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The paper presents the boundary perturbation method applied to opti-
mal plastic shape design. Perfect plasticity is assumed. The procedure
consists of two steps: the class of fully plastic solutions in the limit state
is first determined, and then the optimal shape is chosen from among
these solutions. Rotationally symmetric elements with conical bearing
surfaces are considered. The optimal angle of inclination of such surfaces
is also evaluated. The final results are verified by means of the ADINA
program.
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1. Introduction

Heads of rotationally symmetric tension members (circular cylinders, e.g.
rivets or screws) are usually formed as hemispheres supported on bearing pla-
nes perpendicular to the axis of the member. The shape of a hemisphere is
not optimal from the point of view of minimal volume; optimal plastic design
of such heads was considered by Zyczkowski and Egner (1995). The boundary
perturbation method (BPM) was used and a thick-walled sphere under pres-
sure served as the basic solution. Spherical coordinates r,1, 6 were employed
for the head, and cylindrical coordinates 7,6,z for the cylindrical part.

The present paper is an extension of Zyczkowski and Egner (1995), namely
the bearing plane will be generalized to a conical bearing surface (Fig.1). Such
an extension will bring an additional design variable, namely the angle
between the generatrix of the bearing surface and the z axis, and consequ-
ently an additional profit, it means lower volume of the head. It is assumed
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that a conical head is admissible from the structural point of view. A simi-
lar problem for plane heads (under the assumption of the plane-strain state)
was considered by Egner (1999). However, the present problem is more diffi-
cult, since governing equations in spherical coordinates are more complicated
making it necessary to consider both stresses and displacements.

Many problems of optimal plastic shape design of structural elements were
solved by Szczepinski and Szlagowski (1990), who used statically admissible
stress fields, uniform inside appropriately chosen subdomains. A more exact
approach, based on slip-line fields, was used by Zowczak (1981, 1989) in plane
strain problems, and also in a rotationally symmetric problem (Zowczak [8], to
be published). Similar to that considered in the present paper. A comparison
with Zowczak’s results will be given.

Application of the BPM to optimal plastic shape design, initiated by Bo-
chenek et al. (1983) was studied in detail by Egner et al. (1994), where also
numerous references to the BPM are quoted. The method consists of two steps:
first a family of shapes subject to full plastification at the stage of collapse
is established by the BPM (Kordas and Z'yczkow'ski 1970; many subsequent
solutions were reviewed by Zyczkowski 1981), and then optimal design from
among this family is chosen. Of course, full plastification is not always po-
ssible; in such cases yielding of possibly large subdomains is required. The
method can be applied if the basic solution (zeroth approximation) is known
and has a relatively simple form. It was used, for example, to optimization of
plane heads of tension members (Egner, 1996), and of yoke elements (Egner
et al., 1993).

The present paper is based on the following assumptions:

e The element under consideration consists of a cylindrical tension mem-
ber and of a conical head with an unknown rotationally symmetric free
boundary b = b(1) serving as a functional design variable, with the
angle 1 regarded as an additional design variable (parameter).

e The cylindrical tension member is in a uniform stress state corresponding
to full plastification at the stage of collapse.

e The zeroth approximation for the head is assumed as for a thick-walled
sphere ag < r < by under internal (negative) pressure equal to the
stress in the cylindrical part. The subdomain between the cylinder and
the thick-walled sphere is not subject to plastification.

e The material is perfectly plastic, incompressible, subject to the Huber-
Mises-Hencky (HMH) yield condition and the Hencky-Ilyushin or Levy-
Mises constitutive equations.
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e Strains and displacements (or velocities) are small.

e Minimal volumne of the head is the design objective.

The general view of the structure is shown in Fig.1.

2. Zeroth approximation

As the zeroth approximation we assume the solution for a perfectly plastic

tl}ick-wa,lled sphere ag < 7 < by under the internal pressure p, = —oy
(Zyczkowski and Egner, 1995)

Oro = —2091n % Oy = Oy = —ZUolnI:—O - 0g

by C

% = e uTo = —7'—2 (21)
2C

Ero = —o
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where ¢( denotes the yield point stress in tension and C denotes an arbitrary
positive constant. From the physical equation we can calculate the plastic
modulus ¢

Ero — &y = po(org — 01/)0) (2.2)

3C

0= —>7
v oor3

The above solution gives the upper bound to the volume and this volume will
be the reference solution. The volume equals

2 2
V=VW-= §7Tb8(1 — costhg) = §7re3/2a8(1 — cos ) (2.3)
where 1)y is an angle between the bearing surface and the z axis (symmetry
axis). For 1 = 60° the volume is equal

Vo = 1.047b3 = 4.693a3 (2.4)

Withn the inside zone agcosig/cosyy < r < ag it is then assumed
Or = 0y = 0g = 09, Oreq = 0. Fig.2 shows the distribution of the reduced
stress oreq in the spherical head (by/ag = +/e) obtained using the ADINA
program. It is seen that, in a relatively large subdomain, ¢,.4 is much smaller
than oy, hence the design is far from the optimal.

3. Perturbation analysis

In order to optimize the shape determined by b = b(1)) we introduce
rotationally symmetric perturbations of solutions (2.1) and (2.2)2 and of the
external contour, writing

¢ e}
X = Z Xpaf
p=0
(3.1)

X = [Ukl(ra w)a Ekl(Ta Tﬁ)» Uk (T7 w)a (p(T) w)’ b(w)] T
From among 11 equations for subsequent perturbations, determining the

4 stress components oy, oy, 09, Try, the 4 strain components ¢, £y, €9, Yry,
the 2 displacements ., uy and the plastic modulus ¢, 7 equations are linear
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and retain their original form for each perturbation. They are: two equilibrium
equations

Oor, 1071y, 1
Or; _l‘r’_ + ;[20',,,1, — Oyp; — 0, +T’l/17"i COtd)] =0

or r 0
v (3.2)
37‘1/,,-. 1 601/,. 1
1 - i - ) = ) t =
B + Fou + . [3Tyr; + (0, — dp;) cot ] =0
Strain-displacement relations
8uri 1 3u,/,i Uy,
fri = or Ebi = r o t r
5 L 8 (3.3)
_ Uy Ur; Uy, Uy, | L OUpy
€0s T coty+ T g, r T OY

and the incompressibility condition

Er, + €y, + €9, =0 (3.4)
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The remaining equations are nonlinear and change their form in perturbations.
The physical equations (Hencky-Ilyushin’s or Levy-Mises’s) take the form

2
Ekli = Z (pj[o-kl(i_j) - 6kl0-7TL(i._]‘)] ,l = 17 27 (35)
J=0
where o, = (0r + 0y + 04)/3, and &y, stand for Kronecker’s symbol. In
the case under consideration three of the above equations are independent.
Finally, the HMH yield condition for subsequent perturbations takes the form

Or; = Omy = [i(Oroy Topgs s Traps_1 ) 1=1,2,.. (3.6)

where
1

fi=0 fa= —(T—()[(cr,nl - 0,/,1)2 + 7',.2,/,1] - (3.7)

4. First perturbation

The system of 11 equations mentioned in the previous section may easily
be reduced to 4 equations. Four strain components are directly expressed in
terms of displacements in spherical coordinates. Further, from yield condition
(3.6) we eliminate o,

0g, = 20, — Oy, (4.1)
From physical equations (3.5) we can calculate the plastic modulus ¢ and the
second normal stress oy,

3e oor? [ Ou
01 = 1 ( 2

Oy, = Opy + ——

BTN T 60\ gy
Finally, substituting these expresions into the two equilibrium equations, the
incompressibility condition and the last independent physical equations we
obtain the following system of 4 governing equations

= Zoy — Uy, cot 1/1) (4.2)

at ds
8—1ﬁ—+r-(§;+tc0t1[1—0
ds oW ,OW
%+3t+2w—27ﬁ+'f 37‘2 =0
(4.3)
oUu ow
% —t_3W+TW = 0
ow ou

%‘FTE‘FWCOtdI:O
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where the following dimensionless quantities are introduced

2 2
o T r r
g = ! t= % U= —u W =

%0 %0 6C T @le (4.4)

5. Solution of the equations and boundary conditions

It can be seen that Egs (4.3) are of Euler’s type with respect to the va-
riable 7, hence their solution may be presented as power functions of this
variable. We assume the exponents of 7 to be complex, n;+ im;, and substi-
tute into (4.3) polynomials with J terms

J
§ = Zrnj [ij( Sln<m'7 In bo) + fs ) Cos<mj = br_o)]

— X:: [ sm(mj In br_o) + fi, (9) COS(mj In 1:_0)]

J
U=>Y r" [fUJ- () sin (mj In g—) + 7UJ. () cos (mj In bl)]
j=1 0 0

Z nj [fw sm(ma ln_)+ij(¢)C°S(mjln bl)]

bo 0

Substitution of the above terms into (4.3) results in systems of 4J equations.
First of them is presented below

ni(fo;85 + Fo, ) + my(fo;e5 = Foy55) + (55 + Frpei) +
+(fi;85 + 7tjcj) cotp =0

: (5.2)
§=1,2,...,J

where for the sake of brevity the following notations have been introduced
T
55 = s1n(m] In bo) cj = cos (mj In bo) (5.3)

It can be seen that fulfilment of the above equations is possible if the following
system of linear ordinary differential equations of the first order for each 7,
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g3 =1,2,...,J with the unknowns fsj,...,fwj is satisfied (it is one of 8.J sets
of equations)

fi + frycotp +mfs, —myf =0

oy + Ty cot+nify, ~myfs, =0

f;j +3ft; + (TL]2 —3n; + 2~ mJQ-)ij — (2n; — 3)m]-fwj =0

7;]. + 3ftj + (n]2 —3n; +2 - m;)fwj - (2n; - 3)mjfwj =0

fU, = fo + (0 = 3) fw; —mjfy, =0 (5.4)
fu, = 3F¢; + (ng = 3)Fw, +mjfu; =0

fw; + fw; cotp +n; fu, — mjfy, =0

Fw, + Fw, cot +nify, —msfy =0

At the pole ¥ = 0 these systems are singular because of cot v, hence the fol-
lowing expansions are used (based on symmetry or antisymmetry conditions)

|
I

frj — ATJ' + BT‘j¢2 + erwﬁl 4. r; Z’rj —}—Erij + 67‘j¢4 + ...

fy = Ay + B¢ + . Joy = Ao + By’ + ..
ij = AU]_ + BUJ,¢2 + CUj¢4 + ... ij = Zuj +§Uj¢2 + 5Uj¢4 + ...
Jw; = Aw, 9 + Bwd® + .. Jw, =Aw, v + Bw,0® + ..

(5.5)
Substituting (5.5) into (5.4), we obtain the following dependencies between
the coefficients of the series given by (5.5)

Ay = %mjATj — 313 4r, Ay = _%"J'Arj - %mJATj (5.6)

— Lt A, — 1. Aoy — Lo a4 L
Aw; = 3m;Ay; — 354, Aw,; = —3n4y; — 3m;iAy;

The subsequent coefficients B, C, ... can be expressed in terms of A.
These relations are very complicated so that we present below ouly two of
them

3 — 1
By, = J(mAy —midy)+ g [n%(n; = 3) + 2n; — 3m}(n; — 1)] Ay, +
1 _
- —m;[3n(n; —2) + m;(2 — m?)]AUj (6.7)

4
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— 1 -
C,, = - 6—4[n;’ — 3n3~’ — 7n§ - 2nj + m?(—ﬁn? +9n;+7) + m';]ATj +

.
+ 67;[—4713-’ + 9n]2» + 4n; + 2 + m§(4nj - 3)|A,, +
1
192
+ m?(—30n;’ + 54nj2- ~24n; 4+ 6) + m;(—g + 15m;)] Ay, +

[Sn? - 9n;1- +8n) — 6n]2~ +4n; +

my
192
+ m3(—30n] + 36n; — 8) + 3m]] Ay,

4 3 2

The boundary conditions at the outer, free edge b = (%) in view of rotational
symmetry may be reduced to the two following equations

oy cos(n,r) + Tryp cos(n, 1) = 0
(5.8)

Trp €OS(1, 7) + 0y cos(n, 1) = 0

After expressing the cosines in terms of the function b = b(%)), and expanding
the stresses and shape function b = b(4) into power series and equating the
corresponding coefficients of o we obtain the following two equations

o7y (bo, )by — 200by (%) = 0
(5.9)

Tryy (bo, ¥)bo + oo (9) =0

The function b; = b;(¢) appears in both equations; they might be satisfied
simultaneously if

aUTI (bOa w)

oY
In general, such a relation does not hold, though in the plane strain case
it was possible to satisfy a corresponding condition (Egner et al., 1993, 1994).
In the spatial case full plastification even of a layer is not always possible.
Namely, expressing the stresses by means of the earlier obtained functions f

+ 277, (bo, P) =0 (5.10)

J
oy = 00 Z r [fsj () sin(mj In 5%) + 731- (4) cos (mj In 5%)]
=1 (5.11)

T

Ty = 00 i oy {ftj(qp) sin(mj In bo) + ftj (4) cos (mj In ;—0)}

J=!1
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and substituting into equation (5.10) we obtain

M“

J+2f) (5.12)
_7:1

It is an additional differential equation which with the system of equation (5.4)
gives a set of 9J equations with 8J unknowns. Physically, it means that in
a limited state the structure is not fully plastified. Applying series (5.5) to
(5.10) we obtain additional relations between coefficients of the series

M&

J
Z(th + Es]') =0

J=1 J=1

S +2C,)=0 (5.13)

It turned out that not all of the above equations can be satisfied. The number
of equations which can be taken into account depends on the number of terms
J in series (5.1) which we retain for further consideration.

In order to have a possibly small error we calculate first the correction of
the outer edge b; as an arithmetic mean from both equations (5.9)

bo

b) = 1o [0 (50, 9) + 01, (80, 0) ~ 2 / b0, B 4] (5.14)

where 1) is the variable of the integration.

6. Optimization problem for a head

As an example, optimal design of a rivet or screw head is considered. The
optimization problem is formulated as follows: we look for the minimal volume
of the head

Yo Yo
V= ng/ 3(y) sinep dip = [bS +3b0a0/b (W) siny dy + ] (6.1)

under the constraint of a constant force transmitted, equal to the maximal
force transmitted by the cylindrical tension member (rivet or screw shank)
b(%o)
P= -2 / [0¢(T, o) + Trg{7, o) cot wOJT dr = madop (6.2)

ag
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The above equation gives us J relations which have a quite complicated form

J
ZFst [m? + (n;+2)? ZX-KLJ.+Y]-K2J.+(f¢jK1j+fth2j)cot'¢0] (6.3)
] 1 :

where the following notations are introduced

FstJ: [f (1/}0)+ fs /fgjdill

DO —

Xj = fs; (o) = 15 fu; (%o) + m; fu, (o)

Yj = f,, (o) = njfu, (o) — mjfu,(4o) (6.4)
Ky, =-mj - (%g—)njﬂ{(nj + 2)sin(mj In Z—E) - my cos(mj In %2)}
Ky =m;+2- (Z—;))nj+2 {(nj +2) cos(mj In Z—;)) +m; s1n(m] In b(())”

Finally, the solution of (4.3) is assumed in the form of (5.1) with J = 2
(a binomial form). Equations (5.4) are integrated numerically starting from
the series (5.5). The external contour b(1) is determined from (5.14) whereas
the internal contour is not expanded; the domain agcostg/cosy < r < ag
is subject to uniform triaxial tension in the basic state and it remains not
plastified after the perturbation. Finally, we introduce the boundary conditions
at the supporting plane (bearing surface). They may be specified in three forms

Perfectly clamped edge

W(tho) =0 U(tho) =0 (6.5)
the edge modelling contact of the two frictionless surfaces
W (1) = 0 Trp = 0 (6.6)
the edge modelling contact of the two surfaces with friction

W (1) = 0 o = ko (6.7)

The fulfilment of (6.5) in case of J = 2, would determine all the free pa-
rameters. Thus, the optimization is not possible here, as well as in the case
of boundary conditions (6.6). So, the case defined by equations (6.7) was so-
lved approximately. The condition ensuring the vanigshing of the transversal
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displacements was applied, neglecting the stress boundary condition. Then we
obtain the solution which describes the contact of the surface with friction.
First relation from (6.7) gives the following equations

S (o) = Fw, (o) = fwa(0) = Fuy, (100) =0 (6.8)

The small parameter « is found from the condition

2
n(b* — ad)og = madoy = b(yg) = apV2 = bo\/; = 0.858bg (6.9)

This condition means that in the reactive area oy = 0yp.

From among 12 free parameters my, ny, mq, ng, <@, and 7 constants A, we
eliminate 8 by satisfying Eq (6.8), condition (6.9), two equations (5.13) and one
condition (6.2). Finally, the four parameters remain free for the optimization:
my, MMy, Ny, Na.

7. Examples

The first example was calculated for the angle 1y = 60°. The optimal
values of the free parameters are following

my = 1.25 n) = 3.93
(7.1)
me = 3.195 ny = ~1.35
The minimal volume equals
V = 0.46V, (7.2)

where Vj is the volume of the spherical head for the angle 1y = w/2. The
shape of the head is shown in Fig.3. A remarkable concavity is observed at
the top. This concavity is possible in view of the circumferential latitudinal
stresses oy.

The numerical verification was done using the ADINA program. The di-
stribution of the reduced stresses is shown in Fig.4.

As can be seen in Fig.4 that the elastic area is quite large in the tension
member as well as in the head. In this case the reactive area was modelled as a
surface with a clamped edge. The theoretical calculation (boundary perturba-
tion method) shows a non-zero tangent stress at this surface as well as radial
displacement. Another extremal case is work of both surfaces as frictionless.
Fig.5 shows the distribution of the reduced stresses obtained using the ADINA
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program for the case of frictionless surfaces. It can be seen that the elastic area
in the head is smaller here, but the carrying capacity is lower (about 7%).
The second example was calculated for the angle ¥ = 35.3°. This special
value of the angle was chosen in order to compare the solution with the solution
obtained by Zowczak [8]. Zowczak used the slip- line method to the optimal
design of a head of spherical elements. The minimal volume obtained was equal

V =0.78V} (7.3)

The optimal shape is presented in Fig.6.
The distribution of the reduced stress obtained using the ADINA program
is shown in Fig.7.

0.975
0.825
0.675
0.525
— 0375
"= 0.225
— 0,075

Fig. 7.

It can be seen that this shape is far from the optimal, because of the
existence of large elastic domains. Using the boundary perturbation method
for the angle 1y = 35.3° the following solution was obtained

my = 4.4 ny = 2.55

(7.4)
™Mo = 2.7 Ny = -1.35

2 - Mechanika Teoretyczna
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and the minimal volume
V =0.54V, (7.5)

The shape is presented in Fig.8.

1.0

1)

0.8 P

0.6

0.4

0.2

Fig. 8.

The distribution of the reduced stress is shown in Fig.9. The elastic area is
here much smaller than in Zowczak’s solution, and the volume is 31% smaller.

Basing on the obtained results we can look for the angle for which the
volume is the smallest. For the basic solution (sphere) the dimensionless vo-
lume of the head for the angle g referred to the volume of half of the sphere

(1o = m/2) is given by

V 2 1
S § .
7 5T ¢0( cos 1) (7.6)

The above function has its minimum Vi, = 0.77V, for ¢ = 7/3. For the
optimal solution obtained using the boundary perturbation method we have
the following results

o = 35.3° V = 0.54V;
o = 60° V = 0.46V;
o = 90° V =061V,
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The graphical representation of the dimensionless volume versus the angle for
the spherical solutions and the solutions obtained using the boundary pertur-
bation method is shown in Fig.10. The solutions obtained using the boundary
perturbation method were interpolated by the use of a parabolic function. The
minimum Vy,;, = 0.46V} is reached for the angle ¢y = 58.4°.

8. Conclusions

e The boundary perturbation method makes it possible to optimize the
free boundary of a conical head of a rotationally symmetric tension mem-
ber. The result is verified by the ADINA program.

e In view of the complicated form of the perturbation equations just the
first approximation has been determined.

e The optimal angle of the cone is ¥y = 58.4°, and the minimal volume
is less than a half of the basic volume of the head.

o In contradistinction to the plane-strain solution, Egner (1999), the opti-
mal shape shows concavities, possible here in view of the latitudinal

stresses og.
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Optymalne ksztaltowanie w zakresie plastycznym elementdéw obrotowo

symetrycznych ze stozkowymi powierzchniami oporowymi

Streszczenie

W pracy przedstawiono zastosowanie metody zaburzenia brzegu do optymal-
nego ksztaltowania w zakresie plastycznym. Zalozono idealng plastycznoéé. Procedura
sklada sie z dwéch etap6w: okreSlenie rodziny rozwigzani wykazujacych catkowite upla-
stycznienie w fazie zniszczenia, a nastepnie wybranie z nich rozwigzania optymalnego.
Rozwazane sg elementy obrotowo symetryczne ze stozkowymi powierzchniami opo-
rowymi. Obliczono réwniez optymalny kat nachylenia tych powierzchni. Ostateczne
rezultaty zostaly zweryfikowane za pomoca programu ADINA.
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