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Dynamic stability and bifurcations in axially moving web have been in-
vestigated. To analyse supercritical dynamic behaviour of the thin web
the beam model is considered. A general velocity proportional damping
force is added to the non-linear governing equation. Approximate solu-
tion of the partial differential equation of motion is obtained using the
Galerkin method. The investigation procedure follows that derived from
the Hopf bifurcation theory by looss and Joseph and consists in seeking
approximate periodic solutions of non-linear equations of the web mo-
tion in a parametric form. The moving web may encounter divergent
or flutter instability at supercritical transport speeds. The attention is
focused on free vibrations in the neighbourhood of some points on the
stability boundary in the flutter region of the linearized system. The
Hopf bifurcation kind (sub- and supercritical) has been investigated at
these points.

Key words: moving web, damping, dynamic stability, bifurcation

Notation

- width of the web

external and internal damping coefficients, respectively
- axial transport speed

~  flexural stiffness of the plate

- Young modulus of the web along z axis

thickness and length of the web, respectively

~ number of the natural frequency

bending moment resultants

in-plane stress resultants

- transverse loading
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R - axial tension

¢ - time

w — transverse displacement of the web middle surface

€z,€y,€zy — Strain tensor components for the middle surface of the
web

By, B - dimensionless damping coefficients

K - equivalent stiffness of the rolls support structure

— Poisson ratio of the plate

mass density of the plate

- real part of eigenvalue

- natural frequency of the plate (imaginary part of
eigenvalue).
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1. Introduction

Axially moving materials one can find in industry as band saw blades,
power transmission belts, magnetic tapes and paper webs. Excessive vibrations
of moving webs increase defects and can lead to failure of the web. The analysis
of vibration and dynamic stability in such systems is very important for design
of manufacturing devices.

A lot of earlier works in this field were focused on dynamic investigations
of string-like and beam-like axially moving systems (e.g. Wickert and Mote,
1988 (rev), 1990). In the case of a two-dimensional axially moving thin web, the
exact dynamic solutions satisfying the non-linear coupled equations governing
the web motion, probably cannot be determined in a closed form. Recent
works have analysed the equilibrium displacement, stress distribution (Lin
and Mote, 1995), wrinkling phenomenon (Lin and Mote, 1996), stability of
axially moving isotropic plate (Lin, 1997) and dynamic behaviour of axially
moving orthotropic plate (Marynowski and Kotakowski, 1999).

The aim of this paper is to analyse the dynamic stability and bifurcations
in an axially moving web. The web motion is damped by a general velocity
proportional damping force. To analyse the supercritical dynamic behaviour of
thin web the beam model is considered. An approximate solution of the gover-
ning partial differential equation is obtained using the Galerkin method. The
investigation procedure follows that derived from the Hopf bifurcation theory
by Iooss and Joseph (1980). It consists in seeking the approximate periodic
solutions of non-linear equations of the web motion in a parametric form using
the Fredholm alternative. The moving web may encounter divergent or flutter
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instability at supercritical transport speeds. The attention is focused on free
vibrations in the neighbourhood of some points on the stability boundary in
the flutter instability region of the linearized system. The Hopf bifurcation
character (sub- and supercritical) is investigated at these points.

2. Mathematical model of the moving web system

Fig. 1. Model of the axially moving web

A long elastic moving web of the length [ is considered. The web moves
at constant velocity c¢. The co-ordinates system and geometry are shown in
Fig.1. The equation governing the transverse motion of the two dimensional
axially moving plate were derived by Marynowski and Kolakowski (1999) and
have the following form

ph(_w)tt —2cw, gy _KCQwa:z:z ) + My,zs +2szazy +Myayy +q+ (2 1)

+(N:cwa:c )y:c +(Nyway )7y +(N:tyw>z ),y +(Nzyway )aIL‘ =0

Neglecting the velocity dependet terms in Eq (2.1) and taking into account
the linear damping in the transverse direction leads to the results obtained by
Tylikowski (1988).

In this paper, a non-linear simplificated form of the governing equation
has been taken into consideration. In the case of thin web, the results of ear-
lier investigations show that an 1D beam model approximates accurately the
dynamic behaviour of the web. Taking into account the non-linear geometric
relation

2

1
Er = U,z +§w,I (2.2)
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the non-linear component appears in the governing equations (c¢f Fung et al.,
1998 for the string)

3Eh

(Nzw;z ))z = m

W,2 Weq (2.3)
Hereinafter, one assumes that the web is subject to tension only in its
longitudinal direction, hence

Ny #0 g=0 Ny =Ny =0 (2.4)

Then the non-linear equation governing transverse motion of the axially mo-
ving beam model is

2(—13%10,2 W,z =0

(2.5)
where the flexural stiffness of the beam is equal to the flexural stiffness of the
isotropic plate.

A general velocity proportional damping force of the form (Ulsoy and Mote,
1982; Marynowski, 1997) byw,; +bscw,; where by = b, + b; and by = b, has
been introduced into the left-hand side of the governing equation (2.5). Finally,
the mathematical model of the moving web system has the following form

Ph(_w,tt —2cw,gt _K'CQwaJZJI ) + Rw, gz —Dw,z00z +

Ph(w:tt +2cw, gt +'€Czwazz ) — Rw,zz +Dw gz +o1w,e +

(2.6)
3Eh
+b2cw,z +m’w,i Wyzy = 0
The boundary conditions
w(0,t) = w(l,t) =0 W,zz (0,1) = Wz (I, 1) =0 (2.7)
Let the dimensionless parameters be
R _
=3 e=f =i =g
ol oD 5 — bl g, — Dls (28)
R? L /Roh VRph

Substitution of Eq (2.8) into Eq (2.6) gives the dimensionless equation of
motion

1
27T +2SZ,ET +(K,32 - 1)2,{{ +EZ,§§§§ +ﬁ12,-r +ﬁ22,§ +'8—Ez,g 2= 0 (29)
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The eigenvalue problem represented by Eq (2.9) together with the appro-
priate boundary conditions Eq (2.7) has been solved using the Galerkin me-
thod. The following finite series representation of the dimensionless transverse
displacement has been assumed

= Zsin(iﬂé)qi(T) (2.10)

For example, for m = 3, Eq (2.9) is reduced to the following second order
ordinary differential equations

qi(r) = (ks® = Drlqi(1) — emqu(T) + (16/3)sda(T) — Bigi(T) +
+ (8/3)B2qa(r) — 0.045eq3 (1) q1 (T)

GoT) = 4(ks* = D)rlqa(r) — 16emtqa(r) — (16/3)5¢)(7) + (48/5)sd3(T) +
— Bigi(r) = (8/3)Baqu (1) + (24/5)B2g3(r) — 0.18eq; (7)go(T) +
+ 0.648¢qi (T)g2(T)qs(r) — 0.584eq2(7)g5(7) (2.11)
G3(1) = 9(xs® = D)r?q3(r) — 8lem’qz(7) + (48/5)sda(T) — Brga(T) +

+ (24/5)Baga(T) — 5.252eq5(7)q3(T)

3. Numerical results and discussion

Numerical simulations have been carried out for a thin steel web. The
following parameter values have been taken: [ =1m, b=0.2m, h = 1.5mm,
p="T7800kg/m® E =0.2-10"2N/m? R=25-103N/m, v = 0.3, € = 0.025,
c1 = 14.618 m/s.

First, the stability of the linearized system was investigated. Only first,
linear terms in Eq (2.9) have been taken into consideration. The complex
eigenvalue problem of the set of ordinary differential equations has been solved
using the iterative method (Press et al., 1989).

To test accuracy of the computational method the absolute values of lo-
west imaginary parts of eigenvalues of undamped moving steel web have been
calculated (m = 2, m = 3) and compared with the exact solution for J = 10
rectangular plate segments of the web (Marynowski and Kotakowski, 1999).
The calculation results are shown in Fig.2. For m = 3 the discrepancy in the
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Fig. 2. Lowest eingevalues of the undamped web; k=1, 8, =0

first eigenvalue of the beam model is less than 0.5% within the second eige-
nvalue is less than 2%. Thus, three approximating functions in the Galerkin
procedure have been introduced into simulations.

The plots of the first two eigenfrequencies of the damped web model versus
the transport velocity are shown in Fig.3 and Fig.4. In all these cases the
external damping was taken into account (b; = by, By = Pis) and the roll
stiffness coefficient x = 1.

For the system with small damping (Fig.3a) the axial velocity ¢ decreases
absolute values of the first two imaginary eigenvalues until the first eigenvalue
vanishes at the critical value c¢.;. Then, the positive real part of the first
eigenvalue appears, i.e. the divergence type of instability. Dynamic behaviour
of the linearized system was investigated above the critical transport speed.
At supercritical transport speeds, the web experiences first the divergent in-
stability (the fundamental mode with non-zero ¢ and zero w) and next the
flutter instability (non-zero ¢ and non-zero w). Between them there is a se-
cond stable region where o = 0. The flutter instability appears at the second
critical transport speed c.rrr (Fig.3a). For higher transport speeds above the
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Fig. 4. Two lowest eingevalues of the web; k=1, 8 =1.14

flutter region only the divergence instability of the web motion is observed. It
was shown earlier (Marynowski and Kotakowski, 1999) that appearance of the
second stability region for the undamped system depends on the slenderness
ratio and orthotropy factor of the web.

As the external damping of the web motion increases the width of the
first divergence region diminishes. For 3, = 0.438 the first divergence region
vanishes (Fig.3b). At the critical transport speed c. one of the real parts of
conjugate complex eigenvalues passes through zero i.e., the flutter instability
of the web motion appears. Further increasing of damping causes vanishing
of the flutter instability region. For f; = 1.14 above the stability region only
the divergence instability of the web motion is observed (Fig.4).

Numerical calculations have been made for different values of the rolls
support stiffness k. For x =1, the two rolls are rigidly fixed with respect to
each other. For x = 0 the rolls can move relative to each other when tension
varies. Decreasing of the rolls support stiffness changes positions of both the
divergence and flutter instability regions. The plots of dimensionless external
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damping coeficient [, versus the critical transport speed ¢ for different
values of the rolls support stiffness are shown in Fig.5.

A

stability region

1.54

Fig. 5. Positions of the instability regions; I — divergence instability region,
IT — flutter instability region

Next, the dynamic behaviour of the non-linear web system was studied so
all terms in Eq (2.9) have been taken into consideration. The investigation
procedure follows that derived from the Hopf bifurcation theory by Iooss and
Joseph (1980). The attention has focused on free vibrations in the neighbour-
hood of some points on the stability boundary in the flutter instability region
of the linearized system. The kind of the Hopf bifurcation (sub- or supercriti-
cal) of the moving web has been investigated.

Sample investigation results have been presented for a constant value of the
rolls support stiffness and for different values of external damping. The plots
of the estimated radius of the bifurcation solution in the neighbourhood of the
flutter instability threshold versus the transport speed are shown in Fig.6 for
k=1 and & = 0.6, respectively. In the case of rigid rolls support « =1, for
the damping coefficient range 0 < 1 < 0.61 the subcritical Hopf bifurcation
with the unstable limit cycle can be observed. Beyond this range the region of
supercritical Hopf bifurcation with the stable limit cycle occurs. In the case of
more flexible rolls support k = 0.6, the subcritical Hopf bifurcation with the
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Fig. 6. Bifurcation solutions

unstable limit cycle can be observed within the damping range 0 < £, < 0.06.
Investigation results show that the type of bifurcation depends on the rolls
support stiffness and damping of the web motion. Fig.7 shows the boundary
line between subcritical and supercritical Hopf bifurcations for different values
of stiffness and damping coefficients.

4. Conclusions

Dynamic stability and bifurcations in axially moving web have been inve-
stigated. To analyse the supercritical dynamic behaviour of thin web the beam
model with a general velocity proportional damping force has been taken into
consideration. Geometric nonlinearity has been introduced the non-linear go-
verning equation.

The dynamic analysis of the linearized system shows that the moving web
may encounter divergent or flutter instability at supercritical transport speeds.
For small damping, when the transport speed increases the web experiences
first the divergent instability and next the flutter instability. Between them,
there is a second stable region. For higher transport speeds above the flutter
region only the divergence instability of the web motion is observed.

The critical value of transport speed depends on the rolls stiffness and
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Fig. 7. Sub- and supercritical Hopf bifurcation regions

damping of the web motion. When the external damping of the web motion
increases the width of the first divergence instability region more and more
diminishes until vanishes. Further damping increasing causes vanishing of the
flutter instability region and above the stability region of transport speeds
only the divergence instability of the web motion is observed.

Dynamic analysis of non-linear system shows that both subecritical and
supercritical Hopf bifurcations appear in the region of flutter instability of
the web motion. The bifurcation kind depends mainly on the rolls support
stiffness and external damping of the web motion. The rolls stiffness decreasing
diminishes the damping coefficient at which the sub- and supercritical Hopf
bifurcation threshold appears.

It is worth noting that because of the existence of unstable limit cycle
neglecting of nonlinear components in the governing equation especially in the
regions of subcritical Hopf bifurcation may yield incorrect results of dynamic
investigations.
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Statecznos$é nadkrytyczna i bifurkacje w poruszajacej sie osiowo wstedze

Streszczenie

W pracy badano statecznoéé dynamiczng i bifurkacje w poruszajacej sie osiowo
wstedze. Do analizy zachowania dynamicznego w obszarze nadkrytycznych predkosci
przesuwu wykorzystano model belkowy, w ktérym uwzgledniono nieliniowogé geome-
tryczng oraz sile tlumienia proporcionalng do uogélnionej predkosci wstegi. Prazy-
blizone rozwiazanie réwnania ruchu o pochodnych czastkowych otrzymano stosujac
metode Galerkina. Zastosowano metod¢ badawcza wyprowadzong z teorii bifurkacji
Hopfa przez Iooss’a i Joseph’a. Polega ona na poszukiwaniu przyblizonych okresowych
rozwigzan nieliniowych réwnan ruchu w postaci parametrycznej. W obszarze nadkry-
tycznym moze wystgpowal niestateczno$¢ dywergencyjna oraz niestateczno$é typu
flater. Skoncentrowano sie na badaniach drgai wtasnych w poblizu granicy stateczno-
$ci typu flater. W tych punktach badano charakter bifurkacji (pod- i nadkrytyczny).
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