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In this paper, we use an energy variational method to study the full
stress field near a stationary crack in a plane strain state in a power-
law hardening material under mode I loading. Associated with the finite
element method, the trajectory line fields of the principal stresses and
the maximum shear stresses have been drawn in order to determine the
crack growth direction. It appears that the crack can propagate along
a cleavage band or along a slip band according to the triaxial tensile
stress level in the vicinity of the crack. The growth direction of a duc-
tile crack depends on the competition between the stress concentrations
along these bands.
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1. Introduction

The ductile fracture initiation under mode I loads can take place in tension
or shear mode. When the fracture occurs in tension mode, the crack grows
straight ahead of the crack tip and the crack lips open. On the other hand,
for the fracture in shear mode, the crack propagate at a certain angle to the
crack plane, one part of the structure slips with respect to the other. It is
known that the fracture essentially relates to the void growth near the crack
tip. The slip fracture depends maining on the plasticity propagation. Both the
modes of fracture depend strongly on the triaxial tensile stress level existing
in the vicinity of the crack tip. High triaxiality (it means that tensile stress
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components are dominating) is favorable to void growth, while low triaxiality
is favorable to plasticity progression.

A lot of studies have been carried out to predict fractures in tension mode
in ductile materials. Hutchinson (1968) and Rice and Rosengren (1968) found
out an asymptotic solution for cracks in work hardening materials (the HRR
solution) which provided a theoretical foundation for the elastic-plastic frac-
ture mechanics. According to this solution, the asymptotic stress field near
the crack tip can be characterized by a single parameter, the J-integral
(Rice, 1967). Basing on this solution, O’'Down and Shih (1991) proposed a
two-parameter theory, the J — @ theory, to predict the tension fracture for
engineering applications, where () is a stress triaxiality parameter. Other
models based on the development of higher-order asymptotic fields (LI and
Wang, 1986; Xia et al., 1993; Yang et al., 1993) also revealed accuracy and
efficiency to predict the tension fractures. However, these models may not be
very adequate to predict the fractures in shear mode due to their asymptotic
property. In fact, the plastic zone extends over a rather large domain around
the crack tip before a slip fracture develops. Consequently, only a complete
elastic-plastic solution allows for such a modeling.

Although some complete solutions for mode ITI cracks were obtained (Hult
and McClintoc, 1957; Rice, 1967), no satisfactory solution has been found
so far for mode I and mode II cracks in an elastic-plastic solid other than
the Dugdale model of cracks in thin foils (Dugdale,1960). However, a few
numerical approaches have been developed by several authors. Edmunds and
Willis (1976a,b), (1977) developed a matching asymptotic expansion method
to study the full elastic-plastic stress fields for mode III and mode I cracks in
elastic-plastic materials. Another approach was that of Li (1997) who proposed
an energy variational method to study the full stress field of a mode I crack for
plane strain under small-scale yielding conditions. The algebraic representation
of the full stress field can be obtained the near-tip plastic field, described
by the HRR solution, to the far elastic one, described by the first term of
Williams’s expansion (Williams, 1957). Comparison with the results of finite
element solutions showed that this method is highly accurate in the whole
region under consideration, either for the near-tip field or for the far field.

In this paper, the variational method proposed by Li (1997) is modified by
combining it with the Finite Element Method (FEM) to obtain the full stress
field around the crack tip in real engineering structures. By using the complete
stress solution, the trajectory fields of the principal stresses and maximum
shear stresses are drawn around the crack tip. These trajectory fields clearly
indicate the possible growth directions of a ductile crack. It must propagate
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along a cleavage band if it grows in tension mode, or along a slip band if it
grows in shear mode. The crack growth finally depends on the competition
between the stress concentrations along the two directions. Basing on the
fracture criteria of Ritchie et al. (1973), the prediction of the crack growth is
discussed.

2. Computation procedure

2.1. Description of the method

The energy variational method proposed by Li (1997) is adapted in this
work to study the full elastic-plastic stress field of a mode I crack. The main
idea of this method is to establish a statically admissible stress field around
the crack tip (inner field) connected to the far stress field (outer field) with the
condition of stress continuously. The unknown parameters can be adjusted by
minimizing the complementary energy of the structure.

Consider a material which deforms according to the Ramberg-Osgood
stress-strain relationship

I+v 1-2v Ja y0e\n1
Eij = Téij + 3—Egkk3ij + ﬁ (0_—0) 845 (2.1)
where
€5 — strain components
s;j — deviatoric stress components
Okr — hydrostatic stress
E ~ elastic modulus
v -~ Poisson ratio
d; ~ Kronecker delta
a —~ material constant
n ~ hardening exponent
o9 - ylelding stress
oe — Mises equivalent effective stress defined as follows

/3
Op = §Sij3ij (2.2)

The inner stress field around the crack tip is derived from a four-term
expansion of the stress function ¢;,

bin = 10¢0(8) + 751 $1(6) + 7°2$2(8) + 73 p3(6) (2.3)
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where r and 6 are the polar coordinates when the origin at the crack-tip;
&-, 1 = 0,1,2,3 are angle-dependent functions and s; unknown exponents
with sg < 81 < 82 < s3. The first term of Eq (2.3) represent the asymptotic
field of the HRR solution. The last three terms can be determined using the
variational technique.

The stress components of the inner field can easily be derived from Eq
(2.3) as follows

_ 1 6¢zn 1 62(151'17.

Irr = r Or r2 962

62 in
0 (106
o0 =3+ 35

For more convenience, we suppose that $i, can be represented by using a series
of basic functions, such as polynomial functions or trigonometric functions. In
this work, we expand them into the Fourier series of order ¢

q
$i(0) = > aij cos(j6) i=0,1,2,3 (2.5)

=0

Then Eq (2.3) can be rewritten as follows

g 3 g
Gin =71° Z agj cos(j8) + Zr“"' Z a;j cos(j0) (2.6)

j=0 i=l =0

Only the cosine functions are taken into account in the Fourier series due to
the symmetry of the mode I problem. The coefficients ag; can be calculated
by developing the HRR solution into the Fourier series, while the coefficients
a;; (1 > 0) can be determined by considering the continuity between the inner
and outer fields.

Suppose that the outer field is already known by its stress function ¢@gy:.
Similarly to Eq (2.5), ¢oy and its partial derivatives with respect to 7 at the
circle boundary r = R can also be developed into the Fourier series of order ¢
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q
bout(r = R) = Z bo; cos(j0)

'_o
82"“ = Z by cos(j6)
T 0
(2.7)
0“bou g .
B(i t( =R)= Zbgj cos(70)
j=0

The inner field and the outer field must be connected continuously across
the circle boundary 7 = R. According to Eqs (2.4), the minimum order of the
continuity between the two stress functions is C? to ensure the continuity of all
stress components. It is easy to demonstrate that these continuity conditions
can be readed only when the stress functions and their derivatives with respect
to 7 are continuous across the circle boundary r = R, if the stress functions
are expanded into the Fourier series. This condition leads to the following
equations

R’OZaOJ cos(j6) + ZRS’ Za” cos(j6) = Zboj cos(70)

7=0 =1 =0
soR%0™ 1X:a()J cos(j8) + Zs RS~ IZaU cos(j8) = Zle cos(j6)
B = (2.8)
q 3 q
s0(s0 — 1)Rs°_2 Z Qpj cos(j0) + Z si(s; — 1)R5"_2 Z a;; cos(j60) =
Jj=0 i=] j=0

q
Z 25 cos(j6)

These equations must be true for all angles. One immediately obtains ¢ + 1
systems of linear equations

R ay; + R*%a9; + R*3a3; = by; — R‘qoaoj

Slel_lalj + 82R32_1a2j + 33R33—1a3j = blj - S()Rso_laoj (2.9)
s1(s1 — )R "2ay; + so(sy — 1)R”'2a2j + s3(s3 — 1)Rs3_2a3]- =

= ij - So(So — I)RSO_QQOJ'
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where 7 = 0,1,...,9. Then the coefficients a;; can be calculated by solving
these systems of linear equations. The results can be written under matrix

form
A=R'B (2.10)
where
A - unknown constant matrix, A ={a;;],7=1,2,3,
i=0,1,.q
R - constant matrix of dimension 3 x 3
B - constant matrix of dimension 3 x (¢ + 1) and
[ R R R
R= Slel_l SQR‘”—1 S;;Rsa_1
| su(sy - DR*™2 s9(sy — 1)R*272 s3(s3 — 1)R*s~2
(2.11)
[ boo — F*%aqg bor — K%
B= b — soR*° " Lagy b — soR% " tag

| oo — so(so — )R 2agg  bay — so(so — 1) R 2ag,

From Egs (2.10) and (2.11), all unknown constants a;; can be obtained by a
simple matrix multiplication.

To determine the 3 exponents s;, sy and s3, the theorem of minimum
complementary energy is used. The complementary energy U, of a structure
which obeys the stress-strain relationship defined by Eq (2.1) for either plane
stress or plane strain is

1+z/ 2 1-2v 4 ool Oe\n+l
- 12
U / 0'e 6F G'kk+E(n+1)( ) ]dQ (21)

The integration is performed over the circle area {2, r < R.

The problem then consists in finding out the parameters (s, $2,53) so
that the complementary energy becomes stationary and minimum. This mini-
mization problem can be solved by using numerical methods.

By substituting (si, s2, s3) into Eq (2.10), all coefficients a;; can be de-
termined. The stress function of the inner field is completely defined by Eq
(2.6). The stress components can therefore be derived from Eqgs (2.4).

2.2. Numerical procedures

The plane-strain crack-tip stress field is determined by using the method
described in section 2.1 associated with the FEM. The far stress field at the
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circle boundary r = R is given by the finite-element modeling which does not
need to be very fine. The finite-element modeling also allows us to verify the
accuracy of the energy variational method in the elastic-plastic zone near the
crack tip.

In general, the finite-element analysis yields only the stress coruponents at
the circle boundary. From these stress components, the stress function and its
derivatives with respect to 7 can be solved according to Eqgs (2.4)

) g 9 g
dout(R,0) = H2 smﬁ / /)f(ﬁ) cos 8 df — cos 0(/ / f) sin 6 dﬁ
0o 0 0 0
[/
a¢out(R»9) ¢0ut R} 9) R/arﬁ R 0 (213)
or /
0 pout (R, 6
T0otlo0) 5191, 0)

where

[
f(R,0) =0 (R,0) + /ore(R 6) do
0

The integration can be performed by using a numerical method. Knowing
the stress distribution at the circle boundary r = R, the stress function and its
derivatives of the outer field with respect to r can be obtained from Eqgs (2.13).

By using the energy variational method and the boundary conditions
(2.13), we carry out detailed computations of the stress fields for a Single
Edge Cracked Panel (SECP) with the three a/w ratios: 0.1, 0.5, and 0.9,
where a is the crack length and w the specimen width. When the crack is
short, the uncracked ligament is mainly subjected to tension; while the uncrac-
ked ligament is mainly subjected to bending when the crack becomes longer.
So the triaxiality near the crack tip varies with the crack length.

The geometry of the specimen and the finite element mesh are illustrated
in Fig.1. Different loading levels are chosen such that the plastic deformations
develop from small-scale yielding to full yielding. The values of the material
properties used in the calculations are n = 10, E/og = 300, v = 0.3 and
a = 1. A general-purpose FEM program, CASTEM 2000, is used for preli-
minary computations.

The outer field, represented by the stress distribution at the circle bo-
undary r = R, is evaluated using the FEM. These stress components are
converted into the stress function and its derivatives by using Egs (2.13). The

3 - Mechanika Teoretyczna
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Fig. 1. Geometry and finite element mesh of the specimens
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choice of the radius R does not influence much the calculation accuracy. Ho-
wever, this radius cannot be too long because the inner field is approached
only by a four-term expansion. In this work, R = 0.0bw is chosen for spe-
cimens with short cracks, while R = 0.09w is chosen for specimens for long
cracks.

The near-tip asymptotic field, described by the first term of expansion
(2.5), is characterized by the J-integral which can be determined in the finite
element modeling. The virtual crack extension method developed by Parks
(1974), implemented into the CASTEM 2000 program, is used to calculate
the J-integral. Knowing the value of the J-integral, the amplitude of the
HRR solution can be determined.

Then the first terms of the inner field and the outer field, respectively, are
expanded into the Fourier series as described in Eqgs (2.6) and (2.7). Thus all
the coefficients in the stress function of the inner field can be obtained by a
simple matrix multiplication (se Eq (2.10)).

The different exponents s;, s9, s3 can be calculated by minimizing the
complementary energy in the structure. The numerical procedure used in this
work is the downhill simplex method. This method is easy to use to find out
the minimum of a function of more than one independent variable. With this
method, the exponent vector [s), s9, s3] can be found. The convergence is ensu-
red by this method for any initial simplex guessed . However, a local minimum
point may be reached. So it is preferable to proceed to several downhills with
different initial simplexes. The optimal point can be chosen after survey of the
results.

3. Results and discussions

3.1. Complete stress fields around the crack tip

The power exponents in Eq (2.3) obtained for SECPs with different crack
lengths and loading levels are listed in Table 1. Table 1 shows that in all
cases studied in this work, a 4-term expansion (including the HRR solution)
is sufficient to connect accurately the inner elastic-plastic stress field near the
crack tip to the far outer field. The exponent of the last term is often very
big. This means that its influence on the near tip stress distribution is very
small, nearly negligible. It is also seen that the inner field extends largely over
distances of 5J/0g encompassing length scales in the tension fracture process
zone, both in small- and large-scale yieldings.
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Table 1: Power exponents in the expansions of the complete solution

a/w | Rjw J yielding | sp s1 N S3
[N/mm] | scale
0.1 | 0.05 2.77 SSY 1.909 | 2.65 | 2.714 | 30
0.1 | 0.05 15.99 MSY | 1.909 | 2.03 | 2.96 | 85
0.1 | 0.05 63.93 LSY 1.909 | 2.00 | 2.85 | 200
0.5 | 0.05 3.17 SSY 1.909 | 2.58 | 2.69 | 9.46
0.5 | 0.05 13.82 MSY | 1.909 | 2.30 | 2.48 | 250
0.5 | 0.05 72.29 FY 1.909 | 2.15 | 5.35 | 128
0.9 0.09 2.77 SSY 1.909 | 2.65 | 2.74 28
0.9 | 0.09 15.99 MSY 1.909 | 3.60 | 3.65 | 3.70
0.9 | 0.09 30.16 LFY 1.909 | 3.42 | 3.45 | 3.51
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Fig. 2. Comparison of the stress fields between the results of the finite element
modeling and of the complete solution for a/w = 0.1; (a), (¢) - angular distribution
of the stress components, (b), (d) — radial distribution of the stress components
ahead of the crack
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Fig. 3. Comparison of the stress fields between the results of the finite element
modeling and of the complete solution for o/w = 0.5; (a), {c) — angular distribution
of the stress components, (b), (d) — radial distribution of the stress components
ahead of the crack

In order to verify the results of this approach, we compare the complete
solutions with those of the FEM. The results of such comparisons are pre-
sented in Fig.2 + Fig.4. The angular distributions of the stress components
are illustrated for distances 7 = 2J/oy from the crack tip, while the radial
distributions are presented along the uncracked ligament near the crack tip
within distances r < 10J/gq. Fig.2 + Fig.4 show a total agreement between
the complete solutions of the energy method and those of the FEM for short
and long cracks under the SSY and LSY conditions. This means that a four-
term expansion can accurately describe the inner stress field near the crack
tip which is connected to the far field of any real engineering structure. These
results confirm those obtained by Li (1997) who used the first term in pure
elastic expansion as the far outer field.
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Fig. 4. Comparison of the stress fields between the results of the finite element
modeling and of the complete solution for a/w = 0.9; (a), (c) — angular distribution
of the stress components, (b), (d) - radial distribution of the stress components
ahead of the crack

3.2. Fractures in tension mode

In recent studies, the criterion proposed by Ritchie et al. (1973), known
as the RKR criterion, was often used to predict the tension propagation of an
elastic-plastic crack. According to this criterion, the tension fracture requires
achieving a critical normal stress o, at a critical distance r;. along a line
where the normal tensile stresses are maximum. This line, if called the tension
line, must be one of the trajectory lines of the principal stresses starting from
the crack tip (since 7,9 = 0 when ogg is maximum according to Eqs (2.4)).
In the mode I problem, the tension line is just along the uncracked ligament
ahead of the crack tip. However, in the mixed mode problem, this line may not
be a straight line ahead of the crack tip. In this case, the tension line can be
obtained only if the complete solution is known. In this work, the possibility
to obtain the tension line in the mode I problem is presented. The cases for
the mixed mode will be the subject of forthcoming studies.
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Fig. 5. Trajectory line fields of the principal stresses near the crack tip

The trajectory lines of the principal stresses for the in-plane problem are
easy to obtain by using the Mohr circle technique if the stress field is known. By
using the complete solution mentioned above, the trajectory lines of the princi-
pal stresses of SECP specimens are drawn both for a short crack (a/w = 0.1)
and a long crack (a/w = 0.9) as shown in Fig.5. From Fig.5, one can see that
the principal stresses near the crack tip always follow the direction of the
crack plane by forming a cleavage band. It means that if the crack grows in
tension mode, it will always follow this band. The heterogeneity of the mate-
rial may perturb the growth direction on microstructural scale. However, the
crack growth on macroscopic scale must be governed by the cleavage band.
Fig.5 also shows that the trajectory field of the principal stresses of a short-
cracked specimen are quite different from that of a long-cracked one. In a
short-cracked specimen, where the uncracked ligament is essentially subjected
to tension, the cleavage band stretches quite far away from the crack tip; while
in a long-cracked specimen, where the uncracked ligament is essentially sub-
jected to bending, the cleavage band stops at a neutral point beyond which
the ligament is subjected to compression.

3.3. Fractures in shear mode

If the crack propagates in a ductile mode, the plasticity will progress from
the crack tip until a characteristic size is reached along a maximum shear
stress direction, before a fracture is observed. Few criterion studies have dealt
with this type of fractures so far. However, fractures in tension mode have been
observed in many experimental studies. Shih and German (1981) reported that
they occurred in A533B steel center-cracked panels (CCP) under tensile loads
when the cracks were deep enough. They also noted that the shear fracture
toughness was almost twice as high as that of the tension fractures.
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Shear fractures can be studied if one knows the complete solution of the
stress field around the crack tip. In an elastic-plastic 2D structure, the plasti-
city develops along the planes of the maximum shear stresses. The maximum
shear stress at a point can be calculated when the three principal stresses are

known
gy — O
Trax = ! 2 3 (31)

where o is the maximum principal stress and o3 is the minimum principal
stress. Ty makes 45° with ¢ and o¢3. The growth direction of a ductile

crack can be determined by drawing the trajectory lines of the maximum shear
stresses near the crack tip. The complete solutions facilitate this work.
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Fig. 6. Trajectory line fields of the maximum shear stresses, SECP

Fig.6 shows these trajectory line fields of SECPs for different crack lengths
and loading levels. Fig.6 shows that the trajectory lines of the maximum shear
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stresses concentrate in several directions from the crack tip by forming some
slip bands. One can observe 3 slip bands for all specimen geometries considered:
the first with 4 = 50°, the second with 8 = 100° and the third with 4 = 140°.
From Fig.6, it is observed that from any point situated in the vicinity of the
crack tip, the trajectory lines of the maximum shear stresses will follow one
of the three slip bands. It means that if the plasticity develops in the vicinity
of the crack tip, it will progress in one of these directions and will cause the
structure to slip in the XY-plane.

From Fig.6, one can clearly observe the difference between the direction
of the first slip band of a short-cracked SECP and that of a deeply-cracked
one. The first slip band in the short-cracked SECP makes about 45° with the
crack plane. This angle is bigger when the crack becomes longer. It can reach
65° for a deeply-cracked SECP. This phenomena show that the slip mode for a
crack subjected to dominating tension is quite different from that for a crack
subjected to dominating bending.

boundaries between the zone I and zone I
for SECP with short crack

for SECP with fong crack

zone |

zone 1]

/ 0
crack A0 307 \
h 4

=
X

Fig. 7. Division of the region near the crack tip into zone I and zone II

Calculations show that the maximum shear stresses along the third slip
band are smaller than those along the first two ones. Therefore one can conc-
lude that there is little probability for the crack to grow in this direction.
However, the magnitude of the maximum shear stresses along the first slip
band is comparable to that along the second one. Fig.7 shows the maximum
shear stresses along these two slip bands in a short cracked specimen and in a
long-cracked one. From Fig.8, one can observe that the maximum shear stres-
ses along the second slip band are higher than those along the first within a
certain distance from the crack tip, and beyond it become lower. The maxi-
mum shear stresses rapidly decrease along the second slip band. The plasticity
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is limited by the geometry of the specimen and does not develop sufficiently.
This may explain why few slip fractures in this direction have been observed
in experimental studies. On the other hand, the maximum stresses along the
first slip band are higher than those along the second one for long distances.
Therefore, the plasticity will develop essentially along this direction. One can
conclude that the slip fracture will essentially occur along the first slip band
under mode I loading.

SECP, MSY

0.8 " ajw=0.1

'l Tmax following
the 1st slip band

0.7+

0.6

0.5- Zmay following
the 2nd slip bands
04 1 1 L 1 L
0 3 6 9 12 15 18

ri(J /o)
Fig. 8. Maximum shear stresses along the first two slip bands for a/w = 0.1 and 0.9

It is also important to note that the maximum shear stresses along the two
slip bands in short-cracked SECPs are higher than those in deeply-cracked
SECPs. This explains why the slip fractures are often found in specimens
whose uncracked ligaments are subjected to dominating tension.

These remarks do agree with the experimental results. The experimental
studies of Shih and German (1981) into the deeply-cracked CCPs of A533B
steels showed that slip fracture occurred in the direction of about 45° with
the crack plane. The analysis of the slip bands of the full stress field in this
work predicts exactly the same direction for low- hardening plastic materials.

Remark: In the case of plane strain under tensile loads, the maximurm
principal stress o, i3 always in the structure plane, i.e. in the XY-plane.
However, the minimum principal stress o3 may be in the XY -plane or in the
direction perpendicular to it, i.e. along the Z-axis. According to o3 situated
in the XY-plane or along the Z-axis, the region near the crack tip can be
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divided into several different zones. In the zones belonging to the first case,
say zones I, the maximum shear stress T,,4; is in the XY-plane too. In the
zones belonging to the second case, say zones II, T4, makes 45° with the
XY-plane. Fig.7 shows the division of the region near the crack tip into such
zones for SECPs according to our calculations. For shorter cracks, zone II is
an open area and limited by |o| < 30°. For longer cracks, this zone is a closed
area and bounded by |o| < 40° near the crack tip. From Fig.6, one can notice
that all the three slip bands are located in zone I. This means that in plane
strain, the plasticity develops mainly in the XY'-plane. However, in real 3D
structures, the crack may propagate by slip at 45° with the XY'-plane in
zone 11 close to the specimen surface where the plane stress dominates. In this
study, this situation is not considered.

3.4. Competition between tension and shear fractures

The analysis of the trajectory line fields of the principal stresses and of
the maximum shear stresses enables us to determine the cleavage bands and
the slip bands of cracked structures. Possible directions of the crack initiation
can be estimated by this analysis. But such an analysis can not predict in
which direction the crack will grow. To answer this question, these two modes
of fractures must be put into competition. However, few satisfactory criteria
considering this competition have been proposed in the literature.

In this paper, we try to show that this competition exists near the crack
tip in structures under tensile loading and considering this competition may
be an efficient method for the prediction of the crack propagation.

As an example, we simulate such a competition for SECPs under diffe-
rent loading levels. According to the discussion in Section 3.3, only the slip
fracture following the first slip band is taken into account. In order to show the
trend of the crack growth, the tension stresses ¢ at the cleavage band and the
shear stress 7 at the slip band are calculated for different crack lengths. o is
calculated at distance 7 = 0.05 from the crack tip, and 7 is calculated at di-
stance 7 = 0.5 from the crack tip. Using different values of distance r near the
crack tip leads to similar behaviours. The results are represented against the
value of the J-integral as shown in Fig.9. From Fig.9, it is observed that when
the loading level is low, the values of o(r = 0.05) are nearly identical for all
initial crack lengths. As the loading level increases, the values of o(r = 0.05)
increase at different rates for differently-cracked specimens. In the specimen
with a/w = 0.9, o(r = 0.05) increases more rapidly than in the other two
specimens (a/w = 0.5 and 0.1). It is when a/w = 0.1 that o(r = 0.05)
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Fig. 9. Competition between the characteristic stresses o(r = 0.05) and 7 (r = 0.5)
in SECP specimens

increases most slowly. It means that the triaxial tension level in the vicinity
of the crack tip increases more rapidly in bending-loaded specimens than in
tension-loaded ones as the remote loads increase. The opposite phenomenon
is observed for the values of 7(r = 0.5). In this case, the maximum shear
stress 7(r = 0.5) is higher in the short-cracked SECP (a/w = 0.1) than in
the deeply-cracked ones (a/w = 0.5 and 0.9). Therefore one can conclude that
in bending-loaded specimeuns, the tension fractures are more probable. On the
other hand, in tension-loaded specimens, the slip fractures are more probable.

This example shows the necessity for including the competition between
fractures in tension mode and in shear mode in the criteria of the crack ini-
tiation. Establishment of such criteria will have to be carried out in further
experimental studies.

4. Conclusion

An energy variational method has been proposed to study the complete
solution of the stress field near a stationary, plane strain, mode I crack in
a power-law hardening material. In association with the FEM, this analysis
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can be used in real engineering structures. It is shown that in general, a four-
term expansion of the stress function is sufficient to describe the stress field
accurately, both near and far from the crack tip. This property allows us to
examine the plasticity development which can extend over a large region before
a slip fracture occurs. By using the Mohr circle technique, the trajectory fields
of the principal stresses and the maximum shear stresses have been drawn from
the complete solution in order to determine the crack growth direction. One
notices that the crack can propagate along a cleavage band or along a slip band
according to the triaxial tensile stress level in the vicinity of the crack. These
bands can easily be found from the trajectory fields. The growth direction of
a ductile crack finally depends on the competition of the stress concentrations
along these bands.
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Badania kierunkéw wzrostu pekniecia ciggliwego przy obcigzeniu
rozciggajgcym

Streszczenie

W pracy zastosowano metode wariacji energii do badania pelnego pola naprezen
wokoét stacjonarnego pekniecia w plaski stanie odksztalcenia dla materialu o pote-
gowym wzmocnieniu dla I typu obciazenia. Przy pomocy metody elementéw skoi-
czonych wyznaczono pola trajektorii naprezen giéwnych i maksymalnych naprezen
§cinajacych w celu okreSlenia kierunku wzrostu szczeliny. Stwierdzono, ze pekniecie
rozwija sie wzdluz pasm rozdzielczoéci lub pasm $cinania, zgodnie z poziomem trdjo-
siowych naprezei rozciagajacych w otoczeniu pekniecia. Kierunek wzrostu pekniecia
ciggliwego zalezy od relacji pomiedzy koncentracjami naprezen wzdluz tych pasm.
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