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Estimation of load carrying capacity on the basis of the post-buckling
behaviour of thin-walled composite structures with imperfections is stu-
died with the distortional deformations being taken into account. OQur
attention is focused on beams and corrugated trapezoidal plates subject
to a constant bending moment or an axial compression, respectively. The
structures are simply supported at the ends. The asymptotic expansion
established by Byskov and Hutchinson (1977) is employed in terms of the
numerical transition matrix method. The paper aims at to improving the
study of the post-buckling equilibrium path of imperfect structures em-
ploying the second order non-linear approximation. The principal goal of
numerical analysis is to investigate the influence of the orthotropy factor
of structures upon all the buckling modes from global to local ones, and
the uncoupled post-buckling state. In the solution obtained the transfor-
mation of buckling modes as the load increases up to the ultimate load
and the shear-lag phenomenon are included.
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Notation

ayin, b - coefficients appearing in the nonlinear equilibrium
equations (Byskov and Hutchinson, 1977)

b; - width of the <th wall of the column

By = E;, By - Young moduli of the <th wall along the z and y
axes, respectively

G, - shear modulus of the ith wall
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thickness of the ith wall of the column

coefficient of the reduced flexural rigidity

length of the column

number of axial half-waves of a mode

bending moments resultants for the ith wall
bending moment corresponding to the load carrying
capacity

plastic bending moment

force field

in-plane resultants for the <th wall

displacement field

displacement components of the sth wall midsurface
strain tensor components for the 7th wall midsurface
ratio between the Young moduli in principal direc-
tions of orthotropy, 7 = Eyy/E;

curvature modifications and torsion of the {th wall
midsurface

load parameter

value of X at a buckling mode

Poisson ratio of the sth wall; the first index indicates
the transverse direction and the second one shows the
direction of load

dimensionless stress of a buckling mode,

ok =0oe - 103/E

load carrying capacity, of = os-103/F

amplitude of a buckling mode

imperfection amplitude corresponding to ¢

1. Introduction

Thin-walled structures (bars, beams, columns, plates and shells) made of
fibrous composites find more and more frequent applied to civil engineering
designs (e.g. vessels), aircraft stiffeners as well as to space vehicles.

The widespread use of fibrous composites as structural materials can be
attributed to:

o High strength-to-weight and stiffness-to-weight ratios; these ratios are
very important in weight-sensitive applications such as aircraft and space
vehicles
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o High resistance of some fibrous composites to aggressive chemical com-
pounds and to corrosion, what can be very important in the case of
vessels for some liquids and gases

e Variable thermal properties, depending on the sort of matrix and fi-
bres (thermal insulating power, thermal conducitivity, high mechanical
strength at elevated, high or very low temperatures).

In the present paper the analysis will be limited to the composites with
orthotropic matrix, the fibres being evenly distributed across the structural
component (plate, beam wall) along two directions perpendicular to each other
but parallel to the principal directions of orthotropy of the matrix. Such an
orthotropic material with a given orthotropy factor will further be dealt with
on the macro-scale as a homogenous one.

A macrostructure of the composite will be characterised by its mechanical
and strength properties such as moduli of elasticity along principal directions
of orthotropy, Poisson ratios, shear modulus, tensile, compressive and bending
strengths, etc.

In the present paper the delamination of composite materials is not taken
into account. In such a case other methods of analysis should be applied.

1.1. Stability of structures made of orthotropic fibrous composites

Thin-walled composite structures may reveal many buckling modes and in
some of them the structure can bear the load after local buckling. Determina-
tion of their load carrying capacity requires including imperfections into the
non-linear analysis of stability.

The concept of buckling involves the general asymptotic non-linear theory
of stability. The theory is based on asymptotic expansions of the post-buckling
path. If the analysis of the stability problem of thin-walled structures is limi-
ted to the first order approximation only, the imperfection sensitivity can be
obtained. Determination of the post-buckling equilibrium path requires the
second order approximation to be taken into account.

A more comprehensive review of the literature on the coupled buckling
analysis of isotropic structures can be found in the papers by Koiter and
Pignataro (1976), Manevich (1988), Pignataro et al. (1985), Sridharan and Ali
(1985), Sridharan and Peng (1989), Krélak (1990), Kotakowski (1989, 1993).

The first study of interaction between the buckling modes in thin-walled
composite structures were carried out by Godoy et al. (1995), Kotakowski and
Krélak (1995), Kotakowski et al. (1999), Krélak and Kotakowski (1995).

2 - Mechanika Teoretyczna
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Many composite structural components are subject to compression and
bending causing a danger of the stability loss. Having made the above as-
sumptions, the analysis of stability of thin-walled composite beam-columns
poses no difficulties, especially if the flexural rigidity is known for the struc-
ture under consideration.

In contrast to our previous works on coupled stability of composite struc-
tures, in the present contribution the thin-walled structures are analysed, the
lowest values of critical loads of which, differ substantially for various buckling
modes. Therefore, the buckling modes of such structures can be considered as
independent (uncoupled stability).

The main goal of this study is to determine the approximate estimation of
the load carrying capacity of orthotropic fibrous composite structures for the
uncoupled buckling.

In the current method (Kotakowski et al., 1999) the post-buckling beha-
viour of a thin-walled composite structure in the elastic range subject to an
axial compression or constant bending moment is examined on the basis of
Byskov and Hutchinson method (1977). The study is based on the numerical
method of the transition matrix using Godunov’s orthogonalization. Instead
of the finite strip method, the exact transition matrix method is used in this
case. The most important advantage of this method consists in the fact that
it enables one to describe a complete range of behaviour of the thin-walled
structures from the overall to local stability for the uncoupled buckling analy-
sis. In the solution obtained, the co-operation between all the structure walls
being taken into account, transformation of buckling modes with the increase
of load, shear-lag phenomenon and effect of cross-sectional distortions are in-
cluded. The distortion instability of beam-columns is investigated within the
framework of non-linear theory.

2. Structural problem

Prismatic structures, of the length [, whose flat walls are treated as thin-
walled homogenous orthotropic rectangular plates are considered. These rec-
tangular plates, of the principal axes of orthotropy parallel to their edges, are
connected along their longitudinal edges. The structures are simmply supported
at their ends.

The cross-section of a structure composed of a few plates is presented in
Fig.1 along with the local Cartesian co-ordinate systems.
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Fig. 1. Segment of a structure with the co-ordinate axes

A plate model is applied. For the ith plate component more precise geo-
metrical relationships are assumed in order to allow for consideration of both
the out-of-plane and in-plane bendings of each plate

2 2
Eix = Uiz T 5(“’1,1 + Uz‘,z) Kizg = — Wiy
1 . . (2.1)
I Z (a2 2 o .
Eiy = Viy + 5 (wiy +u;y) Kiy = —W; gy
25izy = Yizy = Uiy T Uiz T Wi Wiy Rigy = — Wi gy

The physical relationships for the 7th wall are formulated in the following
way

E;h;
Nz = 12—22(51'1' + Mivi€iy) My = Di(Kig + Mivikiy)
— Niv;
Eihini 2.2
Ny = %(Vﬁiz + Niy) My = 1:Di(vikig + Kiy) (2:2)
— v,
Nixy = Gihi'}'i:cy = 2Gihi5izy Mimy = Dli’{i:cy
where
By _ Viyz (2.3)

E
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The differential equilibrium equations resulting from the Principle of Vir-
tual Work and corresponding to Eqs (2.1) for the sth plate can be written as
follows

Nig g+ Nigyy + (Nigtiy) y =0

Nigyz + Nigy + (NizViz)z =0

(NigWig) o + (Niywiy) y + (NigyWi ) 4 +
+(NizyWiy),z + Miz 2z + Miyyy + 2Migy,zy = 0

The solution of these equations for each plate should satisfy the kinematic
and static continuity conditions at the junctions of adjacent plates and the
boundary conditions referring to the free support of the structure at its both
ends, i.e. z=0and z=1.

The non-linear problem is solved by means of the Byskov and Hutchinson
asymptotic method (1977). The displacement fields U, and sectional force
fields N, are expanded in power series in the buckling mode amplitude ¢
(¢ 1s the amplitude of buckling mode divided by the thickness of the first
component plate hi)

T =T + ¢ + 2T + .

N = N9 4 (N 2N 4

where
UEO), NEO) - pre-buckling fields
UEL), NE‘) - buckling mode fields

!

E@), NEQ) post-buckling fields.

By substituting Egs (2.5) into the equations of equilibrium (2.4), junction
conditions and boundary conditions; the boundary value problems of zero,
first and second orders can be obtained. The zero approximation describes the
pre-buckling state while the first approximation, that is the linear problem of
stability, enables us to determine the critical loads of global and local values
and their buckling modes. The second order boundary problem describes the
post-buckling equilibrium path.

The non-linear equilibrium path for the uncoupled buckling mode regar-
ding the amplitude (* of buckling mode imperfection (Byskov and Hutchin-
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Fig. 2. Discretization of a linear distribution of longitudinal displacements by means
of finite strips

son, 1977) has the following form

A A
a (1—X;)C‘i'(iluﬁ?‘i'blmﬁs‘i'---:al)\TTC (2.6)

and the corresponding formula for the total elastic potential energy

1 1 A 1 1 A
Ve=—zagX’ + za1(1 - )+ a4+ Sbun¢’ —ai~—¢¢t (2.7
e 0 1( )C 3 116 1 1116 al)\CTCC (2.7)

2 2 Aer
where
A — load parameter
Aer  — critical value of A
Veo — energy of the pre-buckling state, Vg = ao)\2/2

The coefficients ag, a|, a1, by in Egs (2.6) and (2.7) are described in
details the in papers of Byskov and Hutchinson (1977) or Krélak (1990).

The post-buckling coefficient a;;; depends only on the buckling mode
whereas the coefficient b;,;; depends also on the second order field.

The result of integration along x direction indicates that the post-buckling
coefficient a;1; equals zero when the wave number associated with the buc-
kling mode is even, while b)) coefficient is not equal to zero.

The relation between the post-buckling and the pre-buckling stiffnesses of
the imperfect structures defines the coefficient of the reduced flexural rigidity
(Manevich and Kotakowski, 1996)

k = [1+a—1a%51(%§+§*)]_1 (2.8)
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In a special case of the ideal structures (* = 0 and of the symmetrical
characteristic with respect to deflections for the uncoupled buckling mode
an =0 )

— i ay -1
F= lim k= (1+ m) (2.9)

The detailed description of the method of solution to the problem was
given by Kolakowski et al. (1999).

At the point where the dimensionless load carrying capacity
of = o5 - 10°/E (instead of the load parameter X,) reaches its ma-
ximal value for the imperfect structure (limit points) the Jacobian of the
nonlinear system of equilibrium path corresponding to (2.6) is equal to zero
(for more detailed analysis see Byskov and Hutchinson (1977), Krélak (1990)).

Including the displacements and loads components in the midsurface of
walls within the first order approximation into consideration and using more
precise geometrical relationships allowed for analysis of the shear-lag pheno-
menon, distortions of the cross-sections and all possible buckling modes inclu-
ding the mixed buckling mode (e.g. flexural-distorsional or local-distorsional
one), for details see Kotakowski and Krélak (1995), Kotakowski et al. (1997),
Kowal-Michalska et al. (1998)).

In this paper the assumption of non-zero deflection within the second order
approximation accounts for the transformation of displacement and force fields
with the increase of loading that is disregarded in most works.

3. Determination of the load carrying capacity of a square
orthotropic beam

The thin-walled orthotropic beam of a square cross-section is considered
(Fig.3). Dimensions of the cross-section are taken after Lee et al. (1984) and
Manevich and Kotakowski (1996) dealing with isotropic beams, i.e.

b=100 mm h =1.25 mm | =700 mm

Mechanical properties of orthotropic materials are assumed after Chandra
and Raju (1973). In a general case the load carrying capacity can be determi-
ned basing on the corresponding strength (effort) criterion.

For post-buckling uncoupled analysis within the elastic range, one can
obtain only an approximation of the load carrying capacity on the basis of a
simplified threshold criterion.
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Fig. 3. Beam of a square cross-section subjected to pure bending

In this paper, the following criterion is adopted for the load carrying ca-
pacity M*:
e In a compressed plate, the yield stress is attained at a limit-load value

lower than the critical moment M. In this case we are dealing with
the pre-buckling bending, hence, it is assumed that k = 1, see Eq (2.8)

e In a compressed plate, the yield stress is attained at a limit moment
value higher than the critical moment M, i.e., at k < 1, see Eq (2.8).

However, in order to determine maximum stresses in a plate under com-
pression, one must find not only the reduced flexural stiffness but also the
position of effective neutral axis of the cross-section; this requires one of the
hypotheses concerning the effective plate width be accepted. In this paper
only the width of a compressed flange is reduced to obtain the real decrease
in the cross-section flexural stiffness after a local buckling (cf Manevich and
Kotakowski (1996), for isotropic structures). This approach provides a lower
bound to the load carrying capacity.

In this paper the approximate method of the determination of load carrying
capacity is presented for thin-walled orthotropic (composite) beams subject to
bending.

The following assumptions have been accepted:

e Young modulus in the longitudinal direction is constant for all the con-
sidered cases E; = E = const
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e Young modulus in the transverse direction is variable and depends on
the wall orthotropy factor n (E, = nE), where 7 can vary within the
range 0.0728 < 7 < 13.7362 (see Table 1)

e Value of the yield stress in all cases is constant and less or equal to the
yield stress in tension oy = E/1000.

Table 1. Elastic constants for various types of the composite beam-
columns

Spec.No.| 7 | v | G/E |

[ 1 13.7362 | 0.02184 | 0.4065
2 7.6045 | 0.03945 | 0.4091
3 3.2992 | 0.09093 | 0.4002
4 1.9747 | 0.15192 | 0.3937
5 1.4202 | 0.21123 | 0.4009
6 1.1964 | 0.25074 | 0.3882
7 1.0000 | 0.3 | 0.3846
8 0.8358 | 0.3 | 0.3245
9 0.7041 | 0.3 |0.2823

10 0.5064 | 0.3 | 0.1994
11 0.3031 | 03 ]0.1213
12 0.1315 | 0.3 ]0.0538
13 0.0728 | 0.3 | 0.0296

Three difrenet types of orthotropic beams, for 0.0728 < n < 13.7362 are
considered.

3.1. Typel

In the analysed case the material properties of each wall of beam are the
same.

The estimation results of the load carrying capacity in the second order
non-linear approximation of the asymptotic theory are presented in Fig.4. The
curve M. /My represents the results yielded by the linear analysis while the
curve M* /My illustrates the load carrying capacity of the orthotropic beam
as a function of wall orthotropy parameter 7. My is the value of a bending
moment (calculated on the basis of the well-known formula of the strength of
materials) for which the yield limit is reached in the compressed flange.

From the diagrams follows that for 3.2992 < n < 13.7362 the plasticization
of the compressed flange precedes the stability loss, therefore the ultimate
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Fig. 4. Load carrying capacity for the beam of type I

bending moment is equal to the moment corresponding to the plastic moment
M*/My = 1.

For values of the orthotropy parameter 0.0728 < 7 < 3.2992 the buc-
kling occurs in the elastic range. The beam can bear loading in the post-
buckling state and its load carrying capacity is higher than the critical load,
le. M*/M, > 1.

With the loading growth the effective cross-section area of the compressed
flange decreases.

When calculating the effective cross-section it was assumed that only the
width of the compressed flange is reduced. For the orthotropy parameter
17 = 0.0728 the above assumption makes no sense and the widths of the webs
(subject to bending) should also be reduced — which was not the subject matter
of the study. Thus, in Fig.4 there are no results for this value of 7.

From the presented diagrams it can be seen that with the increasing value
of the orthotropy parameter 7 (and the increasing value of Young modulus in
the transverse direction Ey) the load carrying capacity of a beam increases.

For the isotropic material 7 = 1 and oy = 191.3 MPa the value of
M*/My, obtained in the present work, equals 0.893 while that emerging
from the FEM (Lee et al., 1984) was M*/My = 0.93.

It should be also remembered that the analysis presented here deals
with dimensionless parameters, however, that dimensional critical stresses
change proportionally to the modulus E because o5 = o0,.£/1000 and
M} = 20}.1/by, where I is the cross-section moment of inertia.

A designer should choose properly the Young moduli E and E, for
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materials almost isotropic. Taking mean values into account may result in a
wrong estimation of the load carrying capacity of the structure.

The adoption of the plate model for the beam-column allowed us to take
into account the effect of the parameter 7 (modulus Fy) on the critical values
of global and local buckling stresses that would not be possible if a beam-bar
model was applied.

For the analysed beam and for the assumed range of the orthotropy factor
0.0728 < 1 < 3.2992 the averaged obtained value of the limit coefficient of
the reduced flexural rigidity is k = 0.736, while the minimal and maximal
values are, respectively: kmin = 0.719, kmax = 0.749. It allows us to conclude
that the presented method of the estimation of the load carrying capacity of
orthotropic structures should describe, with a satisfactory accuracy, the lower
bound of the load carrying capacity estimation in real structures.

The semi-analytical method for the lower bound estimation of coefficient
k within the framework of first order approximation (Kolakowski, 1996) also
yields an almost constant value within the considered range of 7 (k = 0.67).

In Table 2 the values of post-buckling coefficients by, and b;,,, are
presented for the considered range of orthotropy factor: within the second
order approximation (2.6) (for more detailed analysis see Kolakowski et al.
(1999)) b111y = bii11 /a1, within the first order approximation (Kolakowski,
1996) EIIM == buu/al.

Table 2. Values of the post-buckling coefficients

Spec. No. 7 b | b (@ - 1) - 100%
biiiy
1 2 3
1 13.7362 | 0.62 | 0.51 22%
2 7.6045 | 0.60 | 0.50 20%
3 3.2992 | 0.49 | 0.44 11%
4 1.9747 | 0.48 | 0.43 12%
b} 1.4202 | 0.42 | 0.39 8%
6 1.1964 | 0.45 | 0.41 10%
7 1.0000 | 0.37 | 0.35 3%
8 0.8358 | 0.42 | 0.39 8%
9 0.7041 | 0.48 | 0.44 9%
10 0.5064 | 0.46 | 0.43 %
11 0.3031 | 0.48 | 0.44 9%
12 0.1315 | 0.58 | 0.51 14%
13 0.0728 | 0.53 | 0.46 15%
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The maximal difference (22%) occurs for 7 = 0.0728. It can be seen that
a satisfactory agreement between the post-buckling coeflicients is achieved.

Estimation of the values of the coefficient b&),,; within the framework of
first order approximation (for 0.3031 < 7 < 3.2992, and differences about
10%) allows one to avoid numerical problems posed by the second order ap-
proximation. It allows for a quantitative analysis of the coupled buckling and
determination of the load carrying capacity.

3.2. Typell

In this case the webs (lateral walls) of the orthotropic beam and the bottom
flange (subject to tension) are made of a material of the following properties
(Table 1):

n = 0.0728 v=0.3 G/E = 0.0296

It is assumed that the compressed (upper) flange is made from a material
revealing different values of orthotropy factor 7 (Table 1).

The results obtained for a beam of this type are presented in Fig.5. For the
values of orthotropy factor 7 < 0.3031 widths of the webs subject to bending
should also be reduced, as for type I. Thus in Fig.5 the results of calculations
for these values of 7 are not presented.

1.2}
Mo IM,

MMy 1.0

0.8
0.6
0.4}

0.2}

0F

Fig. 5. Load carrying capacity for the beam of type II

Comparing the results presented in Fig.4 and Fig.5 it can be noticed that
for type II both the value of the critical load M. and the value of the load
carrying capacity M™ are lower than for type I.
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Within the range of the orthotropy factor 0.3031 < n < 7.604 the load
carrying capacity of beam II is lower up to 15% in comparison with beam I.

3.3. Type III

In the third analysed case of the orthotropic beam it is assumed that the
bottom part of beam lying below the neutral axis of bending (the bottom
flange and the part of webs below the midplane) (Fig.3) is made of a material
of the following properties:

n=0.0728 v =03 G/E = 0.0296

The upper part of beam, i.e. the compressed (upper) flange and the part
of webs above the neutral axis of bending are made of a material revealing
different values of the orthotropy factor 7 (Table 1).

The results presented in Fig.6 are almost identical with the results obtained
for beamn I. '

=
2

Mo, M

-0.5F

SOl vl N |
0.1 1 10
7

Fig. 6. Load carrying capacity for the beam of type III

It allows one to conclude that the stability and load carrying capacity of
the orthotropic beam is determined by properties of the parts of a structure
that are subject to compression.

For the above assumptions about the beam design the technological reasons
may decide of a realisation of type I or type III.
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4. Load carrying capacity for corrugated trapezoidal plate

Stiffeners are widely used in many types of metal structures. These stif-
feners carry a portion of loading and subdivide the plate element into smal-
ler sub-elements, thus increase considerably the load-carrying capacity. The
shape, size and position of stiffeners in thin-walled structures exerts a strong
influence on the stability and post-buckling behaviour of the thin-walled struc-
tures. The minimum rigidity of intermediate stiffeners necessary for limiting
the buckling to the plate elements was studied; e.g., by Konig (1978), Teter et
al. (1996).

A trapezoidal shape of a segment increases significantly the flexural rigidity
of a plate, improving therefore, its load carrying capacity.

127

I, 1.113

1
Fig. 7. A segment of a corrugated trapezoidal plate

The detailed calculations are presented for an infinitely wide corrugated
trapezoidal plate of length [, subject to compression. The loaded edges of plate
are simply supported. The analysis of such a segment is sufficient in the case of
trapezoidal plate with a large number of segments (Fig.7), when the boundary
conditions may be neglected in the analysis. The following dimensions of an
individual corrugated segment of a trapezoidal plate are assumed - the so-
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called NASA plate (Dawe and Wang, 1994):
[ =762 mm h=1.113 mm b =127 mm
The mechanical properties of orthotropic materials are assumed as in the

previous analysis (Table 1).
The plate model is applied to all walls of the segment.

Fig. 8. Dimensionless critical stresses versus orthotropy parameter 7

In Fig.8 the calculated results of two lowest values of the critical stresses
oy, are presented for the considered range of orthotropy parameter. The seg-
ment buckling in a form of one half-wavelength m = 1 in the longitudinal
direction corresponds to the global buckling of such a segment (for more deta-
iled analysis the Reader is referred to Manevich (1988), Kotakowski (1989)).
A larger number of half-waves m > 1 corresponds to the local buckling. It
should be emphasized that the value of global critical stress o determines
also the load carrying capacity.

In the case of isotropic segment the critical stresses are:

global buckling m =1 oy = 1.92
local buckling m = 20 o =3.24

In the linear analysis of the NASA plate with a square contour (Dawe and
Wang, 1994), i.e. composed of six segments and simply supported along all
edges, the values of critical stresses equal:

global buckling m =1 oy =05 =2.02
local buckling m = 18 g = 0 = 3.30
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When taking into account one segment only, it can be seen that no sub-
stantial differences between the values of critical stresses for both the buckling
modes appear.

The local buckling is more sensitive to variation of the orthotropy factor
than to the global buckling.

It can be clearly seen from Fig.8 that in the range of the orthotropy pa-
rameter 0.4 < 5 < 13.7362 the value of global buckling load is lower than
the local one so the global load is the ultimate load. The analysis of coupled
stability has shown that the interaction between global buckling mode and
local ones is rather small and practically can be neglected in the non-linear
analysis of the segment. The decrease in critical load did not exceed 3%.

For 7 < 0.4 the local critical load is lower than the global one and the
segment can bear loading in the post-buckling state for moderate initial imper-
fections. It seems that putting into practice such NASA plates (for 7 < 0.4)
is not much justified from the economic point of view. Thus it can be assumed
that the local critical load is also the ultimate load.

In Fig.8 the ultimate load o} determined within the framework of second
order coupled stability analysis (Kotakowski et al., 1999) is also shown. For
the structures with imperfections [(5| = 1.0, |(f| = 0.2 and for 7 > 0.5064 the
value of load carrying capacity o} is smaller than the value of global critical
stress o (for more detailed analysis see Kolakowski et al. (1999)) while for
n < 0.3034 and o} < oy, the value of oy is greater than the value of o
prescribed by the theory and experiments.

5. Conclusions

The analysis carried out proves that for the considered range of orthotropy
factor 7 it is possible to estimate, with the accuracy sufficient for engineering
purposes, the lower bound of the load carrying capacity using linear analysis
of stability (first order approximation of the Byskov-Hutchinson theory).

The applied method describing the buckling of thin-walled structures from
global to local stability loss can be easily implemented into a computer-aided
system (CAD/CAM).

The present paper deals with the analysis of influence of the wall ortho-
tropy factor upon the uncoupled elastic buckling of thin-walled orthotropic
structures subject to compression or bending.

Numerical calculations prove that in the case of orthotropic structures
distinct differences may occur if a plate model or a beam-bar model of a column
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is assumed. It is obvious when the deplanation of cross-section is considered,
which implies the distorsional buckling to be taken into account.
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Oszacowanie no$nosci granicznej cienko$ciennych konstrukeji
kompozytowych

Streszczenie

W pracy przedstawiono oszacowanie no$nosci granicznej w oparciu o praktyczne
zachowanie sie cienkodciennych konstrukeji z imperfekcjami przy uwzglednieniu dys-
torsji przekroju poprzecznego. Rozwazania przeprowadzono dla belek oraz trapezo-
wych ptyt falistych obcigzonych, odpowiednio, momentem gnacym i §ciskaniem. Za-
lozono swobodne podparcie konstrukeji na obu koncach. Zastosowano asymptotyczna
metode Byskova i Hutchinsona (1977) przy wykorzystaniu numerycznej metody ma-
cierzy przej$cia. Celem pracy jest udci§lona analiza pokrytycznych $ciezek réwnowagi
z niedokladnodciami w ramach drugiego rzedu przyblizenia. Gléwna uwage w oblicze-
niach numerycznych skoncentrowano na wplywie wspélczynnika ortotropii konstrukcji
na wszystkie postacie wyboczenia od globalnego do lokalnego i niesprzezony stan po-
wyboczeniowy. W rozwazaniach uwzgledniono transformacje postaci wyboczenia, ze
wzrostem obcigzenia az do no$nosci granicznej i zjawisko "shear-lag”.
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