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A classification of loading of cantilever columns regarding the way of load
application has been established. Natural vibration frequency against the
applied load and stability of two columns under the generalised load of
the first kind have been investigated numerically. The influence of some
geometrical parameters of the loading head as well as the concentrated
mass fixed at the end of column upon both the eigenvalue curves and
the divergence critical load were analysed. Some numerical results of
eigenfrequency have been confirmed by an experiment performed on two
constructed stands.
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1. Introduction

The problem of stability of a cantilever column under the load due to which
both the transverse force and the bending moment at the loaded end of column
depend upon the displacement and deflection angle of this end (Fig.1a) was
described by Kordas (1963). Those relation are
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where
oW (z,t) oW (z,1)
= T 2=l + VW(l,t) = Ma—w o=l + ’)’W(l,t)

and

pyv i,y — known coefficients

P — compressive force

W{(z,t) - transverse displacement

m —~ concentrated mass

EJ - flexural rigidity

) — length of a column.

Under conditions (1.1) rotary inertia of the mass m has been neglected,
because in the investigated range of the mass, its adequate inertial terms only
slightly affected the calculated values of natural frequency.

The boundary conditions at the clamped end of a cantilever column are

oW (z,t)
oz

The load is conservative when rotation of its vector field is equal to zero, what
gives the relation (cf Gajewski and Zyczkowski, 1970; Tomski et al., 1996)

W(0,t) = =0 (1.2)

z=0

v+pu—1=0 (1.3)
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Fig. 1. Classification of generalised load with respect to the way of application of the
loading

Taking into account the two features characterising the force P from
Egs (1.1), i.e. its direction which is determined in a plane and its point of
application with regard to the column end, the classification of loading of
columns can be established as follows (see Fig.1).
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1.1. Generalised load of the first kind

In this case a column is under a compressive force, direction of which during
column natural vibrations depends both on the displacement and deflection
angle of the column end. A point of force application changes also with respect
to the end of column — Fig.2a. Possible constructions of columns under this
kind of load are depicted in Fig.2b,c,d.

column A, column A, column A,

(a) Wix,1) (b) Wix,t) (o) Wix,t) (d) Wix,t)

Fig. 2. Cantilever columns under the generalised load of the first kind, (a) scheme of
the column and its load, (b), (c), (d) possible constructions

A particular case of this type of load is the follower load directed towards
a pole (cf Timoshenko and Gere, 1961; Levinson, 1966). In this case the line
of action of a compressive force passes through a pole, and depends both upon
the displacement and deflection angle of the end of column. Between this
displacement and the deflection angle the following relation holds W(i,t) =
+cW'(l,t), where c is the coefficient of proportionality. The distance of a
pole from the end of column is called ”positive” when the pole lies below the
column end, and "negative” when it is placed over this end (cf Gajewski and
Zyczkowski, 1969). The vibrations and stability of a column loaded towards a
" positive” pole were studied by Tomski et al. (1998), outwards of a "negative”
pole is the subject of this work. A scheme of the column under considerations
and its possible constructional variants are depicted in Fig.3.

According to the classification implemented here, the generalised load de-
scribed by Gajewski and Zyczkowski (1970), (1988), Kordas (1963) and Tomski
et al. (1996) are proposed to be called the generalised load of the first kind. A
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column B, column B,

(a) Wix,t) (b) i Wix,t)

Fig. 3. Constructions of a cantilever column under the follower load directed
outwards a ”negative” pole

real construction of column under this kind of load was studied by Tomski et
al. (1996) and a plane frame by Tomski et al. (1995).

1.2. Generalised load of the second kind

A compressive force has got a constant point of application, but the angle
of its line of action changes (Fig.4a,b). Here the following subgroups can be
specified:

1.2.1. Generalised Beck’s column (cf Beck, 1953; Kordas and Zyczkowski, 1963; Zie-
gler, 1968)

In this case a force has got a constant point of action, but its direction
follows the deflection angle of the column end - Fig.4a. As it was specified
by Kordas and Zyczkowski (1963), the load can be anti-tangential for 5 < 0,
sub-tangential 0 <7 < 1, tangential n = 1, and super-tangential for 7 > 1,
where 7 is the coeflicient of proportionality.

1.2.82. Force of direction passing through o fized point

A force changes direction passing towards a fixed point (a pole) which is
placed on the axis of an undeformed column (Fig.4b).
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(a) 7 Wix,1) O Wix,t) () 7" Wix,1)

Fig. 4. Cantilever columns under (a), {b) the generalised load of the second kind,
(a) Beck’s column, (b) column loaded by a force passing through a fixed point,
(c) the generalised load of the third kind — Reut’s column

1.3. Generalised load of the third kind

A compressive force has got a constant direction, but altered point of its
application. For Reut’s column (cf Nemat-Nagser and Herrmann, 1966; Plaut,
1972) a load of constant direction changes its position proportionally to the
displacement of the end of column ~ Fig.4c.

A few constructions of systems under the load of the second and third
kind were presented by Gajewski and Zyczkowski (1970), (1988). It should
be noticed that the generalised load can be conservative or nonconservative
(see Eq (1.3)), but this problem is not studied in this work. A very thorough
classification of systems with respect to the form of instability and existence
of a potential function was presented by Argyris and Symeonidis (1981).

In the case of "dead load” a force acting on a column remains constant
both in direction and point of application so the problem reduces to the Euler’s
one, which has been solved by using the static approach.
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2. Formulation of the problem

In this work the stability and vibrations of elastic and prismatic columns
presented in Fig.2d and Fig.3b are examined. The columns are composed of
two identical rods of flexural rigidity F)J, = FoJy, = EJ and mass per unit
length k; = ko = k. Due to constructional demands the two rods have been
used.

The Bernoulli-Euler equation for the transverse displacement is as follows

g0 Wile,t) |, PWile,t) | O Wila, 1)

P; =0 2.1
6zt T T e TR e 21)
where P, = P/2, i=1,2.
For small vibrations _
Wiz, t) = yi(z)e (2.2)

The values of parameters p, v, p and v from Eqs (1.1) for columns A, and
Aj, Az are given in Table 1.

Table 1. Values of parameters p, v,  and -y for columns A; and A,, Aj

| UPLVL#LVJ
ERIE NEAEE

alsi g e

Those columns are adequate to each other regarding the relations
lg = 7 — R,lc =7, and are under the generalised load of the first kind. The
values of radii r and R as well as the lengths [¢ and [p, describing the way
of columns loading have got the reverse signs of values than those of columns
investigated by Tomski et al. (1996).

The rigidity of element ¢ from Fig.2¢,d is much greater than that of both
rods EcJc <« 2EJ, so it is assumed that this element is infinitely rigid. Using
such an approximation the boundary conditions for columns A, and A, A3
are as follows

EJ[{ (1) +y5 (D] + Plpyi (1) + vyi(1)] = 0
(2.3)

EJ[y!" (1) +y5' (D] + Pleyi (1) + vy (1)] + mw?yi (1) = 0

where
y1() = y2(0) y1 (1) = y5(0) (2.4)
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The load applied to columns B; and B, from Fig.3 is a particular case of the
load of columns A; and As, Az from Fig.2, respectively.

The boundary conditions (2.3) after substituting the values of parameters
p, v, p and -y for column A; can be rewritten as follows

(r — R)EJy\ (1) + y2 ()] + Pr[Ry' (1) + y(D)] = 0 25)

r(r = R)EJ[y)' (1) + y2' (D] = Pr{Ry' (1) +y(D] +r(r = Rymw’y: (1) = 0
Subtracting Eq (2.5), from Eq (2.5)3, and adding Eqs (2.5) one obtains

y() = —ry'(1)
(2.6)

BIG D) + /0] + L")+ 540)] + muP (0) = 0

The load of columns Ay, Ay, A3, By, By is conservative, because in each case
the condition (2.1) is fulfilled.

The boundary condition (2.6); for a column loaded by a follower force
passing through a fixed point was derived by Tomski et al. (1998) on the basis
of the Hamilton principle.

3. Experimental set-up. Construction of columns

A stand for vibration tests of column Aj from Table 1 is presented in
Fig.5. The column is composed of the two bars (1) and (2) clamped by the
holder (3) set to the plate (4). In this way the conditions ¥;(0) = %;(0) = 0,
i = 1,2 are fulfilled. Free ends of the rods (1) and (2) are connected by means
of the block (5) which ensures boundary the conditions (2.4) to be fulfilled. To
the block (5) the rigid element (6) is mounted. One eud of tle element (6) has
got the shape of fork (7) in which the pulley (8) is seated with the use of rolling
bearing. A pair of the loading systems (9) is symmetrically placed with respect
to the holder (3) on the plate (4). Each of the loading systems generates the
loading force equal to P/2 by means of the dynamometers (10). On the plate
(4) the two towers (11) are placed symmetrically also. These towers can be
shifted horizontally. In the towers (11) the two pulleys (12,) and (12 — 2) are
mounted. The pulleys (13) mounted on the beam (14) can be moved vertically
to change the length [c. The column is loaded by using the rope (15). The
value of the loading force is measured by the dynamometers (10).
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Fig. 5. Experimental set-up for frequency measuring of the A-type column

Another stand was used for experiments conducted for column By which
was loaded by a force directed outwards a "negative” pole — Fig.6. The main
difference between both stands results from the way of column loading. Here
the load to the column was transferred by a rolling bearing instead of a system
of pulleys and ropes. That stand was thoroughly described by Tomski et al.
(1998).

The experimental investigations into natural frequencies were conducted
with the aid of the 2115 Bruell and Kjaer vibration analyser.

4. Experimental results for columns A; and B;

Geometrical and physical data of columns Aj and B, are included in
Table 2. Two variants of each column were taken for the experiment and
numerical investigation. The solutions of boundary value problems described
by Eqgs (2.1) and the boundary conditions (2.3) and (2.6) were obtained by
using Mathematica 2.0 and Mathcad 5.0 Plus programs.
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Fig. 6. Experimental set-up for frequency measuring of the B-type column

Table 2. Geometrical and physical data of columns Aj and B,

K1+ Ko | BEYJ) + EoyJy m l lo Ip

[kg/m| [Nm?] kg] | [m] \ [m] | [m] \
Ay | 0438 73.63 | 1.438 | 0.435 | 0.285 | 0.145
A$2) | 0.438 73.63 | 1.438 | 0.435 | 0.285  0.265
B{1) | 0.858 282.86 | 0.350 | 0.640 | 0.130 | 0
B{2) | 0.858 282.86 | 0.266 | 0.725 | 0.045 | 0

In Fig.7 experimental and numerical results for columns Agl) and Agg)
are shown. The results concern the first three natural frequencies f for the
external load P. Natural frequency curves marked f{ concern vibrations
with symmetrical modes which are characteristic for the columns composed of
two identical rods. Those modes are independent of the values of lengths I

and [p so the adequate frequency curves overlap each other for columns Agl)

and Agz) of different lengths Ip.
In Fig.8 the curves P — f for columns Bél) and B§2) are presented.
Theoretical and experimental results obtained for the first three frequen-
cies are of good accuracy; the maximal difference between the theoretical and
experimental values was equal to 10%.

5. Numerical results of critical force and natural frequencies for
the column of type A

For the considered systems depicted in Fig.2 (column A,) the transcen-
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Fig. 7. Eigenvalue curves for A-type column (numerical and experimental results)
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Fig. 8. Eigenvalue curves for B-type column (numerical and experimental results)
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dental equation for the critical force is as follows

cos(IvN)[=IvVX + 7V X = RV = sin(IVA)[1 + IrX + T R)|

=90 5.1
p— (5.1)
where
= P
BV + EyJy
In figures that follow the dimensionless quantities are introduced
R T m
R*=— rt = - A=A m' = — 5.2
l l 2kl (5:2)
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Fig. 9. Change of the first critical load A* for A-type column as a function of
parameter R* for: (a) * = const, (b) | = const

In Fig.9 the changes in the critical force A* as a function of parameter R*
for r* = const (Fig.9a), and for [ = const (Fig.9b) are depicted, respectively.
Due to the fact that r* > R* the curves are not presented in the whole range
of parameter R*.

The natural vibration frequency curves obtained from numerical calcula-
tions are plotted for the dimensionless loading parameter A* and dimensionless

frequency {2*, where
A wil!
= ’”Ti‘}’l— (5.3)
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Fig.10 provides an opportunity to study the first two eigencurves for a few
values of parameter R*. The range of natural frequencies is limited by curves
(1) and (6) drawn for the boundary values of R*,i.e. for R* =0and R* =r*,
respectively. Implemented notation of the natural frequencies describes:

- QIN, Q;N the first and second natural frequencies, respectively, adequate
to the first mode without a node, and the second mode with one node,
respectively. These modes are characteristic for single rod columns,

— 1235 an additional natural frequency related to the symmetrical mode which
is characteristic for systems the composed of two identical rods. The
values of frequency in this case are independent of 7* and R*, as well
as of the value of concentrated mass m placed at the free end of the
column.

The influence of parameter 7* on the course of eigencurves §2* for constant
values of both the concentrated mass m* and parameter R*, is presented in
Fig.11. The range of eigenvalues is limited by curves (1) and (6) which are
drawn with broken lines, for 7* — oo and R* = r*, respectively. The value
of the critical load parameter for the symmetrical modes of a column (curve
Q;S) is independent of the considered geometrical and physical parameters
r*, R*, m* and is constant.

The influence of the concentrated mass m* for given R* and 7r* is
shown in Fig.12. Computation has approved that for the same geometry of
the system, the concentrated mass cannot influence the value of the critical
load, changing only the courses of both the first and second eigencurves related
to asymmetrical modes. The course of the natural frequency curve 23 is not
affected by the value of the concentrated mass for the reasons presented above.

6. Numerical results of critical force and natural frequencies for
the column of type B

For the system presented in Fig.2b (column A,), the influence of geome-
trical and physical parameters on the natural frequency and the critical load
has been discussed when the relation 7* > R* holds. For R* = 7* one ob-
tains the boundary course of eigenvalues depicted in Fig.10 and Fig.11. Such
a condition leads to the constructional variant of column B, from Fig.3b for
which

R=r=l¢c (6.1)
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Fig. 12. Influence of the concentrated mass m* on the eigencurves for the A-type
column

For that column the boundary value problem represented by Eqs (2.1)
with boundary conditions (1.2), (2.4) and (2.6), leads to the transcendental
equation for the critical load in the form

IV cos(IVA) — sin(IvVA)[1 = 12X = lolN] = 0 (6.2)

Fig.13 illustrates the change of the first critical load A* as a function of
dimensionless parameter for c* (¢* = l¢/!).

Fig.14 gives the variation of two first natural vibrations (2* against the
load parameter A* for a chosen length c¢* and constant value of m*. Curves
(1) and (6) concern the courses for ¢* =0 and ¢* — oo, respectively.

7. Conclusions

Taking into account the two features characterising load of a cantilever
column, 1.e. its direction and its point of application with regard to the end of
column, three kinds of the generalised load have been determined.
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Fig. 14. Eigenvalue curves for different values of parameter ¢* for the B-type
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Investigated columns being under the generalised load of the first kind
belong to conservative systems. For the A-type column both the shearing
force and the bending moment at the end of a column depend on the deflexion
and the deflection angle at this point. For the B-type column the shearing
force and the bending moment depend additionally on each other.

The obtained numerical results of eigenfrequency curves for two types of
columns were in a good agreement with with those of an experiment.

It has been proved that the divergence critical load as well as the course of
eigencurves depend on the geometry of loading head in relation to the length
of a column.
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Statecznoéé i drgania kolumny poddanej pewnemu typowi obcigzenia

uogodlnionego

Streszczenie

W pracy podano klasyfikacje obciazen kolumn wspornikowych z uwagi na spo-
86b przylozenia obcigzenia. Zbadano numerycznie przebiegi czestodci drgaii wiasnych
kolumn i ich niestateczno$é dywergencyjna przy obcigzeniach uogdlnionych pierw-
szego rodzaju. Analiza dotyczyta wplywu parametréw wynikajacych z geometrii glo-
wic obcigzajacych, jak réwniez zmiany masy skupionej na krzywe czesto$ci drgan i sile
krytyczng. Czes¢ wynikéw numerycznych dotyczacych czestoéci drgaii wlasnych po-
twierdzono eksperymentalnie na dwéch skonstruowanych stanowiskach badawczych.
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