations performed by Spalart (1988) by
using the direct method confirmed the Gortler-Hammerlin assumption in the
sense that the disturbances of (3.5) are most unstable and therefore the most
relevant in stability studies.

After introducing Eq (3.9) into the disturbance equations (3.7), linearizing
in «,7,w and after some transformations we obtain the following system of
equations

(D? —%D — 3% - 25 — ifRe®W)d ~ (D)% = —iRewl
(3.10)
[2(Dw) + 2aD)i + { D* - 7D® + [~28* - ifRew — (D7)|D* +

+(6% + (DW)|D + B* + i6°Rew + ifRe(D*w) +
+8%(D7) + (D*T) }# = ~iRew(D* - B%)7

where D = d/dY.



STABILITY OF INCOMPRESSIBLE ATTACHMENT-LINE... 915

The boundary conditions associated with the system to be solved deserve
some discussion. In the perturbation equations at the wall the viscous con-
dition of zero perturbations is imposed on 4,7 and zero derivative for the
normal perturbation velocity

G=0=Dv=0 Y =0 (3.11)

In the far-field, condition of vanishing perturbations at a sufficiently long di-
stance from the wall may be imposed

G=9=Dp=0 Y 50 (3.12)

or the asymptotic solution of Eqs (3.10) in the limit passage w(oo) = 1,
Dw(oc0) = =1, u(oo) = 1 may be utilised. Eqs (3.10) as Y — oo can be
written in the following way

[D? 4+ (Y = §)D — 8% — 2 — ifRe] = —iRewd
(3.13)
9D + {134 +(Y —§)D® +[-28% —iBRe + 1|D? - B2(Y — 6)D + B* +

+ifPRe — BA(Y — 5)}@ = —iRew(D? - %)%

where 4§ is the boundary layer thicknes. Hall et al. (1984) looked for asymp-
totic solutions of Eq (3.13) and he found that #,7v are to decay expotentially
as Y — oo Lo
G~e 2y 7~ePY (3.14)

We note that the velocity component ¥ tends to zero more slowly than .

Egs (3.10) with boundary conditions (3.11) and (3.12) create, of course, an
eigenvalue problem. However, in contrast with the Orr-Sommerfeld approach,
Eq (3.10) are obtained without using a parallel flow approximation. In other
words, the Gortler-Hamimerlin waves are an exact solution of the linearized
Navier-Stokes equations. Let us recall that the basic state profiles are obtained
from Egs (2.3) which is a solution of the full Navier-Stokes equations, not just
of the boundary layer equations. We can expect that such an approach gives
a very accurate description of small disturbances development in a linear part
of the laminar-turbulent transition region.

4. Numerical approach

Egs (3.10) and boundary conditions (3.11), (3.12) create the generalised
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eigenvalue problem which within the framework of temporal theory (com-
plex w and real () can be written in the following form

AP = ,BW (4.1)

where ¥ = [4,7].

Within the framework of the spatial theory (real w and complex ) the
eigenvalue problem resulting from Eqgs (3.10)+(3.12) is strongly non-linear. To
linearize the eigenvalue problem we introduce new variables: £, 59, 8%, °%.
Within the framework of the spatial theory the generalised eigenvalue problem

can be written as follows
AZ — BW (4.2)
where ¥ = [, 84,9, 89, 327, 8°9] .

The spectral method based on the Chebyshev polynomials has been used
to obtain a solution of high accuracy to the linear stability theory. The most
important feature of the spectral method is exponential convergence which al-
lows for attaining a high degree accuraty with a modest number of collocation
points N = 30=70. Accuracy is, of course, of primary importance in stability
analysis however, it is of particular interest when the global approach is taken
which yields a full eigenvalue spectrum. It is much more difficult to obtain the
full spectrum (if possible at all) than to solve the local problem in which we
estimate only the most unstable eigenvalue. Perhaps alternatively to descretise
Eq (8.10) one could use the fourth order accurate two-point scheme, which is
derived by means of the Euler-Maclurin formula. This scheme was not used
in the present paper since it has already been applied to the attachment-line
instability analysis by Hall et al. (1984) and Balakumar (1998). The grid refi-
nement histories of the numerical solution of the eigenvalue problem obtained
in the present paper with the spectral collocation method and that obtained by
Hall et al. (1984) with the Euler-Maclurin formula are analysed in Section 5.

In the considered case the swept attachment-line boundary layer flow, the
physical domain Y € (0,00) has to be mapped onto the standard spectral
collocation domain 7 € (—1,1) by the function

a(l+ 7,
Yj = (—_y]) (4-3)
where Y 0
g = -oimaz_ b=1+ — (4.4)
Ymaz - 2Y0 Ymaz

Yy is chosen to divide the domain in to two with the same number of collocation
points, Ymaz is the location where the calculation domain for the basic flow
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is truncated. The derivative matrices ﬁz”; in Y € (0,00) domain have to be
obtained from the following equations

50 vy = W p)
D;i(Y) = dYD )
A(2) ( ) D(l)( )
av2
dY (4.5)
A(s) (3) d d7y dy <2) d &y <1)
OV} @ (g 4 [ dy N2 ®) (5 dy P
>y dy dy
+4md—yD(2)(y) + WDU)(ZI)

where Dl("-l) is the matrix which performs collocation differentiation in the
basic Chebyshev domain 7 € [—1, 1] (Theofilis, 1985). Values of first derivative

matrix D,(-}j) are obtained as follows (Canuto et al., 1988)

((2N? +1 =0
6 I
Zj .
2(1 — z2
D) = (1) (4.6)
) =.{_1\3+1
c(-1) :
—F jF#£i
(7 — 9;)
2N? +1
L— j:'],::N
6
where
2 j=20
ci=«¢1 1€j<N-1
2 j=N

and N is the number of collocations points. Higher derivatives can be obtained
by the repeated application of Dg}j). The elements of matrixes A and B in
Eq (4.1) (temporal approach) can be written as follows:
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—for i=3y
D(Q) _ Ez ;62
—2u, 1,6Rewz
3 = ~ ~
2(Di,jﬂi) + QEiDi'j
—iRe 0
bij = Re(H®
—for 1#
[ D) - wiDi,
A = 2ﬂiﬁi,j
[0 0
b ; = _
“~10  —iReD{

+ipRe(DHw;) + B%(

Dm?

+[-

+~26° -
+[6%; +

+ (D ”uz)]DU + B + 1ﬁ3Rew i+

-D; ju;

i8Rew; —

0
- ﬁlﬁz(,:;) + [ﬁzﬁi
Zﬁg — igRew; —

(D7) D) +

+(D{Hw;) |
(4.7)

z,jvz)

(A”m |D; j+
(D jvz)]D(Q)
(4.8)

In the case of spatial approach the elements of matrixes A and B in Eq (4.2)
can be written schematically

ajj =

5o &
— —

1
<

— o oo
-

OO O D M~

O OO O N O

OO O DO O~

O~ O O O O

O O O o O

(4.9)
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where I is the identity matrix. The non-zero elements of the above matrixes
are

a1, = D® — 3D — 26 + iwRe

G135 = -Du

31 = 2uD + 2(Dw)

33 = DU —5DO) 4 [iwRe — (135)]13(2) + (ﬁﬁ)ﬁ + (ﬁ(z)ﬂ)

by, = iRew (4.10)
by = iRe[@D® — (D))

bys = 2D® — 5D — (D) + iwRe

335 = —iRew

b3s = —1.0

The generalised eigenvalue problem is solved using the NAG FORTRAN LI-
BRARY procedure.

In the majority of instability analyses the temporal approach is used, which
gives efficiently and precisely the neutral loop and critical parameters. The
spatial approach (numerically far more expensive), is used rarely, however,
the results obtained by means of the spatial theory can be directly compared
with the experimental results. Additionally, the spatial amplification rates are
necessary for the transition prediction method exp(N). According to Gaster’s
transformation, it is possible to convert temporal to the spatial amplification
rate using the group velocity, which represents the velocity at which energy
propagates in the conservative system. However, Gaster’s transformation is
very accurate only near the neutral curves and when the amplification rate
of disturbances becomes greater, the spatial theory results should be used to
compare with the experimental results.

5. Results

The linear stability equations (3.10) have been solved using the spectral
collocation method. The calculations have been made with N = 64 number of
collocation points and with the following grid parameters Y., = 100.0 and
Yo = 0.4. The number of collocation points was chosen to obtain the maximum
accuracy of calculations simultaneously not being much time-consuming. The
grid refinement history and comparison with the results of the same analysis
carried out by Hall et al. (1984), who used the Euler-Macluren compact scheme
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for calculations are shown in Table 1 (Hall’s results are indicated by *). The
calculations presented in Table 1 were made for the neutral point at a lower
branch for Re = 800, « = 0.

Table 1. The grid refinement history of the numerical solution to the
eigenvalue problem

(v s | e N[ B | e
10 | 0.3300581 | 0.1226919 || 32 | 0.3381432 | 0.1269065
20 | 0.3378719 | 0.1267951 | 64 | 0.3384637 | 0.1270973
40 | 0.3384238 | 0.1270776 || 100 | 0.3384639 | 0.1270976
80 | 0.3384613 | 0.1270965 || 140 | 0.3384638 | 0.1270976
60 | 0.3384638 | 0.1270977

From the above comparison in can be seen that, to obtain the results
of comparable accuracy using the spectral collocation method we needed 64
points, whereas calculations made by means of the Euler-Maclurin scheme
(Hall et al., 1984) required 160 points.

i Y I ¥
) I N
T

0.05
-0.06
0

(=4

0.1 0.2 0.3 0.4
@,

Fig. 4. Eigenvalue spectrum of the attachment-line boundary layer flow at the
neutral point Re =800, « = 0.0 and 3 = 0.3384631

The global solution method used in the present paper for solving the eigen-
problem yields the full spectrum of the last damped waves. It is a much more
difficult problem to obtain the whole spectrum (if possible at all) than to ob-
tain only the most unstable wave. The most unstable mode is cut off from the
spectrum, so it is relatively easy to estimate it. The full spectrum obtained at
the point Re =800, x = 0.0 and § = 0.3384631 we have plotted in Fig.4.

In Fig.5 we have compared between the neutral curve (F = w/Re =
f(Reg)) obtained in the present paper for x = 0.0 and the experimental data
of Pfenninger and Bacon (1969) and Poll (1979). The line of the maximum
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Fig. 5. Neutral curves obtained for & = 0.0 and comparison with the experimental
data of Pfenninger and Bacon (1969)

special amplification rates is marked in Fig.5. We can see that the amplified
waves found by Pfenninger are located between the lower neutral branch and
the line of maximum amplification rates.

Pfenninger observed also the amplified waves for the values of Reynolds
number below the linear critical Re. = 583.2 (Re. = 583.2 was obtained in
this paper, Re. = 583 obtained by Spalart (1988), Re. = 593.1 by Hall et al.
(1984), Res = 582 by Powilleit (1992)) but Pfenninger’s results were greater
than the nonlinear critical Reynolds number Re. = 511 found by Balakumar
(1998). In Balcumar’s paper the 2D, nonlinear equilibrium solutions for the
swept Hiemenz flow attachment-line boundary layer are computed by solving
the Navier-Stokes equations as the nonlinear eigenvalue problem.

The critical Reynolds number obtained for the Tollmien-Sclichting waves
(Orr-Sommerfeld equation) for « = 0.0 has been found of 660, whereas from
the Gortler-Hammerlin formula Re. = 583.2. Inside the unstable region, the
amplification rates of the Gortler-Hammerlin disturbances are significantly
greater than those of the Tollmien-Schlichting form.

Fig.6 presents the transition Reynolds number Reg, calculated from
exp(n) method for total applification rate n = — OZ T6; dZ = 6 and 10
as a function of the spanwise distance Z. The results presented in Fig.6 are
obtained for the Gortler-Hammerlin form of disturbances. The application of
exp(n) method to the case of attachment-line is straightforward with the as-
sumption of the uniform boundary layer from its origin to transition. In such
a case Reg is constant from the point A to transition (Fig.2). By applying
the exp(n) rule, the transition location is Zr = n/(~fi)maes- In Fig.6 the

12 - Mechanika Teoretyczna
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10°
7246

Fig. 6. Transition Reynolds number as a function of the spanwise distance Zr/©@

experimental data of Powilleit (1992) are presented for comparison. The expe-
rimental data are in a good agreement with our theoretical results for n =10
(the agreement is particularly good for larger values of Z). Such an analysis
has also been made at the maximum amplification rate (—p;)maz Obtained
from the Orr-Sommerfeld equation. In such a case the theoretical values for
n = 6 are in best agreement with the experimental results.
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Fig. 7. Neutral curves obtained for different &

In Fig.7 we have shown the neutral curves (wave number f as a function
of the Reynolds number) obtained for the suction rates x« = —0.1, 0.0, 0.1,
0.18 and 0.3. To generate a neutral curve (w; = 0) we used Newton’s method.
The iteration process is repeated until w; = 0 vanishes within the assumed
tolerance (in the present paper w; < 107°). It can be seen from Fig.7 that
the shape of neutral curves for the flow with suction (x < 0) is of a viscous
instability type and for blowing (x > 0) is of an inviscid instability and that
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suction stabilises while blowing destabilises the boundary layer. The corre-
sponding linear critical Reynolds numbers for different & have been plotted
in Fig.8. We see that the critical Reynolds number increases very rapidly with
decreasing k. In Fig.8 the obtained curve Re, = f(k) is compared with
the results of Spalart (1988) who performed direct simmulation of the flow near
the attachment-line of a swept cylindrical body by solving numerically (DNS)
the full Navier-Stokes equations (DNS; at the limit of small perturbations).
For each value of & Spalart determined a range of the width 50 in Reynolds
number in such a way that at lower Reynolds number all disturbances decayed
and at higher ones at least one mode was amplified. From Fig.8 we can see
that for each « obtained in the present paper the critical Reynolds nurber
lies within the "range”.

1200 ‘

IOOOL——A

---R,

—&-Re.. by Spalart
800 —k— Re,, oblained in the —
presented paper

Rl’ Recr

0.3 0.8
K

Fig. 8. Critical Reynolds number Re., versus & and comparison with the Spalart
results (R; and Re,,)

By analysing the function Re, = f(k) one can overestimate the real
stabilising influence of suction on the attachment-line boundary layer. In Fig.8
there have also shown the relaminarisation Reynolds number R, (the Reynolds
number below which the attachment-line contamination does not arise) as a
function of « obtained by Spalart. As was done for the linear critical Reynolds
number, the ”range” is given for each value of k. In this case, at the lower
end, the flow was observed to relaminarise, even when the initial condition of
well-developed turbulent flow was taken and at the high end of the "range”,
turbulence was sustained for a long time. We see that suction has a much
weaker effect on R; than on Re,.
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Fig. 9. Eigenfunctions corresponding to the neutral point at Re = 583, § = 0.2845,
k=20.0

In Fig.9 we have plotted the eigenfunctions corresponding to the neutral
point at Re = 583.2, § = 0.2845, x = 0.0. The eigenfunctions have been
normalised in each case so that the maximum of each velocity component is
one. In Fig.9 we can see a rapid decrease of % component as Y — oo, whereas
7 component vanishes more slowly. This is, of course, to be expected since for
large Y 4 ~ exp(—~Y?/2) and 7 ~ exp(—3Y) (Eq 3.14).

Agreement between the Spalart results and those obtained for the Gortler-
Hammerlin form of disturbances can be also observed in Fig.9. The peak loca-
tion of the rms of disturbance V' (Y & 2, at Re = 583, 8 = 0.2845) obtained
by Spalart agrees very well with the location of maximum of 7, in Fig.9.
Investigations conducted by Spalart (1988) proved that disturbances of the
form of Eq (3.5) are most unstable and therefore most relevant in the linear
stability study. This was also confirmed by Lin and Malik (1996) who studied
stability of the incompressible attachment-line boundary layers by using the
2D eigenvalue approach.

To estimate accuracy of the made code we compared our results with those
of Theofilis (1998) obtained by applying the linear stability theory (LST*)
and the direct numerical method (DNS*; at the limit of small perturbations).
The comparison made for Re = 350 and x = 0.18 is shown in Table 2.
The comparison shows that the obtained results agree very well with those of
Theofilis (LST* and DNS*).
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Table 2. Comparison between the results obtained in this paper (LST)
and those of Theofilis (LST* and DNS*)

| DNS* B LST* ]
B wr w; B wr | wi |
[ 0.15625 | 5.486500F — 02 | —3.4620F — 03 | 5.4886E — 02 | —3.4440 — 03 |
0.18750 | 6.907600F — 02 | —1.5680E — 03 | 6.9087E — 02 | —1.5500 — 03
0.21875 | 8.367700F — 02 | 1.6300E — 04 | 8.3683E — 02 | 1.680 — 04 |
0.25000 | 9.857400F — 02 | 1.4870E — 03 | 9.8578F — 02 | 1.4980 — 03 |
0.28125 0.1136920 2.2970E — 03 0.113695 2.3040 — 03
0.31250 0.1289580 2.4910E — 03 0.128962 2.4950 — 03
0.34375 0.1443000 2.0030E — 03 0.144307 2.0030 — 03
0.37500 0.1596450 7.8200E — 04 0.159655 7.770 — 04
0.40625 0.1749130 ~1.2160E —03 | 0174928 [ —1.2250 — 03
| 0.43750 0.1900170 | —4.0280E —03 |  0.190039 | —4.0420 — 03 |
| LST
__F o | e
0.15625 [ 5.49F — 02 [ —3.44F — 03 |
0.18750 | 6.91E — 02 | —1.55F ~ 03
0.21875 | 8.37E — 02 | 1.68F — 04
0.25000 | 9.86 —02 | 1.50F —03 |
0.28125 | 0.113696 | 2.30E — 03
1 0.31250 | 0.128963 | 2.49F - 03
0.34375 | 0.144308 | 2.00E - 03
0.37500 | 0.159656 | 7.77E — 04
0.40625 | 0.174929 | —1.22F — 03
0.43750 | 0.190039 | —4.04F — 03

6. Conclusions

The linear, non-parallel stability analyses of the swept attachment-line
flow were performed by studying particular three-dimensional disturbances
(Gortler-Hammerlin formula). The linear stability theory equations (temporal
and spatial approach) were solved by means of the spectral collocation me-
thod. The global solution method used for solving the eigenproblem yielded
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the full spectrum of the least damped waves, not only the most unstable wave.
Calculations were made for the boundary layer with suction and blowing.
The results demonstrated strong stabilising influence of suction on the critical
Reynolds number, however, the Spalart DNS results showed that suction has
a much weaker effect on the relaminarisation Reynolds number. To estimate
accuracy of the algorithm used in the present work we made a comparison
between the instability results obtained by different authors using different
approaches. The comparison showed that the results obtained in the present
paper for the Gortler-Hammerlin form of disturbances are in very good agre-
ement with the linear stability results of Hall et al. (1984), Theofilis (1998,
1995), Powilleit (1992) and with DNS of Theofilis (1998) and with DNS results
of Spalart (1988) (DNS at the limit of small perturbations). We have shown
that the range of frequencies of unstable waves measured by Pfenninger and
Bacon (1969) and Poll (1979) corresponds to the neighbourhood of the line of
maximally amplified disturbances and that the theoretically obtained transi-
tion Reynolds numbers Reg, (according to exp(n) method) are correlated
well for the total amplification rate m = 10 with the experimental results of
Powilleit (1992).

Finally, we would like to make a few comments about the planed extension
of the presented instability work to the nonlinear calculations within the frame
of the Gortler-Hammerlin form of disturbances. The X-dependence structure
of disturbances will enable us to find a solution of the nonlinear stability equ-
ations by solving ordinary differential equations. Such non-linear calculations
might help to understand the origin of the subcritical equilibrium disturbances
measured by Pfenninger and Bacon (1969).
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Stabilno$é niescisliwej warstwy przySciennej na skosnej krawedzi natarcia

Streszczenie

Statecznoéé warstwy przyéciennej skoénej krawedzi natarcia badana jest w pracy
za, pomocg liniowej teorii niestabilno$ci. Réwnania liniowej teorii niestabilnosci wraz
z warunkami brzegowymi tworzg uogélnione zagadnienie wlasne, ktére rozwigzywane
jest metodg spektralnej kolokacji. Analiza statecznoSci zostala przeprowadzona dla
przeplywéw z odsysaniem i wydmuchiwaniem. Uzyskiwane rezultaty poréwnywano
z wynikami teoretycznymi innych autoréw oraz z wynikami badas eksperymentalnych.
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