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The aim of contribution is to specify a class of periodic mass-point sys-
tems with ternary interactions which can be interpreted as discrete mo-
dels of plane dynamic problems in linear-elastic composite materials.
The obtained results yield a new mathematical tool for the analysis of
wave propagation problems in heterogeneous periodic material structu-
res, which can be carried out on different levels of accuracy. An applica-
tion of the proposed model to the analysis of a plane wave propagating
in the homogeneous medium with prizmatic rigid inclusions is shown.
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1. Introduction

A list of papers on dynamic problems in material continua with a periodic
structure is very extensive and will be not discussed here. A survey of earlier
contributions, mainly related to the wave propagation problems can be found
in Lee (1972). In most cases the exact analysis of these problems is not possible
even using computer methods. That is why different approximate mathemati-
cal models of dynamic phenomena in heterogeneous periodic media have been
proposed, Achenbach et al. (1968), Herrmann and Achenbach (1968), Sun et
al. (1968). In this contribution we are to show that two-dimensional dynamic
problems in periodic composite materials can be modelled by certain discrete
plane periodic mass-point systems with a complex structure and ternary inte-
ractions. To this end we begin with a formulation of governing equations for
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the above systems by applying a certain generalization of the approach propo-
sed in Rychlewska et al. (1999). It will be shown that this approach makes it
possible to formulate discrete models of dynamic problems in composite ma-
terials on different levels of accuracy. For the sake of simplicity considerations
will be restricted to the linear-elastic material structures and plane dynamic
problems for an unbounded medium. General considerations will be illustra-
ted by the analysis of a plane wave propagation in the homogeneous isotropic
periodic linear-elastic medium with two kinds of rigid inclusions.

Notations. The superscripts a, b, crun over 1,...,n and the superscript %
takes the values 1,...,m. Indices A, B,C run over 0,1,...,N except in de-
notations Ay, Aa, where A = 1,..., N unless otherwise stated. Summation
convention holds for all the indices repeated twice. Points on E? are denoted
by p, z and points belonging to a subset A of E? by z. The symbol t stands
for a time coordinate.

2. Preliminaries

Let [d',d?] be a vector basis on E? and A stand for the Bravais lattice
A= {z cE2: z=ud +nd®, vy=0,+1,42. ... a= 1,2}

For an arbitrary subset = of E? and every z € A define Z(z) = = + 2.
Similarly define p(z) =p+ 2 for any p € E? and z € A. Let A be a regular
region on E? such that E? =|JA(z), z € Aand A(z;)NA(zq) = 0 for every
Zz1,20 € A and 2z, # zo. We shall also assume that there exist a simplicial
subdivision of A into m simplexes T*, k = 1,...,m, which implies the
simplicial subdivision of E? into simplexes T#(z), z € A. Hence UT" = A
and

T:={T"z): ze4A, k= ,.m} (2.1)

constitutes a set of all simplexes for the subdivision of EZ?. It can be seen that
for the aforementioned simplicial subdivision of A there exist a set of vertices
p* e A, a=1,..,n, such that

S:= {pa(z) o zed, a= 1,...,n} (2.2)

is a set of all vertices for the related subdivision of FEZ2. In the sequel we shall
assume that 7 is the smallest number of vertices p* € A for which S is a set
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of all vertices and that the decomposition of p*(2) in the form p%(z) = p*+z,
z€e A, a=1,..,n,is unique. In the subsequent considerations both simplicial
subdivision of A and a set of m vertices p®, a =1,...,n, are assumed to be
known.

Let d” € A, A=0,1,...,N, be a system of vectors where d’ =0 and
p% a=1,...,n a set of vertices such that all simplex vertices belonging to A
can be uniquely represented in the form p9% = p* + d”. Hence every T* can
be represented as T* = p%p%pcc. For an arbitrary function f(-) defined on S
with values in a certain linear space we shall introduce the finite differences

Auf(z) = f(z+d%) - f(2) Asf(z) = f(2) - flz —d*)

which for A = 0 reduce to identities. Here and in the sequel all finite difference
operators A4, A, will be defined only for A4 = 1, ..., N. Following the notation
introduced above we also denote T%(z) = T* + z and p%(2) = p% + 2 for
every z € A.

The aforementioned concepts and definitions will be used in the next sec-
tion in order to specify a certain class of periodic mass-point systems with
ternary interactions.

3. Periodic mass-point systems with ternary interactions

The analysis of any mass-point system requires the use of a certain pa-
rametrization of this system. In the problem under consideration it will be
assumed that the position of mass-point system in its reference equilibrium
state coincides with a set S of points in E?. Hence every mass point will be
parametrized by its reference position p®(z), z € A, a = 1,...,n. Displace-
ments of these points from their reference positions at a time ¢ will be denoted
by u®(z,t). It is assumed that to every point p*(z) € S there is assigned mass
m® which due to the periodicity of system is independent of z € A. An exter-
nal force acting at p%(2) at time ¢ will be denoted by f%(z,t). The system
of ternary interactions will be parametrized by a set T of all simplexes by
assuming that the points z,,Zy,z3 € S can interact if and only if z;, = p%(2),
Ty = pY(2), T3 = p&(z) for some z € A, where p%(2)p%(2)ps(z) = T*(z) for
some k € {1,...,m}. Hence every ternary interaction will be identified with a
certain simplex T%(z), 2z € A, k=1,...,m. It is also assumed that to every
interaction T*(z) € T there is assigned a strain energy function &F which by
means of periodicity of the system is independent of z € A. Let u%(z,?) stand
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for a displacement vector of point p%(z) at time ¢. Under these denotation

the arguments of & are |u4(z,t) — u’(2,t)|. Because of

W4 (2, 1) = w2 + 44, 1) — u(2,1) + u(2,1) = Agut(z, 1) + u(2, 1)
we shall assume that

o* = @k<AAu“(z, t),ub(2, 1) — uc(z,t)) (3.1)

bearing in mind that @*(-) are hemitropic functions of all arguments which
are specified by the simplex T* :p‘j,pl}}p%.

[t can be seen that to every 2z € A there is assigned a certain repetitive
element of the periodic system under consideration comprising n mass points
p(2), a =1,....,m, and m ternary interactions T*(z), k = 1,...,m. Define
M® = §%mb (no summation over b). The kinetic and strain energy functions
assigned to an arbitrary repetitive element are respectively given by

1
K= 5M“"ﬂa(z,t)a"(z, t)
(3.2)

b= Z@k<AAu“(z, t),u’(z,t) — u’(z, t))

Using the approach detailed by Wozniak (1971) it can be shown that the above
formulae lead to the following equations of motion

AAS%(2,1) + h%(z, 1) — M®Pib(z,t) + f4(z,1) = 0 (3.3)

where S%, h* are generalized internal forces defined by the constitutive equ-

ations 96 5
Salzt) = 84 4us(z, 1) W(z,t) = T But(z, 1)

Eqgs (3.3), (3.4) have to hold for an arbitrary instant ¢ and every z € A. They
constitute the system of finite difference equations for u%(z,t) involving the
second-order time derivatives describing the periodic mass-point system under

consideration.

(3.4)

4. Simplicial models of periodic composites

Now we are to show that Eqgs (3.3), (3.4) can be interpreted as a certain
finite element approximation of plane dynamic problems in periodic composite
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materials. To this end let E? now represent a two-dimensional linear-elastic
continuum with a periodic piecewise homogeneous material structure. More-
over, let A be interpreted as a representative element of this structure and
let a simplicial subdivision of A be treated as a decomposition of A into mn
finite triangle elernents T*. At the same time it has to be assumed that every
element T* with a sufficient accuracy has to be treated as homogeneous. Let
Tk = p‘gp%pg and denote by A%, a =1,2,3, the barycentric coordinates of
an arbitrary point £ € T%; hence X* >0, A +A24+ X3 = 1and \* = a%z+b“
where a® € E? are the known vectors and 5% are the known scalars, Zien-
kiewicz (1971). The displacement u(z,t) of an arbitrary point z € T* at an
instant ¢ will be taken in the well known form

u(z,t) = Naub () + N2 (t) + Nud(t)
where u‘j‘(t),u%(t),ug(t) are displacements of vertices p%,p%,pS, respecti-
vely, and A%, «a =1,2,3, are the shape functions. The displacement gradient
Vu is equal to

Vu(z,t) = a' @ u4(t) + a® ® uly (1) + a® @ ué (1) zeTk (4.1)

and hence constant for every instant ¢. Substituting into Eq (4.1) the decomn-
positions of the form

u% () = u%(t) + Azu’(t) A=0,1,...N (4.2)

where u®(t) is a displacement of mass point p* € T, and introducing the
linearized strain tensor

= %(Vu +vaT) (4.3)

we obtain the strain energy function assigned to T* defined by
1
oF = §er :Cp i€ (4.4)

where F* is the area of T% and Cj is the elastic moduli tensor related to
the material of finite element 7T*. Combining Eqs (4.1) + (4.4) it can be seen
that Eq (4.4) makes it possible to derive the function

OF = oF (A 4ul, ub — u®) (4.5)

depending on differences A u® and u® — u®. At the same time a constant

continuous mass distribution in every T%(z), z € A, will be replaced by three
concentrated masses at vertices p%(z),p%(2),pE(2), where T* = pphpt.
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The above approach is similar to that used in the finite element method and
makes it possible to define the concentrated masses m? at the points p%.
From

o= o (4.6)

and bearing in mind Eq (4.5) we obtain the form of strain energy function &
assigned to the representative element A

P = H(A u’, ub — u) (4.7)

Eq (4.7) also holds for an arbitrary element A(z) =z + A, z € A provided
that arguments u® are replaced by u®(z,t). Hence we arrive at Eqs (3.3) and
(3.4) as the governing equations of a linear-elastic composite material in the
finite element approximation.

5. Applications

The proposed simplicial model of plane problems for dynamics of linear
elastic periodic media, represented by Eqs (3.3), (3.4) combined with Eqs
(4.1) + (4.7), will be now applied to investigation of a plane wave propagating
across the unbounded linear elastic medium with periodically spaced rigid
prizmatic inclusions. The rectangular fragment of cross-section of the medium
by an arbitrary plane z3 = const is shown in Fig.1l. The cross-sections of
rigid inclusions on 0z;z, plane constitute equilateral triangles having mass
densities p|, po per unit area. Hence, the representative element A, bounded
in Fig.1 by the bold line, is composed of two equilateral hexagons. The elastic
medium is assumed to be homogeneous and isotropic with the mass density
po and Lame moduli A, . We shall investigate an oblique wave propagating
in the direction normal to vector dy with the displacements of rigid inclusions
parallel to the vector d; as shown in Fig.1.

To apply the model proposed in this contribution we shall restrict ourselves
to the simplicial subdivision of A into 12 equilateral triangles (symplexes)
which are shown in Fig.2. In the problem under consideration we can assume
N =1 and hence the finite differences will be denoted by

Af = A f(2) = f(z+d)) - f(2)
Af = A1 f(2) = f(2) - f(z — dy)
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Fig. 1.

Let us denote by wu;,us the displacements of rigid inclusions with mass
densities py, po, respectively, and by m;, ms the masses of two corresponding
hexagons in A, cf Fig.2. Let us also introduce new elasticity modulae

o=Y2 0+ 2 =22,

Using Eqs (4.1) + (4.7), after rather tedious calculations, we obtain from Egs

(3.3), (3.4) the following system of finite difference equations for u;,us

8aAAu) + 2(a + B)AAuy + 8(a + B)(up — uy) — myiy =0 51)

8aAAuy + 2(a+ B)AAu; + 8(a + B)(u) — u2) — matip =0

Introducing the new unknows U = 3(u; +ug), V = 5 (u1 —u2), and denoting
k=46a+ F) n=43a-f)
m =m; +ma M =m) — My

we shall rewrite Eqs (5.1) in the simple form

KAAU — mU — mV =0
(5.2)

NAAV —4(k — )V —mV — il =0
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Fig. 2.

Setting k = 2md; /L where d, = |d;| and L is the wavelength, and substitu-
ting

U = Ay exp[i{wt — nk)] V = Ay expli{wt — nk)] n=0,%1,4£2, ..
into Egs (5.2) we obtain

Ay[2k(cos k — 1) + mw?] + mw? Ay = 0
(5.3)

Av[2n(cos k — 1) — 4(x — 1) + mw?| + Mmw? Ay =0

From the above system of equations for amplitudes Ay, Ay we derive the
following dispersion relation

k o k 0 k
mymaw! — [(n-i-n) sin? 3 + kK —7}] mw? + 4x sin® 3 (77 sin? 3 + kK —n) =0 (5.4)

It can be proved that there exist two non-intersecting branches (lower and
upper) of the above dispersion relation. For a special case m; = my these
branches are shown in Fig.3, where A; = Ay + Ay, Ay = Ay — Ay are
vibration amplitudes related to the rigid inclusions shown in Fig.2. If

my K—1)

My K+7

then there exist the stopping band, i.e. the maximum lower frequency w_ for
k = £7 is smaller than the minimum upper frequency w, for k£ =0.
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Fig. 3.

So far, the dispersion analysis was of a quite formal character. It has to
be emphasized, however, that the simplicial subdivision of A into 12 equila-
teral triangles, each undergoing exclusively a uniform strain, has a physical
sense only under condition d; <« L, 1.e., for the lengthwaves sufficiently large
compared with the length dimension of cell A along the x;-axis. In this case
k = 2nd,;/L is a small parametr, k& < 1, and Eq (5.4) yields the following
asymptotic formulae for the lower w_ and upper w, free vibration frequencies

W= Sgy o(k")
m

(5.5)

9 m Vet K 9 4
— - v —"—k k
B 77)+[4m1m2(r+77) =k + (k")

Setting cosk — 12 —k%/2 in Eqs (5.3) and neglecting higher order terms in
Eqgs (5.5) it can be shown that for w = w_ we obtain Ay = 0 and hence
A} = Ay while for w = w, we arrive at Ay =0 and hence A} = —A,.

The results similar to those obtained above hold also true for a plane wave
propagating in the direction normal to the vector d; with displacements of
rigid inclusions in the direction of vector ds; in this case the dimensionless
wave number is given by k = 2wdy/L with do = |dy|.
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6. Conclusions

The main conclusion of this contribution is that the periodic mass-point
systems with a special distribution of ternary interactions which were speci-
fied in Section 3, can be applied to the analysis of plane dynamic problems for
the linear-elastic periodic composites. The main advantage of the governing
equations (3.3), (3.4) derived in Section 3 is their simple finite-difference form
which is identical for every problem. Moreover, the above equations are rather
general being formulated for an arbitrary simplicial periodic subdivision of the
plane EZ2. It follows that they also hold for an arbitrary decomposition of the
representative composite element into finite elements provided that it implies
the periodic simplicial subdivision of E2. Hence Eqgs (3.3), (3.4) can represent
dynamic behaviour of composite materials with a required degree of accuracy.
On the other hand, this requirement makes the formal structure of Egs (3.3),
(3.4) more involved due to a large number 7 of functions u°(-,t), a =1,...,n,
defined on A. This is a main drawback in direct applications of the above equ-
ations to investigations of dynamic problems in composite materials. However,
the form of these equations implies that they can be also interpreted as finite
difference approximations of a certain generalized continuum medium with a
large number of local degrees of freedom represented by smooth fields u®(-,?),
a =1,..n, defined on FE?. The problems related to different applications of
Eqs (3.3), (3.4) which include also dynamics of bounded composite solids will
be studied in forthcoming papers.
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Model simplicjalny zagadnienn dynamiki oérodkéw periodycznych

Streszczenie

Celem pracy jest zaproponowanie modelu dyskretnego zagadniend dynamiki w li-
niowo sprezystych materialach kompozytowych. Model ten stanowi klasa periodycz-
nych ukladéw punktéw materialnych o zlozonej strukturze i ternarnych oddzialywa-
niach. Otrzymane wyniki to nowe matematyczne narzedzie stuzace do analizy zagad-
niei propagacji fal w niejednorodnych odrodkach periodycznych. Ogélne rozwazania
zilustrowano przyktadem analizy propagacji fal w oérodku jednorodnym ze sztywnymi
inkluzjami.

Manuscript received August 27, 1999; accepted for print September 24, 1999



