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A new model of thin elastic rectilinear inclusion has been constructed.
An approach to the stress-strain state analysis in an isotropic plane rein-
forced by a periodic system of thin elastic inclusions has been suggested.
The formulae for determination of the effective modulus of composite
material and stress intensity factors at the inclusion tip depending on
volumetric contents of the reinforcing elements and their elastic charac-
teristics have been obtained. Numerical analysis of the problem for va-
rious geometrical and mechanical parameters of the composite has been
presented. The effect of the ratio between inclusion and matrix elastic
moduli on the values of stress intensity factors has been studied as well.
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1. Introduction

At present, the periodic composites are widely used in various branches of
technology. Depending on the kind of reinforcing elements they can be divided
into two types; i.e., the discretely and continuously reinforced ones.

'The paper was presented at the Second Polish-Ukrainian Conference ”Current Problems
of Mechanics of Nonhomogeneous Media”, Warsaw 1997
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The following two approaches to the analysis of stress state in reinfor-
ced composites are most frequently used in mechanics of composite materials:
replacement of the real material by a homogeneous one having the effective
modulus application of various homogenized models.

The first approach is used if the lateral dimensions of the reinforcing ele-
ments are substantial (cf Berezhnitsky, 1987; Christensen, 1980; Vanin, 1982).
For very thin reinforcing elements (layers, fibers, inclusions) it is suitable to
use the homogenized models (cf Achenbach, 1985; Guz et al., 1982).

Bachvalov and Panasenko (1984) applied a model of the functionally gra-
ded material. The principle of energetic smoothing was suggested by Bolotin
(Bolotin et al., 1980).

The homogenized model of periodic composites with microlocal parameters
was proposed by Wozniak (1986), (1987a,b) and then developed by Matysiak
and WozZniak (1987), (1988).

Matysiak (1995) analysed applications of this model to various branches
of mechanics of a deformable solid body.

In reinforced fiber composites main part of the load is applied to a ma-
trix while the fibers increase rigidity and strength of the material. On the
other hand, as the fiber thickness is small enough, there is the area of stress
concentration at its tip, that leads to destruction of a design. Therefore, it
is necessary to have the refined models of composites reinforced with discrete
fibers at one’s disposal.

The stress distribution at the rigid linear inclusion tip was obtained at first
by Panasyuk et al. (1972) with the help of conformal mapping method. Later
Matysiak and Olesiak (1981) solved this problem by means of the Fourier
integral transformation method.

The stress distribution in infinite isotropic plane at the tip of linear rigid
inclusion under the cylindrical bending represented within the framework of
the Kirchhoff theory was given by Hrushch et al. (1978).

However, such models of discrete fibers are simplified to a substantial
extent, since neither the fiber rigidity nor the conditions at its surfaces are
taken into account. Therefore, the refined models, which allow for more com-
plete and exact description introducing the influence of thin-walled fiber elastic
characteristics on the stress distribution at the inclusion tip are necessary.

The problem of periodic layered plate containing thin elastic inclusions was
solved by Yevtushenko et al. (1995) within the framework of the homogenized
model (Wozniak. 1986, 1987a,b). The layered composite is replaced with a
homogenized material and then the problem is solved for the material with
inclusions.
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Opanasovich and Dragan (1981) (cf Opanasovich, 1997) using the method
of complex potentials constructed the new model of thin rectilinear elastic
isotropic inclusion which allowed for taking into account the influence of ela-
stic characteristics of discrete fiber — inclusion and its thickness on the stress
state in the composite. The model of a periodic system of line inclusions woth
the following assumptions made is proposed in the present paper: the fiber
is represented by a thin elastic inclusion; the problem is solved within the
framework of fracture mechanics of isotropic body having inclusions.

2. Formulation of the problem

Fig. 1. Scheme of the body

The infinite isotropic body, subject to antiplane deformation (Fig.1) is
considered, containing a periodic system of rectilinear inclusions of the height
2h and length 2[. It considered in the Cartesian system OzyZ; where the axis
0% is the deformation axis. Between the matrix and inclusions the conditions
for the ideal mechanical contact are satisfied. We take into consideration a
complex plane C (z = z + 1y). The centers of inclusions are situated at the
points mw; + nws € C (m,n € Z, Imw; > 0, Im(ws/w;) > 0), where w; and
woy are the periods; Z is a set of natural numbers (Fig.2).

Let us introduce the local system of coordinates 0z,y:Z, in which the axis
0z, coincides with the longer axis of the inclusion symmetry, which make an
angle « with the axis 0z. We assume that the load is applied to the matrix
of the body.
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Fig. 2. Body with the periodic system of thin rectilinear inclusions
3. Solution to the problem

The model of a thin rectilinear inclusion was constructed by Opanasovich
and Dragan (1981). The complex potential and system of integral-differential
equations for a body with a system of heterogeneities included were derived by
Opanasovich and Dragan (1984). If in the obtained formulae we make the limit
transition to a periodic system of inclusions we obtain the complex potential,
that allows for finding the stress-strain state in the matrix

A l
Fe) = o [(BPHO + QMO (ke - 2) dt + Fo(z) (3.1)
-1
and also the system of integral-differential equations with unknown functions
Py(t), Qo(t) which are associated with the stress and displacement jumps at
the inclusion edges (|z] <)
! P(t) L.
7Py(z) - hfy / O i+ by / Q) ()mE; (1 - o) +
- -1
—~BoPy(t)ReK;(t — z)] dt = —2mbolm|F.(z)]
(3.2)
[ Q1) ;
wB0Qo(z) — b [ 2 gy _ pag / (80 Py (O (¢ - @) +

t—=zx
-1 -1

+Qo(t)ReK;(t - 7)| dt = 2raoRe [F*(x)]
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The following notation has been introduced to Eqs (3.1), (3.2)

Fo(z) = dje™ " + Fy(z) Bo = ﬂﬁ by =1—¢p
0
€p = min(l,ﬁo‘l) ag = 1 — Boeo d; = dg»l) + id§»2)
(3.3)
" . ' 1 o0 1 o0
N — @l . 1 ! —
Kj(z)—e“V](zea)—E Z an—§a0+2an
n=0 n=1
~ 2 2rz X 2 3 2wz -1
Vi(z) = —WsinﬂZ'(cosw—J—cos 7”) (3.4)
w]' qu n—=0 Wy qu
where
i, o - — shear moduli of matrix and inclusion, respectively
F.(2) - complex potential Fy(z) in the system of coordinates
N Oz
Fy(z) - known complex potential representing the stress-strain
state of a body without inclusions
d; — unknown constants which are determined from the
relations

Im[f(z +w,) — f(2)] = Ry F(z) = f'(z) v=12  (3.5)

where R, are the known force components, acting on the periodic parallelo-
gram sides.
We complete Egs (3.2) adding the following relations

l l

/Qg(t) dt =0 /P(;(t) dt

~l -1

Il
o

(3.6)

Making the limit transition in Egs (3.1), (3.2) (po — 0 or pp — oo) we
obtain the formula for complex potential and a singular integral equation for
the body with a periodic system of cracks (rigid inclusions.). In the case of
homogeneous material (¢ = wo) the complex potential F(z) corresponds to
Fo(z)-

We assume that the function Fy(z) reads
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Taking into account Eqs (3.1) and (3.7) we can write the function as follows

!
flz) = —% / [BoPy(t) + Qo (1) Wy (te'® — ) dt +
- (3.8)
+ (dje™'* 4+ 15 — iT;;’)z +C
where
—~ Tz o COo8 ?
Wi(z) = 1nsinw—j + n}::lln(l - c_os—@ﬁ (3.9)

Here (' is an arbitrary constant not affecting the stress state of the com-
posite. Substituting Eq (3.8) into Eq (3.5) we obtain
!
[ H60P®) + iQ(0)] dt} =

-~

. . heia
ImS wodje™* — (1 — (1) ] —
{ 7 2&)]'

= Ry — Im(un(r32 — i79)]

(3.10)
o
. hela
1+ (-1t { 5 [ 18P0 +iQ4(0)] e} +
2w;
-
+wl(d§-2) oS o — dg-l) sina) = R + wlrgg’
We assume that the forces R; satisfy the following equations
R1 = -—wlfyo? RQ = Im[wQ(T;? - iT,;?)] (3.11)

Thus, we have two integral equations for the same problem. Omne of them
corresponds to the kernel for 7 = 1, and the other to 5 = 2. This is caused by
the order of summation at the limit transition. The analysis of functions XN/J(z)
(see Eq (3.4)) shows that the numerical values of series terms depend on the
ratio Im(wy/wi) = r. The equations, corresponding to j = 1 are convenient
to use, when 7 > 1; otherwise the equations, corresponding meaning j = 2
can be used.

4. Determination of the effective modulus

Let us consider the case of rectangular lattice with the parameters

W) =w wy =1d (4.1)
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After Panasjuk et al. (1976) the component W of the displacement vector
along the axis 0z is determined from the formula

w = lRef(z) (4.2)
I

We determine the effective constants of composite material using the ap-
proach formulated by Vanin (1985). Taking into account Eqs (3.8) and (4.2)
we can write

w(z + w, —w(z) = (1 + (=1)7t7+1.

hele . .
Re{ g — [ tours® +iQo()] dt} + F = (4.3)
N~ @y
= (e —im) 5+ (i +im) v=1,2
where
P %(7’;’2 + dg-l) cosa + d§-2) sina) v=1
B %(T;? - d§-2) cos o + dg-L) sina) v=2

and (v;), (7y) are the average strains related to the average stresses 7.7, Tys
(3.11) by Hooke’s law

o< o0

Trz Bz oo Tyl Hy oo
)= Taz g P - vz My 4.4
(Vz) G, + G'y Tyz (’Yy) Gy + G, Tz (4.4)
By virtue of Eq (4.3), (4.3) we have
. -1
Gy = u(l — dg_z) cos o + dgl) sino — Qljl)

pg = Gyu™! (dgl) cos o + d§2) sin o + sz;)
-1

Gy = u(l + dgl) cos ¢ + d§.2) sina + Q2j2)

fhy = Gep™! (dg-l) sina — dgz) cosa — QLjQ)

The following notation has been are introduced to Eq (4.5)
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SR
(4.6)
l
) , N —h
QSn = l® ‘{ t[ﬁOPOn(t) + IQOn(t)J dt o= 2dUJl

Here, P} (t), Qp,(¢) is the solution of the set of equations (3.2), (3.6),
(3.10) at 757 = 0, 7,7 = 1 while Fgy(t), Qp2(t) is the solution of the same
system at 7.7 =1, 7,7 = 0.

Solving Eqs (3.10) for d; and substituting the obtained solutions into Eq
(4.5) we obtain

Gy = p(1 — 2aReQs)) pe = 2G,p” ImQs10 )

Go = p(l + 2almQ3;) py = —2Gop"'ReQsa

5. Determination of the stress intensity factors

The set of Eqs (3.2), (3.6), (3.10) we solve numerically by means of the
method of mechanical quadratures (cf Panasjuk et al., 1976)

vg(z) uo(x)

[Potat] = 222 (@], = 2555 (5.1)

For determination of the nodal values of functions wvg(z) and wp(z) and the

constants dgl) and d§~2) we have the system of linear algebraic equations

M
h*Bo ] +boh™ S [uo(tm)Iij(tm —z)+

m=1

WE

0 (tm) (27 =t} = -

I

™m

~Bovo(tm)ReK;(tm — arr)] + 2b0Md§-2) = —2bg M7 sina — Ty cos ¢

(5.2

*

M
' ] — agh” Z [ﬁovo(tm)Iij(tm — &) +

m=1

M
3 wlt) ) [TBom(@r = tm) —

tm

+u0(tm)ReKj(tm - iLT)] - QaOMdg-l) = —2a9M (7.5 cos & + 7, sin ]
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where »r =1, M — 1 and

M M
Z ug(tm) =0 Z vo(tm) =
m=1 m=1
2 Cia Th*X; eia M _
Im{)\—dee 0= Z b Bovo(tm) + o (bm)] } = 0
(5.3)
* i M
) Y Th* X e'®
(14 (~1) ]Im{—TM 2 tm[Bovo (tm) + fuo(tm )]} +
2
+X(d§2) cosa — dg.l) sina) =0
where
21 21 ~ 2m(2m — 1)
)\1—; )\Q—E——IAQ tTn—COST
T i i 1 * h
Tr = COS 7 Ki(z)=e Vj(xe )—; hzT
ad 1
Vi(z) = wA sin(m A z ! 5.4
(&) = mA sin(mA;z) Z cosh vy, —cosmAz (54)

) n=0 o )
Va(z) = —m A9 sinh(zw Ao z) Z'

n—p Ccosh-ys, —coshmloz

A )
Yin = = 2t Yon = = 222
)\2 1
)’IT y
- o 0=
o\ [ : l X
| o

f
Fig. 3. Polar coordinate system at the inclusion tip

The stress distribution at the thin inclusion tip (Fig.3) was given by Opa-
nasovich and Dragan (1981) in the Cartesian coordinate system
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1
Tzz = ——(Kzcos8; — K)sinf) + O(1)

Ver
' (5.5)
1
Tyz = W(KQ Sin61 + K[ Cos 01) + O(l)
r
and in the polar coordinate system
1
Tz = —\/2:(1{2 cos b + K, sinf,) + O(1)
" (5.6)
L (-=Kosinf) + K cos )+ O(1) 8 4
Thz — —F——(— 1 = 3
[} \/—2—7—‘ 2 I 1 L L 2

It is expressed in terms of the generalized stress intensity factors Kj,
4 = 1,2, which are determined from the formulas

K =5 g ki =+ gy 6)
Here
1 MU . (2m — D)7
up(£1) = M,?: ug(tm)(—1)" tan¥! o
vo(£1) = Alfjmi o(tm)(~1)" tan¥! % (5.8)
rempy MEUEED

We determine the effective constants of a composite material from Eqgs
(4.3), taking into account the relations
R
8

M
Qs = 726 3 tulBovon(tm) + iton(tm)]
m=1

6. Analysis of the results

The results of numerical analysis carried out for various values of geome-
trical and mechanical parameters shown in Fig.4 + Fig.7.
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The calculations were made for 30 nodal values of the system (5.2)

and (5.3).
Basing on the results the following conclusions can be drawn:

e In the case of o = 0°, small values of the parameter Xg and for the
ratio By = p/po = 10° the value of stress intensity factor K coincides
with the corresponding one, obtained for a periodic system of collinear
cracks by Panasjuk et al. (1976)

e In the case of a = 0°, small values of the parameter A, and for the ratio
of By = p/pwe = 10° the value of stress intensity factor K, coincides
with the corresponding one, obtained for a periodic system of coplanar
cracks by Panasjuk et. al. (1976)

e In the case of small values of the parameters A; and X2 and for the
ratio By = p/po = 10° the value K5 coincides with the corresponding
one, obtained for a single crack by Panasjuk et al. (1976)

e In the case of A} = 5\2 = Xand By = p/puo = 10° the value K, coincides
with the stress intensity factor obtained for periodic systems of cracks
by Panasjuk et al. (1976).

It was supposed, that 722 = 0, and K; = 0 for the cracks, and Ky =0
for the rigid inclusions. From the obtained results it follows that in this case,
the approximate formula presented by Panasjuk et al. (1976) can be used
not only for small values of the parameter A since even for A = 0.8 the
discrepancy between the exact and approximate values does not exceed 7%.
We have K =0 for the cracks and K, = 0 for rigid inclusions.

The relations K7 = K;/(r32V1) and K} = K;/(r22V1), j = 1,2 versus
the ratio between matrix and inclusion rigidities [y = p/po are shown in
Fig.4 and Fig.5 for a square lattice with X, = Xy = 0.4 at various angles «
and h/l = 0.1. The curve in Fig.4 is constructed for the case 779 = 0, while
Fig.5 corresponds to 777 = 0. In these figures K3 = 0 for the inclusions more
rigid than the matrix, while K| = 0 if the material of inclusion is more soft
than that of the matrix. The influence of the ratio Gy = p/po on the elastic
constants is shown in Fig.6 and Fig.7 for a rectangular lattice with the periods
AL =2/3, X =5/3 and A/l =0.1. The curves in these figures are constructed
for a@ = 0° and for a = 30°, respectively. The performed computations have

shown that
be B _F (6.1)

G, G. G

Moreover, pg = py, = 0if o =0°.
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Fig. 6. Elastic moduli of composites versus the ratio between the matrix and
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Antyptaska deformacja cial izotropowych z periodycznym uktadem

cienkich liniowych inkluzji

Streszczenie

W pracy przedstawiono metode modelowania stanu naprezen i odksztalcen w ciele
izotropowym wzmocnionym periodycznym ukladem cienkich sprezystych inkluzji.
Otrzymano réwnania okreélajace moduly efektywne kompozytu oraz wspdlczynniki
intensywno$ci naprezen w wierzcholtkach inkluzji. Przeprowadzono analize wspélczyn-
nikéw intensywnoS$ci naprezeni w zaleznoSci od efektywnych moduléw.
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