JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
3, 88, 2000

NONLINEAR PIEZO-THERMOELASTIC SHELL THEORY
APPLIED TO CONTROL OF VARIABLE-GEOMETRY SHELLS

HorN-SEN Tzou

Department of Mechanical Engineering, University of Kentucky, Lezington

e-mail: hstzou@engr.uky.edu

REN JYE YANG

Ford Research Laboratory Vehicle Safety Research Department, Dearborn, USA

Complexity of multi-field opto-thermo-electromechanical coupling always
poses many challenging research issues. Recently due to a rapid develop-
ment in smart structures and structronic systems, multi-field coupling and
control of distributed structronic systems also raises variety of new research,
development, and system integration issues. This paper presents a generic
nonlinear piezo{electric)-thermoelectromechanical shell theory for a piezo-
electric double-curvature shell continuum with admissible boundary condi-
tions. Applications of the generic theory to other shell and non-shell continua
based on four system parameters are also demonstrated. Detailed sensing and
control electromechanical characteristics are further investigated in a series
of shells of various curvatures. The results show that the membrane sen-
sing/control component dominates the lower natural modes of deep shells
and the bending sensing/control component dominates the natural modes of
shallow shells. Electromechanical characteristics and effectiveness of distri-
buted sensors and actuators are evaluated.

Key words: geometric nonlinearity, smart structures, structronics, von Kar-
man nonlinearity

1. Introduction

Recent development of smart structures and structronic systems involves
applications of controllable smart materials, e.g., piezoelectrics, shape memory
materials, electro- and magneto-strictive materials, electro- and maguneto-
rheological fluids, etc., to high-performance structures, precision structronic
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and mechatronic systems. In general, these smart materials can respond to
certain stimuli, e.g., strain, force, pressure, light, etc., and also be actively
controlled via electrical field, magnetic field, currents, high-energy lights, etc.
(Tzou, 1998). Accordingly, structures and structronic systems incorporating
these smart materials are capable of responding to certain stimuli in a pre-
scribed manner based on performance or control requirements (Tzou and Ber-
gamen, 1998). Furthermore, the multi-field coupling and interactions of smart
structures and structronic systems have been becoming more and more com-
plicated and deserve an in-depth study to establish profound data base for

design of advanced smart structures and structronic systems.
Piezoelectric materials exhibit the two distinct electromechanical effects:

direct piezoelectric effect and converse piezoelectric effect. The former is fun-
damental for many sensor applications, e.g., accelerometers, force/pressure
transducers, etc; the latter creates a basis for precision actuation and control
applications. Due to their versatility in both sensor and actuator applica-
tions, piezoelectric materials are also widely used in modern smart structures
and structronic systems. As the functional requirements become higher, the
geometry of the piezoelectric devices also extends from the one-dimensional
(1D) rods, 1D rings, to two-dimensional (2D) flat plates, and 2D curved con-
tinua, e.g., cylindrical shells, conical shells, spherical shells, etc (Tzou, 1993).
The linear piezoelastic phenomena and theories have been studied for years
(Chau, 1986; Dokmeci, 1983; Drumbheller and Kalnins, 1970; Mindlin, 1972;
Rogacheva, 1994; Senik and Kudriavtsev, 1980; Tzou and Gadre, 1989). An
umbrella linear piezo-thermo-elastic shell theory based on a double-curvature
generic shell was proposed and the derived governing equations can be easily
simplified to account for many standard piezoelectric continua (Tzou and Ho-
ward, 1994). The linear thermo-electromechanical behavior and precision po-
sition control of distributed piezoelectric sensors and actuators were also in-
vestigated (Koppe et al., 1998; Tzou and Ye, 1994). As the deformation goes
beyond the linear elastic range, growing deformation geometric nonlinearity
also should be considered. Geometrical nonlinearity of elastic shells was inve-
stigated over the years (Librescu, 1987; Palazotto and Dennis, 1992; Pietrasz-
kiewicz, 1979; Chia, 1980). Pai et al. (1993) proposed a nonlinear model for a
piezoelectric plate. However, geometrical nonlinearity of anisotropic piezother-
moelastic shells simultaneously exposed to mechanical, electric, and thermal
fields have not been fully investigated (Tzou and Bao, 1997; Tzou and Zhou,
1995). This paper presents an advanced nonlinear piezo(electric)-thermoelastic
shell theory and a detailed analysis of electromechanical coupling of distribu-
ted piezoelectric sensors and actuators laminated on shell structures of various
curvatures.
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2. Piezo-thermoelastic constitutive equations and nonlinear
piezo-thermoelastic flexible shell continua

A mathematical model of nonlinear piezo(electric)-thermoelastic shell con-
tinuum revealing large-deformation geometric nonlinearity offers an umbrella
approach that can be easily extended to cover nonlinear shells, (e.g., spheri-
cal, conical, cylindrical, etc.) and plates (e.g., rectangular, circular, etc), linear
shells and plates, and many other shapes (e.g., arches, rings, beams, etc.). Fi-
gure 1 shows the three fundamental double-curvature flexible shell continua:
a) piezo(electric)-thermoelastic shell, b) elastic shell with distributed sensor
and actuator layers, and ¢) composite piezothermoelastic shell, and their de-
rivative shapes based on simplification procedures (Tzou, 1993). Thus, funda-
mental theories, distributed control mechanisms, and solution procedures, etc.
constructed for the generic nonlinear flexible shell continuum can be easily
applied to a large number of flexible shell and non-shell structures. [n this
section, fundamental piezo(electric)-thermoelectromechanical properties of a
piezoelectric continuum are briefly reviewed. A generic theory based on a non-
linear piezo{electric)-thermoelastic shell with the von Karman geometric non-
linearity is proposed and its governing equations are derived. Figure 1a shows
a generic double-curvature flexible shell subjected to mechanical, electric, and
temperature excitations; the shell is defined in a tri-orthogonal curvilinear co-
ordinate system in which «; and a5 define the in-plane axes and a3 defines
the transverse direction.

2.1. Piezo(electric)-thermoelastic constitutive equations

The piezo-thermoelectromechanical constitutive relations of a generic
piezo-thermoelastic shell continuum are governed by the three fundamental
equations (Tzou and Howard, 1994)

— stress equation
T=cS—e E-\ (2.1)

— electric displacement equation
D=eS—¢cE-pb (2.2)
— thermal entropy equation
I=X8-p E-a, (2.3)

where
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Fig. 1. Three generic double-curvature shells and their derived shell continua
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— stress vector

~ strain vector

- electric field vector

electric displacement vector

— elastic stiffness coefficient matrix

- piezoelectric coefficient matrix

— dielectric permittivity matrix

-~ thermal entropy density

— temperature rise (§ = @ — Oy where © is the absolute tempe-
rature and @y the temperature of the natural state in which
stresses and strains are zero)

stress-temperature coefficient vector

p - pyroelectric coefficient vector

a, - material constant (a, = pc,/Op where p is the material den-
sity and ¢, is the specific heat at a constant volume).

%Nmohbt’dt’)'ﬂ
|

b
|

The electric fields FE), E,, FE3 and the electric potential ¢ in the shell
curvilinear shell coordinate system are defined by

{Ei} = —[fii]{ 09 } i=1,2,3

a;

where
A1+ for i=1,2
fiilay, ay, a3) = ( Ri)
1 for 7=3

is a finite distance measured from the reference surface; A; and Ay are the
Lamé parameters; R; and Rj; are the radii of curvature of the a; and o
axes on the neutral surface defined by a3 = 0. The Lamé parameters (A, and
Ay) and two radii (R; and Rp) are the four essential parameters used in sim-
plification and application of the generic shell theory to other geometries and
shell/non-shell continua (Tzou, 1993). Nonlinear piezo-thermoelastic shells are
evaluated and generic thermo-electromechanical equations are defined in the
next section.

2.2. Large deformation geometric nonlinearity

The shape transformation and imposed shape control often involves large
deformations; i.e., geometric nonlinearity. A generic nonlinear deflection Uj; in
the ¢th direction of the shell can be expressed as a sum of (in-plane) membrane
displacement wu;(aj,as,t) and higher order nonlinear shear deformation effect
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represented by the sum of angular displacements 8;;(o, ao,t)

m

Us(on, 0, 03, 8) = usan, @2,) + Y _ 4B (ar, 000, ) (2.4)

j=1

where (11 and [ represent the angles of rotation in the positive sense of «;
and oy axes, respectively; and [3; = 0. This formula includes higher order
nonlinear shear deformation effects. However, according to the Love-Kirchhoff
thin shell assumptions and a linear displacement approximation (first order
shear deformation theory), only the first term is kept in the equation, i.e.,
m = 1. The displacements and angles of rotation are independent variables
in thick shells. However, the angles of rotation are dependent variables in
thin shells, and they can be derived on the thin shell assumptions that the
transverse normal strain S3 is negligible and the shear strains S; and Sy
are equal zero. Based on the thin shell assumptions, the angles of rotation
p1 = P11 and [ = f9; are derived from the transverse shear strain equations,
ie., S4 =0and S5 = 0. Thus, the angles of rotation are defined as

U; 1 3’113

%= R T A ba

i=1,2

In general, since a3/R; <1 and a3/R; < 1, the ratios of the finite distance
to the radius of curvature are negligible, i.e., fi1 ~ A; and foy = Ay.

Although it is assumed that the piezoelectric shell experiences large de-
formations in the three axial directions, however, in reality, the in-plane de-
flections are much smaller than the transverse deflection. Thus, the nonlinear
effects due to the in-plane large deflections are usually neglected, i.e., the von
Karman-type assumptions (Palazotto and Dennis, 1992; Chia, 1980) are ac-
cepted. The nonlinear strain-displacement relations for a thin shell revealing
a large transverse deflection w3 include both the linear effect (denoted by the
superscript ), and the nonlinear one (denoted by the superscript n), induced
by the large deformation

(5= (N +{s)") + ok} i=1,2,6 (2.5)

where the subscripts 1 and 2, respectively, denote two normal strains and 6
represents the in-plane shear strain. Detailed membrane and bending strains
(s? and k;) are expressed as functions of the displacements u;, the Lamé
parameters (A; and Aj), and the two radii (R; and R»)
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Note that the quadratic terms (nonlinear terms) inside the brackets are con-
tributed by the large deflection. The membrane force resultants N;; and the
bending moments M;; of the piezothermoelastic shell, Fig.1a, are defined by
the elastic, electric, and the temperature components
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Furthemore, the membrane force resultants V;; and the bending moments
M;; of the piezothermoelastic laminated compsite shell, see Fig.lc, can be
defined as follows (Tzou and Bao, 1997)
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where A;j, B;; and D;; are the extensional coupling, and bending stiffness
constants. The superscripts e and @, respectively, denote the electric and
temperature components. The membrane strains and the bending strains are
coupled by the coupling stiffness coefficients Bj;; in the elastic force/moment
resultants. N5 and NZ. are the electric and temperature induced forces; M;;
and M,-ej are the electric and temperature induced moments, respectively. In
actuator applications, these electric forces and moments are used to control
static and dynamic characteristics of the shell. These strain/displacement re-
lations, membrane force resultants, bending moment resultants, etc. are used
in Hamilton’s equation to derive the thermo-electromechanical equations and
boundary conditions of nonlinear piezothermoelastic shells. Although it is as-
sumed that the transverse shear deflections can be neglected, the integrated
effect of the transverse shear stress resultants (i3 and ()23 are not neglec-
ted. Note, that the effects of rotational inertia can be neglected in thin shells
without large rotational effects. Thus, the original set of governing equations
can be reduced to three governing equations.

2.3. Hamilton’s principle and nonlinear system equations

Hamilton’s principle is used to derive the thermo-electromechanical shell
equations and boundary conditions of the piezothermoelastic shell continuum.
Hamilton’s principle assumes that the energy variations over an arbitrary pe-
riod of time are zero. Considering all energies, one can write Hamilton’s equ-
ation as

13}
5/[/<%pUjUj—H(Si,Ei,Q)-FI@) dV—/(tjUj—ngb) ds] dt =0 (2.9)
to V S

where
p — mmass density
H — electric enthalpy
t; - surface traction in the ¢; direction
Qj — surface electric charge
¢ - electrical potential
V,S — volume and surface of the piezothermoelastic shell conti-

nuum, respectively
U, U ; — displacement and velocity vectors.
It is assumed that only the transverse electric field Fj is considered in the
analysis. Substituting all energy expressions into Hamilton’s equation and car-
rying out all variations, one can derive the nonlinear piezothermoelastic shell
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equations and boundary conditions of the piezothermoelastic shell continuum

O(N1145) 0Ay  O(Ny Ay) 04, O(My1 Ag)
Oa) + Noz Oay Oay Ny 2% R [ Oa t
04 O(My A 84
— My, 8a12 + ( 820112 ) M126 1] + A1 Ayphiiy = A1 Ao Py
O(NypA)) 04; O(Npp4y) 8A2 O( M A)
60(2 + Nll Oa (s3] 60[1 N2l Bal Rz [ 6a2 +
8A 8 M2 A 04
-My ! ( 12 2) + Mo, 2] +A1A2phu2 A1A2F2
6&2 6&1 6
(2.10)
0 O(M,147) 0Ay 8(M21A1) 04,
" Bar [Al( by Mgy, oy T Mz, 2)] +
0 O(Ma2A;) 04, 3(M12A2) 0A,
3a2 [Az( Oap My Oay + Oa; + Moo Oay )] +
Ni1 | Np . O(N11As/A1) | ONip\ Oug
HAAy (Pt + ) A daphity — | (TG 4 G ) O
8(N22A1/A2) 8N12 3’113 8 us Ag 3 us
+( Oay + Oay )6012 2N123a18a2 NllAl Oa 2
A1 8 Uus
+N22A2 Be 2] = A1 Ay F3

Note that all terms inside the brachets are contributed by the nonlinear effects
and the nonlinear influence on the transverse equation wus is significant. The
thermo-electromechanical shell equations look similar to those for the stan-
dard shell. However, the force and moment expressions defined by mechanical,
thermal, and electric effects are much more complicated than the conven-
tional elastic expressions, Egs (2.7) and (2.8). Substituting the formulae for
Nii, Nog, Nio, My, My, My into the above equations yields the thermo-
electromechanical equations defined in the reference displacements wuj, ug, us.
Recall, that the transverse shear deformation and the rotational inertia effects
are not considered. The electric terms, forces and moments, can be used in
controlling the mechanical and/or temperature induced excitations (Tzou and

e, 1994). Note, that all elastic, electric, and thermal related terms can also
appear in boundary conditions. These electric terms can be used, combined
with control algorithms, as control forces/moments counteracting mechanical
and temperature induced vibrations in distributed structural control of shells
(Tzou et al., 1999). Applications and simplifications of the nonlinear piezo-
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thermoelastic shell equations can be demonstrated in the two ways:

e material simplifications and

e geometrical simplifications (Tzou, 1993; Tzou and Bao, 1996).

In the next section, detailed distributed sensing and control mechanisms of
distributed shell sensor/actuator layers are investigated.

3. Distributed sensing of nonlinear shells

Distributed piezoelectric layers laminated on the generic nonlinear shell
respond to shell strain variations and as a result generate electric signals based
on the direct piezoelectric effect, see Fig.1b. The open-circuit signal ¢° is a
function of induced local strains S;; and the piezoelectric constants d;;

¢s = %//(d;;lel + d32552 + dgssz)AlAQ daydos (31)
a1 a2
where
h? — sensor thickness
5S¢ — effective electrode area
A, Ay - Lamé costants.

The surface integration represents the total charge generated over the ef-
fective electrode area defined by the «a; and as axes. Note, that since the
sensor is spatially distributed, the signal is averaged over the total effective
electrode area (Tzou et al., 1993). The strain can be divided into the mem-
brane strain and the bending strain. Thus, the sensor signal resulting from a
nonlinear shell can be further expressed as

1 Bul U aAl U3 1 Bu;; 2
se//{d‘” Al dar T A 0y T Ry +2A2<3a1> +

a1 a2
i 8 Buz\ DA
[ e~ ) * T (s~ ) )
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where
u; — displacements
R; ~ radius of curvature of the th axis
r® — sensor location away from the shell neutral surface.

The terms following 7 represent the bending strain component; while the
others denote the membrane strain component. The membrane strain compo-
nent is related to in-plane oscillations and the bending component is related
to bending oscillation of the generic shell. Note that the large deformation ef-
fect is included with the membrane strains, the quadratic terms, based on the
von Karman geometric nonlinearity theory. To demonstrate the distributed
sensing concept, distributed sensing behavior of shells is investigated later.

4. Distributed control of nonlinear shells

Distributed control of nonlinear shell continua requires different approaches
as compared with that to the discrete parameter systems. Distributed control
effectiveness of shells suggests that the overall control effect can be divided
into the two major control actions:

e membrane control action and

e bending control action.

Usually, the membrane control action dominates the lower-mode control of
deep shells, e.g., cylindrical shell, and the bending control action dominates
the control of higher deep-shell modes and all modes of zero-curvature con-
tinua, e.g., plates and beams (Tzou et al., 1998). (These phenomena will be
demonstrated in the Case Studies presented later.) Assume that the control
components N in the flexible shell equation can be represented by a control
function Ni‘;- = L (¢, 2, ¢3) = L), 1 = 1,2,3, where ¢; is the control
potential. Define a distributed feedback function L¢(¢;) = {A4;(ay, as,t)},

11 - Mechanika Teoretyczna
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1 =1,2,3, where A; can be displacement, velocity, acceleration or combina-
tion of several reference factors. Expanding the distributed feedback function
in the modal domain

L (¢i) = Y Giilon, c)mi(t) i=1,23
k=1

one can express the distributed control force as

o~

/[ 55 Gilon ki (Ose(en, oo Ards denda (41)

thkm g, i=lk=1
where
N ~//Z & (ay,a0) Ay Ag dagdon
ar ap J=1

and

Uik - mode shape function

Gj(ai,00) — spatial gain function

Tk — modal coordinate of the kth mode.

Assuming that the distributed control force is velocity dependent and the
gain factor G7; is a constant, one can derive the modal domain control equ-
ations as

1
Nk + — c - ——// kAlAg daldag)nk 4+ wk"?k =0 (4.2)

@) @2

Accordingly, modal responses of nonlinear flexible shell continua can be in-
dependently controlled. The spatial shapes of required actuators can also be
represented by the spatial gain function such that a single mode or combination
of matural modes can be optimally controlled by means of limited distributed
actuators (Tzou et al., 1993, 1994). The case studies exploiting detailed sensing
and control mechanisins are presented below.

5. Sensing and control mechanisms of shells with various
curvatures

Adaptive structures and shape control often involve shape transformation
from one geometry to the other, in order to achieve specific functional ad-
vantages in practical applications, such as flow control, lift control, vibration
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control, etc. Plates are zero-curvature shells, per se; cylinders can be formed
with a plate wrapped around 360° and sealed at the connection. Accordin-
gly, transforming a shallow cylindrical shell to a full-closed cylinder would be
a good example of revealing detailed sensing and control mechanisms in the
shape transformation of adaptive shells. Fig.2 shows a shape transformation
of a shallow cylindrical shell to a cylinder. However, since the purpose is to
evaluate the curvature effect to distributed sensing and control characteristics,
the external nonlinear force and large deformation effects are not considered
in the analysis, although the nonlinear theory was presented earlier.

(distributed sensors/actuators neglected)

m:> cen was

(not to scale)

Fig. 2. Shape transformation of a cylindrical shell

(p'" patch defined by
x and A coordinates)

1,5: piezoelectric layers
2-4: composite layers

Fig. 3. Composite flexible cylindrical shell with distributed piezoelectric layers
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The coordinate system of a cylindrical shell is defined in Fig.3, in which
z denotes the length direction, [ the circumferential direction, and a3 the
transverse direction. The Lamé constants are A; =1 and As = R; the radii of
curvature are Rj; = oo and Ry = R. Distributed piezoelectric layers laminated
on elastic continua can be used as distributed sensors and/or actuators, see
Fig.3.

Substituting the Lamé constants and radii of curvature into the nonlinear
flexible shell piezo-thermoelectromecahnical equations yields the three gover-
ning equations of flexible cylindrical shells

ONzz 1 ONgg . ON¢
_ _ - h —_ F T
gz R op MM T gy
ONzg 1 ONpgg 1 (aMzg n 1 OMpgg
0z R 0p R\ Oz R 0B
1 ONgg 1 OMg,
+ J— _ 77
"R o8 "R 9P
M. 2 8°M, 1 0°Mpgs N,
e 20°Mag 1 9Mag  Nog | o
dz? R 022 R2 8p R
Mg, 1 9Mi; N
Oz? R? 9P R

>+phi],2 =

(5.1)

:F3+

The forces and moments are defined by

m 8
[

in Eq (2.7) for single layer piezo-thermoelastic shells and in Eq (2.8) for
multi-layer composite shells, see Fig.3. Injecting high voltages into the distri-
buted piezoelectric actuators induces two major control actions. One is the in-
plane membrane control force(s) and the other is the out-of-plane bending con-
trol moment(s). In general, the control moments are essential in zero-curvature
planar structures, e.g., plates and beams; the membrane control forces are ef-
fective in shells. In this study, detailed sensing and control characteristics of
the cylindrical shell are evaluated with respect to the curvature changes, from
shallow shells to deep shells (30° — 120°).

Since sensing and control effectiveness is natural mode dependent, natural
frequencies of the cylindrical shells (i.e., 30°, 60°, 90°, 120°, and 150°) are
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presented in Fig.4. It shows that the natural frequency continuously increases
as the mode varies from lower to higher modes of shallow shells (e.g., 30°, 60°),
which indicates that the bending behavior dominates the dynamics. However,
as the curvature increases to deep shells (e.g., 90°, 120°, and 150°), the
natural frequency drops for the first few natural modes and takes off at higher
modes. This behavior especially is significant for the deep shell (150°), due to
the membrane behavior dominating the first few natural modes. As the mode
increases, the bending behavior becomes prominent at higher natural modes.

Shell transformation /JQ
via curvature changes T YT \
Om=1 MAm=2 Am=3 Am=4 K/\

25000 T5=30 [B=60 [B=90 /=120 [B=150
20000 A / X J /
15000 / / i =] /fo//
10000 / //J
5000 Av —

r

7

Frequency [Hz]

\

Y/@\
K\\
TN

[/
AN
/T

[\

1 2 3 41 2 3 41 2 3 41
n n n n n

Fig. 4. Frequency variation of the cylindrical shells

5.1. Distributed sensor characteristics

It is assumed that a piezoelectric layer is laminated on the shells and the
sensing characteristics of these shells are investigated in this section. Recall
that the total sensing signal is contributed by the two components: the mem-
brane component and the bending component. Thus, the signal generations
from the membrane and the bending components of the shells (i.e., 30°, 60°,
90°, 120°, and 150°) are respectively calculated and plotted in Fig.5. Note
that the bottom plots denote the signals generated from the bending effect,
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lots show the signals generated from the membrane effect, and the

top plots show the total signals. It can be seen from the figures, that the mem-

brane signal
unchanged i
to the senso
ding strain ¢
component i

increases as the curvature increases; the bending signal remains
n all shell variations since the distance from the neutral surface
r layer is constant in all cases. As discussed previously, the ben-
omponent is prominent in shallow shells and the membrane strain
s prominent in deep shells. This phenomenon also reflects in the

signal generation. The membrane signal increases as the curvature increases
and this signal becomes the dominating one in deep shells.
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Fig. 5. Distributed sensing characteristics

buted actuator characteristics

Furthermore, distributed control characteristics of piezoelectric laminated
shells are investigated. Similar to the distributed sensing characteristics, there
are two essential contributing components (i.e., the membrane component and
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the bending component) influencing the overall control electromechanics of
the shells. These two components are also calculated and plotted in Fig.6.
Again, the bottom plots represents the bending actuation factors, the middles
show the membrane actuation factors, and the tops denote the total effect.
Analytical results suggest that the membrane control effect increases as the
curvature increases, indicating that the membrane control effect dominates the
control of lower natural modes in deep shells and the bending control effect
dominates the control of shallow shells.
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Fig. 6. Distributed control characteristics of shallow and deep shells

5.3. Distributed feedback characteristics

There are two sensor signal components (the membrane and bending com-
ponents) and two actuation factors (the membrane and bending components).
Thus, there are four possibilities: membrane signal to the membrane control
(M,M); membrane signal to the bending control (M,B); bending signal to the
membrane control (B,M), and bending signal to the bending control (M,M)
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in the feedback control of the shells of curvatures of 30°, 60°, 90°, 120°, and
150°. Fig.7 illustrates the four feedback possibilities for the first nine natural
modes of the shells. There are (M,M), (M,B), (B,M), (B,B) and the total ef-
fects plotted versus to the curvature angles, 30°, 60°, 90°, 120°, and 150°
for the nine natural modes. It is clear that the (M,B) and (B,M) are sym-
metrical, thus they cancel out each other in the total response. However, the
membrane effect increases as the curvature increases; the bending effect only
changes slightly.
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Fig. 7. Distributed feedback control characteristics of the shells; (M,M) ¢ modal
feedback factor from membrane sensor to membrane actuator; (B,B) (0 modal
feedback from bending sensor to bending actuator; (M,B) A modal feedback factor
from membrane sensor to bending actuator; (B,M) B modal feedback factor from
bending sensor to membrane actuator; A modal feedback factor of the controlled
system

Again, it is clear that the membrane control effect dominates the overall
control effect in deep shells, if the membrane signal can be individually extrac-
ted and fedback to the membrane actuators. The control effect resulting from
the bending signal and the bending control effect (B,B) is relatively insignifi-
cant in lower natural modes of deep shells. Furthermore, damping variations
of these four cases are also studied and plotted in Fig.8. These controlled
damping characteristics also reveal similar characteristics as those discussed
above.
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Fig. 8. Controlled damping characteristics of the shells; (M,M) ¢ controlled damping
ratio from membrane sensor to membrane actuator; (B,B) O controlled damping
ratio from bending sensor to bending actuator; (M,B) A controlled damping ratio

from membrane sensor to bending actuator; (B,M) M controlled damping ratio from
bending sensor to membrane actuator; A damping ratio of the controlled system

6. Conclusions

Smart structures and structronic systems often involve multi-field coupling
of structures, control, electronics, temperature, and applications of controlla-
ble smart materials, e.g., piezoelectrics, shape memory materials, electro- and
magneto-strictive materials, electro- and magneto-rheological fluids, etc. The
multi-field coupling and interactions of smart structures and structronic sys-
tems have revealed many complicated research issues in recent years. This pa-
per presents an advanced nonlinear piezo(electric)-thermoelastic shell theory
and a detailed analysis of electromechanical coupling of distributed piezoelec-
tric sensors and actuators laminated on shell structures of various curvatures.

It was assumed that the flexible shells encounter the von Karman type
large-deformation geometrical nonlinearity. Generic nonlinear electromecha-
nical equations of piezo-thermoelastic shells and shell composites were de-
rived using Hamilton’s principle. Force and moment resultants for the piezo-
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thermoelastic shell and the shell composite were defined, respectively; physical
significance and control application of these terms were also discussed. As to
investigate the distributed sensing and control characteristics, a set of shells
with various curvatures was studied. Analytical results suggest that the total
sensing/control effectiveness depends on individual contribution of the ben-
ding and the membrane components. The membrane component dominates
the sensing/control effectiveness of lower natural modes of deep shells; the
bending component dominates the sensing/control behavior of shallow shells
and higher modes of deep shells. Feeding the membrane signal component to
the membrane control maximizes the control effect in deep shells. However,
applying the bending sensing component to the bending control maximizes
the control effect in shallow and zero-curvature shells.
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Zastosowanie nieliniowe]j piezo-termosprezystej teorii powtok do
sterowania powlok o zmiennej geometrii

Streszczenie

W pracy przedstawiono zastosowanie ogélnej nieliniowej piezo-termo-
elektromechaniczne] teorii do piezoelektrycznych powlok o podwdjnej krzywiznie oraz
czteroparametrowego kontinuum niepowtokowego. Szczegélowo zbadano elektrome-
chaniczne charakterystyki roztozonego ukladu pomiarowego i wykonawczego w ciagu
powlok o réznej geometrii. Wyniki wskazujg, ze membranowe elementy pomiarowe
i wykonawcze panujs nad dynamika niskich czestosci gltebokoch powtlok, a gietne
elementy pomiarowe i wykonawcze nadajg sie do sterowania powlok matowyniostych.
Zbadano elektromechaniczne charakterystyki i efektywnosé rozlozonych elementéw
pomiarowych i wykonawczych.
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