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Deterioration of material properties; such as, rupture toughness,
strength, and rigidity as well as lifetime reductions are modelled by a
symmetric second order damage tensor introduced into the constitutive
description, when employing the theory of tensor function representa-
tions. The growth of damage and state of failure are described by a one
parameter model of damage evolution and a three parameter failure cri-
terion. The constitutive description for different modes of failure front
propagation is of particular interest in this study. The comparison be-
tween solutions obtained by means of two different physical models; i.e.,
the linear elastic and linear elastic with damages ones, respectively, has
been presented. In both cases the stress redistribution due to geome-
trical changes of the structure induced by the crack propagation has
been considered. Numerical calculations have been made employing the
ABAQUS programme, Runge-Kutta procedures for integration of the
evolution equations, standard methods of matrix division in LU decom-
position and Gauss method for solving the set of linear equations.

Key words: damage mechanics, evolution equation, material stiffness

1. Introduction

Theoretical estimation of the first crack instants and time intervals for car-
rying capacity deformation is one of the crucial research issues in a design pro-
cess of viscoelastic solid structures. Very intensive development of Continuum
Damage Mechanics (CDM) in recent twenty years has not brought about an
effective model complying with the solid thermodynamics requirements. There
should be some possibilities of description of the model behaviour: anisotropic
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damage development, one-sideness of nodes in crack zones and complex non-
proportional loads, (cf Chaboche, 1990). Therefore application of the model
to modern engineering structures is limited.

The relations between the methods of statistical physics associated with
the structure of the material and the possibility to indicate a common ba-
sis of continuum constitutive theory in terms of self-consistent and effective
field models were analysed by Krajcinovic (1996). The basic concepts of da-
mage mechanics were considered with stochastic models used on atomic scales,
micromechanical models on macroscopic scales, and continuum models on ma-
croscales, Krajcinovic et al. (1994), Krajcinovic (1996).

The nowadays tendencies of damage mechanics reflect in a tensor model
is used in this paper. In this model the tensorial damage measure derived by
Murakami and Ohno (1981) is applied. The damage evolution equation by Li-
tewka and Hult (1989) according to Vakulenko and Kaczanov idea (1971) with
later amendments by Murakami and Ohno (1981), Murakami and Sanomura
(1985) has been adopted. The criterion of failure in a material with decre-
asing strength in its evolution process specifies the energetic isotropic medium
with damages, defining a three-parameter surface of critical states calibrated
experimentally in two uniaxial tensions in perpendicular directions and biaxial
tension. Physical properties of the material are modelled using the constitu-
tive coupling of damage tensor with the stress and strain tensors invented by
Litewka (1985).

The material orthotropy issues from the assumed symmetry of the damage
tensor. The principal values of the damage tensor introduced into the physical
model are used for modification of stiffness variable in time.

Professional computer codes, e.g. ABAQUS and high capacity computers
allowed for application of complex mathematical models; e.g., implementation
of tensorial measures, coupling of damage with constitutive description and in-
tegrating the evolution equations. Nevertheless, in some calculations presented
in other papers one can find that scalar measures are applied to the damage
analysis in the cases where sufficient agreement between the experimental and
calculated results can be achieved. Calculations of composite laminated pla-
tes and shells provide an example of such an analysis, e.g. Saleeb and Wilt
(1993). The law of evolution was written there in terms of the isochronous fa-
ilure/damage function. The constitutive equations for the coupled viscoplastic
damage response were used in conjunction with a finite element model. The
authors presented a development of the general computation framework for
numerical implementation using the Euler fully-implicit integration method.

The application of tensorial measures to the analysis of structure elements
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was given by Murakami and Hayakawa (1997). The coustitutive and damage
evolution equations of elastic-plastic material subject to damage were deve-
loped on the basis of irreversible thermodynamic theory of counstitutive equ-
ations. The resulting equations could describe the anisotropic change in the
elastic properties of spheroidal graphite cast iron due to damage.

A two-dimensional self-consistent micromechanical tensorial damage mo-
del was presented for microcrack-weakened brittle solids by Ju (1991). The
stability criteria of fracture mechanics together with microstructural geome-
try were employed in description of the microcrack evolution. The proposed
numerical algorithm was tested uniaxial tension and compression and biaxial
compression/tension, respectively.

An alternative approach to the continuum damage modelling, cf Vakulenko
and Kachanov (1971), consists in the micromechanical model with averaging
procedures and homogenisation for composites with fibrous metal applied by
Voyiadjis and Park (1995). The damage was represented by a fourth-order ove-
rall damage tensor. The damage evolution equation was introduced assuming
that the energy amounts dissipated due to plasticity and damage, respectively,
were independent of each other. As an example, an analysis of the layered
composite under uniaxial load taking into considerations the fibre direction is
presented. A very good correlation was found between the numerical results
obtained by using the proposed theory and the experimental results.

The paper presents continuation of the investigations presented by Bial-
kiewicz and Kuna (1996), Biatkiewicz and Mika (1995) but including damage
into the constitutive equation with the stress and strain coupling. Biatkiewicz
and Kuna (1996) focused on the dependence of the Mindlin-Reissner plate
load distribution on the damage mechanism and concentrated on the effect of
elastic strain energy density and stresses on the mode of rupture front pro-
pagation. The stress redistribution and damage evolution in plates caused by
the width of damage front and generated by changes in geometry were analy-
sed by Biatkiewicz and Mika (1995). Different physical properties of the plate
cross-section were modelled by means of a layered finite element.

Because of high non-linearity introduced into the model by the evolution
equation, failure criterion and constitutive coupling, it is difficult and in some
cases even impossible to predict the crack propagation mechanism.

The numerical analysis proposed in the paper aims at investigation into
the effect of material stiffness reduction in the constitutive equations on evo-
lution of the damage process. The effect of changes in the plate stiffness on the
damage growth rate and the first crack time relative to the structure lifetime
as well as prediction of a possible damage mechanism responsible for initia-
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tion and growth of damage zones are analysed. The solution is illustrated by
investigation into the damage tensor eigenvalue function variability along the
orthotropy directions, the resulting stress redistribution and the plate deflec-
tion growth.

The ABAQUS (cf Hibbitt et al., 1997) program has been used in calcula-
tions. The mathematical model of the constitutive equation, damage evolution
and failure criterion has been defined in the user material procedure (UMAT).
The first order eight-nodal solid elements with reduced integration were used.
Due to the requirements of the UMAT procedure defining the mathematical
model, the Jacobian will be generated through lower triangular and upper
triangular (LU) matrix decomposition procedures (cf Press et al., 1992). Inte-
gration of the damage evolution equation has been performed by application
of the Runge-Kutta standard procedures (cf Press et al., 1992). To solve the
sets of algebraic equations determining the failure criterion parameters - at
each discrete integral step — the Gauss method has been applied.

2. Mathematical model

The constitutive equation of the linear elastic medium with damage is
assumed as an isotropic tensor function, in which the strain tensor ¢ is related
to the stress and damage tensors, denoted as o and D, respectively (cf
Litewka, 1985)

€ = F(o,D) (2.1)

Basing on the theory of tensor function representations and the stress-
strain law of elasticity, Eq (2.1) is accepted as in the case of linear elastic
material in which variable in time stiffness depends on the damage increase
level

€ij = Aijki(Dmn )0k (2.2)
and the constitutive compliance matrix A = [A;;z] is a function of the damage
tensor components

Aijkl = —iéijdkl -+ ﬂ(émé]l -+ (5,[(5_]/42) -+
B 2k

(2.3)

D,

4E(1+ Dy)

where E and v are the temperature-dependent Young modulus and Poisson
ratio of the undamaged material. In order to derive the evolution equation

-+ ((5,'ij1 + 5ﬂDz‘k -+ 551D]'1C + (5jsz-1)
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we use the tensor € of principal values related to D by (cf Murakami and
Sanomura, 1985)
D;
0 = ——
¢ 1+ D;
The standards of ABAQUS programme require that Eq (2.2) be rewritten in
a matrix formn

i=1,2,3 (2.4)

e=K.-o (2.5)
where K = [K;| and

€' = [e11,€22,€33, V12,713, V23] (2.6)

T
o' =[011,092,033,012,013, 023]
The two-dimensional stiffness matrix is generated by substituting for the su-

itable elements of the matrix [Agki] according to the scheme given in the

table below
Ky = Akt (2.7)

and

(ZJ[i[2[8] 4[5 6
ik | 1]2]3]23][13]1,2
0 112/3/32 31 21

e.g. K24 = A2232.
Coordinates of the constitutive matrix K (see Eq (2.7))

K 1 [ Ru R12 ]
= -— ~T —~
E | Ky Ko

are the subimatrices

. [ 14 QLDLL 4 4

K“ = ' 4 1+QLD22 -V
| -V —v 14 §2;Das

B [ @Dy D3 0

Kig = | 21Dy 0 {21 Dys (2.8)
| 0 01Dy {2 Das

[ v+ @Dy +Dy) 2, Doy D3

Ky = 2 Da3 U+ §21(D1y + D33) 2Dy
I f1Dy3 $1 Dy U+ (D2 + Dgy3)

where v =2+ 2v.
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When computing the inverse constitutive matrix K~' at each discrete inte-
gral step the decomposition procedure in lower and upper triangular matrices
(LU procedure based on Ctout’s algorithm, which assumes the suitable order
for equation solving) has been applied. To solve the equilibrium equation the
Newton-Raphson iteration procedure has been applied.

The time step is controlled by the numerical solution convergence and
permissible at every iteration through principal values increase of the damage
tensor in evolution equation integral procedure, cf Litewka and Hult (1989)

8,82 = k(MN")%0;H(o;) i=1,2,3 (2.9)

where
[1 —2v 1+v QL]

M 6 ' 2F '2F

(2.10)
N = [tchr, trS?, tr (azD)]

where S is stress deviator.

The Heaviside function H involved in the evolution equation (2.9) elimi-
nates the damage growth in the directions of compressive stresses o;, and k is
the temperature dependent material constant of the evolution equation, cf Li-
tewka and Hult (1989). The Runge-Kutta fourth order integral procedure has
been used to integrate the damage evolution equation. The initial conditions
will be formulated for the undamaged plate material (2, = D; = 0.

The vector of material constants C = [C}, Cy, C3] defines the actual hyper-
surface configuration of critical states, cf Litewka (1985)

CR-s2 =0 (2.11)
where
(81+82+83)2
2 2 2
1 §T 4+ 85 + 85 — 8§98 — 835 — 89283
R=_ PR TR TR T (2.12)
5]

2 2 2
ST S9T S3T
!2,( L4 2 4+ 3 )

S| —ri8 sy —Tm8 sy — 138l

In the postulated failure criterion (2.11) the dimensionless stress magnitude
has been applied
sz-:ﬂ r; = s;H(s;) 1=1,2,3
Oy

(2.13)

Oy

gl

Sy =
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where ¢, is time dependent ultimate strength of the undamaged material,
and o) is the maximal tensile stress.

The damage evolution has an effect on contraction of the hyper-surface
(2.11) reducing the pre-critical state space. The components of vector C are
determined at each discrete moment of numerical integration, as a result of
application of Eq (2.11) to the three different states of stress: two cases of unia-
xial tension in the perpendicular directions (coaxial with principal directions
of the damage tensor) and biaxial tension in the same directions. In this paper
the values of the two uniaxial and biaxial ultimate strengths of the damaged
material have been assumed in the form related to the uniaxial ultimate tensile
strength

Oy = Oy = (1 — £21)0y,
(2.14)

02y — (1 - .QQ)O’u

following the theoretical and experimental investigations carried out by Zu-

chowski (1986).
This procedure leads to the set of three algebraic equations to be solved

with respect to the components of vector C

uc’ =1 (2.15)
where
a-ap  la-ap  a-are
U=| (1= wm)? §(1 Cn)? (1= ) (2.16)
4(1 — £2,)? %(1 - 2))? 2(1 — 2,)2,

The solution algorithm is based on calculation of the current stresses, stra-
ins and displacements, which depend on state of damage. The calculations
have been performed using the standard finite element method (FEM) and
the constitutive equation (2.5) introduced by the UMAT procedure. The user
variables have been included in the procedure storing the current damage ten-
sor values and a variable informing that there is a crack in a given element.
By adopting solid 3D elements it is possible to use the UMAT procedure to
analyse the beam and plate structures, e.g. Kuna and Mika (1996).

Since the boundary conditions can be defined only globally for finite ele-
ments (limitations of ABAQUS, ver. 5.4), the elements with reduced integra-
tion have been used. Moreover, this type of elements eliminates the ”shear
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locking” phenomenon, which appears in bending problems. To avoid the "ho-
urglass stiffness”, (cf Hughes, 1987), the plate cross-section has been divided
into five layers of finite elements.

02,(=0)=0
virgin material

e

-1
Kl_l vKij
stiffness matrix

transformation 1o the current
principal damage direction
o~ o,

s or—

t=t+Ar

D.(+An=kp"c*
£2,(1)= %2

GLOBAIL FAILURE

Fig. 1.

The block diagram of the UMAT procedure calculating the current field of
stresses and the K-matrix components, is presented below.

At first, we find the elastic solution for a virgin material and then the
damage evolution process starts. After transforming the damage and stress
tensors to the damage principal directions, the failure criterion is checked
at the beginning of each time increment. If the failure criterion in the ele-
ment is satisfied, the material stiffness in the element is reduced to zero. The
work presented by Hsiao, Fong and Gibbons showed that the zero modulus
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approximation greatly facilitated application of the CDM modelling with no
significant loss in accuracy, (cf Hsiao et al., 1997). Then the elastic compliance
matrix has been updated according to the current state of damage.

The UMAT procedure also integrates the evolution equation on the basis
of calculated stress values.

3. Numerical example

As a numerical example we consider a uniformly loaded square plate with
the clamped edges, Fig.2a. Due to symmetry, we can consider only one quarter
of the plate ABCDEFGH, Fig.2b, where ABFE and ADHE are the clamped
planes, BCFG and CDGH are the symmetry planes, whereas the sought func-
tions are symmetrical with respect to the ACGE plane. The square plate has
been divided into the first order solid elements with reduced integration of
12 x 12 x b in size. The elements are numbered in rows, starting from the bot-
tom layer. The numbers in the figure denote the element numbers for which
the history of the variables characteristic for the process will be shown.

In the numerical solution we use the following values for dimensionless
parameters: Young modulus E = E/o, = 417, Poisson ratio v = 0.47,
E = kodr = 821, see Eq (2.9), where 7 = 1h is the unit
time. The assumed paramneters represent carbon steel at the temperature
of 811K (cf Bialkiewicz and Mika, 1995), revealing the ultimate strength
0y, = 288 MPa. Also the dimensionless uniform load parallel to the external
normal § = g¢/o, = 3.8 - 1072 and the dimensionless plate thickness
h = h/a = 0.1 where used in calculations.

The numerical calculations including integration of the damage evolution
equation and failure criterion checking were made in the space of principal
values due to the way of the failure criterion and evolution equation formu-
lation. The initial distribution of dimensionless stress tensor principal values
corresponding to the ultimate strength o, in the virgin state in the ABC-
DEFGH area is presented in Fig.3a. The identical intensity dashed regions in
each element denote stress section explained in Legend. The stress distribution
for the assumed damage model characteristic of the metal working at elevated
temperature, allows for detecting the regions where the damage nucleation
starts after structure is loaded.

The maximum tensile stress appearing in the vicinity of the upper plate
edge indicate the first crack location in this area. Very small stress gradient
along the AB edge implies an approximately identical speed of damage growth.
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Relatively lower intensity of damage evolution in time in the BF direction
results from a high stress gradient (narrow regions of compression stresses in
the layers 1-+3). Because of symmetry about the ACGE plane, the same course
of damage evolution appears at the edges AD and DH. The tensile stresses in
vicinity of points C and A of the top layer are related to zero principal values
damage tensor. The compressive stresses in the bottom layer, in the vicinity of
the geometrical centre of the plate G cause damage evolution which develops
less intensively than at the points B and D.

The distribution of dimensionless principal values of the stress tensor at
the preceding instant of the first rupture at the points B and D is illustrated
in Fig.3b. The damage evolution in the plate leads to a decrease in material
stiffness within the damaged regions and to stress redistribution. This effect
is included in the constitutive equation, which is a linear combination of the
stress and damage tensors. The region of maximum tensile stresses in the
cross-section shifts from the points B and D towards the points F and H. At
the points located in the vicinity of the centre of the clamped edge AB, a
decrease in stresses is insignificant, so they are more exerted than point B.
A decrease in plate stiffness causes an expansion of the tensile region in the
point G.
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Fig. 4.
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The first eigenvalue of the damage tensor (2; distribution in the plate
before the first crack occurs (¢ = 0.98), is illustrated in Fig.4. We observe the
{2 concentration at the centre of clamped edge, i.e. in the elements B and D
where the first crack appears.

Damage zone expansion towards the corner A is accompanied by a high
gradient of the damage tensor ({2, € (0.0846,0.677)) along the edges AB
and FB.

For the structures where bending effects predominate, the areas where the
first crack appears cover with those of maximum tensile stress. Sample struc-
tures for which this dependence does not hold can be shown, e.g. Biatkiewicz
and Kuna (1996). The authors considered a uniformly loaded plate in a va-
riable boundary strip, where the maximum values of principal tensile stresses
in the middle surfaces (shear stresses) were comparable with those in outer
surfaces (normal stresses). Under such loading conditions the locations of the
first crack are determined by the values of the elastic energy density (MN'T
in Eq (2.9)).

The application of solid elements, representing 3D stress state, enable us
to model the structure of variable geometry which changes the shape in the
damage evolution. Macroscopic cracks in elements lead to reduction of the
plate thickness. As a result, the middle plane becomes a three-dimensional
surface, which is characteristic of shells. The macrocraks appear in the middle
of the top plane edge (vicinity of the points B and D), close to the geometric
centre G. Such a geometrical mode] corresponds to a shallow shell.

The evolution of the principal value of the damage tensor (2, along the
clamped edge of the upper plate surface (elements 720 + 711) and across the
cross-section (elements in the interval 720 < 144) are illustrated in Fig.5a
and Fig.5b, respectively. The dimensionless scale of the time axis corresponds
to the real time of the first cracks. Particular curves are denoted by the O1
symbol, which corresponds to the first value of the damage tensor, afterwards
the element number is placed.

The lines drawn in frames represent the history of the damage evolution
separately for each element until macrocracks appear. The vertical lines indi-
cate the rupture time in particular elements. Very narrow time span from the
moment of cracking represented by line O1_717 in Fig.5a until the elements of
the edges AB and AD are damaged, indicates an avalanche character of the
crack propagation along the top clamped surface. The macrocracks beginning
in the element B, increase loading of all subsequent elements towards the plate
corner. It can be seen from the location of the rupture front that the critical
damage {2, is decreasing in the process of rupture propagation ({2, is ranging
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from 0.05 up to 0.81). Experimental investigations conducted for different ma-
terials have indicated that the rupture occurs for the values of damage tensor
components less than unity, {2 € (0.3,0.9), (cf Litewka, 1985).

Fig.5b illustrates the movement of the damage front in the plate cross-
section. In this case the brittle rupture for the assumed division — preceded by
a microcrack growth — takes place in the three upper elements of plate only.
In the other elements the rupture follows as a consequence of getting to tlie
material ultimate strength in the zone of compressive stresses. A decrease in
material stiffness during the damage evolution and decrease in stresses inhibits
the process development in the top surface (curve O1.720). In the lower layer,
which includes element 576, a rise in damage development rate is observed
(curve O1.576) until the first crack in element 720 appears, thus indicating
that the layers of lower damage level are loaded. After cracking element 720,
the lowest stiffness element 576 reveal and this is why an intensification of
damage evolution in element 432 is observed.

The damage process is running in a different way when the constitutive
model of linear-elastic undamaged medium is assumed, adopting D = 0 in
Eq (2.1). In this model an effect of the damage evolution on the material
stiffness is neglected. Until geometrical changes occur (caused by the first
crack) the process of damage development is running in the stationary elastic
stress field. Cracks appear in the shorter time and smaller degradation of
material, (cf Biatkiewicz and Mika, 1995). The comparison between solutions
for both constitutive models of the elastic medium; i.e., with and without
damage, is illustrated in Fig.6.

The dashed lines show the history of the first principal value of the damage
tensor for elements of upper clamped plate edge in the case of elastic unda-
maged material. The dotted lines refer to the results of analogical solution
for elastic material with damages. The solid lines in both cases illustrate the
history of principal value of the damage tensor on the rupture front. After the
rupture of the first four elements (from 720 up to 717) inside the undamage
elastic material, due to small degradation at subsequent points, the process of
makrocracks forming stops (thick dashed line). Movement of the damage front
into element 716 leads to a rapid damage development and when macrocracks
occur the damage evolution process has an avalanche character.

Comparison between both the diagrams, in particular the damage front
lines, shows that application of the undamaged elastic material model leads to
very restrictive design conditions. The time when the first crack occurs for the
assumed material and geometrical data regarding the plate is approximately
2.5 times shorter in comparison with the failure time for a structure made

2 — Mechanika Teoretyczna
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applying — closer to the real properties — of the elastic material model with
time variable stiffness due to damage increase. The assumption of an elastic
in nuwmerical calculations damaged material made leads to a shorter time of
the subsequent cracks formation in comparison to the incubation period of the
first cracks than those for elastic undamaged material.

The physical properties of damaged material are related to the property of
orthotropy. The evolution of the all three principal components of the damage
tensor for both theories in the element with first macroscopic crack 720 is il-
lustrated in Fig.7. The dashed lines illustrate the evolution of the undamaged
elastic material, while the dotted lines indicate the history of material with da-
mage. The orthotropy of material is caused by differences between the damage
tensor eigenvalues. The divergence of physical properties in each orthotropy
direction increases moderately with microcracks evolution.

The presented solutions within the ranée of crack propagation have been
validated by the nominal stress redistribution in the elements of the upper
clamped edge (see Fig.8a) and across the plate thickness (see Fig.8b).

The dimensionless principal values of the stress tensor are related to the
ultimate strength ¢, of the material. The graphic convention adopted here
corresponds to Fig.5a and Fig.5b. The stress redistribution in most exertional
elements - due a decrease in material stiffness inhibits the damage process. The
stress redistribution in slightly exertional elements reveals a trace character
(curves from S1.711 to S1.713), Fig.8a. The vertical lines in both diagrams
correspond to the stress clearing on the damage front.

By adopting variable material stiffness in the constitutive description we
can illustrate changes of exertion for particular plate layers during movement of
the damage front. When time elapses (¢ = 0.35) the layer containing element
576 is most exertional — curve S1.576 in Fig.8b. In both lower layers a rise in
compressing stresses is observed until ultimate strength is reached.

The material softening process is well illustrated in Fig.9 presenting a re-
lationship between eigenvalues of the damage and stress tensors, respectively,
at the element where the first crack occurs. The coupling between the da-
mage and stress tensors in the constitutive equation (2.5) is manifested by
the dependence of stress redistribution on damage development. Nonlinearity
indicates an acceleration of stress decrease at element 720 in the vicinity of
the critical value of the damage tensor. In the case of elastic model which does
not involve any stress redistribution, this relationship is linear.

The effective stresses are defined as follows

S;

Ni=1"g
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where S; and (2; correspond to appropriately normalised eigenvalues of no-
minal stresses and damage tensor, respectively. The effective stresses make
the measure of exertion at a given element objective since they are applied
~ through the damage tensor — to actual surface of material. N; increase in
time indicates that the process of microcrack nucleation develops; this is why
the damage evolution is still observed in elements located along the clamped
edge, despite of a considerable stiffness drop, see Fig.10.

A treble increase in the deflection of the plate centre in comparison with
instantaneous one in short time scale (= 0.25, cf Fig.13) is accompanied by
intensification of the damage evolution in the vicinity of the geometric centre
of the plate in the bottom layer. The elastic stresses are equal here to about
40% of the ultimate stress limit (§2; < 0.35 prior to the crack occurrence
in the clamped area), see Fig.11. Until the first crack occurs (see Fig.12) we
observe only slight stiffness changes at individual elements, so we can roughly
say that damage evolution occurs in the stationary stress field. Movement of
the damage front and changes in geometry of the plate cause that the gradient
of the stress tensor rapidly increases and the damage condition is fulfilled into
elements laying along the axis of symmetry EG of the bottom layer, beginning
from the geometric centre of the plate, i.e. element 12. After cracking of the
plate centre the damage develops in the form of avalanche. It should be noted
that the damage criterion is satisfied when the damage process is poorly (not)
developed (for most elements of the bottom layer (2, < 0.5).

Changes of deflection in time for the geometrical centre of the plate are



774

N1_720
N1_719
N1_718
N1_717
N1_716
N1_715
N1_714
N1_713
N1_712
NL_711

s1 11
s1_12
s1 23
s1_10
s1_9
s1 34
s1_8
s1_7
S1_45

2.0

1.5

1.0

0.5

P.Mika

-~

2.0

Fig. 11.

2.0



ON INTERACTION

o1 11
01_12
ol_23
01_10
oL_9
ol_34
oL 8
01_7
01 _45

BETWEEN DAMAGE GROWTH...

x|

2.0

=~1

775



776 P .Mika

illustrated in Fig.13. The dimensionless deflection has been related to the
instantaneous deflection of the plate. The dotted line shows the deflection
increase in time for the elastic model, while the dashed one for the elastic
model with damage. The asymptotic behaviour indicates the lifetime of the
structure. In the case of elastic material with damage (a dotted line) the first
cracks are preceded by a slight deflection increase caused by material softening.

4. Final remarks

The numerical analysis indicates basically a different course of the rupture
process, depending on the assumed constitutive model of the material. Appli-
cation of the constitutive description closer to real properties, which includes
changes in material stiffness caused by microcrack development leads to signi-
ficant elongation of the first crack time. Moreover, the propagation process of
the rupture front, in spite of its avalanche character, does not occur in the
instantaneous mode. For the elastic material in which softening of material
caused by microcrack increase is neglected, the rupture will appear in shorter
time and at smaller deterioration of the material (smaller principal values of
the damage tensor). Thus we can conclude that the linear-elastic model with
damage shall be used for design calculation, whilst the results obtained on the
basis of the linear model can be used to estimate the first crack time only.

As a result of microcrack development, the areas of maximum stresses are
displaced in the case of material with damage. The adopted form of damage
criterion causes — in agreement with the experimental results that the critical
values of the damage tensor are less than unity.

The expansion of the damage front and evolution of microcracks lead to
replacement of the most exertional plate areas. Changes in damage evolution
rate are observed in individual plate layers.

Introduction of the tensor damage measure into mathematical description
includes the orthotropic character of the process. The progress of damage de-
velopment is manifested by the history of effective stresses. Damage evolution
proceeds in the stationary stress field in an area surrounding the centre of the
plate.
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Wspdélzaleznoéé wzrostu uszkodzen i sztywnoéci materialu
w konstrukcjach tréjwymiarowych

Streszczenie

Procesy degradacji wlasnosci materiatu, takich jak wytraymalodé, sztywnosé i re-
dukcja czasu trwalo$ci 83 modelowane przez symetryczny tensor uszkodzen drugiego
rzedu wprowadzony do opisu konstytutywnego z zastosowaniem teorii reprezenta-
¢ji funkcji tensorowych. Wzrost uszkodzen oraz stan zniszczenia s opisywane przez
jednoparametrowe réwnanie ewolucji oraz tréjparametrowe kryterium zniszczenia.
W pracy przedstawiono rézne formy propagacji frontu zniszczenia w odniesieniu do
opisu kostytutywnego. W tym kontekscie dokonano poréwnania rozwigzan otrzy-
manych z zastosowaniem dwu odmiennych modeli fizycznych: liniowo sprezystego
i liniowo sprezystego z uszkodzeniami. W obydwu przypadkach rozwazana jest re-
dystrybucja naprezei spowodowana zmianami geometrycznymi konstrukeji wywola-
nymi propagacja zarysowan. W obliczeniach numerycznych odwotano sie do programu
ABAQUS, procedur Rungego-Kutty w calkowaniu réwnania ewolucji oraz standardo-
wych metod rozkladu macierzy na gérno- i dolno-tréjkatna, a w zakresie rozwigzywa-
nia ukladu réwnan algebraicznych — do metody Gaussa.
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