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This paper is principally aimed to present an analysis of constraints
applied to a thin-walled beam. A particular type of constraints; i.e.,
the constraints of warping are considered in detail. A theorem on the
constraints that make warping impossible has been proved.
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1. Introduction

Unlike a solid bar, a thin-walled one in the static analysis of a frame
structure cannot always be represented supplied with by the beam axis only
the geometric and sectorial characteristics of the cross-section. It means that
the problem cannot be considered as a unidimentional one.

There are only two cases when we are allowed to reduce a thin-walled
frame analysis to a one-dimentional task, namely: o' = 0 or «' = const for
the extreme cross-sections of all beams that meet at the same node, where
a(z) is the angle of rotation about the beam axis.

The aim of this paper is to discuss the first case. If the condition o' =0
is fulfilled, then, in static analysis of a frame, one can use a stiffness matrix
similar to that used in the case of frame made of solid bars.

The basic goal of this paper consists in analysing the constraints that are
to impose the required condition.

2. Displacements of the middle line of cross-section

According to the basic assumption of the thin-walled bar theory formulated
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by Vlasov (1961), (1962), a cross-section undergoes the same deformations that
are observed in the case of spread diaphragm, fixed against displacements along
the y and z axes, but ideally flexible for displacements along the axis z.

On the basis of the above assumption, in the case of fixed cross-section
T = zq, the functions of displacements of points belonging to the section
middle line defined in the global system z,y,z by the parametric equations
z = xg, y = y(s), 2 = z(s) are determined by the following well-known
functions of s (the natural parameter of a middle line) (cf Piechnik, 1999) in
the local system z,s,n

ug(z, ) = u(z) — v'(2)y(s) — w'(z)z(s) + & (z)w(s)
us(z,s) = v(x)y o(s) + w(z)zs(s) — a(z)pn(s) (2.1)
un(z,5) = —v(2)2,s(s) + w(z)y,s(s) + alz)ps(s)

It can be clearly seen that the functions of displacements are determined by
seven parameters for the extreme section

a = u(zo) b= ~v'(z0) ¢ = —w'(zo)
d = o/ (o) e = v(zg) f = w(zg) (2.2)
g = a(z0)

The functions v(z), w(z), u(z), a(z), which depend on the applied constraints,
must be known to allow one to determine these constants.

It can be proved, on the basis of the equations of kinematics equivalence
(Piechnik, 1978) of external and internal systems of force that these functions
bear the following relations to the functions of cross-sectional forces

rroN Fy(z) "p) — _My(I)
v@ =54 v =

(2.3)
() = A%f”) EIL,d"(z) — GL,d (z) = — Mgy (z)

where E = E/(1 —v?).
General solutions of these equations permit one to determine the following
functions with the accuracy defined by the integration constants
u(z),v(z),w(z) - translation of the points of beam axis along =z,
translations of bending axis along the global system
axes ¥, z, respectively
a(z)w'(z),v'(z) - rotation of the cross-section about z, y, z
o (z)w(s) - warping of the cross-section.
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Solutions of Egs (2.3) can be written as follows

[ N(C)
wz) = - [ =22 d¢ +C
0/ EE

, [ M, (C)
V(z) = [ 2L A+ A
O/EIZ

(

l—C)MEZ—EC) dC+A15L'+A2

(2.4)

dc-{-Bl

/ d¢+le+B2
0

a(z) = as(z) + Dy + Dy smh(fyz) + D3 cosh(yz)

where
as(z) - particular integral of non-homogeneous equation
¥ - decay factor, and
o def G,
EI,

3. Constraints of warping

Generally the analysis of the imposed constraints on translational displa-
cement wu(z), v(z), w(z), and rotations about the axes y and =z of the
cross-section does not present any problem. On the other hand, the analysis
of the warping-restraining constraints whose equations depend on the deriva-
tive of the angle of torsion may cause a problem, due to excessively numerous
ambiguities, evident errors which can be encountered in the literature, or sim-
ple avoidance of this topic in the literature on thin-walled beams. This fact
deserves a special attention.

The linearity in every straight section of the middle line is the characte-
ristic feature of warping of an arbitrary cross-section, which follows from the
definition. A possible warping diagram is presented in Fig.1 as an example.
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L

Fig. 1.

Calculation of the warping value at particular points of a cross-section does
not seem to present any serious problem. Two of the constants that appear
in Eq (2.4)g are calculated from the known values of bimoments on extreme
cross-section areas. Once the relation between the bimoment and the second
derivative of the angle of torsion (Piechnik, 1999) known

B .

C!”(.’L') _ ~(-'L)

ET,
the values of these derivatives on the beam-ends can be easily found if we

know all the forces applied to these cross-sections that yield the components
collinear with the axis z

7 . B(O) o _ P\
(0) = EI, h= EI,

Fig. 2.

There may arise problems with formulation of the third constraint equ-
ation. The problem disappears only in the case when the constraints block the
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z-rotation of one of the extreme cross-sections. An example of those constra-
ints is presented in Iig.2.

Let us consider an arbitrary system of constraints.

In the case of statically determinate beam, the number of constraints nor-
mal to the cross-section ends cannot exceed three for obvious reasons (all
constraints block out all the six degrees of freedom). In that case the values
of reactions are calculated from the equations of equilibrium.

If constraint-limiting displacements in the direction of the beam axis are
additionally applied, for instance, at the point D to the cross wall (see Fig.3),
then the problem becomes statically indeterminate. The reaction magnitude
of this constraint can be determined e.g. by the force method.

Fig. 3.

There-after we will consider the indeterminate cases due to the application
of more than three constraints perpendicular to the extreme cross-section.

One can distinguish two cases of the above mentioned joints, namely, when
the rigid constraints join the extreme cross-section of the thin-walled beam
with:

o the rigid body or with a deformable body that contains a "rigid diaph-
ragm” element within it that corresponds to the shape of the thin-walled
beam cross-section,

o the deformable body.

The first case will be discussed further on. Among a number of elements
of the set of possible to be applied constraints, we may distinguish the subset
of constraints that make warping impossible. The elements of that subset will
be called warping constraints.
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Let us prove the following theorem, which is also a consequence of the
Vlasov hypothesis (Vlasos, 1961).

If at least 4 points of the cross-section at which the constraints have
been applied are situated in the same plane after deformation of
the bar, then, the entire cross section does not warp at all (it means
that the cross-section moves like a rigid plate). The selected points,
however, have to satisfy the following conditions: no three of them
can lie on one line and the linear combination of their sectorial co-
ordinates is not identical with the linear combination of Cartesian
co-ordinates.

Adopting the following denotations we will carry out the proof of the above-
presented theorem:
— At an arbitrary point of the cross-section: A;(zo,yi,2;) where y; = y(s;),
z; = 2(s;), the relation (2.1); can be formulated as

uz(To, ¥s, 2i) = a + by; + cz; + dw; (3.1)

— After deformation, the point A; will be localised at the point A, whose
co-ordinates are

A;[l’o + UI(xOinazi)ayi + uS(Ianhzi)a Zi + (Z'Oa Yis Zz)]

— If the denotation z; = zg + uz(zo,s;) is adopted, Eq (3.1) will take the
following form
—(x; —zo) + by; +czi +dwi +a =0 (3.2)

— Assuming the definition of the following vectors
n=[-1,b,¢ i = [2i — 0, Yi, %] (3.3)
one can reformulate Eq (3.2) as

™= —dw; — a (3.4)

Assumptions

Let us consider four points A; of radius-vectors r; and four values w;
(1 = 1,2,3,4), for which Eq (3.4) is satisfied, and let us adopt the following
assumptions:
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1. All points A} lie on one plane (r —rg)n = 0 and no three vectors r; lie
in one plane (it follows that no three points A; lie on one straight line)

2. Linear combination of radius-vectors is not identical with the linear com-
bination of sectorial co-ordinate values
( 3

3
ka—lo—Zﬂz i — Zo) =>1‘k—$0=Z7}ifCi—fCoz7h'
i=1 i=1
3
TkZZ??iTi=>< yk:Zﬂiyi
i=1 i=1

3
k=) i
=1

(3.5)
3
Wk # Y Mwi
=1
Thesis
al(l‘o) =d=0.
Proof

It follows from assumption 2. that the sum of linear combination coeffi-

cients is equal to unity
mtm+tm=1 (3.6)

Developing Eq (3.4) for the kth vector, one obtains the following equation
Tt = —dwk —a (3.7)

The left-hand side of the above relation will be rewritten, considering (3.5);
and (3.6)

3 3 3
ryn = Z 77N = Z 172 —dw; — a Z 7:dw; — a Z n; = Z 7:dw; — a
i=1 i=1 i=1
(3.8)
Substituting the result into Eq (3.7) yields the following equation

dz:mwZ = dwy, = d(z Tiw; — wk) =0 (3.9)

=1

As to assumption (3.5)9, it is a must that d = 0.
This proves the theorem on movement of the cross-section as a rigid disc.
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4. Conclusions

o [t follows from the above theorem that the derivative of the angle of
section torsion to which the constraints are applied equals zero, irre-
spective of the point of application, provided the basic assumptions of
the theorem are satisfied.

e Applications of any kind of warping constraints influence the boundary
problem governing the solution of a thin-walled beam only by values of
bimoments. The boundary condition ¢'(l) = 0 is always the same.

e The second case of linking mentioned above — i.e. when the rigid con-
straints join the cross-section of the thin-walled beam with a freely de-
formable body — should be solved according to the known algorithm of
the method of forces while the exact points of application to the cross-
section are recognised.
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”Wiezy deplanacji” przylozone do belki cienkoéciennej

Streszczenie

Celem pracy jest analiza wiezéw zewnetrznych, ktérym poddana jest belka o pro-
filu cienkodciennym. W szczegdlno$ci oméwione zostaly wiezy uniemozliwiajace spa-
czenie §cianki poprzecznej, do ktérej zostaly one przylozone. Sformutowano i udowod-
niono stosowne twierdzenie.
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