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In the paper the problem of active damping of transverse vibration of
a beam by making use of piezoelectric elements with shear piezoelec-
tric effect employed is taken up. The analysis was motivated by the
fact that popular piezoelectric materials made of lead zirconate titanate
ceramics (PZT) exhibit very strong shear effect, being roughly three ti-
mes greater than the longitudinal effect. The shear effect can be applied
to beam-like systems by gluing piezoelectric sensors and actuators not
to external surfaces of a given structure but placing them e.g. between
two parallel strips as it is realised in three-layer sandwich structures, in
which the middle layer is to dissipate vibration energy. In the presen-
ted model the middle viscoelastic core is replaced with a purely elastic
piezoelectric element. Some preliminary results obtained for the propo-
sed model based on a cantilever Timoshenko’s beam made of PZT are
presented. The method of control, generalised with respect to the pie-
zoelectric shear effect boundary conditions, and finally, the resonance
characteristics corresponding to excitation by external harmonic force
are discussed. Particularly advantageous effect of the active damping is
confirmed for lower resonances, where the natural damping by internal
friction in the material is weak.
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1. Introduction

For several years piezoelectric elements have kept winning in the field of
mechatronics as most popular materials, easy-to-use and not expensive for sen-
sor and actuator applications. One can eventually come across them in beams,
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plates or shells, where they serve as the elements actively damping transverse
vibration in such structures. Some fundamentals of active damping via piezo-
electric elements in beam-like systems were set forth in the middle 1980s by
Bailey and Hubbard (1985). Their work was then continuously developed by
numerous researchers; e.g., by Crawley and de Luis (1987) who discussed diffe-
rent types of physical connection between beams and actuators (bonding and
embedding), and by Crawley and Anderson (1990) who gave a thorough insi-
ght into the problems of piezoelectric actuation in beams. Other papers, such
as by Tzou (1991) and van Niekerk et al. (1995) took up analogous problems
in shells and plates. Recently, piezoelectric elements have been introduced to
rotating systems to protect them from dangerous self-excited vibration that
appears while exceeding critical rotation speed, see Przybylowicz (1999). Some
researchers have begun to explore efficiency of active stabilisation or vibration
damping in view of its sensitivity to a quality of connection between piezo-
elements and a given structure. Tylikowski (1993) and Pietrzakowski (1997)
discussed problems of imperfect attachment of piezoactuators and the effect
of their local delamination on dynamic response of beams.

The papers mentioned above and carried out investigations have something
in common. Namely, they examine the employment of piezoelectric elements as
sensors and actuators making use of the direct and converse longitudinal piezo-
electric effects. It consists in contracting or elongating of a cube-shaped piezo-
electric element under an electric field in the directions of principal orthotropy
axes of the considered piezoelectric material. The longitudinal effect, produ-
cing, e.g. in lead zirconate titanate (PZT) ceramics an elongation/contraction
up to 170 x 1072 m per one volt occurred to be strong enough for PZTs to
become very popular piezoelectric materials. Furthermore, the PZT piezoce-
ramics is known to exhibit another effect, the shear effect that converts an
electric field into mechanical shear stress/strain and vice versa. This effect is
worth mentioning the more so as it is about three times stronger than the
longitudinal one. Both the effects are schematically presented in Fig.1.

Up to now, the shear effect have found applications to torsional systems.
Meng-Kao Yeh et al. (1994) discussed applicability of piezoelectric materials
to sensing torsional vibration in circular shafts. Chia-Chi Sung et al. (1994)
studied dynamics of a clamped-free tube with active torsional vibration control
by a PZT element. The effect of rheological properties of the layer bonding
piezoelectric rings with the external surface of a shaft on a quality of such a
control was examined by Przybylowicz (1995).

A few years ago Spearritt and Asokanthan (1996) presented an interesting
approach as they took advantage of the longitudinal piezoelectric effect for
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Fig. 1. Longitudinal and shear piezoelectric effect

controlling torsional vibration. They used piezoelectric PVDF polymer films,
that produce only the longitudinal effect, and wrapped them around a tube
at 45°. Some analogous concept will be discussed in the present paper, yet
this time the shear effect is to control transverse vibration, not the longitudi-
nal one to reduce torsional vibration. The idea originated from encouragingly
great magnitude of the electromechanical coupling constant of PZTs (as it was
mentioned nearly three times as much as that of the constant corresponding
to the longitudinal effect). Another motivation was the fact that thick bearns
dissipate part of vibration energy by the shear effect — the fundamental on
which the concept of passive damping of transverse vibration in composite
plates and beams, especially in three-layer sandwich structures, is based. A
sandwich beam consists of two thin strips, called skins, separated by a thick
layer (core) revealing strong dissipative properties. A very interesting con-
cept of attenuating vibration in slender beams by shear deformation enhanced
with active piezoelectric elements was introduced by Kapadia and Kawiecki.
They presented and experimentally proved efficiency of the so-called Active
Constrained Layer Damping treatment consisting of a viscoelastic layer san-
dwiched between two piezoelectric layers and bonded to the base structure.
The presence of piezoelectric sensor and actuator with reversed polarity incre-
ased magnitude of the shear deformation in the viscoelastic layer much more
as in the passive dampers acting that way (cf Kapadia and Kawiecki, 1996,
1997).

This paper focuses on indicating the possibility of making use of the shear
piezoelectric effect directly as a means of active control of transverse vibration
to enhance natural damping capability of material of a beam that results from
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the presence of internal friction. The work has an introductory character and
presents some first steps towards formulating the control strategy of active
damping of transverse vibration in thick beams.

A literature survey of the problems associated with sandwich structures
provides an abundance of different approaches and descriptions of their dyna-
mic properties. Theories of moderate-thickness plates by Reissner and Mindlin,
known since the 1940s, were developed by many researchers, and found various
formal descriptions in terms of various number of equations of motion. Fun-
damentals of first modern theories of three-layer plates were due to Yu (1959)
who took advantage of Mindlin’s assumption of constant transverse displace-
ment along thickness of a beam, and linear relationship between displacement
in the beam plane and vertical coordinate. A generalisation of that theory
to plates was proposed by Yan and Dowell (1974), and Durocher and Solecki
(1976). A combination of Kirchhoff’s and Mindlin’s assumptions, presenting
another concept, was due to Mead (1982).

In order to extract the results brought about by the sole piezoelectric
shear effect a simplified model, based on Timoshenko’s beam, is discussed in
the paper. The beam is a thick cantilever, made entirely of PZT piezoceramics.
Another simplification is negligence of rotary inertia effect and analysis of the
shear alone. The equations of motion for the thus simplified Timoshenko’s
beam resemble, in terms of mathematical formalism, the equations by Yan
and Dowell.

2. Description of the model and equations of motion

The system under consideration is a thick cantilever Timoshenko’s beam
made of PZT of length [, rectangular cross-section of area A, and transverse
dimensions b, h. Over the upper and lower surfaces of the beam the electrodes
separated into three bands are dusted. The middle electrode, see the grey band
in Fig.2, is sensor measuring current and global (in integral sense) shear strain
in the beam. The outer electrodes supply actuating voltage to the beam. The
beam itself is not divided, which makes by design the control system collocated.

Consider an infinitely small section of the beam, as shown in Fig.2. The
shear effect taken into account in Timoshenko’s beam entails additional inc-
lination of the cross-sectional surface of the angle denoted by ~, see Fig.3.
Thus, the resultant slope ¢ equals w + <y, where w is the transverse di-
splacement of the beam, and a symbol following the comma (z in this case)
means partial differentiation with respect to the quantity represented by that
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Fig. 2. Model of piezoelectric cantilever

symbol. By balancing the forces shown in Fig.2 in the transverse direction,
and adding balance of their moments one obtains

Jw_ o o
p ot2 Oz g T Oz

(2.1)
where M = Y JO¢/Ox and the shear force, according to Timoshenko’s cor-
rection is T = 7A = kG A and where k is the correction coefficient, being
5/6 for a rectangular cross-section, see Cowper (1966). Obviously p stands
for the mass density, and Y J for the flexural stiffness of beam (Y is Young’s
modulus).

The above reasoning holds true provided no voltage is applied to the beam
(classical Timoshenko’s beam). In order to take into account the piezoelectric
shear effect it is necessary to get back to the constitutive equations of piezo-
electric materials and put them down in such a way so that the shear alone
can be expressed.

The converse law is given by the following equation, see Nye (1985)

€ = SZ(JE)O']' + d;l_;Ej (2.2)

where



578 P.M.PRZYBYLOWICZ

w A

Fig. 3. Internal and external loading in infinitesimal section of the beam

£ —~ strain in the zth direction

o —~ stress

sng) -~ compliance matrix of the piezoelectric material measured for
a constant electric field F

d;; ~ transposed matrix of the so-called electromechanical co-

upling coefficients.
This effect is illustrated in Fig.4.
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Fig. 4. Converse (longitudinal) piezoelectric effect

Suppose, at the moment, that the beam made of PZT is cut out in the
way that the manufacturing polarisation coincides with the axis denoted by 3
- see Fig.5.

Keeping in mind that the index 7 = 4,5, 6 means in fact a stress/strain in
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Fig. 5. Orientation of the coordinate system and the way of voltage application

the 2-3, 1-3, and 1-2 planes, respectively, one rewrites Eq (2.2) to the described
situation shown in Fig.5 in the form

€5 = sé}gj’)as + d:r)rlEl (2.3)
Let the shear stress o5 be denoted by o3 = 7, sgf) = (2G)7}, and

€s = €13 = /2. This way the relationship between the shear stress and
strain with Timoshenko’s correction coefficient is

T = G(k’)"— 2d15E1) (24)

Substituting Eq (2.4) into Eqs (2.1) one obtains the unresolved equations of
motion of the piezoelectric Timoshenko’s beam

R o

(2.5)

3. Concept of active control via piezoelectric shear effect

Before Eqs (2.5) become resolved with respect to e.g. transverse displace-
ment w it is necessary to express explicitly the unknown function FE; that
describes the electric field applied to the actuating electrodes. Assume, at
the moment, that the electrodes are dusted over the beam surfaces and form
a rectangular shape. This entails the function FE; independence the spatial
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coordinate z (denoted also by 3) FE)(z,t) = Ej(t). This assumption imme-
diately eliminates the presence of F; in Eqs (2.5). Now, they can be resolved,
as in the classical Timoshenko beam. Neglecting the rotary inertia one obtains

0w ow  YJp 0w J 8% 0%
5 tY I - :q———( ——+p—)
ot? oz? kG 0z20t? kAG\" 0z? ot?
As it is clearly seen, there is no terms in Eq (3.1) that would reflect the presence
of any active control incorporated into the system. In fact, such terms appear
while formulating boundary conditions. Before doing this, let us introduce a
concept of the active control.

Assume one of the possibly simplest control strategies known in the control
theory, i.e. based on velocity feedback. The electric field E; generated by
actuating electrodes is equal to the voltage Uy applied to them and divided
by the distance % between them. The velocity feedback implies that Ug =
—kqUs, where Ug is the voltage measured by the sensor, k; is the gain factor,
and ”—" indicates that the actuating voltage is out of phase with respect to
that swept by the sensor. In order to close a formal description of the control
system operating one needs to determine the measured voltage Ug first.

From the constitutive equations of piezoelectric materials it is known as

well that

pA (3.1)

Dy = dy50% (3.2)

where D; is the electric displacement in the direction 1, provided no other
electric is applied to the sensing electrodes (that would introduce an additional
term to Eq (3.2)). Since the electric charge () is a surface integral of the
dielectric displacement one obtains

l
Q= /Dl ds = /dm s = /d15kG7 ds = kGdlsbS/( - g—“’) d
T
A A A

0
(3.3)
where bg is the sensing electrode width, see Fig.2. Now, as the electrodes
separated by the beam body pose in fact a rectangular capacitor, the voltage

between them is

_Q
V=2 (3.4)

where the capacity
€0€peS

h
and epépe is the absolute dielectric permittivity of PZT piezoceramic material,
and S = bgl. Hence, the measured voltage is represented by the following

C =



ON APPLICATION OF PIEZOELECTRIC SHEAR EFFECT... 581

integral
!
kdeh Ow
Us = -—)d 3.
s €0€pel <¢ B:E) o (3:5)
and finally the actuating electric field
kGd l au
; iy
By = —k s (¢ - E) dz (3.6)

€0€pel
0

It is worth mentioning that the actuating field is a global value (integral) -
the function FE; does not depend on the spatial coordinate z, and can only
be a function of time.

Consider now the boundary conditions to be satisfied by the cantilever
Timoshenko’s beam. At the clamped end there is no transverse displacement
and no slope. The free end records no bending moment and no shear force.
Thus:

w(0,t) = 0 $(0,) =0
T(,t) = GA{k [4)(1,7:) - awa(i ) ] - 2d15E1} —0 (3.7)
M{,t) = YJQ%(Z—m’y—) =0

In general, for Timoshenko’s beams one cannot resolve the boundary con-
ditions so that they could be expressed in terms of either the transverse di-
splacement w or slope ¢. It can be done, however, in some cases assuming
certain simplifying assumptions about e.g. external excitation. Let dynamic
characteristics presenting amplitude-frequency response of the piezoelectric
Timoshenko’s beam be of the interest in the following analysis. Assume, the-
refore, that the external excitation is a uniformly distributed and harmonically
variable in the time-force type excitation of intensity go. Having it substituted
to Eq (3.1) one obtains

0w 234111_ 5,0 0w

Bz T G T prap

= fosinvt (3.8)

where
2 YJ Jvp

J 2_ P _q /i _JVp
“ =4 e fo pA( i) 69
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and where v is the excitation frequency. Such an assumption allows one
to predict dynamic response of the beam in form of the harmonic function:
w(z,t) = W(z)el!, where the complex description has been chosen for co-
nvenience. By replacing sinuvt with e in the excitation function, then sub-
stituting it into Eq (3.8), and finally dividing by e one finds the ordinary
differential equation with respect to the spatial function of the transverse vi-
bration of the beam

—W(z) + a®W" () + 22 W" = £ (3.10)

the solution to which can be put down as

W(x) = Ciehi® + Gre™hie 4 Gyebor 4 Gt - 0 (31
The primes in Eq (3.10) denote differentiation with respect to z. Occurring
in Eq (3.11) the constants k; and kg have the following explicit form

bv 4 by 4
= ——4[— 14+ —— = —1/1 14+ —— (3.12
ky \/5‘/ 144/ + ks ﬁ\/ 1+ gy (312)

It is to be remembered that the function W(z) together with the constants
C\,...,Cy4 are complex. Resolve, now, the boundary conditions given by Egs
(3.7) with respect to W (z). To accomplish this one has to find the slope
&(z) expressed in terms of W (z) and its derivatives (obviously @ : ¢(z,t) =
&(z)e*) what can be done by making use of Eqs (2.1). Remembering that
q(z,t) is in fact g(¢) one obtains after a few of simple transformations

& =W'(1+ a2 +a?b?W" (3.13)
Substituting Eqs (3.12) into the boundary conditions, see Eqs (3.7), one gets
W({0)=0
(0) = 0 = W (0)(1 + a?0"1?) + a*0*W"(0) = 0 (3.14)
&) =0==>W"\)AQ + ") + *B*'W" (1) = 0

and the ”piezoelectric” boundary condition

!
duw(l,1) kd2df5G (43(1 5 Bw(l,t)) e =0

T8 =0= ¢(,1) - dz €0€pel oz
0

(3.15)
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The last condition must also be resolved. For this purpose the integral
(¢ —1r5) d should be found first

v

(q's - %%) de = iu/[@(m) - W’(w)] dz = iu/@(a:) dz — AW (3.16)
0 0

O\N

where AW = W(l) — W(0). Then resolving the function &, see Eq (3.13),
and substituting to the third one of the boundary conditions (3.7) one finally
obtains

W" () + V2nuW'(l) = —kgiv[W"(l) = W"(0) + b22W (1)) (3.17)
where
- 242
kd — kd dl5G
€p€pel

since W (0) = 0. Having found the form of the boundary conditions applicable
to Eq (3.10) and substituted to the predicted solution (3.11) the following
matrix equation is derived, from which the complex constants C),...,C4 can
be calculated. This equation is

1 1 1 1 1T7e 1 [ fo
. . g
ann —a9) iagz —iag3 Cs 0 (3.18)
a3lek’l a32e“kll ia:;;;eikzl ia34e_ik21 Cs 0
I a41ekll a4le—k1l a43e1k21 a43e—1kzl J ] 04 | i 0 J

where

az = ki[1+ a®b* (6702 + k7))

agy = ko[l + a®62 (% + k3))]

a31 = (k2 + b22)(ky + ivkg)et — ivkqk?

az2 = (k? + b22)(—k) + wkg)e ¢ — ik k? (3.19)
a3z = (—k3 + b%v?) (kg + vkg)e®2! + vE k2

azq = (=K + 6°0%)(—ky + vkg)e ™ + vE k3

a4q] = a1

a3 = ka[~1 + a®b* (k3 — b*v?)]
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4. Results of simulations

As it was mentioned in the previous section the analysis aims at determi-
nation of resonance characteristics of the considered system. Let the amplitude
of the transverse vibration Ay be recorded at the free end of the beam, hence

Ay = ’W(l)‘ = ’Clek‘l + Chpe~Ril 4 Chelkal 4 ekl — % (4.1)

Before the resonance curves will be presented, let us consider first natural
damping properties resulting from the presence of internal friction in the
beam material. The dissipative capability of the beam material can be for-
mally expressed by substituting an operator form of the Kirchhoff and Young
moduli into the equation of motion. Assuming the simplest rheological model
that regards viscoelastic properties of the material, i.e. the Kelvin-Voigt model
one writes the moduli down as

Y= Y(l + ﬂgs%) G* = G(1 + 613;%) (4.2)

where (33 and (3 denote time constants of the Kelvin-Voigt model for
tension/compression and shear, respectively. In the literature one can find
various assumptions about the magnitudes of f33 and ;3. Quite often the
energy amounts dissipated via both effects assumed to be equal, see Alam and
Asnani (1986), but most commonly in sandwich structures [33 is negligible
when compared to ;3. In this paper [33 is one order of magnitude less than
Brs.

The corresponding to Eq (3.10) equation for the spatial function W(z) in
a beam with intrinsic damping properties assumes the following form

2
= 4.
14+ iﬂlgv v fO ( 3)

W""a2(1 + iﬂggl/) + W’I(Z2b21/
The solution to Eqs (4.2) under the external excitation ¢(¢) can be found by
making use of the same boundary conditions provided that the gain factor kg
is zero.

In the paper two cases are analysed. In the first case the piezoelectric
Timoshenko’s beam is passively damped by internal friction it is endowed
with (disabled control system), and in the second case the beam is damped
actively, but no internal friction is the taken into account. The resonance
curves corresponding to the first case are presented by thin continuous lines,
while those corresponding to the active damping — by thin dashed lines. As a
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reference the undamped response of the Timoshenko beam is drawn by thick
continuous lines in the following figures.

It is well known that intensity of dissipating vibration energy due to in-
ternal damping grows with frequency of succeeding resonances (with square
of the frequency). That means the first resonances are poorly damped. It is
shown in Fig.6, where the two first resonances are presented.
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Fig. 6. Efficiency of the active and passive damping. The two first resonances:
(a) absolute value, (b) in a logarithmic scale

Admittedly, the curves corresponding to the beam without and with pas-
sive damping, respectively, are practically in line for the first resonance (the
differences are a matter of thickness of the curves) — the internal friction is too
weak to damp effectively this resonance. At the same time it turns out that
application of the active control distinctly reduces the first and the second
resonances (practically eliminates them) even without enhancing the effect
brought about by the internal friction. This is a very important conclusion
that application of piezoelectric elements to the beam and making use of the
shear effect proves to be efficient way of reducing transverse vibration, espe-
cially for low vibration modes of the cantilever. That advantageous effect is
not so well pronounced for higher resonances, as some peaks can occur in the
dynamic characteristics — see Fig.7b, but their absolute amplitude, are nearly
zero — compare Fig.7a.

As mentioned before, particularly good damping capability for higher re-
sonances is brought about by internal friction in the beam material. This is
clearly seen in Fig.7b as the thin continuous line, corresponding to the passive
damping, fattens.

8 - Mechanika Teoretyczna
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Fig. 7. Efficiency of active and passive damping in a wide range of excitation
frequency: (a) absolute value, (b) in a logarithmic scale

5. Concluding remarks

In the paper the analysis of application of the piezoelectric shear effect to
damping of transverse vibration of a thick beam has been presented. The beam
has been assumed to be entirely made of piezoelectric lead zirconate titanate
ceramics with electrodes stretched over the upper and lower surfaces. In order
to underline the damping due to shear piezoelectric effect Timoshenko’s beam
with the shear alone (no rotary inertia) has been used for description of the
model. The beam works as sensor and actuator element at the same time.
Electric field developed by the actuating part is coupled with voltage measured
by the sensor following a simple control strategy based on velocity feedback.
It has turned out that the measured voltage has a global character as posed
by an integral (see Eq (3.5)), and thus does not appear explicitly in equations
of motion. The piezoelectric effect is introduced into dynamics of the system
by boundary conditions.

A cantilever Timoshenko’s beam has been taken into consideration. Con-
sistently,. the piezoelectric shear effect occurred in the boundary condition
imposing no shear force at the free end of the beam. The obtained simula-
tion results, corresponding to the harmonic force-type excitation, have clearly
shown that the piezoelectric shear effect can be used in reducing transverse
vibration of cantilevers. Particularly advantageous effect has been observed
for lower resonances, poorly damped by internal friction in the beam mate-
rial. Obviously, under real conditions there is no way to exclude the internal
damping what only enhances efficiency of the active control for higher fre-
quencies (not as good as the passive damping in that region). Hopefully, the
presented analysis has an introductory character as it might be extended to
cover multi-layer composite structures, especially sandwich beams and plates
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with embedded layer (core) made of piezoceramics. Another challenge to be
met constitutes the problem of segmentation of PZT core (or simply segmen-
tation of the electrodes only) to extract some dynamic phenomena that are
lost due to a global character of the proposed strategy. Similar conclusions
regarding segmentation were drawn by Kapadia and Kawiecki (1996, 1997) as
they stressed that the segmentation and its optimisation might be the only
way of improving effectiveness of the active damping, and pointed to finite ele-
ment models that would allow one to predict an optimal length of piezoelectric
segments. This seems to be a promising approach towards simply supported
beams as well, where the presented method would fail for the even modes of
the transverse vibration.
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O zastosowaniu postaciowego efektu piezoelektrycznego do aktywnego
tlumienia drgan poprzecznych belek

Streszczenie

W pracy podjeto problem aktywnego tlumienia drgari poprzecznych belki za po-
mocy elementéw piezoelektrycznych przy wykorzystaniu postaciowego efektu piezo-
elektrycznego. Motywacje podjetych badan stanowi fakt, ze popularne piezoelektryki
ceramiczne wykonane na bazie spiekéw tlenkéw cyrkonu i tytanu (PZT) wykazuja
bardzo silny efekt postaciowy, okolo trzykrotnie wiekszy od efektu wzdluznego. Efekt
postaciowy moze zostaé wykorzystany poprzez zastosowanie elementéw piezoelek-
trycznych nie przez naklejanie aktuatoréw na zewnetrznych powierzchniach belki, lecz
umieszczenie w strukturze samej belki, np. miedzy dwiema réwnoleglymi listwami, po-
dobnie jak w konstrukcjach typu sandwich, gdzie warstwg silnie rozpraszajgca energie
drgan jest warstwa §rodkowa — tu zastapiona piezoelektrykiem. W pracy przedsta-
wiono wstepne wyniki badad bazujace na modelu wspornikowej belki Timoszenki
wykonanej z ceramiki PZT. Oméwiono metodg sterowania, uogéluione na piezoelek-
tryczny efekt postaciowy warunki brzegowe oraz, jako rezultat koicowy, charaktery-
styki rezonansowe przy wymuszeniu harmoniczng silg zewnetrzna. Stwierdzono szcze-
goblnie korzystne dzialanie aktywnego tlumienia wykorzystujacego efekt postaciowy
dla niskich czestoSci rezonansowych, stabo tlumionych przez naturalne wladciwosci
dyssypatywne materialu belki.
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