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The aim of this paper is to investigate the influence of the physical nonli-
nearity of the material under creep conditions on vibrations and stability
of a non-conservatively compressed column. Especially, behaviour of the
characteristic curves is examined for a column compressed by a tangen-
tial force. The additional effects such as: compressibility of the column
axis, rotational inertia and external damping are taken into account.
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1. Introduction

There exists comprehensive literature devoted to the stability of linearly
elastic structural systems, mainly columns, loaded by non-conservative forces
(Bolotin, 1961; Gajewski and Zyczkowski, 1988). Considerably fewer papers
take into account the rheological properties of material. In particular, some
of them consider a very interesting destabilization phenomenon due to the
internal damping of material. The early papers dealing with the above problem
are; e.g., Zoriy and Leonov (1961), Herrmann and Jong (1965), Dzygadlo and
Solarz (1970), Gajewski and Zyczkowski (1972), Gajewski (1972). The internal
damping of material has been characterized by a linear rheological model of
vigco-elastic material of the Kelvin-Voigt type.

The influence of internal damping of material on optimum shapes of
structural elements was taken into account by several authors; e.g., Plaut
(1972, 1975), Claudon (1975, 1978), Claudon and Sunakawa (1981), Langth-
jem (1993). Material was also described by means of the Voigt-Kelvin linear
model. Many other problems of analysis and synthesis of columns compressed
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by follower forces in view of their stability have been discussed by Bogacz and
Janiszewski (1987).

Stability of columns compressed by a non-conservative concentrated force
under nonlinear creep conditions was investigated by Kowalski (1975) in his
Ph.D.Thesis (under supervision of M.Zyczkowski). Some elements of the work
have been presented by Zyczkowski and Kowalski (1984). The authors took
into account the Norton and Zhukov-Rabotnov-Churikov (1953) nonlinear mo-
dels of material. The dependence of the critical force causing loss of static and
kinetic stability on the so-called tangency coeflicient has been considered.

Some problems of the optimal design of conservative systems with respect
to nonlinear creep stability were investigated:
~ for bars by Zyczkowski and Wojdanowska (1972), Btachut and Zyczkowski
(1984), Wréblewski (1989)

— for trusses by Wojdanowska and Zyczkowski (1972), Wojdanowska (1974)
~ for arches by Wréblewski and Zyczkowski (1989)
— for plates by Wréblewski (1992).

A comprehensive review of papers (187 references) devoted to the opti-
mal structural design under creep conditions was presented by Zyczkowski
(1996). Recently, an attempt at optimization of a column compressed by a
non-conservative force in nonlinear creep conditions was presented by Gajew-
ski (1997).

The principal aim of the present work is to examine the influence of non-
linear creep of material on vibrations and stability of column compressed by
the tangential force. Especially, behaviour of the characteristic curves will be
considered. We will also take into account the additional effects; namely, com-
pressibility of the axis, rotational inertia and external damping.

2. Nonlinear creep law

Following the state equation hypothesis of Davenport (1938) it is assumed
that the stress and strain components of the basic uniaxial stress state are
interrelated by the following creep law, accounting for the strain hardening

&(a,p,p) =0 (2.1)
where

p — creep strain, p=¢—o/E
e — full strain
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— stress
elastic modulus
~ given material function

) Ql
!

and the bar over a symbol denotes dimensional quantities. Among various
creep stability theories the Rabotnov-Shesterikov (1957) theory of perfect,
straight bars seems to be most suitable here. Generally, it can be assumed that
during vibrations of a system (or as a result of buckling), the stress and strain
components in a basic state are subject to small variations and the creep law
(2.1) can be linearized with respect to them. The behaviour of the variations
determines the stability of the basic state (precritical) at a critical time ¢*.
In the basic state the relation between stress @ and strain ¢ is determined
by Eq (2.1), while the tangent creep modulus Ey. should be evaluated on the
basis of Rabotnov-Shesterikov theory from the following equation

0P 0P 0P
—| o = 2.2
Bp dp + W 05;0 + o 060 0 (2.2)

Assuming that the variations of stress and strain components are subject to
small linear vibrations of complex frequency 2

de = de%e™ 55 = doet (2.3)

and substituting them into Eq (2.2) we obtain the tangent creep modulus

_ %9 (2.4)

In this paper, the commonly used strain hardening creep law suggested by
Rabotnov (1966) has been adopted

1

& :p—r;% O i (2.5)

where u, n, I’ denote the material constants (temperature dependent).
Moreover, all the results are obtained using material constants for cop-
per at a temperature 200°C, n = 32.8, 4 = 9.52, E = 1.22 - 10° MPa,
I =2.18-10713+" (MPa)™"h~! (see: Zhukov et al., 1953).

In the basic precritical state under the assumptions of constant stress
(@(t) = const) and with the initial condition p(0) = 0, we obtain from Egs
(2.1) and (2.5)

€0 = {1 + E|(1 + p)T'E, ]1+u|go|%‘i} (2.6)

@j” Q|
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and the ”secant modulus”

E
Epe=="=

Eq EO{1 + E[(1 + p) L] ™ 7o T }

|

(2.7)

According to the Rabotnov-Shesterikov (1957) theory, the ”tangent mo-
dulus” for the nonlinear creep law (2.5) can be written in the form

(2.8)

b E(1+ t()) m}

Eo{l + L7, 72 + MU E((1 + p)TE] TR o] T

It is a function of the critical time %, and complex frequency of vibration
2 = 6+ 1iw. Fyisa certain constant of the stress dimension.

3. State equation

The vibrations and stability analysis of a non-prismatic column compres-
sed by a non-conservative force requires first the calculation of displacement
under uniaxial compression (precritical state) and then the application of the
kinetic stability criterion, making use of small superposed vibrations. The ge-
neral equations of precritical and vibration states were derived and presented
in the monograph by Gajewski and Zyczkowski (1988), where the effects of:
extensibility of the axis, shear deformations, rotational inertia and nonlinear
properties of the material were introduced. The equations of small vibrations
of complex frequency {2 superposed on the momentless precritical state can
be transformed to four complex or to eight real linear ordinary differential
equations with the appropriate boundary conditions. In the case of cantilever
compressed by a follower force P it is a non-self-adjoint boundary value pro-
blem. For a prismatic column the equations of vibration state can be reduced
one fourth order differential equation of constant complex coefficients

Vaifl" +gv=0
f = Es[eot P(1 + hP) — rap2?] — eg) hp$2? E.=E7'  (3.1)

g = 501&0{750113(1 + RP)202 + e (1 + hP) + mhﬁm]m?}
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where the following dimensionless quantities have been introduced:
— independent variables

<;"|H-I

— external force

— constant parameters

I() : p()A()l4 : f* - )
o = ——— = s * = — = —
NE =\ Bl o P~ 0o
— elongation of the axis
aP n-l-p
00 = ——_E—’_— o0 — —OP(]. +TP I+u ) €01 = 1 =+ €00
sC

— quantities connected with the physical law

L n—-l-p 1 n-l-u
T — T00(1> Tt (ﬂ) Tru Too = e[(1 + p) P Egro) oy '
T0 g
1+ He 0 B
ELC =€ L P € = —
1+ H2,0 4+ ETP—&H‘A Ey
T = toty = b 70 = 3600s ap = 1074

Ay denotes the cross-sectional area and Iy denotes the moment of inertia of
the prismatic column cross-sections, pg is a constant of density dimension, tg
denotes a certain constant which may be treated as a unit of time and 7, 7
denote the tangency coefficient and external viscous damping coefficient, re-
spectively. The parameter r characterises the magnitude of the cross-sectional
rotational inertia while the function h({2) characterizing the shear effects is
defined by the equation

agpy
h({)= ———m——— 3.2
( ) klEtc - 0601P ( )

where k; denotes the shear coefficient. Taking into account the physical con-
stants for copper, given above, and e = 1 we have Tyy = 0.781408.
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In further parts of this work we neglect the shear effect (A = 0), which
considerably simplifies numerical calculations. In such a case the boundary
conditions for the cantilever column can be written in the form

2(0) =0 v'(0) =0

U"(l) — 0 ,Ulll(l) + c3,vl(1) — 0 (3-3)
where B
c3 = Eycleor (1 — n)P ~ rap2?) (3.4)
The solution of Eq (3.1) can be looked for in the following form
v(z) = Asins z + Bcos sz + Csin sez + D cos sax (3.5)
where s; and so fulfil the algebraic complex characteristic equation
sT+ fs?4+9=0 (3.6)

Substituting Eq (3.5) into the boundary conditions (3.3) we obtain a sys-
tem of four linear and homogeneous equations on constants A, B, C and D.
The principal determinant of these equations equalled to zero allows one to
calculate the relation between complex frequencies of vibrations and compres-
sive force P and other parameters of the problem (characteristic curves). It
can be written in the form analogous to the equation presented by Gajewski
(1972)

Fl - CgFQ =0 (37)

and
Fy = (s? +53) — s150(s? + %) sins) sinsy — 25752 cos s; cos sy

. . 9
Fy = (s + s2) — 25159 sins) sin sy — (s] + s5) cos 51 cos 5o

After separating the real and imaginary parts in Eq (3.7) we obtain two
real algebraic equations, which determine the real J§ and imaginary w parts
of complex frequency {2.

4. Numerical calculations and results

Using the Newton-Raphson method to solve Eq (3.7) numerical calcula-
tions have been made for various values of parameters characterising exten-
sibility of axis, critical time, external damping and cross-sectional rotational
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Fig. 1. Characteristic curves versus the critical time parameter 7 for: 5 =1,
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Fig. 2. Characteristic curves versus the extensibility parameter « for: n =1,
T=18,v%=0,r=0

15
J
o
1 . =10000
o o =5000
— r=1000
[ — r=100
- =0
1 L 1 1 1 1 1 1 | Y 1
0 -100 0 100

S-104

Fig. 3. Characteristic curves versus the rotational inertia parameter r for: n =1,
a=10"%1=1s,7 =0
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inertia. All the results presented in this paper are obtained for the tangential
force, i.e. for 7 = 1 with the shear effects neglected. Fig.1 shows that the
critical time parameter 7 mostly influences the (P — w) curves. In a minor
degree it changes the critical magnitude of the force P (for which é =0). A
similar situation occurs when the characteristic curves depend on the extensi-
bility parameter «. As it is seen in Fig.2 the critical value of the force P is
nearly independent of the parameter o € (1075,1074).

The cross-sectional rotational inertia parameter r exerts essential influ-
ence on the characteristic curves (P —w) and (P — d). A notable decrease
in the critical force with increasing parameter 7 may be observed in Fig.3.
The results obtained here are similar to those presented by Kounadis and
Katsikadelis (1976) for a linearly elastic column.
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Fig. 4. Characteristic curves versus the external damping parameter -~y for: n=1,
a=10"%1=1s,7r=0
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Fig. 5. Characteristic curves versus the external damping parameter ~y for: n =1,
a=107% 7 =3600s,r =0
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The external damping parameter -y has a very small effect on the (P —w)
curves, however it strongly modifies the (P — §) curves. As it is seen in Fig.4
and Fig.5 the external damping eliminates the destabilisation phenomenon.
Such an effect has been previously observed for linearly visco-elastic columns
by Herrmann and Jong (1966), Gajewski (1972), Gajewski and Zyczkowski
(1972), Seyranian (1987) and others.

5. Conclusions

The vibrations and stability of a tangentially compressed column in nonli-
near creep conditions have been comprehensively examined. It has been assu-
med that the mechanical properties of the material of the column are charac-
terised by the Zhukov-Rabotnov-Churikov (1953) law. Although the nonlinear
creep law considered in this paper is essentially different from the linear visco-
elastic models of material, the results presented here are close in character to
those obtained for the Kelvin-Voigt model. Especially, the destabilizing phe-
nomenon is quite similar to that very well known from the literature.
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Drgania i stateczno$¢ kolumny pryzmatycznej $ciskanej sita
niekonserwatywng w warunkach nieliniowego pelzania

Streszczenie

W pracy zbadano wplyw nieliniowo$ci fizycznej materialu na drgania i statecz-
no$é¢ niekonserwatywnie Sciskanych kolumn pryzmatycznych w warunkach nielinio-
wego pelzania. W szczegdlnosci przedstawiono ksztatty tak zwanych krzywych cha-
rakterystycznych (zaleznosci czedci rzeczywistej i urojonej zespolonej czestoscl drgan
od wartoéci sity §ciskajacej) dla kolumny §ciskanej silg Sledzgcg. W pracy uwzgled-
niono réwniez dodatkowe czynniki, wplywajace na ksztatty krzywych, a mianowicie:
$cisliwosé osi kolumny, bezwladnosé obrotéw przekrojéw oraz wiskotyczne tlumienie
zewnetrzne drgan.
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