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In the present paper the character of instability of compressible viscous
flow around geometries rotating in the uniform flow is analyzed. The
linear local stability theory is used to investigate the boundary laver
stability. Following the works of Briggs and Bers in the field of plasma
physics, the absolute instability region is identified by the singularities of
dispersion relation called pinch-points. The regions of absolute instability
in boundary layers of a rotating cone have been found. Calculations have
been made for different Mach numbers, wall temperatures and rotational
speeds of the cone.
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1. Introduction

This paper concerus the space-time evolution of linear instability waves.
The fHow is excited impulsively at a certain location in space and time. The
response of the flow to a impulsive disturbance indicates the type of flow
instability i.e., convective or absolute. For the first time the idea of distinc-
tion between absolute and convective instability was introduced i the field of
plasma physics by Twiss (1951), Briggs (1964) and Bers (1975). The plasma
physicists made an extensive contribution to the theoretical developmeut of
this idea. The idea was adopted to hydrodynamic instability in spatially evo-
lving shear flows. From the fluid mechanics point of view, it was considered in
such survey articles as Brazier-Smith and Scott (1984), Huerre (1987), Mon-
kewitz (1989), Morkovin (1988), Huerre and Monkewitz (1990), and Chomaz
et al. (1991).

Following the works of Briggs (1964) and Bers (1975) we define the flow as
absolutely unstable if its impulse response grows with time at every location
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in space. In sufficiently long time a disturbance at a fixed point in space grows
to an amplitude which can cause nonlinearity. As a result, in an absolutely
unstable flow any infinitesimal disturbance contaminates the entire flow field.
If, in contrast, the impulse response decays at every location iu sufficiently
long time, the flow is convectively unstable. In convectively unstable How the
disturbance is swept away from the source as it grows (Fig.1). The waves travel
far enough to reach the amplitude sufficiently large to cause noulinearity.

In the local linear stability theory we choose either the spatial or temporal
theory. In the spatial theory we assume that the wave number is complex and
frequency is real so the disturbances grow or decay in space and are periodic
in tiine. In the ternporal theory we assume that disturbarces grow or decay in
tirne, which implies that frequency is comnplex and the wave number 18 real.
However, in a real flow disturbances grow or decay in space and tiumne. To find
which type of analysis should be used it is necessary to determine the character
of instability (absolute or convective). The spatial theory is irrelevant in an
absolutely unstable flow.

The reverse mean flow is often cosidered to be related to the absolute in-
stability because it provides a mechanism for upstream effects. The vegions of
absolutely unstable flows were observed in wake, separation bubbles and on
rotating disc in still fluid. The regions of absolute instability for separation
bubbles were found by Niew (1993) but the velocity profiles were absolutely
unstable only if the region of reverse flow was sufficiently large. Lingwood
(1995), (1996), (1997) found the regions of absolute instability in an incom-
pressible boundary layer of disk rotating in still fluid. The laminar velocity
profiles for rotating disk boundary layer determined in the directions between
the radial and circumnferential ones have regions of reverse flow. This model
problem is advantegous for there exists an exact similarity solution of the
Navier-Stokes equations which is used as a basic state. In the case considered
by Lingwood, the flow is fully parallel (the shape of profiles and boundary
layer thickness are independent of the radius).

The flow around rotating geometry 1s often used as a model problemn be-
cause the boundary layer of rotating geonetry is very sinilar to that of the
swept wing flow. Both tlhose boundary layers are strongly tliree-dimensional
and the crossflow instability dominates. Investigations of boundary layers of
rotating geometries allow for sirupler applications to theory and experiments.
Basing on such studies, various hypothesis can be made on a swept wing.

In the present paper we make calculations to find out whether the abso-

lutely uunstable flow region exists also in the compressible flow around a cone
rotating in a uniform flow. We consider the flow around a sharp cone of zero
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angle of attack and of a very small half angle @ (Fig.3). The parallel flow ap-
proximation error for the low around a rotating cone of very small half angle
(@ = 0.5° = 4.0°) is negligible. This model problem allows us to use the linear
local stability theory to analyze the influence of such physical parameters as
the edge Mach number and wall temperature in the absolutely unstable region.

2. Absolute instability

In the linear local stability theory the flow is decomposed mto a basic state
and infinitesimal perturbation. The development of elementary instability wa-
ves in the parallel flow is represented by the function

f!= fy)elleetiz=wt) (2.1)
where
f! ~ disturbance of an arbitrarily chosen parameter
I - amplitude of disturbance
a,f - components of wave number & the streamwise z and span-
wise z directions, respectively
w - frequency
Y — coordinate perpendicular to the wall direction.

In the linear local stability theory the problem of obtaining distributions of
the disturbance amplitudes f(y) is reduced to solving an eigenvalue problein.
The eigenfunctions exist only if % and w satisfy the following dispersion
relation

Dlk,w;Re| =0 (2.2)

According to the works of Briggs (1964) and Bers (1975) in the field in
plasma physics, the fow is absolutely unstable if its impulse response grows
with time at every location in space. If the response decays at every location
in a sufficiently long time, the flow is convectively unstable. Sketches of the
impulse responses in the cases of stable, absolutely unstable and convectively
unstable flow are shown in Fig.la,b,c, respectively.

The impulse excitation gives rise to unstable waves confined within a we-
dge (Fig.1). The wedge is bounded by two rays of neutral disturbances. In
absolutely unstable flows the edges of the wedge move in opposite directions
and the point at which the impulse is introduced (z = 0, ¢ = 0) remains in the
unstable reglon. In convectively unstable flows the edges of the wedge move
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Fig. 1. Sketch of impulse responses: {a) stable flow, (b) absolutely unstable How.
(¢) convectively unstable flow (Huerre, 1987)

in the same direction. The point at which the linpulse is introduced becomes
iminediately stable.

The response of a linear system to the forcing input can be determined in
terins of the Green function G(z,t). In the physical dorain we can write

Q; Re]G(w, t) = 8(x)d(t) (2.3)

.0 .
D{*l%’lat

and 1 the spectral domain
Dik,w;Re]G(k,w) =1 (2.4)
where ¢ denotes the Dirac function. The flow is absolutely unstable if

lim G(u,t) = (2.5)

t—oc

for every location « and it is convectively unstable if

lin G(z,t) =0 (2.6)

t—oc
Eq (2.3) can be immediately solved in the spectral space

ik —wt)

G(x, dwd/c (2.7)

where the path F in the complex plane of wave number £ is initially taken
as the real axis. The contour L in the complex frequency plane w is chiosen
so that the causality holds G(z,t) = 0 everywhere when t < 0. Tle sclierne
of the contours L and F is shown in Fig.2 (Huerre and Monkewitz, 1990).
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Fig. 2. Different stages of the pinching process. Scheme of spatial k' (w), k~(w) and
temporal w(k) branches as the L contour is displaced downward in the complex w
plane (Huerre, 1990)

In most cases the Fourier-Laplace integral (2.7) can not be evaluated for ar-
bitrary chosen time; liowever, for a general dissipation relation one may obtain
the time asymptotic Green function. From this asymptotic solution a general
mathematical criterion based ou the properties of the dispersion relation (2.2)
in complex planes % and w was derived to determine the nature of instabi-
lity (Briggs, 1964). According to this criterion the absolute instability can be
identified by singularities in the dispersion relation called pinch-points. The
pinch-points are located in the process of consecutive contour deformations in
which L is deformed toward the lower half of w plane (Kupfer, 1987). The
process of deformations of contours of integration is shown schematically in
Fig.2.

In Fig.2a the curve w(k) is obtained by mapping the F contour along
the real & axis iuto the w plane by mean of the dispersion relation. If L is
Jlocated above all singularities of the dispersion relation (above the curve w(k)

3 — Mechanika Teoretyczna
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in Fig.2a) its image in the k plane i.e. the spatial branches k1(w), £~ (w) must
lie in different halves of the k plane (lower and upper half). If one of these
spatial branches crosses the original F contour, I itself would intersect the
curve w(k), which leads to a contradiction. Then, as L is displaced downward,
both spatial branches move toward each other (Fig.2b). One of the branches
will cross the F' contour along the real k axis, so to maintain the causality.
the F countour must be deformed off the real & axis to avoid crossing. The
process of deformation of F and L contours is finished when F is pinched
by the branches k*(w) and k™ (w). This point is indicated by k¢ and wp.
The pinch-points occur precisely at the points where group velocity is zero

Ow
Fk(kO) =0 (2.8)

We have the following criteria for the absolute instability. The flow is ab-
solutely unstable if the so called absolute amplification rate wq; is positive
(wp; > 0). Additionally, for the L contour located high enough in the w plane
the spatial branches k% (w) and &k~ (w) must lie in different halves of & plane.

3. Numerical formulation of the problem

The linear local stability theory of compressible viscous flow is used to
investigate the character of instability of strongly three-dimensional boundary
layer. The linear local stability equations are derived from the continuity equ-
ation, Navier-Stokes equations and energy equation of compressible gas

dp B
v
p[a +(V-9)V] = =Vp =V x [u(V x V)| + V[(A + 24)V - V] (3.1)
or 0
pcp[a +(V-V)r| =V (k7) + 5§ + (V- V)p+d
where
V- velocity vector
p — density

7 — temperature
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u, A — first and second viscosity, respectively
Cp - specific heat at constant pressure

3 - time

/] —  pressure

k — coefficient of heat conductivity.

The dissipation function @ is
b= \NV-V)+ g(VV+VVT)2 (3.2)

In this research we formulate the compressible stability problem in the body-
oriented coordinate systemn ({&,(,n) shown in Fig.3 (£, (,n are coordinates
in the streamwise, wall normal and spanwise directions, respectively). All the
lengths are scaled by the viscous scale LS = \/v.£/U, and all physical para-
meters by the corresponding boundary layer edge value. The Reynolds number
is defined as follows

(3.3)

spiral vortices

Fig. 3. Schieme of a cone rotating in uniform flow

Perturbation equations are obtained by decomposing all parameters into
the steady basic flow (U,V,W,T, po, k, t0, Ao) and the unsteady disturbance
flow components (u',v',w’, 7", p/, k', ', X)

u=U+ v=V+ w=W +u
T=T+7 p=P+p p=pots (3.4)
k=K+Fk p=po+y A=Xx+ X

where w,v,w are velocity components in the &£, (,n directions, respectively.
Substituting Eqs (3.4) into Egs (3.1) and subtracting from them the equ-

ations corresponding to the steady basic state, we obtain the equations for

disturbances. Function (2.1) written in the &, (,» directions describes the
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development of disturbance in the parallel low around the cone of zero an-
gle of attack. Linear local stability equations of compressible parallel flow are
reduced to the ordinary differential equations

(AD* +BD + C)¥ =0 (3.5)

following homogeneous boundary conditions at the wall and at infinity for the
velocity components and temperature amplitude functions

2(0) =7(0) =w(0) =7(0)=0
(3.6)
u(() =v(¢Q) =w(() =7(¢) =0 ¢ — o0
The linear stability equations (3.5) has been solved using the fourth order

accurate two point scheme which has been derived by means of the Euler-
Maclaurin formula (Malik, 1982; Balacumar, 1989: Tuliszka-Sznitko, 1993)

B /Llc d(pk d(pk*l h2 d2(pk d'z(pk'—l .
k k—1 k 5
N _ _ _ev / 3.7

where @F = @((k), b =k — Co—r-
To apply scheme (3.7) to Eqs (3.5) we formulate them as a set of first order
differential equations

dy 8
n
i = Z CnmPm

= n=1..8 (3.8)
o
wliere
o1 =T w2 = du/d¢ w3 =71 w4 =D
Y5 =T QY = (ZT/dC w1 =w Yy = (lw/dc

Final algebraic system of equations with the boundary conditions can be writ-
ten in the following form

Akgok_l + Bkgok -+ Ckg0k+l = Hyg (3.9)

where Ay, By, Cp are 8 x 8 matrices and Hi i1s 8 x 1 null matrix. The
eigenvalue problem is solved directly. Block elimination method is used to
solve algebraic system of equations.

Calculations were made for very small half angle of the cone @ = 0.5°+4.0°
so that the approximation error of the parallel low mode is negligible. The
basic state is obtained from the boundary equations of rotating cone using
the Mangler transformations and similarity solutions (Koh and Price, 1967;
Hlingworth, 1953). The final partial differential equations are solved using the
Keller Box metliod.
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4. Results

To find the regions of absolute instability, we apply the Briggs criterion
(Briggs, 1964) with a fixed wave number component in the spanwise direc-
tion 0.
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Fig. 4. Development of special branches obtained for different w;/Re (Re = 5560,
Ma, = 0.21, © = 4.0°, /U, = 19.5, B = 0.216, adiabatic wall)

In Fig.4 the development of two spatial branches «t(w), @™ (w) in the
complex ¢« plane i1s shown. The results are obtained for the half angle of
the cone © = 4.0°, edge Mach number Ma, = 0.21, Reynolds number
Re = 5560, rotational speed §2/U, = 19.5, component of wave number in
spanwise direction 3 = 0.216 and for the values of w;/Re = 1.4616-107% (a),
6.4616 - 1076 (b) and 28.9616 - 1076 (c). The arrows in Fig.4 indicate the
direction of increasing frequency w,. In Fig.5 we have a temporal branch
w(a) obtained for the horizontal line in the « plane (a; = —0.24066). The
tip of this cusp-like form indicates the pinch-point in the w plane. We have
found the pinch-point at ¢y = (0.20412, —0.24066) and wy/Re = (134.47 -
1075,1.4616 - 107%). Absolute amplification rate at this point is positive and
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Fig. 5. Result of mapping of the contour «; = —0.24066 from the alpha plane to the
w plane (Re = 5560, Ma, = 0.21, & = 4.0°, 2/U,. = 19.5, 8 = 0.216, adiabatic wall)
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Fig. 6. Development of special branches obtained for different w;/Re (Re = 5760,
Ma, = 0.2, © = 0.5°, 2/U, = 131.5, § = 0.316, adiabatic wall)
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Fig. 7. Results of mapping of the contour a; = —0.2945 from the alpha plane to the
w plane (Re = 5760, Ma, = 0.2, @ = 0.5°, 2/U, = 131.5, 8 = 0.316, adiabatic wall)
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Fig. 8. Variations of og;i, opr, wes/Re and wy; /Re versus 8 (Re = 5760, Ma, = 0.2,
© =0.5°, 2/U, = 131.5, § = 0.316, adiabatic wall)
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for sufficiently large w; the spatial branches o™ (w), @™ (w) lie in different
halves of the « plane so at this point the flow is absolutely unstable.

In Fig.6 and Fig.7 the same analysis is carried out for @ = 0.5°, Ma, = 0.2.
Re = 5760, £2/U, = 131.5, § = 0.316. Diagrams in Fig.6a,b,c are obtained for
wi/Re = 0.4975-107%,2.027-1075, 27.527-107%, respectively. The pinch-point
was found at o = (0.224, —0.2945) and w,/Re = (156.56-107%,0.4975-1076).
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Fig. 9. Variations of ag;, agr, woi/Re and wy;/Re versus 8 (Re = 5560, Ma, = 0.2,
0 =2.0° 2/U, = 315, adiabatic wall)

In Fig.8 and Fig.9 the variations of «v,, g, wo;/Re and wy;/Re versus
G are presented. Calculations were made for different half angles of the co-
nes, different rorational speeds and different Reynolds numbers. The points at
which the curves wg;/Re = f(f) in Fig.8¢ and Fig.9¢ cross the real axis limit
the absolutely unstable regions.

Fig.10a,b,c,d show the neutral absolute stability curves obtained in
(wgr/Re, Re), (ag;, Re), (aor,Re) and (G, Re) planes, respectively. Calcula-
tions were made for @ = 4.0° and §2/U, = 19.5. Inside these curves the
absolute amplification rates are positive and outside the curves they are nega-
tive; consequently, inside of the curves we have the absolutely unstable region
and outside the convectively unstable region.



ABSOLUTE INSTABILITY [N THE COMPRESSIBLE FLOW...

- (=)
5
>~

~ 200
S

S0+
0 L 1 1 |
-0.20 )

0.15

T

0.10 1 4 T
0.05- R

0 1 Nl L 1 1
2800 3300 3800 4300 4800 3300 3800
<

Fig. 10. Absolutely unstable neutral curve (Ma, = 0.21, @ = 4.0° and
/U, = 19.5, adiabatic wall)
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Fig. 11. Variations in the location of pinch-points versus § and temperature rates
Tw/Tog = 1.0 and 0.8 (Re = 5560, @ = 4.0°, Ma, = 0.21 and 2/U, = 19.5)

The region of absolutely unstable flow decreases with decreasing wall tein-
perature. In Fig.11 the variations of the absolute ainplification rate versus [
and different temperature rates T, /T,y are shown (w and ad denote the
wall and adiabatic temperatures, respectively). The results are obtained for
0 = 4.0°, Ma, = 0.21, Re = 5560 and 2/U, = 19.5. In Fig.12 there are
cusp-like forms obtained for the same parameters but for different wall tem-
peratures T, /T, = 1.0 and 0.8. The absolute amplification rate is smaller
for lower wall temperature.

The absolute amplification rates decrease with the increasing edge Mach
number. The cusp-like forms obtained for Ma, = 0.2 and Ma, = 0.6 are
shown in Fig.13 (Re = 5760, @ = 0.5°, 2/U, = 131.5, § = 0.316). To
obtain positive absolute amplification rates for higher edge Mach numbers it
is necessary to increase rotational speed of the cone i. e. it is necessary to
increase the crossflow Reynuolds nuinber.

In the present paper we also lave nade calculations to find whether a
supersonic flow around a rotating cone can be absolutely unstable. Calculation
were made for different (very large) rotational speeds but no piucli-point has
been found. The same result for a supersonic flow was obtained by Taylor
(1997).
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Fig. 12. Cusp-like forms obtained for the wall temperature rates T, /T,, = 1.0 and
0.8 (Re = 5560, © = 4.0°, Ma, = 0.21, /U, = 19.5, 8 = 0.216)
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5. Conclusions

In this paper we analyze the character of instability of the flow around
a cone of zero angle of attack rotating in a uniform How. We cousidered the
cone of very small half angle. This model problem allowed us to investigate
the mmfluence of such physical parameters as wall temperature and edge Mach
nuinber on absolutely unstable flow regions using the linear local stabiliy the-
ory. Convective instability of the flow around a cone rotating in uniformn How
was considered in previous works (Tuliszka-Sznitko, 1993, 1996, 1997).

We have found that the boundary layer of cone rotating in the uniform
flow can be absolutely unstable over a range of 3. We presented the neutral
stability curve which showed an absolutely unstable region. We found that tlie
absolute amplification rate decreased with the increasing edge Mach number
and decreased with decreasing wall temperature. We did not find absolutely
unstable regions in supersonic flows.

The parallel flow approximation can affect the results slightly but the iu-
fluence of physical parameters on absolutely unstable regions and the general
instability characteristics obtained in this paper are still valid.
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Niestabilno§é absolutna przeplywu $cisliwego wokdét wirujacego stozka

Streszczenie

W pracy badany jest charakter niestabilnosci przeplywu wokdt wirujacego stozka.
Do badania charakteru przeptywu zastosowano kryterium fizykow plazmy Briggsa
i Bersa, zgodnie z ktérym o charakterze niestabilnosct decydujyg osobliwosci funkeji
dyspersji zwane punktami styku. Obliczenia przeprowadzono stosujac liniowa, teorie
niestabilnosci. W pracy stwierdzono wystepowanie obszaréw o niestabilnosci abso-
lutnej w przeplywie wokodl wirujacego stozka. Obliczenia zostaly wykonane dla v6z-
nych liczb Macha i réznych temperatur Scianki. Wyznaczono krzywe neutralne ogra-
niczajace obszar przeplywu o niestabilno$ci absolutnej. Stwierdzono, ze wspdlczynnik
wzmocnienia absolutnego maleje wraz z rosngcg liczba Macha, jak réwniez maleje pod
wplywem chlodzenia §cianki. Nie stwierdzono wystepowania niestabilno$ci absolutne]
w przeplywach naddZzwiekowych.
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