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Physical reliability of the known asymptotic homogenization models of
periodic composites is discussed. By retaining some terms which are
neglected in the homogenization a refined approach to the modelling of
composites is proposed. It is shown that this approach results in the
non-asymptotic tolerance averaged models which for special problems
coincide with the homogenized ones but also are able to describe physical
situations which are outside the framework of homogenization theory.
The analysis is carried out for the heat conduction problem.
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1. Introduction

The exact approach to problems in mechanics of composite materials with
a periodic structure is described by partial differential equations with periodic
rapidly-oscillating and noncontinuous coefficients. To eliminate the difficulties
posed by a direct use of these equations to special problems difterent approxi-
mate mathematical models of periodic composites have been introduced. The
simplest and best known models are those based on the concept of homogeni-
zation. A general idea of homogenization is that in many special problems the
behaviour of a periodic composite body is similar to that of a certain equivalent
homogeneous body. It means that the behaviour of composites with a periodic
structure, in which periods are much smaller than the minimum characteristic
length dimension of a whole composite body, can be described by means of
equations with constant coefficients. To detail the concept of homogenization
we shall confine ourselves to the heat conduction problem in a composite body.
Let this body occupy the region 2 in the reference three-dimensional space
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and be equipped with the vector basis d,, o = 1,2,3 having a periodic struc-
ture with periods [, = |dq| in direction of vectors d,, respectively. Under
the denotation A = {z = n,d,, 1o € (-1/2,1/2), o =1,2,3} this structure
will be referred to as A-periodic. We shall assume that the maximum length
[ of the diagonal of A is very small compared to the minimum characteristic
length dimension L of f2. Let us denote by z a point of {2, by ¢ a time
coordinate and by 6 = 6(z,t), £ € {2, a temperature field at an instant ¢t.
The heat conduction equation in (2 takes the well known form

V-(A-VO) —ch=f (1.1)

where A = A(z) is the symmetric second order heat conduction tensor,
¢ = ¢(z) is the specific heat and f = f(z,¢) is the intensity of heat so-
urces. In the periodic composite under consideration A(-), ¢(-) are rapidly
oscillating piecewise constant A-periodic functions. Generally speaking, by a
homogenization we mean here the replacing of Eq (1.1) by what is called the
homogenized equation

V- (AY-ve%) - 090 = (1.2)

where A and ¢ are constant and 6° = %(z,t) stands for a temperature
field at an instant ¢. Now the question arises how to obtain the values of AO,
®, provided that A(-), ¢(-) are known and how to determine the temperature
field @ in a periodic composite provided that #° has been calculated previo-
usly on the basis of Eq (1.2). The question formulated above represents the
homogenization problem for the linear heat conduction in a periodic medium.
At the same time A® will be referred to as the homogenized heat conduction
tensor.

The general solution to the homogenization problem can be obtained wi-
thin the framework of the known homogenization theory, cf e.g. the monogra-
phs by Sanchez-Palencia (1980), and Jikov et al. (1994). The extensive list of
references on this subject can be found in the second one of the aforementio-
ned monographs. The homogenization theory is now a distinct mathematical
discipline which applies the asymptotic analysis to problems of so called micro-
heterogeneous media, i.e. periodic media with the periods ¢l,, a = 1,2,3,
where « € (0,1] (eA-periodic media). To introduce this concept we define
A%(z) = A(z/e), ¢(z) = c(z/e) where ¢ € (0,1] and formulate a family of
equations

V- (AS- V) — b5 = f (1.3)

indexed by ¢ € (0,1] and describing the heat conduction in micro-heteroge-
neous (zA-periodic) media. Obviously, Eq (1.3) coincides with Eq (1.1) for
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€ =1 and hence #' = 6. The solution to the aforementioned homogenization
problem can be obtained using the method of asymptotic expansions. For the
sake of simplicity for the time being we restrict ourselves to the steady-state
problems neglecting the terms ¢€6° in Eq (1.3) and we look for the first
approximation of solution to Eq (1.3) in the form 6{(z) = 6°(z) + €8, (z, z/¢),
where 6(z,-) is a A-periodic function and 6% € C2%(£2). Define by (f)
the mean value of A-periodic function f on the cell A. Then for every
f € HY(f2) and ¢ — 0 we can prove that 6% tends weakly to 6° in
HY(£2) and A° . V6 tends weakly to A’. V6% in L?(£2). Moreover, the
homogenized heat conduction tensor is given by A” = (A + A . VN), where
N is a A-periodic vector field which is a solution to the auxiliary periodic
problem given by V-(A-VN) = -V-A N e (H'(A); R®) with (H'(A); R?)
as the Sobolev space of A-periodic vector functions. If N is a solution to
this problem then the condition (Vd*-A-VN) = —(VJ* - A) has to hold
for every 9* € H'(A). Apart from one-dimensional periodic structures and
some special forms of A (cf Jikov et al., 1994) the A-periodic solution N
to the above problem can be obtained exclusively in an approximate form,
e.g. by a discretization of A and by assuming N = QA A=1,.. N,
summation convention holds, where g“(-) are postulated a priori A-periodic
shape functions such that (g”) = 0 and QA are unknown vectors. Using the
orthogonalization method from the above variational condition we obtain the
system of linear algebraic equations for Q% given by (Vg# -A-Vg5)QP =
—(Vg*-A). Hence the final (approximate) formula for the homogenized matrix
is AY = (A) + (A- Vg4 Q“. At the same time, the temperature field will be
approximated by 6 = 8% + g* W4 with W* = Q" - V4% it follows that
0, = g“W4 = ¢2Q" - V6°. Tt will be tacitly assumed that the approximation
formula N(y) = ¢*(y)Q" represents N(-) with a sufficient accuracy. At last,
we can prove that 6,(z,z/e) = N(z/e)- VO°%(z) and ||6° — 6¢|| < K /&,
where |- || is the norm in H'(£2) and K depends on 6° being independent
of €. The proof of the above statements can be found in Jikov et al. (1994).
The obtained formula for the homogenized matrix A° holds true also for
non-stationary problems where we obtain ¢ = (c). At the same time, for an
arbitrary heat source intensity f and for a sufficiently small ¢ the solutions
6¢ to the boundary-value problems related to Eq (1.3) can be approximated
by

0,(z,t) = 0°(z,t) + eN(z/e) - VO°(z,1) (1.4)

where 69 is the solution to a pertinent problem for the homogenized equation
(1.2) with A% and ® defined before.
The above results describe the heat conduction in micro-heterogeneous
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media on condition that ¢ — 0. However, heat conduction problems for the
composite body under consideration are described not by a family of equ-
ations (1.3) but by the single equation (1.1) which coincides with Eqs (1.3)
only for € = 1. Thus, using exclusively the homogenization theory we are not
able to answer the next important question whether the homogenized equ-
ation (1.2) together with Eq (1.4) for & = 1 are physically reliable for the
given a prior: boundary and initial conditions and the known heat source in-
tensity f. Generally speaking, the homogenized procedures are not equipped
with any a posteriori estimates for solutions to special problems. In order to
answer this new question we shall pass in Section 2 from Eq (1.1) to Eq (1.2)
not using the asymptotic approach. We are to show that this procedure makes
it possible to formulate certain heuristic homogenization assumptions under
which the homogenized equation (1.2) together with Eq (1.4) for ¢ = 1 have
a physical sense. Moreover, in Section 3 we shall reject some of the heuristic
homogenization assumptions in order to remove certain restrictions imposed
on the homogenization theory and formulate conditions on which its results
are physically reliable. In this way we shall formulate what will be called the
Tolerance Averaging Approach (TAA) which from the point of view of appli-
cations of the theory can be treated as an extension of the homogenization
approach to cover the heat transfer problems in periodic composites. In this
paper the TAA will be not presented in the form of a mathematical theory
like the homogenization but the main attention is to be given to the physi-
cal reliability of TAA. It will be shown that, contrary to the homogenization
theory, the TAA makes it possible to estimate a posterior: an approximation
of the obtained solutions to special problems. To this end we shall introduce
to the TAA the concept of a tolerance relation. Denoting by S a certain li-
near normed (function) space, for every s',s” € S we shall write s’ ~ s iff
|s'"—s"|| < es where es describes the admissible error related to computations
of elements of S. In the general case = will stand for different tolerance rela-
tions describing the required accuracy of measurements and/or computations
in the problem under consideration, cf also Zeeman (1965), WoZniak (1983),
for the concept of tolerance space.

2. Reliability of the homogenization approach

We begin with some auxiliary concepts. To this end, define A(z) :=z+ A
as a cell with a center at z and 2 := {z € 2: A(z) C £2}. Because of
| < Lset 2\£2° constitutes a thin near boundary layer in (2. To an arbitrary
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integrable function ¢ defined in {2 we shall assign its averaging (¢) defined

in 29 setting
1

W@ = —— [vay  zea
A(x)

If ¢is A-periodic then (¢) = const and for ¢ depending also on t we shall
write (p)(z,1t).

For an arbitrary sufficiently regular function F(-) defined in (2 and be-
longing to a certain normed linear function space, we shall write F' € SV({2)
provided that the approximation condition (F)(z) =~ F(z) holds in £°. In
this case F(-) will be referred to as a A-slowly varying function (i.e. slowly
varying with respect to the periods [, @ = 1,2,3). It has to be remembered
that if Fy, Fy are differentiable functions belonging to a certain normed li-
near space then the tolerance relation F; =~ Fy implies a similar relation for
derivatives of Fy, Fy; to emphasizes this fact we shall also write VF|, ~ VFs.

Let vz(y) be for every z € 2% a A-periodic function of y (hence defined
almost everywhere in R*) and for every 3 be a A-slowly varying function
of z. Then setting ¥(z) = () in §2° and assuming that (-) belongs
to a certain linear normed function space, we shall write ¢ € PL({2) and
refer (-) to as a A-periodic like function. Roughly speaking, every A-
periodic like function (-) after restricting its domain to an arbitrary cell
A(z), z € 29, can be approximated in this cell (within to a certain tolerance)
by a A-periodic function g(-). It means that (¢)(z) =~ (¢¥z)(z) and 2
will be called a A-periodic approximation of ¢(-) in A(z). It follows that
if ¥ € PL($2) then (¢) € SV(2). If ¢ € PL(2) and either (¢)) = 0 or
(cyp) = 0 then 1 will be referred to as an oscillating A-periodic like function,
1 € OPL(A); here () = 0 is called the normalizing condition.

By a tolerance averaging, which is the main mathematical tool of the mo-
delling proposed in this contribution, we shall mean the tolerance relations

(pF)(z) ~ (p)(x)F(z) (o) () ~ (pihz)(2) e’  (21)

which have to hold for every F € SL(A), v € OPL(A) with ¢ as an
arbitrary integrable function defined in 2, and which make it possible to
replace the left-hand sides of Eqs (2.1) by their right-hand sides. At the same
time formulae similar to those in Eq (2.1) have to hold also for all derivatives
of F(-) and ¢(-). All the aforementioned concepts require the specification of
tolerance relations = in calculations of averages (2.1) which depends on the
accuracy of computations for the problem under consideration.

The heuristic passage from the problems governed by Eq (1.1) to their
approximate solutions described by Eq (1.4) for ¢ = 1 together with the ho-
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mogenized equation (1.2) will be based on three assumptions. The first of them
restricts the class of temperature fields 6 under consideration to that which
can be represented by the decomposition 8 = 6% + 99, with 6°(-,t) € SV (A),
9(-,t) € OPL(A) for every t; here the normalizing condition is assumed in
the form (J) = 0 but the alternative form (cd) = 0 can be also taken into
account where ¢(-) is the periodic specific heat function, cf Eq (1.1). The
aforementioned decomposition of § is well motivated from a physical point of
view but can be verified only a posteriori because 6°(-,t) and 9J(-,t) are not
known a priori. Using this decomposition, averaging Eq (1.1) and applying
the tolerance averaging formula (2.1) we obtain

V(A (V6 + Viz))(z,1) — ()6°(z, 1) — (z))(z,1) = (f)(z,1)  (22)

for every z € £2°. At the same time multiplying Eq (1.1) by an arbitrary
A-periodic test function 9* € H,,,(A) such that (9*) = 0, integrating this
equation over A(z), z € £2°, and using again the tolerance averaging formula
(2.1) we arrive at the variational conditions

(VO* - A- Vi) (x, t) + (9%chdz))(x,t) =
(2.3)

= (9" f)(z,t) — (97)°(z,t) — (VI* - A) - VE°(z, 1)

which hold for every test function 29* and for an arbitrary but fixed z € £2°.

The second heuristic assumption leading to the homogenized model re-
stricts the class of heat sources under consideration to that satisfying the
condition f € SV(A). In this case the first term on the right-hand side of
Eq (2.3) can be replaced by (9*)(z)f(z,t) and by means of (J*) = 0 drops
out from Eq (2.3); at the same time the right-hand side of Eq (2.2) can be
replaced by f(z).

The third assumption required for obtaining the homogenized model of
periodic medium requires that the terms in Eqgs (2.2), (2.3) involving averages
(9*f), (cVz), (9*cdz) and (9*c) be sufficiently small compared to the rema-
ining terms and can be therefore neglected. In this case Eq (2.3) represents
the periodic problem for ¥z(y,t), y € A(z), which for 9z, 9* € H;CT(Q),
(¥9z) = 0, (9*) = 0, has a unique solution and yields 9, = N(y) - V8°(z,1),
y € A(z), where N(-) was defined in Section 1.

Summing up, it can be seen that the aforementioned three assumptions lead
to the homogenized equation (1.2) and to the formula (1.4) for € = 1 after
using the denotations § = 8}, 9 = N - V#°. The physical reliability condition
of the homogenization approach, which is implied by the first assumption and
can be verified only a posteriori has the form: 6° € SV(A); it holds only
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if f e SV(A),ie. it implies the second heuristic assumption leading to the
homogenized model of periodic medium.

3. Tolerance averaging approach

Let us observe that contrary to the first and second assumptions it is ra-
ther difficult to verify whether the third of the aforementioned assumptions is
physically reliable i.e. if it can be applied to the heat conduction problem we
are to solve. Moreover, this assumption does not have sufficiently reasonable
physical interpretation. Thus, the crucial idea of the refined averaging mathe-
matical modelling of heat transfer problems in periodic composites, is to reject
the third one of the above assumptions. Moreover, it can be shown that the
second assumption is implied by the first one and will be formulated now in a
less restrictive form; namely we have to confine ourselves to the class of heat
sources which are periodic like, f € PL(A), and hence can be represented by a
sum f = fO+ ¢ where fO€ SV(A) and ¢ € OPL(A). At the same time we
leave the first heuristic assumption unchanged. It means that the basis of the
approach detailed below is given by Eqgs (2.2), (2.3) where now the right-hand
side of Eq (2.2) is equal to f° € SV(A) and where the term (9* f)(z,t) in Eq
(2.3) has to be replaced by (9*¢)(z,t). It has to be emphasized that from now
on all approximations of Eq (1.1) are due exclusively to the tolerance averaging
(2.1) and a similar averaging for all derivatives of F and 4. That is why the
proposed approach will be referred to as the tolerance averaging approach. In
the sequel, stationary and nonstationary heat conduction problems in periodic
composites will be analyzed separately within the framework of the proposed
tolerance averaging approach.

3.1. Tolerance averaging of stationary processes

In this case if ¢ € L2 (A) then Eq (2.3) for every z € £2° leads to the
separate periodic problem: find 9z € Hp,,(A) such that

(VI* - A- Vi) (z) = —(V" - A)(z) - V8°(2) ~ (9" pz)(2) (3.1)

holds for every #* € Hj,.(f2). Because of (pz) = 0 the solution ¥ to
the above problems is unique to within an arbitrary constant, cf Jikov et al.
(1994). To obtain this solution we shall discretize A introducing A-periodic
shape functions g4(-), A = 1,..., N, (¢) = 0 as it was done in the case of
homogenization approach. We shall also look for the approximate solution to
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Eq (3.1) in the form ¥, = g4(y)W4(x), y € A(z), with W4(z) as new unk-
nowns which will be determined by the orthogonalization method. Hence, Eq
(2.2) for the stationary processes together with the orthogonalization condi-
tions implied by (3.1) yield the following equations with constant coefficients
for 6°, WA A=1,.,N

V- ((A) - V6°) + (A- vghywH = f0
(3.2)

(Vg - A-VgPyWPB(z) = —(Vg* - A) - V6° — (9% pz) (z)

and a temperature field is given by 6 = 89 4+ gAW 4. Solutions to Eq (3.2) are
physically reliable if % € SV(A) and W4 € SV(A); in this case Eqs (3.2)
represent the tolerance averaging model of stationary heat conduction processes
in a periodic composite.

If ¢ € PL(A) and ¢ € Hy,(A) then ¢ = ¢, on every A(z), z € 2,
and hence Eq (3.1) represents for every z € 20 the same periodic problem.
In this case we can assume W4 = QA -V8° + R* where QA, R4 are constant
being solutions to

(Vg* - A-Vg")Q = —(Vg* - A)
(Vg"-A-Vg®)RP = (g"0)
respectively. For 6% we shall obtain the homogenized equation
V- (A V) = f° A’ = (A) + (A V) - Q"

and the temperature will be given by § = 9 +gAQA V8% + gARA. This is a
special case of Eqgs (3.2).

Let us observe that if ¢ =0 (i.e., if f = f% € SV(A)) then for stationary
processes the tolerance averaging model coincides with the homogenized one.
Hence the final conclusion is that in stationary problems the homogenized
model is incapable of describing the effect of heat source oscillations ¢ on the
heat transfer in a periodic medium.

3.2. Tolerance averaging of nonstationary processes

In nonstationary processes ¥z for every z € 20 is described by the varia-
tional problem (2.3) with (9*f) = (9*p). This problem is rather complicated
and will be solved using the refined version of orthogonalization method. To
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this end we shall assign to Eq (1.1) the periodic eigenvalue problem for A-
periodic function A satisfying in A the equation

V- (A-Vh) + Ach =0 (3.3)

Leading to the condition (ch) = 0, where A is an eigenvalue. The function
h has to satisfy in A the regularity conditions similar to those imposed on
the temperature field 6. Let us denote by h4, A = 1,2,... the sequence
of pertinent eigenfunctions related to the aforementioned problem and define
hA = ha — (ha) for A=1,.. N. For an arbitrary z ¢ £2° we shall seek an
approximate solution to Eq (2.3) in the form

Iz(y,t) = KA (y)V(z, 1) y € Alz) (3.4)

where the summation convention over A =1,..., N holds, h*(-), A=1,...N
are called the mode shape functions and V4(z,t) are unknowns. Here the
positive integer N is arbitrary but fixed and hence we can look for solutions to
Eq (2.3) on different levels of accuracy. Unknowns V4 (z,t) for every z € £V
have to satisfy the orthogonality conditions which can be obtained from Eq
(2.3) by setting ¥* = h4, A = 1,2,...,N. Let us observe that ¥ € PL(A)
implies VA(-,t) € SV(A). Taking into account the last condition, from Eq
(2.2) and the aforementioned orthogonality condition we obtain for 6°, V4,
A=1,2, ..., N the following system of equations with constant coeflicients

V- () T8+ (A VAAVA) — () — (eht)VA = f°
(3.5)

(ch*hBYVE 1 (VA4 - A-VAEYWE 4 (chh)80 + (V™ - A) - VOO0 = —(hA(p)

where the summation convention over B = 1,..., N holds and {ch*hB) =0
for A # B. Hence the temperature field in the composite under considera-
tion with the required accuracy can be approximated by 6 = 6° + RAV A,
A = 1,2,..,N, where 6° V* is the solution to a certain initial-boundary
value problem related to Eqgs (3.5). The obtained solution is physically reliable
if 89, V4 € SV(A) and Eqs (3.5) together with the above formula for 4 repre-
sent the tolerance averaging model of nonstationary heat conduction problems
in a periodic composite.

The characteristic feature of Eq (3.5) is that for unknowns V4,
A = 1,2,..., N, we have obtained the system of ordinary differential equations
involving only the time derivatives of V4. Hence, there are no boundary con-
ditions for V4 and we deal here with a situation similar to that discussed by
Wozniak (1997). That is why the functions V4 can be called internal variables
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and the obtained model of heat conduction in a periodic composite will be re-
ferred to as the internal variable model. Application of Egs (3.5) to the analysis
of stationary problems is possible from a formal viewpoint but the eigenvalue
problem related to Eq (3.3) and also the choice of mode shape functions h#
have no physical motivation. In this case we can assume A“ as shape functions
derived from the discretization. In this way for stationary problems we obtain
from Egs (3.5) after neglecting time derivatives the system of linear algebraic
equations for V4. Hence the formula 6(z) = 6%(z) + h*(z)V4(z) will repre-
sent a certain approximate solution to the stationary periodic problem related
to Eq (1.1).

At the end of this Section let us also observe that for a homogeneous body
not subjected to the oscillations of heat sources and initial temperature (¢ =0
and VA(z, ty) = 0) Egs (3.5) for V4 yield the trivial solution V4 = 0 and
the first equation of Eqs (3.5) reduces to the form V- (A-V8) — cf = f with
A and c constant.

4. Conclusions

The first main result of this paper is that the tolerance averaging models of
heat conduction in periodic composites, given by Egs (3.2) and (3.5) together
with the pertinent formulae for 8, are based on the only physical assump-
tion that in periodic media a temperature field has to satisfy the condition
f € PL(A). In general, this condition may be not satisfied in the near bo-
undary layer of the medium; for the sake of simplicity we assume that the
boundary conditions for temperature are imposed exclusively on 6°; the di-
scussion of boundary conditions in periodic media can be found in Bensoussan
et al. (1978).

The second main result is that for solutions to the problems formulated
within the framework of TAA we have obtained a posteriori estimates implied
by the conditions 6% VA4 € SV(A). The accuracy of the solution obtained
depends also on the form of expansions (3.4). It has to be emphasized that
finding solutions to the eigenvalue problem (3.3) is rather a difficult task and
in most cases the eigenfunctions h“ have to be obtained using approximate
methods. However, this difficulty is also typical for the asymptotic homogeni-
zation where the solution N(-) = ¢*(-)Q* to the auxiliary periodic problem
(apart from one-dimensional problems) was also obtained using approximate
methods, see Section 1.
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In the paper it was shown that the proposed models have been derived by
rejecting some from heuristic assumptions included implicite in the reliability
conditions of the known homogenization approach. Hence the proposed tole-
rance averaging approach is able to describe physical phenomena which cannot
be investigated within the framework of homogenized model, described by Eq
(1.2). For stationary heat conduction processes it is the effect of heat source
cell oscillations (i.e., the oscillations within every periodicity cell A(z)) on
the temperature distribution. This effect is described by the term depending
on ¢ in Egs (3.2). For nonstationary processes the aforementioned effect is
represented by the terms (h%¢) on the right-hand sides of Eqs (3.5). More-
over, contrary to the homogenized model, the tolerance averaging approach
describes the effect of periodicity cell size on the heat conduction in periodic
composites. This effect is due to the coefficients (ch”hB) in Eqs (3.5) which
by means of Eq (3.3) depend on the cell length dimensions. Let us observe that
the terms (g%pz) in Egs (3.2) as well as the term (h”¢) in Egs (3.5) also
depend on the cell size and hence the effect of heat source cell oscillations is
coupled with that of the cell size. Let us also observe that there is no physical
motivation for the formal introducing to the stationary problems the diver-
gence terms depending on the length scales as it was done by Lewinski and
Kucharski (1992) because the truncation relation (6.8) in the aforementioned
paper hes to imply the first heuristic assumption which eliminates these terms.
Moreover, the tolerance averaging approach makes it possible to investigate
the effect of temperature oscillation at the initial instant ¢ = ¢ provided that
those oscillations with a sufficient accuracy can be determined by Eq (3.4) for
t = tp. This effect is described by the initial conditions for internal variables
VA(z,-), z € 2O

At the beginning of Section 2 it was stated that it is difficult to verify
whether the homogenized model of heat transfer in periodic composites has
a physical sense in the problem under consideration since the terms in Eqs
(2.2), (3.3) involving averages (cdg), (9*cdz) and (9*c) which are neglected
in the asymptotic homogenization approach, can influence a solution to the
problem. Within the framework of the proposed tolerance averaging method
the aforementioned terms are not rejected and the physical reliability of solu-
tions have to be verified a posteriori by means of the condition 6°(-) € SV (A)
in stationary processes and the conditions 89(-,t), VA(-,t) € SV(A) for every
t in nonstationary processes.

Some applications of Eqs (3.5) can be found in Wozniak et al. (1996) and
the discussion of a special case of these equations was carried out by Ignaczak
(1998), and in the subsequent papers of this Author. For the sake of simplicity
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all considerations carried out throughout this contribution were restricted to
the second-order parabolic equations. However, the proposed refined averaging
approach can be also applied to different problems in thermomechanics of
composites with a periodic structure; for the references see Wozniak (1997).
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Streszczenie

Celem pracy jest krytyczne spojrzenie na fizyczng poprawnosé rezultatéw zna-
nej w literaturze metody homogenizacji asymptotycznej, por. np. V.V. Jikov i inni
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(1994), Sanchez-Palencia (1980), zwrécenie uwagi na jej usterki i ograniczenia a na-
stepnie propozycja usuniecia tych niedomagai poprzez oslabienie fizycznych zalozen
homogenizacji. Wykazano, ze proponowane podejécie prowadzi do pewnych toleran-
cyjnie u$rednionych modeli nieasymptotycznych, ktére w szczegélnych przypadkach sg
zgodne z rezultatami uzyskanymi metodg homogenizacji, lecz umozliwiaja takze ba-
danie zjawisk, ktérych nie opisuje teoria homogenizacji. Rozwazania przeprowadzono
na przykladzie réwnania przewodnictwa cieplnego.
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