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In the paper we are concerned with the problem of flow control. We con-
sider two-dimensional (2D) turbulent wake flows past rotating obstacles
where the control objective is to minimize the drag force. Results of nu-
merical simulations are presented which indicate that substantial drag
reduction can be obtained using an open-loop algorithm. This finding
is compared with available experimental data. In the second part of the
paper we derive a rigorous feedback method for optimal flow control.
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1. Introduction

The problem of flow control is one of the greatest challenges of Fluid Dyna-
mics. Its importance cannot be overestimated, both as regards the perspective
of Theoretical Physics and Applied Engineering. The problem becomes even
more complicated when turbulent flow regimes are taken into account. This
is in fact what happens in most situations of engineering interest. The flow of
viscous incompressible fluid is described by the system of the Navier-Stokes
equations. At the moment fairly little is known about the qualitative and qu-
antitative properties of the solutions of this system (cf Doering and Gibbon,
1995), particularly as regards long time evolution. Rigorous prediction of the
fluid flow is not possible at the moment which means that one cannot foresee
the influence that any arbitrary disturbance may have on the flow. Consequ-
ently, all attempts at flow control have to be based on ad hoc assumptions.
Similar problems are encountered in laboratory experiments, as turbulent Aows

'The paper won one of the two first prizes awarded at the contest for the best work in
the field of fluid mechanics organized by the local branch of PTMTS in Czestochowa in 1998
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involve time- and length-scales still beyond reach of modern laboratory equip-
ment. Another issue 1s repeatability which can hardly be attained in laboratory
conditions.

At the same time techniques of flow control attract ever expanding inte-
rest of the Engineering Community all over the world. The fields of potential
applications range from chemical and process industry to off-shore and aero-
space technologies. In the context of the latter, one of the central issues is
the separation control which is closely related to drag-to-lift ratio of a lifting
surface.

Control techniques vary both according to the control objective and the
strategy applied. As regards the former, one may wish to maximize/minimize
any of the components of the hydrodynamic force, turbulence level (the flow
relaminarization problem), heat exchange rate, mixing, etc. According to whe-
ther external energy is added to the flow or not, one may distinguish active
and passive flow control techniques. Active strategies usually involve continu-
ous displacement of the flow boundaries (e.g. moving boundaries, systems of
flow actuators, blowing and suction, etc.) (cf Bushnell and McGinley, 1989;
Gad-el-Hak and Bushnell, 1991) and/or interaction with a body force (e.g.
magnetic force acting on a ferro-fluid). Passive techniques rely on stationary
modifications of the original geometry (e.g. riblets, flaps, vortex generators,
etc.). Flow control based on introducing some flow additives (polymers) may
be regarded as a separate technique and will not be discussed here. Active
methods can be divided into open- and closed-loop techniques, depending on
how the control rule is generated. In the case of open-loop algorithms the con-
trol rule is established a priori and makes no reference to the flow evolution.
Conversely, closed-loop strategies determine the control using instantaneous
flow field information, as well as How history. They are also called feedback
algorithms.

In the present paper we are concerned with the problem of drag minimiza-
tion in the incompressible wake flow generated by a circular cylinder with the
Reynolds number corresponding to turbulent flow. The objectives of the work
are twofold: first, we show evidence coming from numerical simmulations that a
properly designed open-loop algorithm is indeed capable of performing effec-
tive flow control resulting in significant drag reduction, and then we develop
a rigorous feedback (i.e. closed-loop) algorithm based on the Optimal Control
Theory. In both cases control is performed by rotary motion of the obstacle.

Throughat the paper the following denotations of vector and tensor ope-
rations will be used: (a-b) will represent the scalar product of the two vec-
tors (a;b;), (ab) will stand for the dyadic product, i.e. the tensor (a;b;),
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(@ x b) will denote the cross-product of the two vectors (e;xa;jbg), whereas
(A : B) will be the scalar product, i.e. contraction, of the two tensors (A;;Bj;).
The symbols (aB) and (Ba) will represent the multiplications (B;;a;) and
(Bijaj), respectively.

2. Hydrodynamic forces in wake flows

In this section we will focus on the phenomena which accompany the ori-
gin of the hydrodynamic force. Wake flows, both in laminar and in turbulent
regimes, are characterized by the formation of a staggered array of counterro-
tating vortices which are shed behind the obstacle. This phenomenon is called
the von Karman vortex street and is fairly persistent with respect to the va-
riation of the Reynolds number. Below we will focus on the relation between
the changes of the vorticity distribution in the wake and changes of the drag
force. We will arrive at certain conclusions which will be useful in designing
the open-loop algorithm.

Throughout the paper we will consider two-dimensional (2D) flows in the
domain 2 extending to infinity. The obstacle is a circular cylinder with the
boundary Iy. The origin of the coordinate system is located in the center of
the obstacle. The hydrodynamic force is equal to

F:—j{(—pn+an) do = j{(pn-l—;mxw) do (2.1)
85 802
where
p — pressure
n — unit normal vector directed into the body
p — fluid viscosity
D - rate-of-deformation tensor, i.e. the symmetric part of the velo-

city gradient tensor

D= %[vv + (V)T (2.2)

and w denotes vorticity (in 2D it becomes a scalar w = c’% - ‘g—ly‘). Formula
(2.1) remains valid even if the contour performs an arbitrary motion.
Equivalently, the hydrodynamic force can be expressed as the rate of

change of fluid momentum (Batchelor, 1970)

F:-i/v(m—fpnda (2.3)
dt /o E
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where [y, denotes the outer circurnference placed at infinity and the Huid
density p was put equal to unity. The above expression can be transformed
ito a more tractable form using the impulse identity (Saffinan. 1993)

/ad!Z:/rx(an)d!'Z— ?{ rx(nxa)do (2.4)
I?; 9] MU

where a is a given vector field. It must be observed that the above form of the

impulse identity is valid in the 2D case ouly (in the 3D case tliere is a factor

of 1/2 in front of the area integral on the RHS in (2.4)). Using Eqgs (2.3) and
(2.4) oue obtains

d [ ‘

F=——J|rxwd (2.5)

dt
Lo

where the pressure contribution in Eq (2.3) and the boundary integral over
I in Eq (2.4) can be shown to cancel each otlier. The iutegral over [y in Eq
(2.4) vanishes due to tle symnetry properties of the obstacle. The drag force
Fp (i.e. the horizontal compouent of the hiydrodynamic force) is thus the thne
derivative of the integral vorticity moment with respect to the X-axis (i.e.
the axis of the flow)

Fp = —i wy df? (2.6)

dt .
e

This has a clear physical uterpretation in terins of vorticity structure in the
wake. Vortex shedding is a quasi periodic phenowenon. Every Lalf-cycle vorti-
city fron the separated boundary layer accuinulates in the recirculation zone
of the obstacle and is then shed 1 the forin of a new vortex. In every cycle two
counterrotating vortices are born and are subsequently advected downstreain
with the off-axis separation Ay related to the sigu of the vortex (Fig.1). Con-
sequently, the expression for the vorticity moment in Eq (2.6) can be roughly
approximated as

g = = (D)= Ay + (T (+Aw) + ] (27)

where the I;’s represent the circulations of the the consecutive vortices that
are slied.

Tlie above shows that in the natural mode of vortex shedding the integral
vorticity moment about the X-axis always decreases resulting in the observed
drag force. This simple argument gives an idea of what could be done in order
to reduce the drag:
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Fig. 1. Sketch illustrating the distinctive features of the vorticity distribution in the
von Karman vortex street behind an obstacle. The symbols £/ denote the
circulations of the vortices

s Decrease the off-axis separation Ay, at which the eddies are advected
downstreamn

e Reduce the strength of the vortices, thus effectively killing the von Kar-
man vortex street.

Tokumaru and Dimotakis (1991) reported on a successlul laboratory at-

tempt to linplernent this strategy in a turbulent wake flow at Re = 15000. The
How control was accomplished by performing rotary oscillations of the circular
cylinder. Appropriate choice of the control parameters (i.e. the amplitude and
frequency of the rotary oscillations) resulted in dramatic drag reduction, by as
rmuch as 80% 1n some cases. Drag reduction was accornpanied by effectively
suppressing the vortex shedding. We have reproduced these results using nu-
merical simulation, thus validating the control strategy and at the saine time
verifying the robustness of the numerical code.

3. Numerical simulation — Random Vortex Blob Method

Below we outline the numerical algorithm that is used in the flow sirnu-
lations. We use the Random Vortex Blob Method which relies on the formal
similarity between the 2D vorticity equation and the Planck-Fokker equation
describing the evolution of the stochastic Wiener process. Vorticity field is first
discretized on a Lagrangian mesh counsisting of a family ol vorticity carriers
(regularized point vortices). Every vorticity particle then evolves according to

2 — Mcchanika Tcoretyczna
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the stochastic Ito equation. Its displacement consists of the deterministic part
(advection) and the random walk which models viscous diffusion. New vorti-
city is created on solid boundaries in such a way that the no-slip condition for
the velocity is rigorously enforced. All the nuinerical parameters (the diame-
ter of the regularized vortex particle, tiine step, etc.) are cliosen to assure the
numerical resolution corresponding to the assuined Reynolds number. In the
evaluation of the vortex induction the fast sumrmation algorithin is used which
significantly reduces the computational cost. Details of the numerical mnethod
in the present implementation can be found in Styczek and Wald (1995).

The proposed method appears particularly useful wlen the How domain
extends to infinity (i.e. the case of open flow systerns), as it is capable of pro-
perly accounting for the velocity boundary conditions at infinity. Furthermore.
in view of the intrinsic relation between the hydrodynamic force and clie vor-
ticity distribution, the vorticity formn of the momentum equations seems well
suited for the study of forces in wake flows.

In fact, recovering the force from the vorticity and velocity fields is not a
trivial task. Direct application of the defining formula (2.1) is not possible,
because pressure may only be obtained as a solution of a separate problem
(Gresho, 1991). Eq (2.5) is physically transparent, but has a number of com-
putational disadvantages. In order to circuinvent the difficulties we commpute
forces using a variational approach. For its description, as well as a more ela-
borate discussion of the aforementioned problems, the reader is referred to
Protas et al. [9].

4. Open-loop algorithm — results of the numerical simulations

In order to verify the effectiveness of the open-loop control strategy we used
our numerical simulations to reproduce the laboratory results of Tokurmaru
and Dimotakis (1991). The angular velocity of the circular cylinder was given
by

p(t) = Agsin(wyt) (4.1)

where the amplitude Ay and the frequency wy are the two adjustable para-
meters. They can be normalized in the following way

~ AR 2R
A=20 St = 2 (4.2)
Uso Usc
wlere R is the radius of the cylinder and Uy denotes the free streain velocity
at infimty. The parameter St is called the Strouhal number.




COMPUTATIONAL STUDY OF THE WAKE CONTROL PROBLEM 19

2,00, sm—r-*iﬂ‘if T

112

1.8

0.6 0.7 038 0.9

ol
g

St

Fig. 2. Contour plot presenting the dependence of the drag coefficient ¢p on the
control parameters A and St. The iso-lines of ¢p corresponding to the values of
0.64, 0.8, 0.96, 1.12 and 1.28 are indicated

We performed a parametric study of the phenomenon exploring the ran-
ges of Aand St roughly corresponding to those studied by Tokumaru and
Dimotakis (1991). Because of prohibitive computational cost, the Reynolds
numnber we reached in our simulations was Re = 5000, somewhat lower than
Re = 15000 used by Tokuinaru and Dimotakis (1991). In Fig.2 we present the
contour plot of the drag coefficient cp

» — FD
P~ TUZ(2R)
as a function of the two control parameters cp = f(A, St) that was obtained in
our investigation. Remarkable reduction of the drag coefficient can be observed
for properly chosen values of the control parameters {ﬁ, St} which are very
close to those indicated by Tokumaru and Dimotakis (1991). In the best case
we reached 60% drag reduction, slightly less than 80% reported by Tokumaru
and Dimotakis (1991). This discrepancy can be attributed to three factors:
slightly lower Reynolds number that characterized the nuinerical siimulations
(in the range under consideration, the force still depends on the Reynolds
number), underresolution of the boundary layer in the numerical simulations,
and 2D description of the problem, whereas the real flows are always 3D.
Inspection of Fig.2 leads to the following conclusions. First, there is some
specific value of the Strouhal number for which ¢p attains mininurm. Pushing
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Fig. 3. Instantaneous vorticity distribution in the turbulent wake flow past the
rotating circular cylinder at Re = 5000. Values of the normalized control
parameters are indicated. Note the gradual suppression of the von Karman vortex
street as the rotation frequency increases
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the forcing frequency any higher results in the increase of the drag. This value
of the Strouhal number is roughly equal to 0.9 and does not indicate any
simple relation to its value characterizing the natural mode of vortex shedding
which is about 0.2.

In Fig.3 and Fig.4 we show the instantaneous vorticity distributions iu tlhe
wake which correspond to different choices of the control parameters {A.St}.
It can be observed that the von Karman vortex street was effectively killed
in the cases when the most significant drag reduction was obtained. This sub-
stantiates the propositions made in Section 2.
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Fig. 4. Instantaneous vorticity distribution in the turbulent wake flow past the
rotating circular cylinder at Re = 5000. Values of the normalized control
parameters are indicated. Note the gradual suppression of the von Karman vortex
street as the rotation frequency increases

5. Towards a rigorous feedback (closed-loop) control algorithm

In the present section we are concerned with the derivation of the gradient
algorithm which can be used to determine the optimal control ¢, (t) in
the time interval [0;T|, where 7T is some characteristic time scale ol the
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phenomenon. The control results in the minimwmn average drag in the interval
[0; T]. The present method is an extension of the pioneering work (Lions,
1969) and its application to fluid dynainical problems (Abergel and Temain,
1990). Bewley et al. (1997) adopted a similar technique to the problem of drag
minimization in the turbulent channel flow.

The starting point is the formulation of the functional that will be ini-
mized. It our case it represents the balance of the work done by the drag force
and the work needed to control the flow

. _ 1 ][ power needed to power related to .
J@) = 5/ { { contro] the flow } * [ the drag force } } dt (5.1)
T

The rotational velocity () of the cylinder is the control, therefore the energy
needed to control the flow is introduced in the form of work done by a monent
of forces applied to the cylinder. Consequently, using the surface force deusity
f(¥), the above relation can be expressed as

2/?( (9R) + 1(§)  Use | dodt =

T To
%/?{ .y 'r>< (Wk)'i-Uoc}} dodt = (5_2)
T Io
%/?{ ¢)n -+ pD(u(o ))n} : [r x (k) +U°°H dodt
T Io

where all the hydrodynamic quantities depend oun the control ¢. Next we use
the fact proved by Abergel and Teinam (1990) that tlhe functional of the type
(5.2) is Gateaux differentiable and that the relation

D*](Qbopl)

-h = 5.
Do 0 (5.3)

<'],(¢opt); h> =
is a necessary condition characterizing the optimal control ¢, and the cor-
responding optimal state {u(Yop:); P(PYope)}. In this expression /A denotes
the direction in which the Gateaux derivative (i.e. the functional gradieut) is
taken.
The Gateaux derivative of the functional (5.2) takes the form
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Rar %/%'{<Df(80

.4
- % / f{ [—g(h)n + uD(w(h)n] - [r x (5k) + Us| + ()
+ {(Tp?:pm + uD(u(@)n) x r| - (hk)} dods
where the following relations have been used
(P22 1) = ~gtm + wD(w(w)n -
(Ga.h) =

As was shown by Abergel and Temam (1990), the quantities {w(h);q(h)}
are related to the Frécliet derivative of the mapping ¢ — {u(¢);p(¢)}. Thus
{w(h);q(h)} can be obtained as the solution of the linearized forin of the
Navier-Stokes system

Al = [ %—?+(u0-V)w+(w-V)uo—VA'UJ+V(1
B V-w

wl =h w(z,y.0) =0
Io
In the above the field wug represents the basic state around which the lineari-
zation is carried out.

The control h does not explicitly appear in the formnulation (5.4). In order
to factor it out we will use the adjoint operator A* and the adjoint state
{w; ¢} defined by the following relation

(A’UJ,’II))LZ = (’UJ,A*’E})LZ + B (57)

where (-,-);2 denotes the scalar product in the Hilbert space L? and B
stands for the sum of the boundary terms
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B = /?{ Uyw) uow)T] : (wn) dodt +
T Iy

./% Vo + (Vo) ~w[Vi+ (V)| Indodt + (5.8)
T

|
<

To

T
+ /}{(qw~qw -n dodt + /w wd!?io
T o

The adjoint state {w;q} is the solution of the problem adjoint to the linearized
Navier-Stokes system (5.6)

Jraz[—%f~wHMH%V@U—uA@+VJ}:0
V-w
(5.9)

Wi, =—4¢ w(z,y,T) =0 dt <0

It should be observed that Eqgs (5.9) is a terminal value problem, i.e. it has
to be marched backwards in time. The equation itself is well posed, as using
the substitution 7 = T — ¢ we arrive at a problem similar to the standard
advection-diffusion equation.

In the case of the rotating circular cylinder the control is limnited to the
tangential boundary velocity. This implies that

(uy-n)r, =0 (w-n)|r, =0 (5.10)

The crucial problem is the determiunation of the boundary condition for
the adjoint state w, i.e. the function g in (5.9). It is straightlorward to verify
that for the particular choice

g =71 % (k) +Ux (5.11)

the adjoint state introduced above can be used to re-express tlie Gateaux
derivative (5.4) in such a way that the control & explicitly appears in all the
terms and therefore can be factored out

h:%/%@m@yumR+

T o

~[(=pto)n -+ uDu(g)n) x| - k}h dodt - (5

1
:§/va&WMMt

T Ig

t
—
[\>)
~—
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Using (5.12) in (5.3} we obtain a closed formula characterizing the necessary,
though not sufficient, condition for optimality

VJ(t) = uD(@) : (tn)R — [(—p(<p>n +uD(u(@)n) x 1| k=0 (513)

Now an iterative procedure will be presented whicli can be used to find tle
optimal control ¢, and the corresponding optimal state {u(%,,,);p(gbop,)}
in the time interval [0: T}. First. we choose some initial control ¢! (for instance

$' =0) and then:

1. solve the full noulinear Navier-Stokes system 1 order to determine
{u'p'},

2. solve (5.9) for the adjoint state {ﬁi;(fi},

3. use {up'} and {@'; ¢} to determine the instantaneous values of
VJU1),

4. use V.Ji(t) to update the control ¢*t'(t) = () — AV.J4(t), where A
is some properly tuned descent parameter,

5. iterate 2. through 5. until convergence, i.e. until (5.13) attains.

A remarkable feature of the presented algorithin is that it is global in tiine.
This is however necessary when one attempts to control a nowlinear systern i
which case the listory of the evolution has to be taken into account. In such
situations local algorithms are ineflicient. Furthermore, as was mentioned by
Abergel and Temam (1990), the gradient algorithms of tlis class converge
to a local minimum of the functional which may depend on the choice of the
initial control ¢'. Because of the system nonliearity, convergence to the global
minimum cannot be established.

6. Final remarks and further perspectives

In the present paper we have discussed the problem of wake control. Rela-
ted issues were also raised, particularly coucerning the methods of computation
of forces in open flow systems and the relation between the hydrodynamic for-
ces and the vortex dynarnics in wake flows. The latter issue was mentioned iu
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the context of its implications for the open-loop strategies of How control. Evi-
dence was shown for the efficiency of such approaches as regards the problem
of drag minimization.

In the second part of the paper we derived a rigorous feedback algorithin
using the tools of the Optimal Control Theory. The performance of this tech-
nique should be checked using numerical sirnulations. For this purpose it will
be necessary to generalize the Random Vortex Blob Method, so thav it will be
applicable to the adjoint problem (5.9). The corresponding wvorticity form of
tlie adjoint problem should also be formulated. No major theoretical difficul-
ties are expected here, though the overall computational cost of tlie method
Is imrneise.

Further developments of the gradient algorithin mmay consist in its gene-
ralization for non-circular geometries of the obstacle. In such case the rotary
coutrol will involve not only the tangential, but also the normal velocity com-
ponent. Consequently, the formmula expressing the Giteaux derivative of the
functional will become much more complicated, basically because the boun-
dary conditions (5.10) will be non-lioinogeneous. Such control however is likely
to be more effective, as it involves not only dynamic, but also kinematic for-
cing. Yet another possible extension is to derive Robust Control Algorithm
(Bewley et al., 1997) which allows for the presence of some randoru distur-
bance in the system. In this case the functional is minimized with respect to
the optimized quantity aud at the same time maximized with respect to the
disturbance.
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Numeryczne badanie sterowanego oplywu przeszkody

Streszczenie

W pracy badany jest problem sterowania przeplywem. Rozwazany jest dwuwy-

miarowy turbulentny oplyw obracajycej sie przeszkody. Celem sterowania jest minim-
lizacja sily oporu. Przedstawione wyniki symulacji numerycznych dowodzy, 7¢ istotne
efekty mozna uzyskaé przy pomocy algorytmow "otwartych”. Fakt ten potwierdzajg
réwniez dostepne dane eksperymentalne. W drugiej czedci pracy sformulowany jest
algorytm sprzezenia zwrotnego oparty o teorie sterowania optymalnego.
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