JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
1, 37, 1999

DYNAMIC BEHAVIOUR OF AN AXIALLY MOVING THIN
ORTHOTROPIC PLATE

KRZYSZTOF MARYNOWSKI

Department of Machines Dynamics, Technical University of Lédz

email: kmarynow@ck-sg.p.lodz.pl

ZBIGNIEW KOELAKOWSKI]

Department of Strength Materials and Structures, Technical University of Lodz

ematl: kola@orion.p.lodz.pl

A new approach to analysis of the dynamic behaviour of axially moving
orthotropic plates is presented. The nonlinear orthotropic plate theory
is modified to include the inertial forces resulting from the moving web.
The results of numerical investigations show the solution to a linear pro-
blem. The effects of the orthotropy factor, axial transport velocity and
rolls support system on transverse and torsional natural frequencies and
stability of the plate motion are presented. The lowest natural frequen-
cies decrease with the increasing axial velocity at undercritical transport
speeds. The plate may experience divergent or flutter instability at su-
percritical transport speeds. A second stable region above the critical
speed may exist as well.
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Notation

b - width of the plate

c — axial transport speed

D - fiexural stiffness of the plate

E;,Ey - Young modulus of the plate along =z and y axes,
respectively

G ~ modulus of non-dilatational strain of the plate

h — thickness of the plate

J — number of the constituent plates
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{ length of the plate
m number of the natural frequency
K total number of natural frequencies
My, My, Moy bending moment resultants for the zth plate
Ny, Ny, Ny inplane stress resultants for the ith plate
q; transverse loading of the ¢th plate
R axial tension
T function of time
t time
Us. Vg, Wy displacement components of the <th plate iniddle

Exis Eyis Exyi

Ui
K

surface

strain tensor components for the middle surface of
the ith plate

orthotropy factor of the plate, n = Ey/E;
equivalent stiffness of the rolls support structure

— curvature modifications and torsious of the middle
surface of the ith plate

Kais Kyiy, Kayi

A — scalar load parameter

Vays Vyz — Poisson ratio of the plate; the first index represents
transverse direction and the second shows the load
direction

£ - nondimensional mode amplitude parameter

Ps — mass density of the ¢th plate

o - real part of the eigenvalue

w - natural frequency of the plate (inaginary part of

the eigenvalue).

1. Introduction

The class of axially moving continua of thin flat rectangular shape mate-
rial with small flexural stiffness, called a web, encompasses such systems as
power transmission belts, magnetic tapes, band saws and paper tapes. Vibra-
tion characteristics and dynamic stability investigations of such systems are
required for analysis and optimal design of technological devices.

A lot of the earlier works in this field focused on dynamic investigations
of string-like and beam-like axially moving isotropic systerns (e.g. Wickert
and Mote, 1988, 1990). In the case of a two-dimensional axially moving thin
plate, the exact dynamic solutions satisfying the non-linear coupled equations
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governing the web motion, probably cannot be determined in a closed form.
Recent works analysed the equilibrium displacement, stress distribution (Lin
and Mote, 1995), wrinkling phenomenon (Lin and Mote, 1996) and stability
of axially moving isotropic plate (Lin, 1997).

It is well known that many materials traditionally considered as isotropic
exhibit some degree of anisotropy due to working processes. Also growing in-
terest in composite materials demands a better understanding of the strength
of materials anisotropic by design. The aim of this paper is to analyse the
dynamic behaviour of axially moving orthotropic thin plate. A new approach
to solving of this problem 1s proposed. To derive the equations of motion.
the nonlinear thin-walled orthotropic plate theory is modified to inciude the
inertial forces resulting from the plate motion. The differential equations of
motion are derived from Hamilton’s principle taking into account the Lagrange
description, the strain Green tensor for thin-walled plates and the Kirchhoff
stress tensor. The singular perturbation theory is used to obtain an approxi-
mate analytical solution of the governing equations. The numerical methods
of Unger’s transition matrix and Godunov’s orthogonalization procedure are
used to solve the eigenvalue and eigenvector problems.

One of the principal goals of numerical analysis is to investigate the effect
of the orthotropy factor on dynamic behaviour of two different materials of
the plate. Numerical results show the effects of axial velocity, rolls support
system and ortliotropy factors on the plate vibrations and stability.

2. Formulation of the structural problem

’Wﬁ/

Fig. 1. Axially moving plate
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A long elastic moving plate of the length [ is considered. The plate coor-
dinates and geometry are shown in Fig.1. The dynamic analysis is carried out
using the thin-walled plate model. The considered web is composed of plane
rectangular plate segments, the principal axes of orthotropy of which are pa-
rallel to their edges. Such a model allow for a dynamic analysis of plates with
various material properties and parameters. These component plate segments
are interconnected along the longitudinal edges. Basic geometrical dimensions
of the structure are presented in Fig.2.

Fig. 2. Prismatic plate structure and the local co-ordinate system

The orthotropic materials of moving plate obey Hook’s law. Because of si-
gnificant transport velocities the elasto-plastic deforinations and reologic phe-
nornena have not been taken into account. For the ith plate the geometrical
relationships in the Lagrange description are assumed taking into account
both the out-of-plane and in-plane deformations (Chandra and Raju, 1973,
Kotakowski and Krélak, 1995)

__ 2 _ 2
Ezi = Uiz + 0.5w; 4 Eyi = Uiy + 0.5wj,
Yayi = 2“-‘T,'yi = Uiy F Vi Wiz Wiy (21)
Rgi = — Wiz Kyi = —Wiyy Rayi = — Wi zy

The dependence between the Young modulus and the Poisson ratio is as follows
Exiyyri == Ey,' Vzyi (22)

The relationships between stresses and strains for the ith plate are formulated
in the following way
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Eih; Ehim,
Ny = W(Ezz + 7)€ i) Ny = ﬁ(f'yi + Vi€4)
Neyi = Gihivayi = 2Gihi€y: My = ~Di(w; gz + NiViw;yy) (2.3)
Myi = _niDi(wi,yy + Viwi,xz) Mxyi = “Dliwi,zy
where
Eyi
E; = Eyy n= e Vi = Vzyi
“ 3 3 (2.4)
Vss = Tl D, = E;h: Dy — Gh: :
yxtr — TliVq 7 ] i 76
12(1 = mavy)

The differential equilibriurn equations resulting from Hamilton’s principle and
the corresponding expressions appearing in Egs (2.1) for the «th plate can be
written as follows

hi(—ie — 2¢Us gt — ¢ Uigz) + Naig + Nagiy =0
pzht( Vi — 2CU; 31 — C2’UZ";U1) + Nayiz + Nysy = 0 (2.5)
pilii(— Wi — 20w; 5 — W; gz) + Mai gz + 2Mayi gy + Myiyy +
+qi + (Naiwie) 2 + (Nyiwiy) .y + (Nayiwiz)y + (Nayiwiy) o = 0

The equations of Hamilton’s principle are given in Appendix A. The kine-
matics and static continuity conditions at joint of adjacent plates are given in

Appendix B.

The non-linear problem is solved by the asymptotic method. The displa-
cement fields wu;, v;, w; are expanded into a power series with respect to £
normalised by the equality condition of the maximum plate deflection and its
thickuess h;

ws = Mug; + Euy; + Eug; +
vy = Avg; + vy + 621/21' + ... (2.6)
w; = Ewy; + Ewa + ...
Basing Eqs (2.1) and (2.3) one can present the membrane stress resultants ir
expanded form
Ny = /\NziO + szil + £2N$i2 + ..
Nyi = ANyio + ENyiy + E Nyia + ... (2.7)
Nzyi = /\nyiO + szyil + szzyiQ + ...

8 — Mechanika Teoretyczna
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By substituting the expansion (2.6) into the equations of equilibrium (2.5},
joint conditions and boundary conditions, the boundary-value problems of
zero-, first- and second-order can be obtained. The zero approximation descri-
bes unmoved state while the first approximation represents the linear problem
of stability and enables one to determine the eigenvalues, eigenvectors and cri-
tical speeds of the system. These equations can be reduced to a homogenous
system of differential equilibrium equations. The second-order boundary-value
problem can be reduced to a linear system of non-homogeneous equations the
right-hand sides of which depend on the first-order displacements and load
fields.

3. Solution to the problem

Below the linear analysis of moving orthotropic plate vibrations is pre-
sented. The web moves at constant speed c¢. One assumes that the plate is
stretched only in its longitudinal direction, hence

NIO(y) 7é 0 q= 0 NyO - N:l;yO =0 (31)

The inertial forces due to the in-plane displacements « and v are also ne-
glected. Hence, for the linear problem the quantities wui, vy, Nz, Ny1, Ny
in Egs (2.6) and (2.7) are negligible. The boundary conditions referring to the
simple support of the plates at both ends are

w(z=0,y)=wlz=1y)=0 My(z =0,y) = My(z =1,y) =0
(3:2)
The zero-order solution of an orthotropic plate consisting of homogeneous
fields which satisfies Eqs (3.1) is assumed as

ug = zA v = —vya Ny = FEhA (3.3)

where A is the actual loading. This loading is specified as the product of a
unit loading system and a scalar load factor A.

After taking into account Eqs (2.3), (3.1) and (3.3), the third differential
equations appearing in Eqgs (2.5) for the first-order approximation one can
reduce to the form

_ph(wl,tt + 2cwl,:ct + Cle,zz) + N:cOwl,:c:c - le,zzzz + (3 4)

—2(vnD 4 D))w zzyy — 1Dy yyyy =0
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The third dynamical component in Eq (3.4) plays a role similar to that of
the compressive force loading a thin-walled plate in static stability problem
(Kotakowski and Krélak, 1995). In the second component of Eq (3.4) there are
the derivatives with respect to z and £. Because of that one can not predict
solution of Eq (3.4) in the 2z-direction in terms of modal forms. In further
considerations the Galerkin-Bubnov orthogonalization procedure is used to
find approximated solution of Eq (3.4). This solution has been determined in
terms of a series of eigenfunctions for the unmoved plate (i.e. for ¢ = 0)

K
. MmmL
wy = Z Wi (y)Tm (t) sin (3.5)
m=1
where
Wim(y) - initially unknown function which will be determined using
the transition matrix method (Unger, 1969)
T (t) — unknown function of time.

To determine an unknown function W, (y) in Eq (3.5) for unmoved plate
one should assume ¢ = 0. Numerical aspects of the problem being solved for
the first-order fields demand introduction of the following orthogonal functions
in the sense of boundary conditions for two longitudinal edges (Appendix C,
Egs (C.1))

W1,y

fim = w) fzsz'Zwl,x
fam = _A;%)Q = Wi xx T VWL (3.6)
fam = - 12(%;31’3 = By(wixx + vwi,c0)x + 4Wiccx
where
C=% XZ% El=ﬁ Ey = En

After taking into account the new functions (3.6), the differential equilibrium
equation (3.4) for ¢ =0 can be rewritten as follows

f2m = flm,x
f3m = f2m,x + Vflm,((

fam = Eafamy +4fom ¢
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126°
02 = BAA(L = ) fimgce — By fumgcccc = VE2 fomycex +

12pb?
—f4m,x Gh2 flm tt — =0

The solutions of Egs (3.7) may be formulated as follows

mmb(

l

fjm :ij(X)Tm(t) sin J=1..4 (3.8)

The initially unknown functions Fj, (for the mth harmonic mode) will
be defined using the numerical method of transition matrix. The system of
ordinary modified differential equations (3.7) for the first-order approxima-
tion with appropriate join conditions for adjacent plates is solved using the
transition matrices method (Unger, 1969; Kotakowski and Krélak, 1995). The
Runge-Kutta numerical integration of the equilibrium equations in the y-
direction and the Godunov orthonalization method (Biderman, 1977) are used
in order to obtain a relation between the state vectors on two longitudinal ed-
ges.

Let us return to the case of moving, orthotropic web for ¢ # 0. Taking into
account Eqs (3.5) and (3.6) the equilibrium equation (3.4) can be rewritten in
the following form

1262

W2 — EXAQM = 90 fimce = B fim cccc — VEa fomcox T

(3.9)

12pb?
—famyx — G;/)l (6% fFrmte + 26D fimec + € frmee) =0

According to Eqs (3.5) and (3.6) the solutions of Eq (3.9) oue can predict in

the form

K
. mmb _
fim = Z Fjm(x)Tm(t) sin ] ¢ j=1,..,4 (3.10)
m=1

The functions Fj,, in Eq (3.10) have been determined for the case ¢ = 0.

Since the trigonometric functions are incompatible in the z(()-direction,
after substituting Eq (3.10) into Eq (3.9) the Galerkin-Bubnov orthogonaliza-
tion method has been used

Z/X bw; dS; = Z/X 5fii dS; =0 (3.11)

113 ZlS
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where X; is determined as the left-hand side of Eq (3.9) aud integration is
extended over the whole moving plate. In this way the set of K ordinary
differential equations with respect to the function 7,,(¢) can be determined
in the following form

a1,

d2
™ a9 + TrmGom + Z 5 Gimn =0 m=12,.,K (3.12)

di?

The coefficients of the set (3.12) are given in Appendix D. Basing of Eq (3.12)
one can determine eigenvalues and eigenvectors of the system.

4. Numerical results and discussion

Above, it was assumed that the moving plate is stretched at a uniformn
rate in the axial direction and the stiffness of the rolls support structure is not
taken into account. When the stiffness is considered, the in-plane axial tension
of the web is (cf Mote, 1965)

Ny = Ny — kphc® = EhA ~ kphc? (4.1)
In this case Eq (3.3) one should modify to the form

R
E

uy = A — Kpc x vg = —vyA (4.2)
This crosswise boundary condition modification involves also the change in
equilibrium equations. Thus, in Eqs (3.7) and (3.9) one should add the follo-
wing component

K,C2f1my<< (43)

After taking into account Eq (4.1) one can obtain the axial tension expression

J b
R=3" [ Nuioly) dys = Ro + phbic*(1 - 1) (4.4)
0

=1

where 0 < k < 1.

For the rolls support stiffness x = 0, the rolls are free to move relative
to each other under tension variation. For & = 1, the two rolls are rigidly
fixed with respect to each other, eliminating the plate tension increase with
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the axial transport speed ¢. For 0 < k < 1, the rolls support system has
finite stiffiness and the axial tension decreases with c.

Numerical investigations have been carried out for five approximating func-
tions (K = 5) and for two different materials of the web: steel and paper. The
parameter values are given in Table 1.

Table 1. Numerical data
| Material | Steel plate I | Steel plate I | Paper web |

[ [m] L5 1.0 1.194
b [m] 0.5 0.2 0.597
h [m] 3-1073 4.047-1073 0.3-107°
[kg/m3] 7800 7800 | 133.33 (0.04 kg/m?)
N | 30-10° | 2.428-10° | 32.835
N/m]( 02-10% | 02-10% | 5-10° |
v [ 03 [ 03 | 0.3

The parameters of the steel plate I characterise the saw band blades inve-
stigated (Ulsoy and Mote, 1982). A comparison of the lowest transverse and
the lowest torsional natural frequencies of the steel web I versus axial velocity
for the obtained and published results is given in Fig.3. The compared results
are in excellent agreement.

140 - —7 T
(5] 5013%11( =0 ‘ 1’

20—t e L

100,

80

60 . I _ .,,,\_/4-,74;:._,‘@ I

40 . —
X X lheory (Ulsoy & Mote. 1982)

2= calculation results ‘
F R e e T

60
¢ |m/s]

Fig. 3. Comparison of the lowest transverse w;; and the lowest torsional ws
natural frequencies of the steel plate I
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The dynamic behaviour of the steel plate II was investigated. The para-
meter values of the plate are given in Table 1. In Table 2 there are orthotropic
material properties which were assumed. The values of ratios E,/FE, G/E and
v are assumed after Chandra and Raju (1973).

Table 2. Elastic constants for various cases of orthotropic plate material
| E[MPa] | E,[MPa] | G|MPa] [n=E/E| G/E | v |

[ 0.606-10° | 0.2-10° |0.735-107 | 0.3031 [0.1213 ] 0.3
1.013-10° [ 0.2-10° | 2.019-10" | 0.5064 | 0.1994 0.3
1.408-10°% | 0.2-10% | 3.975-10° | 0.7041 | 0.2823 0.3 |
1.672-10° | 0.2-10° |5.424-107 | 0.8358 [0.3245| 0.3

0.2-10° 0.2-10% | 7.692-107 1.0 0.3846 0.3

0.2-10% [2.393-10° [ 7.764-107 | 1.1964 | 0.3846 | 0.25074
0.2-10% | 2.84-10° | 8.018-10T | 1.4202 | 0.4009 | 0.21123
0.2-10% [3.949-10° [ 7.874-107 | 1.9747 ] 0.3937 | 0.15192
0.2-10% | 6.598-10°  8.004-10%7 [ 3.2992 | 0.4002 | 0.12006

@
[51]
1004

804
GOW
404

20+

0

¢ [m/s]

Fig. 4. Lowest transverse natural frequency for various orthotropy factors of the
steel plate IT (k = 1)

First, the lowest transverse natural frequencies for various values of the
orthotropy factor 7 and the axial transport speed ¢ were calculated. The
results are presented in Fig.4. In this case, for a constant axial teunsion of
the plate, the lowest transverse natural frequency w;; decreases with the
increasing axial velocity at a rate dependent on the orthotropy factor value.
In all the investigated ranges of 7, a velocity exists at which the fundamental
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7
second stable
region

15
Certu 30

Cerg.3 25

()

¢ [m/s]

second slable
region

Cerro 30

0 20 Cergy 23

Fig. 5. Lowest eigenvalues for various orthotropy factors of the steel plate II at
supercritical transport speeds, (a) real port, (b) imaginery parts
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natural frequency vanishes indicating the divergence instability of the system.
In the range 7 < 1 the orthotropy factor when decreasing diminishes the
critical axial speed ¢.. In the range of the orthotropy factor 1.0 < n < 3.3
significant differences in changes of natural frequencies values have not beeu
observed.

Dynamic behaviour of the steel plate II was investigated above the critical
transport speed. Let ¢ and w denote the real and imaginary parts of eige-
nvalues, respectively. Non-zero ¢ indicates the instability of the systemn and
w is the natural frequency of the plate. At a supercritical transport speed. at
first, the plate experiences the divergent instability (the fundamental mode
with non-zero ¢ and zero w (Fig.5) and next the flutter instability (ron-zero
o and non-zero w). Between those two states there is the second stable re-
gion where o = (). The change in the orthotropy factor value in the range
0.303 < 7 £ 1.0 changes the second stable region location as it is sliown in
Fig.5.

(u)‘ (b)

90 40
80 < astk
E‘ 701 i 330‘
60 — -
| S 25F
501 I =
) S 20f
0f : 0
a0l ‘ | | 15 |
20k /1 N ) N I 10— ;
10—+ ‘ ! | —
0 : | \ 0 |
25 30 35 40 45 50 55 20 22 24 26 28 30 32
¢ [m/s] ¢ [m/s]

Fig. 6. Real parts of lowest transverse o)) and torsional ¢, eigenvalues of the steel
plate I, (a) I/b=13,7=1,k=1;(b) I/b=13,7=0.303, k = 1

Apearence of the second stable region depends on the slenderness ratio
/b and the orthotropy factor of the plate. The plots of the real part of eige-
nvalues versus axial transport speed of the steel plate II with [/b = 1.3 for
izotropic (n = 1) and orthotropic (1 = 0.303) cases are shown in Fig.6a and
Fig.6b, respectively. There are no second stable regions at supercritical trans-
port speed. For the izotropic plate the second stable region does not exist for
the slenderness ratio [/b < 1.3. Below this minimum value of the slenderness
ratio the lowest torsional eigenvalue with the real part oo > 0 apears at
lower axial velocities. When the orthotropy factor of the plate dimnishes the
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Fig. 7. Lowest transverse natural frequency for various orthotropy factors of the
paper web (k =0)

w, [s1) 4

100

17
504

40 RRS e 2

¢ |m/s)

Fig. 8. Lowest transverse natural frequency for various orthotropy factors of the
paper web (x = 0.5)
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minimum slenderness ratio increases. It is illustrated in Fig.6b for /6 = 1.3
and 5 = 0.303.

Furthermore, the dynamic behaviour of a thin paper web was investigated.
Parameter values of the web are given in Table 1. Equilibrium displacerment
and stress distribution of the same paper web were investigated by Lin and
Mote (1995). The dimensionless ratios FE,/FE, G/E and v take the values
from Table 2.

ylsth

1004

1/
50+

20

C(" .
40

¢ |m/s]

Fig. 9. Lowest transverse natural frequency for various orthotropy factors of the
paper web (k = 1.0)

The lowest transverse natural frequencies w;, for various values of the
orthotropy factor 1/7, rolls support stiffness x and axial transport speed ¢
were calculated. The results are presented in Fig.7, Fig.8 and Fig.9 for « =0,
£ = 0.5 and &k = 1, respectively. In all these cases, for the constant axial
tension of the web Ry = 32.835N (i.e. NX, =55N/m), the lowest transverse
natural frequency decreases with the increasing axial velocity at a rate depen-
ding on the value of k. For s > 0 a velocity exists at which the fundamental
natural frequency vanishes indicating the divergence instability of the system.
In the considered range of the orthotropy factor 1/7 significant differences in
changes of natural frequencies values have not been observed.
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5. Conclusions

In the paper a new method of dynamic analysis of axialy moving orthotro-
pic plate is presented. The differential equations of motion are derived from
Hamilton’s principle taking into account the Lagrange description, Green’s
strain tensor for thin-walled plates and Kirchhoft’s stress tensor.

Results of numerical investigations show the solution to a linear problem.
In investigations the effect of the orthotropy factor, the axial transport velocity
and the rolls support system on natural frequencies and stability of the plate
motion are presented. At undercritical transport speeds for both the steel
plate and paper web the lowest transverse and torsional natural frequencies
decrease with the increasing axial velocity at a rate depending mainly on the
rolls support stiffness. A decrease of the steel plate orthotropy factor in the
range 7 < 1 dimnishes the critical axial speed of the plate.

The plate may experience the divergent or flutter instability at supercritical
transport speeds. The second stable region above the critical speed may exist.
This raises the posibility of stable operations at speeds higher than the critical
one. Apearence of the second stable region depends on the slenderness ratio
and the ortliotropy factor of the plate.

In the case of the considered paper web a strong influence of rolls sup-
port system on natural frequencies and critical transport velocity values has
been detected. In the considered range of the web orthotropy factor value 1o
significant differences in changes of eigenvalues have been observed.

A. Appendix

The case of the body motion within the time interval (t¢,%,) was taken into
considerations in the Lagrange description. In the time interval between the
initial and final positions one takes into account different trajectories of motion
the system points. Actual trajectories differ from those satisfying Hamilton’s

principle
t1
5 / Ldt=0 (A1)
to
where
L - Lagrange function, L=U -V + W

U - kinetic energy of the system
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V' — potential energy of the system, V =V, +V,,

Vs — elastic strain energy of bending

Vim — elastic strain energy of membrane state deformation
W -  work of the external forces.

The above quantities for the ¢th plate can be expressed as follows

1 . .
U; = §pihi /[(C Fuge e )’ F (Vig + cvig)? + (wig + sz‘,.z-)zJ dsS;

Sy
1
Vi = 5 /(Nzifzi + Nyifyi + Nzyi%yi) dS;
Si
1/
Vi = 5 (MxiK»mi + Myiky; + 2szmzyi) dS; (A.2)
Si
b;

aE:O[u(l) —u(0)] dy; +

! bi
+ [ Nyso(a)|_ 0) = o(O) dai + [ Nayiow)],_ () = u(0)] dyi +
0 0
l
+ [ Neyo(@)| _ o) —o(0)] dai + [ guws as,
J .

S

where S; — surface of the ith plate.

B. Appendix

The kinematics and static continuity conditions at the joint of the adjacent
plates (Fig.2)

0 + 0 +
u”]‘ = u; wi—H\ = Wi
‘0 + ‘0 +
Vipl| = Y Witly| — Wiy
0 + S T (B.1)
Myarn| =My =0 Ny, — N[ =0
0 + +
Qrn| —Ql =0 Nigp| - M| =0

where the internal cross-section forces are
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Ny, = Ny = pihi(cvie + Pvig)
N3 = Noyi —pihi(c® + cuip + Puig) (B.2)
Q;i = Nyiwi:y + Nzyz‘.'wi)z - niDi'wi,yyy +

—  (vmiD; 4 2D )w; gy — pihi(cws s + cPw; )

The superscripts 70”7 in (B.2) denote the edge y; = b; of the ith plate, the
superscipts ”+” denote the edge ;41 = 0 of the (i + 1)st plate.

C. Appendix

Taking into account Eqgs (3.1) and Egs (2.7) for ¢ = 0 the conditions
resulting from Hamilton’s principle for two longitudinal edges have been deri-
ved. On the edges the relation between the state vectors is derived using the
modified transition matrices method

/ Ny;bv; dz; =0 /N;yiéui dz; =0
(C.1)

/Myidwi,y dl’i =0 /Q;iéwi dl‘,’ =0
For the first-order approximation the coupling between the membrane state
and the bending state appears when the co-operation conditions of two com-
ponent plates are satisfied. For the unloaded and immovable state the flat

plate surface has been assumed and it is sufficient to take only the two last
relations of Eq (C.1)3 4 for the first-order approximation.

D. Appendix

The coefficients of Eqs (3.12) are given in the following form

d _ 6b7p;

1
aom = Z( Gzh2l/F12m(Xz) dXz)
‘o

=1
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T o1202p; nb;
Qlmn — Z[ G; h2 QCl/Flm Xi) Fin(Xi) —— ] Onm dXz] (D.1)

1
Gom = Z{/Ffm(Xi)l%Z%[CQ(m?bi> - bz 2 } dXz}
0

where
0 for n?=m? (D.2)
Qnm = m . 1)rtm f 2 2 D.2
m[ (=0 for n”#m
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Zachowanie dynamiczne poruszajgcej sie osiowo cienkiej ortotropowej
plyty

Streszczenie

W pracy preedstawiono nowg metode analizy dynamicznej poruszajacych sie
ostowo plyt ortotropowych. Wyniki obliczenn numerycznych pokazujg rozwiazanie pro-
blemu liniowego. Badano wplyw wspdlezynnika ortotropii, predkodci osiowe] oraz
sztywnodci podparcia rolek na poprzeczne i skretne czestodei drgan wtasnych i statecs-
no$¢ ruchu plyty. Wartosci najnizszych czestosci wiasnych zmniejszajy sie ze wzrostem
predkosci w podkrytycznym zakresie predkodei przesuwu. W zakresie nadkrytycznym
moze wystepowaé niestateczno$é dywergencyjna lub typu flater. W zakresie nadkry-
tycznym moze sie rownies pojawié drugl obszar statecznodei ruchu.
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