JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
4, 37, 1999

NEW DESIGN OF PIVOTED BANDED LINEAR EQUATION
SOLVER VERSUS CLAPACK LIBRARY ROUTINES

MAREK M. STABROWSKI

Electrical Engineering Department, Lublin University of Technology

e-mail: mmst@bravo.pol.lublin.pl

A new method of pivoting applicable to banded unsymmetric linear equ-
ation systems has been introduced. It limits the fill-in, preserves basic
band structure and makes full use of allocated memory. Two new fe-
atures of this method include multiple pivoting and the threshold factor
use for pivoting decision. The stability or rather the solution precision
has been investigated basing on the examples of classic ill conditioned
equation system (Hilbert) and quasi-random system with still more dif-
ficult conditioning characteristic. Comprehensive test results have been
presented in the easily readable graphic form. They prove the overall
efficiency of new solvers and compare them favourably with the software
from CLAPACK library.

Key words: banded unsymmetric linear equation systems, partial
pivoting

1. Introduction

The paper presents new algorithms of linear equation solving, aimed at
large unsymmetric banded systems. The solvers feature exceptional stability
outperforming other similar software (cf Demmel, 1997; Engeln-Muellges and
Uhlig, 1996). The stability is maintained also in out-of-core version of the
solvers in a wide range of equation system sizes.

The solvers of such type are developed in order to handle efficiently large
banded unsymmetric linear equation systems without diagonal dominance (cf
Demmel, 1997; Engeln-Muellges and Uhlig, 1996; George and Liu, 1981). Sys-
tems of this type may arise in the non-linear problems in diverse science and
technology fields (FEM, FDM, ODE) (cf Crotty, 1982; Demmel, 1997; Geo-
rge and Liu, 1981; Rigby and Aliabadi, 1995; Stabrowski, 1998). The lack of

830 M .M.STABROWSKI

diagonal dominance makes pivoting absolutely necessary in most cases. [t sho-
uld be observed at the very beginning that the pivoting leads to more or less
extensive filling of zeros outside of the original non-zero band. The bandwidth
grows then, increasing the mermory requirements of the solver. It is, along with
numerical stability, most critical problem in the design of the solvers for this
class of problems.

There exist several more or less popular libraries of numerical software offe-
ring the tools for solving of these problems. Most comprehensive library in the
field of linear algebra is the LAPACK/CLAPACK library (cf Demmel, 1997)
— a successor to renowned older LINPACK library (cf Bjoerck and Dahlqu-
ist, 1974; Demmel, 1997). It includes the routine for solving of banded linear
equation systems with partial pivoting usage in the form of sgbsv/dgbsv (sin-
gle/double precision) routine with associated co-routines and auxiliary BLAS
library (cf Demmel, 1997). However, it should be never taken for granted that
the tools from this library or from the other ones (cf Engeln-Muellges and
Uhlig, 1996) are absolutely reliable and fully tested. The research reported in
this paper has proved quite the contrary with respect to the sgbsv/dgbsv
routines. At the same time reliable and numerically stable alternatives to the
CLAPACK routines will be presented.

Fundamental characteristics of reliable software should include:

e numerical stability for ill-conditioned (in a broad sense) cases;

e low consumption of computer resources, i.e. of operating memory and
processor time;

e optimised out-of-core operation for solving large problems.

There is little room for improvement with respect to basic solution method.
However seemingly minor details of algorithm implementation can influence
dramatically all the three above mentioned characteristics of reliable software.
Some time ago, the author of the present paper, has developed two out-of-core
solvers based on the Crout method (cf Stabrowski, 1998). This method seemed
very promising. In the first place, compact elimination formulas justified the
hope of reducing the computation time, while maintaining good nurmerical
stability. More thorough further investigation has led to the conclusion that
it was overly optimistic assumption. Next, careful analysis of memory requ-
irements and especially confrontation with the CLAPACK library has led to
the conclusion that the Gauss method may be more useful in the design of
high performance pivoted solvers of banded systems. Nevertheless, the rese-
arch carried up to date (cf Stabrowski, 1998) has been very fruitful, leading

NEW DESIGN OF PIVOTED BANDED... 831

to extremely important and fully documented conclusion that direct rows in-
terchange during pivoting is more profitable (in the sense of processor time)
than indirect indexed addressing based on pivoting information.

The present paper will be focused on new design of pivoted banded so-
lver using the Gauss method with several important implementation enhance-
ments. They include quite common imnplicit scaling as well as multi-pivoting
and thresholding. These new techniques will be extensively tested experimen-
tally. New solvers will be compared with the counterpart from the CLAPACK
library. Special attention has been devoted to the problems of numerical stabi-
lity. As the test systems two examples of banded linear equation systems have
been used. The first one is a system with quasi-random coefficient matrix and
slight, if any, diagonal dominance. The second one is a classic ill-conditioned
Hilbert system or rather a banded version of such a system.

2. Memory management in Gauss and Crout banded solvers

The Gauss and Crout methods are algebraically equivalent but there are
distinct differences in purely numerical performance and in memory consump-
tion. Differences in numerical performance are quite obvious, as in both me-
thods computations are made in a different order. Also finite precision of
computers and possible ill conditioning of the system to be solved may en-
hance the differences in computation results. Different pivoting decisions (the
reasons will be pointed out latter) influence also numerical results. However,
this time another problem — that of memory usage and management — will be
analysed.

It should be noted, at first, that pivoting and row interchange causes expan-
sion of non-zero band. In the Crout method this expansion is limited to twice
the original bandwidth (cf Stabrowski, 1998); the non-zero band expands le-
ftward and rightward. The largest array for system coeflicients storing sholud
be dimensioned in in-core Crout solver as

N¢r = 4nbandneq (2'1)
where
Npand — Semi-bandwidth
Neg — number of equations.

For the out-of-core solver, initial assumption about the size of computa-
tional window should be made at first. It is quite natural to assume that

832 M.M.STABROWSKI

computations in 7p,ng rows should be made before swapping in and out to
the disc memory some part of the already processed non-zero band. Under
such assumption the out-of-core Crout solver consumes for its largest array
approximately

Neo = 160440 (2.2)

For another choice of the number of processed rows, e.g. n,qys before
resorting to disc memory support, this parameter is equal to

Nco = Mpand(3nvand + Nrows) (2.3)

weeew————_______expansion limit

pivoted row

N — — — —\—.. - K
v\ = —— —\ g
\- g N\ ‘

\. o N
\ L \ 2Mpand
ro---- S 1 pivoted row N OUI.—Of—core

zeros N_ ' active area |
N '\ |

N\ . BAN
\F —_———— e — = ¥y

Fig. 1. Active front and out-of-core window in the Gauss banded pivoted solver

All these parameters are lower in the case of Gauss solver. At first it may be
observed (Fig.1) that in the Gauss method, during processing of the kth row,
all column elements in the lower (left) semi-band up to the column no. &£ —1
have been already zeroed. Thus pivoting down of the kth row causes no
expansion of left (lower) semi-band. Only the right (upper) semi-band may
expand up to 2npeng value. The main part of memory consumption for the
in-core Gauss solver is approximately

Ngr = 3'n'ba.nd'n'eq (2-4)

It follows from comparison with Eq (2.1) that memory requirements of the
Gauss solver are lower by 256% than that of the Crout solver. The advantages

NEW DESIGN OF PIVOTED BANDED... 833

of Gauss method are still more prominent in the case of out-of-core solver.
It is easy to observe (Fig.1) that for ny.,q rows processed for a single disc
memory access, the largest array should be dimensioned approximately as

Ngo = 6nt,.4 (2.5)

This value is almost 3 times lower than the corresponding value Eq (2.2) for
the out-of-core Crout solver.

The comparison of memory consumption by the Gauss and Crout pivoted
banded solvers leads to the conclusion about superiority of the Gauss method.
This advantage alone may decide about preferring of the Gauss algorithm in
this application area. Moreover, other properties of the Gauss method are
favouring it in the case of pivoted banded solvers.

3. New and old improvements of basic numerical technique

The pivoting alone is rarely sufficient for achieving numerical stability of
solution, especially for not so well-conditioned systems. The established and
accepted technique improving the pivoting efficiency is scaling and equilibra-
tion of the equation system. It has been proved (cf Bjoerck and Dahlquist,
1974) that optimum scaling and equilibration should start with minimising of
the maximum norm

min|x(D;AD;)] (3.1)

Optimum matrices D; and D, depend on an inverse matrix A~!, which
is unknown before obtaining the system solution (c¢f Bjoerck and Dahlquist,
1974; Cormen et al., 1994). Moreover, the scaling changes the norm used in
error criterion. Thus, this approach has no practical implications. In practice,
quite frequently the so called ”implicit scaling” is used. In this method both
the current diagonal element and potential candidate for pivot are normalised
according to the formulas (cf Engeln-Muellges and Uhlig, 1996)

!
T T ol T T e
Normalisation means simply division by the sum of absolute values of the
current row elements (cf Engeln-Muellges and Uhlig, 1996). Pivoting decision
is based on the comparison of the normalised values.
Another technique improving stability of computations can be called multi-
pivoting. The multi-pivoting technique allows one to pivot down a row several

6 - Mechanika Teoretyczna

834 M.M.STABROWSKI

times, i.e. already pivoted row may be pivoted down again. However the Gauss
and Crout methods differ widely in the potential of multi-pivoting application.
In the Gauss method there are no limitations imposed on multi-pivoting, i.e.
the first row may be pivoted down even to the very bottom of the matrix
without expansion of non-zero band beyond the semi-bandwidth value (Fig.1).
In the Crout solver pivoting down is limited to the semi-bandwidth value
Npand- 1t prevents excessive expansion of non-zero band beyond 4npgng + 1
value. Therefore the Crout solver is potentially less stable numerically than the
Gauss solver. This thesis will be proved in the course of numerical experiments.

Less obvious technique enhancing numerical stability can be nicknamed
”thresholding”. This technique introduces the limitation of pivoting through
the usage of threshold factor t; in the course of pivoting. The decision about
pivoting is normally made (forget for the moment the scaling) if potential
pivot is larger than the actual candidate for pivot, i.e. when

Ok < Qg i>k (33)

After introduction of the threshold factor t; the pivoting is performed only
when

thagy < Qjk j>k (34)

where % is a coefficient larger than 1 and depending usually on the problem
at hand. The rationale behind thresholding is twofold. First of all, it can
be expected that a threshold factor larger than 1 will reduce the number
of pivotal row interchanges. The computational workload is reduced in this
way. Moreover, important is another factor. Thresholding helps oneto avoid
less profitable (in the sense of computational stability) interchanges, which
may mask more advantageous ones. Also this thesis will be proved through
numerical experiments.

4. Basic testing of new solvers

A new linear equation solver has been developed in C, using the Gauss
method and enhanced pivoting strategies. Both in-core and out-of-core ver-
sions have been developed. Also a new in-core version of the Crout solver has
been developed. All this software has been compared with the well known
procedure dgbsv from the CLAPACK linear algebra library of C programs.
Classic perturbation analysis (¢f Bjoerck and Dahlquist, 1974; Forsythe et al.,

NEW DESIGN OF PIVOTED BANDED... 835

1977) may offer only a general insight into numerical stability of linear equ-
ation solvers. Such problems as the order of elementary arithmetic operations,
processor properties and specific ill-conditioning may be investigated only in
a series of numerical experiments.

Two sample coefficient matrices have been tested for the numerical stabi-
lity of solution. The first one was a quasi-random matrix with rather negligible
traces of diagonal domination. The coefficients of this matrix have been gene-
rated using the formula

1+2-rand
Neg— (t+7 — 1)

aij = (4.1)
where rand is a random number {uniform distribution in the range 0,...,1)
supplied by C library. Diagonal coefficients have been multiplied by 3.0, but
it is hard to call the matrix diagonally dominant. Quite obvious precautions
preventing division by 0 in Eq (4.1) have been taken. The values generated
depend on the properties of library routine and on the processor. At first, it
was expected that this matrix is quite well-conditioned, but the experiments
have shown, that rather contrary thesis is true; it surpassed in ill conditioning
the classic Hilbert matrix.

The second test matrix was a classic ill conditioned coefficient matrix of
the Hilbert type. The coefficients are generated here with the aid of well known

formula 1

t+5—1
The tests have been carried out on the Pentium IT with 266 MHz clock, run-
ning Linux RedHat 5.0 operating system. The solvers have been compiled
with the aid of GNU gcc compiler. Another testing platform was Sun’s Ul-
tra 10 workstation featuring 300 MHz clock, Solaris 2.6 operating system and
standard Sun’s C compiler. Throughout all tests the double precision has been
applied. Testing and comparing numerical stability Is not an easy and unam-
biguous task, as there are no generally accepted standards and criteria. It has
been decided to use the criterion of residues distribution. There exist assorted
examples of linear equation systems solutions (cf Bjoerck and Dahlquist, 1974;
Demmmel, 1997; Engeln-Muellges and Uhlig, 1996) leading to small residues but
at the same time completely diverging from the exact and correct solutions.
However, in real-world cases small residues are almost invariably proving the
solutions correctness and precision. Moreover, there is evident that large resi-
dues, beyond any doubt, are indicating incorrectness of the solutions.

The test equation system has been composed of 4800 equations with the
semi-bandwidth of 240 and 3 right hand sides. Basically, the in-core versions

aij (4.2)

836 M.M.STABROWSKI

—e— CLAPACK]1

—&— in-core Gauss
;«‘— in-core Crout

. |-e—=cLAPACK l:

—— in-core Gauss
—aA— in-core Crout

<1013 10711 107° 10°

Fig. 2. Basic test results for the dgbsv (CLAPACK), new Gauss and new Crout
solvers, respectively, for quasi-random coefficient matrices on Sun’s Ultra 10
workstation (a) and Pentium II Linux box (b)

of new Gauss and Crout solvers have been used. The out-of-core versions are
fully equivalent in the sense of numerical algorithm. In the first series of tests
only multi-pivoting and implicit scaling have been switched on. The results of
the tests for quasi-random system are presented in Fig.2. [t should be observed
that in the diagram showing distribution of relative residues there appears iso-
lated island of extremely large relative residues (> 50) for the dgbsv solver
from the CLAPACK library. The CLAPACK routines are simply useless, at
least for this test matrix. Moreover, the maximum of residues distribution of
new Gauss solver is shifted distinctly to the left (lower values) with respect
to maximum for the dgbsv. The problem of numerical stability of dgbsv ro-
utine will be investigated latter in details. Modest Pentium II is not inferior
to Sun’s Ultra 10 in the sense of numerical stability but the computation time
(Table 1) is approximately 3 times longer. The Crout solver performance is
less satisfactory than that of new Gauss solver, especially on the Sun plat-

NEW DESIGN OF PIVOTED BANDED... 837

form. Larger equation systems (9600 and 14400 equations) have been tested
on Ultra 10 (only 9600 equations) and E450 (the same UltraSparc processor
with the slightly slower 247 MHz clock but with the larger RAM of 250 Mb per
processor). Computation time depends roughly on the fourth power of system
size (see E450 column). However, if the system size or rather dynamically ad-
justed storage requirements exceed the RAM size, the effect of deteriorating
performance due to virtual memory switching on is very spectacular. Before
more detailed presentation of thresholding let us apply this technique to the
Crout solver. The effect of introducing the threshold factor t, = 10 is very
spectacular (Fig.3). Largest residues are now limited to 5- 1073 as opposed
to more than 50 in the previous version. Maximum of residues distribution
is shifted to the region of larger values but it remains inside fully acceptable
limits.

Table 1. Execution time (sec) for the quasi-random coefficient matrix for
three hardware platforms

Sun’s | Sun’s | PentiumII

Ultra 10 | E450

4800 equations dgbsv solver 57 61 168

semibandwidth=240 | new Gauss solver 64 42 196

3 right hand sides | new Crout solver 137 149 267
9600 equations dgbsv solver 1395 498
semibandwidth=480 | new Gauss solver 977 472
3 right hand sides | new Crout solver 1792 1261
14400 equations dgbsv solver 1656
semibandwidth=720 | new Gauss solver 1668
3 right hand sides | new Crout solver 4649

5. Multi-pivoting and implicit scaling

In the next series of tests the influence of multi-pivoting and implicit scaling
on solver performance has been investigated. The size of test system remained
unchanged (4800 equations), both types of matrices have been involved (quasi-
random and Hilbert) but the solver was only the new in-core Gauss.

838 M.M.STABROWSKI

2500

—e— Crout 1, =10
2000 —m— Crout ¢, =1
1500

1000

500

<1013 101 10° 1077 10° 10°? 10! 10

Fig. 3. Thresholding boosts Crout solver performance

Table 2. Execution time (sec) for the quasi-random and Hilbert coefficient
matrices (4800 equations, semi-bandwidth= 240, 3 right hand sides), two har-
dware platforms and various combinations of numerical enhancements in new
Gauss solver

| 7 Sun’s Ultra 10 | Pentium Iﬂ

‘ quasi-random matrix T
simple solver 32 130
implicit scaling 53 168
multi-pivoting 33 132
scaling + multi-pivoting 64 196
dgbsv solver (CLAPACK) 57 168

| Hilbert matrix]

] simple solver 35 136
implicit scaling o1 174
multi-pivoting 36 138
scaling + multi-pivoting 67 191
dgbsv solver (CLAPACK) 65 166

For the Hilbert-type system the test results on both the hardware platforms
are different (Fig.4). For Pentium II the residues distribution is most satisfac-
tory for the solver with multi-pivoting switched on. Additional switching on
of implicit scaling introduces no distinct numerical improvement — only com-
putation time is longer (138 seconds vs. 191 seconds). A simple version of
solver is numerically somewhat inferior. Still worse but wholly acceptable is
the solver with implicit scaling. The last result of numerical experiments devia-

NEW DESIGN OF PIVOTED BANDED... 839

Relative residues distribution

5000

(a)
4000~ —@— simple .
—— no multi-pivoling
3000 —A— no scaling :

—¢— scaling & multi-piv.

2000

1000 .
0 al
21072

7000

(b) ,
6000-%——@— simple —
s000—% [~ no multi-pivoting |
—aA— no scaling

4000{—\ =& scaling & multi-piv.f——————— |

Fig. 4. Multi-pivoting and implicit scaling for the Hilbert coefficient matrix on Sun’s
Ultra 10 workstation (a) and Pentium II Linux box (b)

tes unexpectedly from common numerical wisdom (cf Bjoerck and Dahlquist,
1974; Demmel, 1997; Engeln-Muellges and Uhlig, 1996; George and Liu, 1981;
Martin and Wilkinson, 1971). For Sun’s workstation the results are different.
The best numerical performance is obtained through switching on of impli-
cit scaling only. The worst performer is the solver with multi-pivoting only.
Simple solver and scaled plus multi-pivoted one perform in an intermediate
way. Thus selection of these numerical enhancements depends clearly on the
hardware platform.

The test results for quasi-random coefficient matrix are almost ideally iden-
tical for both the hardware platforms (Fig.5). Best numerical performance is
obtained in the case of multi-pivoting switched on or for additional switching
on of implicit scaling. As implicit scaling introduces no improvement but in-
creases computation time the choice is rather clear cut. Implicitly scaled and
simple solver (no enhancements) are inferior on both hardware platforms. Pen-
tium IT is here a better performer than Sun’s workstation.

840 M.M.STABROWSKI

Relative residues distribution

4000

(a) —— no multi-pivoling
/ —y¢— scaling & multi-piv.

3000 - —&— no scaling
2000
1000

0

2:10°°
5000

(®) —@— simple
4000 ——————————— —&— no multi-pivoling
—a&— no scaling

3000—————————— ¢ scaling & multi-piv.
2000——
1000

0 i 1 I])

s-10°1 510710 5107 5108 5107 510 5107

Fig. 5. Multi-pivoting and implicit scaling for quasi-random coeflicient matrix on
Sun’s Ultra 10 workstation (a) and Pentium II Linux box (b)

Final conclusions of this series of tests can be formulated as follows:

e application of multi-pivoting and implicit scaling depends on the cha-
racter of coefficient matrix;

e another factor in selecting of these numerical enhancements is the type
of processor.

6. Thresholding technique

A very interesting method improving numerical stability relies on the thre-
sholding introduced in Section 3. First of all one may expect that thresholding
will eliminate pivoting of little value and weight for maintaining numerical sta-
bility. If the threshold factor is #; = 1, several interchanges for small actual
pivot ratio a;i/akk (compare Eq (3.3) can mask and eliminate more profitable

NEW DESIGN OF PIVOTED BANDED... 841

pivoting with larger value of a;x/axi. The second reason for application of
thresholding is the expected reduction of the overhead for performing pivotal
interchanges. For larger values of t; (see Eq (3.3)) the interchanges are less
frequent and execution time is lower.

6000 @

5000 — R —— — —o— =1
—h— 1, =5

4000— — — — | & =10

3000 - e - . _

<to’® ot ot g0 10° 10 10”7 10° 0’ 10

Fig. 6. Thresholding effects for the Hilbert (a) and quasi-random (b) coefficient
matrices on Pentium II Linux box

These expectations have been already verified with a spectacular exam-
ple of the Crout solver (Fig.3). More comprehensive results for both types of
coefficient matrices (quasi-random and Hilbert) and Pentium II hardware are
presented in Fig.6. Distribution of relative residues is shown for the threshold
factor values t, equal to 1, 5 and 10. For the Hilbert matrix (Fig.6a) intro-
duction of tp = 5 improves the computational accuracy. For t, = 10 the
opposite is true — maximum of residues distribution is shifted to the region
of larger, less acceptable values. The picture for quasi-random matrix is com-
pletely different (Fig.6b). Best performance is obtained for straightforward
solver with threshold factor ¢, = 1. Increasing of threshold factor shifts the

842 M.M.STABROWSKI

maximum of distribution curve into less advantageous region of larger relative
residues. In both cases of quasi-random and Hilbert matrices the changes resul-
ting from introduction of thresholding are far from spectacular. Nevertheless
the conclusion from the previous section can be reiterated — also the impact
of thresholding depends on the character of coefficient matrix. Introduction
of thresholding may shorten the computation time. It is the direct result of
reduction of actual row interchanges for larger values of the threshold factor.

Summing up these observations the conclusion about thresholding applica-
tion should depend on the nature of the problem in hand and on the processor
type. Both new solvers provide the flexibility to use or switch off the usage of
thresholding.

7. Comparative analysis of clapack library routine and new Gauss
solver

Poor performance of dgbsv routine from the CLAPACK library was com-
pletely unexpected, as this library is considered at present as the state of the
art linear algebra toolkit. Other results, not reported in Section 4, have been
similarly unfavourable for the dgbsv. Thus, it has been decided to perform
more thorough comparative tests of dgbsv and new Gauss solver. Both solvers
use the same basic method (Gauss) but the new one performs implicit scaling
before pivoting, is fully multi-pivoted and capable of thresholding.

The series of comparative tests has been performed on two hardware plat-
forms — Sun’s Ultra 10 and Pentium II - and the classic ill-conditioned Hilbert
coefficient matrix has been used. The test system has been composed of 2400
equations in order to shorten the computation time. The value of the semi-
bandwidth has been selected as the parameter of these tests; it ranged from
61 to 99. RMS value of relative residues has been used as the criterion of
numerical stability.

The diagram presenting the stability of dgbsv and new Gauss solver for
Ultra 10 workstation (Fig.7a) is really crushing for the dgbsv. The new Gauss
solver is a clear winner with consistent stable value of error criterion. The
criterion value is limited to the range of 107!° up to 107" and is more
than acceptable. The CLAPACK routine dgbsv exhibits the criterion value
larger by approximately 10'!. It is far from acceptability, as there are also
the regions of residues larger than 1. Extremely annoying are the dips in error
criterion for the semibandwidth value of 74, 79 and 95.

NEW DESIGN OF PIVOTED BANDED... 843

(a) RMS of relative residues

—0— CLAPACK
—— Gauss-custom

| NN T T T 0 T T N T (N Gy U (S (T O Y N O N N T W W W s O |
61 64 67 70 13 76 79 82 85 88 91 94 97
semibandwidth

(b) RMS of relative residues - Pentium 11/266

) —8—CLAPACK W
—— Gauss-custom

| N TN T N Y N N R T T S N N N N 50 O S T I |

S N Y
61 64 67 70 73 76 79 82 85 88 91 94 97
semibandwidth

Fig. 7. Comparison between new Gauss and sgbsv (CLAPACK) routine for various
values of the semi-bandwidth on Sun’s Ultra 10 workstation (a) and Pentium 1I
Linux box (b)

The corresponding diagram (Fig.7b) for Pentium II running Linux is rather
different but fundamental differences between the dgbsv and new Gauss solver
are also distinct and unfavourable for the dgbsv. It may be observed that basic
error criterion for the new Gauss solver is in the range of 1072 to 107 with
three dips down to 1074, The error criterion for the dgbsv wildly oscillates
between 1072 up to absolutely unacceptable values of 1 or even 102

Comparison of the tests performed on these two hardware platforms shows
clear superiority of Sun’s Ultra 10. It is no wonder, as this workstation boasts
64-bit RISC processor as opposed to modest 32-bit CISC in Pentium II. Mo-
reover there is still a question of compiler robustness, especially in the field of

844 M.M.STABROWSKI

double precision. And last, but not least — is the floating point operation of
Pentiums processor absolutely bug-free? However, these questions cannot be
answered at this stage.

8. Conclusions

Two new solvers using the Gauss and Crout methods have been presented.
Both have been developed in the in-core and out-of-core versions. Thorough
tests have demonstrated satisfying performance, especially that of the Gauss
solver, which due to inherent features of the method, imposes also lower me-
mory requirements than the Crout solver. Both solvers outperform standard
tools from the CLAPACK library, which are evidently unstable and unreliable.

There have been introduced two new techniques of thresholding and multi-
pivoting, complementing quite standard implicit scaling. All these techniques
can improve, sometimes very spectacularly, the numerical stability. However,
they introduce some overhead, especially significant in the case of scaling. Mo-
reover the improvements achieved with these techniques depend on the nature
of the problem in hand and on some fine properties of the hardware. Both
new solvers, in stark opposition to the CLAPACK library routines, provide
the user with full control of these features.

Now, it is time to arrive at more practical and ordered conclusions. It seems
that the following three key points may sum up the situation:

1. It is beyond any doubt that the dgbsv and sgbsv solvers from the
CLAPACK library are absolutely unreliable in the sense of numerical
stability.

2. The stability of the solver depends on the intricate properties of the
processor and the problem at hand.

3. The solver should be designed with reasonable flexibility of usage, ena-
bling switching on or off such features as scaling or pivoting.

The new Gauss solver meets the requirements formulated in point 3. Thus
it surpasses existing software and adapts well to the problem and to the pro-
Cessor.

References

1. BJOERCK A., DAHLQUIST B., 1974, Numerical Methods, Prentice Hall, Engle-
wood Cliffs

10.

NEW DESIGN OF PIVOTED BANDED... 845

CorMEN T.H., LEISERsON C.E., RIvEsT R.L., 1994, Introduction to Algori-
thms, The Massachusetts Institute of Technology, Massachusets

CroTTY J.M., 1982, A Block Equation Solver for Large Unsymmetric Matrices
Arising in the Boundary Integral Equation Method, IJNME, 18, 997-1017

DeMMEL J.W., 1997, Applied Numerical Linear Algebra, STAM, Philadelphia

ENGELN-MUELLGES G., UHLIG F., 1996, Numerical Algorithms with C, Sprin-
ger Verlag, Berlin

ForsyTHE G.E., MaLcoLM M.M., MoLEr C.B., 1977, Computer Methods
for Mathematical Computations, Prentice Hall, Englewood Cliffs

GEORGE A., Livu W.H., 1981, Computer Solution of Large Sparse Positive
Definite Systems, Prentice Hall, Englewood Cliffs

MARTIN R.S., WILKINSON J.H., 1971, Symmetric Decomposition of Positive
Definite Band Matrices, In: J.H. Wilkinson, C. Reinsch (edit.), Handbook for
Automatic Computation, I1. Springer Verlag, Berlin

. RigBY R.H., ALiABADI M.H., 1995, Out-of-Core Solver for Large, Multi-Zone

Boundary Element Matrices, I/NME, 38, 1507-1533

STABROWSKI M.M., 1998, New Method of Pivoting in the Block Solvers for
Large Banded Linear Equation Systems, Journal of Theoretical and Applied
Mechanics, 36, 1, 97-108

Nowy program rozwigzywania pasmowych uktadéw réwnan liniowych
z wyborem elementéw giéwnych a procedury z biblioteki CLAPACK

Streszczenie

Przedstawiono nows metode wyboru elementéw gléwnych uzyteczna w przypadku
pasmowych niesymetrycznych ukladéw réwnan liniowych. Metoda ta ogranicza wy-
pelnianie, zachowuje podstawows, strukture pasmows i w pelni wykorzystuje zaaloko-
wang pamieé. Dwie nowe wlasciwosci tej metody to wielokrotne wybieranie elemen-
téw gléwnych oraz stosowanie wspétczynnikéw progowych przy podejmowaniu decyzji
o wyborze elementéw gléwnych, Stabilnoéé, a wlasciwie dokladnoéé rozwigzan zba-
dano w oparciu o przyklad klasycznego Zle uwarunkowanego ukladu réwnan (Hilbert)
i pseudo-przypadkowego ukladu, jeszcze gorzej uwarunkowanego. Rezultaty eksten-
sywnych testéw przedstawiono w dobrze czytelnej postaci graficznej. Potwierdzaja
one efektywno$é nowego oprogramowania, zwlaszcza w poréwnaniu z oprogramowa-
niem z biblioteki CLAPACK.

Manuscript received Februar 15, 1999; accepted for print April 30, 1999

