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A way of use of shape memory alloy (SMA) fibers for dynamic response
modification of laminated beams is presented in the paper. The consi-
dered concept of adaptive control is based on the ability to change the
Young modulus during a temperature activated, reversible, martensitic
transition that is specific to SMAs. It is assumed that the laminate is
midplane symmetric and the corresponding layers of the same fiber orien-
tation are activated simultaneously, and the SMA fibers can freely elon-
gate in the matrix. A cantilever laminated beam with mass distributed
on its free edge is subject to numerical analysis. Due to the quasi-steady
one-dimensional model of heat conduction, martensite fraction and na-
tural frequency time relations for the phase transition of SMA have been
obtained. The influence of temperature on natural frequencies of the sys-
tem has been analysed for some different locations of activated plies and
directions of SMA fibers. The frequency response functions varying with
the material phase transformation for a harmonic load acting on the free
end of the beam have also been presented.
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1. Introduction

Shape Memory Alloy (SMA) materials, because of their unique mechanical
behaviour, like the Shape Memory Effect (SME) and pseudoelastic effect, have
been utilised in many innovative engineering applications also in technology,
robotics, microelectronics and biological implants. The ability to change and
then recover large (apparently plastic) strain is a result of the martensite phase
transition which can be reversed due to the temperature or stress. Experiments
on SMA materials have proved that both the Young modulus and internal
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friction depend strongly on the martensite fraction (Jackson et al., 1972).
Therefore, the SMA reinforced composites can be used in the active structural
vibration control (Liang and Rogers, 1991) and buckling control (Rogers et
al., 1989). In these cases, the SMA fibers within a composite are thermally
driven to change the natural frequencies or alter the critical buckling load of
the structure.

In this paper an application of SMA fibers to dynamic response modifica-
tion of laminated beams is presented. The concept of active control is based on
the ability of SMA material to change its stiffness when passed between auste-
nite and martensite phases. A thermal response of the composite is obtained
by considering an energy balance assuming the quasi-steady one-dimensional
model of conduction (Wirtz et al., 1995) and the cosine phase transition model
(Liang and Rogers, 1990).

The temperature and martensite fraction responses for the phase trans-
ition of SMA are calculated and applied to determination of time relations
of the first natural frequency during the transition process. The influence of
temperature on natural frequencies of the system has been analysed for soine
different locations of activated plies and directions of SMA fibers. The effect
of material transformation from the martensite phase to the austenite one on
the frequency response function (FRF) is also presented.

2. Model for the SMA transition process

The unique behaviour of SMA materials is caused by the reversible mar-
tensite phase transition. One of the most important characteristics of SMAs is
the martensite volume fraction being a function of temperature. In the stress-
free state, the martensite fraction changes as shown in IMig.1 (cf Liang and
Rogers, 1990). The four temperature parameters are designated as martensite
finish My, martensite start M, austenite start A,, austenite finish Ay,
respectively. Due to the effect of the stress induced phase transition, these
parameters are related to the applied stress.

Based on the Liang and the Rogers model of the transition process (Liang
and Rogers, 1990), the martensite fraction during the M — Aand A - M
transitions under stress-free conditions may be approximated by a cosine func-
tion of temperature as follows

(1 + cos ml;) J=AM (2.1)
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Fig. 1. Martensite fraction during transition versus temperature

where 6; € [0, 1] is the nondimensional temperature of SMA defined separately
for M — A (heating) and A — M (cooling) processes
T - A
ba = A =4, On = M, = M; (2.2)
Herein, it was assumed that both the transition processes are complete and
start from the state of purely martensite or austenite phase, respectively.
Experimental evidence shows that the elastic modulus of SMA depends
strongly on the martensite fraction. For example, the Young modulus of nitinol
increases by 3 to 4 times within the M — A transition temperature range
(Jackson et al., 1972). It may be assumed that the Young modulus relates
linearly to the martensite fraction

E:EA+(EM—EA)£ (23)
where
E - Young modulus at temperature T
Ea,Ey - Young moduli in the austenite and martensite phases,
respectively.

The SMA fibers can be heated by passing a current through them, and
be cooled due to conduction by stopping current flow and by reducing the
ambient temperature.

Assume that SMA fibers are initially kept in the martensite phase at the
temperature A; by steady application of the power P, and then at time
t > 0 the additional power AP is supplied increasing the temperature T and
changing the martensite fraction £ from 1 to 0 during the phase transition.
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The heat balance can be represented by the following equation (cf Wirtz et
al., 1995)

(Py + AP)dt = qdt — qupnVadé + CpdT (2.4)
where

q — time dependent rate of the heat lost via conduction through
the laminate (the matrix with other fibers) to the heat sink
at the ambient temperature 7Tj

gn — heat of SMA transition

pn — density

V.. — volume of SMA fibers

C, — Theat capacity with ¢, the specific heat of the SMA.

The initial power Py is determined by the relation
Py = K(A, —Tp) (2.5)

where K is the conductance of the laminate.

Assuming the quasi-steady model of the heat conduction losses through the
laminate and neglecting the thermal capacity of the matrix, ¢(t) is obtained
from the relation

a(t) = K[T(t) - Ty) (2.6)

Substituting Eqs (2.1), (2.2),, (2.5) and (2.6) into Eq (2.4), the heat balance
may be rewritten in dimensionless form

dé
- RMAB(eA)}—d;*l — R, — 04 (2.7)
where
T - nondimensional time, T = Kt/C,
Rara — dimensionless heat of the M — A transition,
Bya = Qn/[cn(Af - Aé)]
R, — dimensionless heating power, R, == AP/[K(A; — A,)].

The function B(f4) = 0£/00 4 relates to the phase transition model. In
the considered case, since zero stress conditions are assumed the martensite
fraction depends temperature only (see Eq (2.1)).

The cooling process starts from the purely austenite phase of SMA fibers
which are maintained at the temperature M,. When the ohmic heating is
stopped the SMA fibers are cooled by conduction through the laminate ma-
terial to the ambient temperature Ty. Neglecting other conduction processes,
the heat balance analysis leads to the equation (cf Wirtz et al., 1995)

Gnpr Vpdl — CpdT — gdt =0 (2.8)
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In the case of quasi-steady conduction cooling Eqgs (2.1), (2.2)s, (2.6) and (2.8)
may be combined and written in the dimensionless form

do s

[RAMB Orr) — []— =0y +S (2.9)
where
Rap — dimensionless heat of the A — M transition,
Ram = qn/lcn(My — My)]
S — temperature ratio which is characteristic for conduction,

S = (My—-Ty)/(M; — My).
The solutions to Eqs (2.7) and (2.9) give the relation between the nondi-
mensional time t and nondimensional temperature g4 or ga for the M — A
or A — M transitions, respectively.

3. Dynamical relations of laminated beam

Let us consider a thin, rectangular, symmetrically laminated one-dimen-
sional plate with one edge clamped and mass uniformly distributed at the
opposite edge as shown in Fig.2. The plate is composed of homogeneous or-
thotropic layers. Due to the control concept some of the layers are reinforced
with SMA fibers. It is assumed that thermally activated SMA fibers can freely
elongate in the matrix.

In most practical applications of thin plates an approximate plane stress
state exists. A direct consequence of plane stress are the assumptions formu-
lated by Kirchhoff that transverse shear and normal strains are negligible so
the problem of flexural displacements can be reduced to a two dimensional
study of the middle plane. According to the Kirchhoff hypothesis the flexural
vibrations w(z,y,t) of specially orthotropic plates are determined from the
equation (cf Whitney, 1987)

A w Hw B‘I_w 0w

Dy~ 22t T +2(Dy2 + 2D66)W -5 =P (3.1)

where D;; are elements of the stiffness matrix, p(z,v,t) represents an external
load, p = %Zk prhr denotes the equivalent density, h = )7, hy is the total

thickness while hx = 2zx — 251 and pg denote the thickness and density of
the kth layer, respectively.
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Fig. 2. Model of the plate with notation of layer co-ordinates

Assuming that the length [ is much larger than the width b of the plate,
and the intensity of load p does not change along the y direction, displace-
ments w may be considered as independent of the width co-ordinate (y axis).
Therefore, the equation of motion of a one-dimensional plate reduces to the
simple form characteristic for laminated beams

0w 0w
Dy,— h— = 2
g a +p g2 P (3:2)
where N
1
Dy, = 3 >N (2~ 2y) (3.3)
k=1

The stiffness terms Q¥ for the kth layer are referred to the plate axes and
were given by Tsai and Pagano (1968) in the following form

Q’fl =U, +Uscos2a + Us cos 4o (3.4)
where
1 1
U= §(3Qu +3g22 + 2q12 + 4s6) Uy = §(q11 ~ 422)
(3.5)
1
Us = g(Qu + go2 — 2q12 — 4qe6)
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are the terms independent of the angle « between the lamina and the plate
principal axes. The lamina stiffness coefficients ¢;; for plane stress are of the
form

g1 = By 12 = vor _ V19 B
n=—— 12 = =
1 —wvppry 1 —vpver 1 —vipvy
(3.6)
Eyo
g = ———— go6 = G2
1 —vioug

where FE;;, G;;, n;; denote the Young modulus, shear modulus and Poisson
ratio of the kth layer, respectively.

In the considered case the equation of motion (3.2) must satisfy the folo-
wing boundary conditions

2,
’LU(O,t) =0 2_1: z=0 - ZTL;) =l -
= (3.7)
0w _om w
@ z=l - D—HW z=l

where m is the uniform mass intensity along the plate edge.
According to the beam theory the solution to the boundary eigenvalue
problem gives the shape of nth vibration mode

X, = (sink,z —sinhk,z)(cos kpl + coshk,l) + (3.8)
3.8

—  (cos kpz — cosh kpz)(sin k,l + sinh ky,[)

The eigenvalues ky, (n =1,2,...) are calculated from the characteristic equ-
ation

(k1)?(1 + cos kl cosh kl) — p(kl)*(sin kl cosh kl — cos klsinhkl) =0  (3.9)

where p = m/(phl) denotes the ratio of the mass at the edge to the mass of
the beam.
The steady-state responses are analysed so the system is harmonically

loaded according to the relation
p(z,t) = poe’*d(z ~ 1) (3.10)
where d¢(z — [) indicates the Dirac function.

3 — Mechanika Teoretyczna
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The flexural vibrations of the laminated beam can be expressed by the
frequency function

X .
Z () (3.11)
— Ta (Wi — Wi+ jnwiw)
where wy, is the natural frequency which satisfies the relation
D !
n = Kyt 2 = /Xﬁ@) da + plX2(1) (3.12)

0

In Equation (3.11) the internal damping is represented by the Kelvin-Voigt
model with the equivalent constant 7 and serves to create a finite response at
resonance.

Thermally activated SMA fibers, due to their material transition process,
cause a change of the bending stiffness of the larninate so the natural frequency
of the systemn can be modified.

4. Results

Calculations have been made for [0°,—30°,30°,90°,30°, —30°,0°] the
glass-epoxy laminated beam of dimensions [ = 0.25m, & = 0.02m and
h = 0.0042m. The activated layers which are reinforced in 60% with SMA
fibers are symmetrically located about the midplane.

The material properties of layers and thermophisical parameters of SMA
fibers which are assumed to be made of nitinol are listed in Table 1. Accor-
ding to the SMA properties the nondimensional heat of transition are of the
following values Farqa = 1.1 and Rap = 1.4

In Fig.3 and Fig.4 the dimensionless temperature and martensite fraction
time responses for the M — A as well as A — M transitions are presented.
The results are obtained for different power ratios IZ,, of heating process
and temperature ratios S, which characterise cooling of SMA fibers. Figures
show that increase in both the dimensionless heating power and lieat sink
strength causes significant changes in the temperature and martensite fractior
responses. In both cases, the complete transition process runs faster for greater
values of R, and S.
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Table 1. Material parameters used in calculations

Young modulus £y N/m? | 3.4-10% |
Young modulus Ej4 N/m? [ 7.0-10%°
Young modulus E; N/m? | 5.5-10%
Young modulus Fa9 N/m?J 1.8- 100
Shear modulus G N/m? | 9.1-10%
Poisson ratio vy 0.25
Equivalent density p | kg/m? | 1.8- IOL
Martensite start temp. My, | °C 15
Martensite finish temp. My °C 5 |
[Xustenite start temp. Aj °C 17
| Austenite finish temp. Ay °C | 30
 Specific heat of SMA ¢, J/kg°C 883
LHeat of transition of SMA ¢, [ J/kg 12600 )

The ability of thermally activated SM A materials to change their stiffness
is used for controlling of the laminate natural frequencies. The effects of va-
riations in the power ratio R, (heating) and temperature ratio S (cooling),
respectively, on the first natural frequency is shown in Fig.5. The nondimen-
sional form of frequency as follows

12 p
= W " (4.1)
As it is expected the increase in the rates of power heating and heat sink
decrease the time of both the transition processes. In Fig.6 it is shown liow the
activated fiber volume fraction ¢ which is defined as the ratio of the volume of
activated SMA fibers to the total volume of SMA fibers in the layer influences
the natural frequency responses. Results are obtained for the heat of transition
parameters R, = S = 3. We can notice a possibility of changing dynamical
properties of the system by activation only a part of the SMA fibers.

Fig.7 shows the influence of the activated layer location on the first natu-
ral frequency being a function of temperature during the M — A transition.
The activation of the layers which are placed near the midplane causes a rota-
tion of the plots and significantly reduces the range of frequency changes. The
efficiency of activated layers dramatically diminishes when the SMA fibers be-
come perpendicular to the beam longitudinal axis. This effect can be observed
by comparing the plots of the first natural frequency within the transition
temperature range presented in Fig.8. These plots are obtained by changing
the SMA fiber direction in the activated outer layers.
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Fig.9 shows the effect of activation of the outer layers on the frequency
response functions (FRF) calculated for the free edge of the beam (z = 1).
To obtain a finite response at resonance the calculations are made assuming
the material damping parameter 7 = 2-107%s. Upon heating the SMA fibers,
the M — A transition process causes an increase in the bending stiffness so
the resonance frequencies become greater. The resonance amplitudes decrease
slightly because of the applied model of internal damping.
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Fig. 9. Effect of heating on the frequency response function

5. Conclusions

Both the theoretical analysis and numerical results prove the utility of the
adaptive control concept based on the thermal activation of SMA fibers within
the laminate. Since the reversible martensitic transition of SMA material, the
bending stiftness of the laminated beam may be modified and adapt to the
external load conditions for vibration amplitudes to be reduced. Due to the
quasi-steady 1D model of conduction the natural frequency time relations are
obtained. It has been shown that the increase in both the heating power and
heat sink strength significantly shortens the time of phase transition process
as well as the time of change of the natural frequency values. The efficiency
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of the activated layer depends on its location (distance to the midplane) and
direction of SMA fibers, and becomes extremely great for the activation of the
outer layers reinforced with SMA fibers parallel to the beam longitudinal axis.
In the paper the possibility of vibration control by a partial activation of SMA
fibers has been also presented.
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Dynamika termicznie uaktywnianej belki laminowanej wzmocnionej
widéknami z pamiecig ksztaltu

Streszczenie

W pracy przedstawiono zastosowanie widkien ze stopu z pamiecig ksztattu (SMA)
do modyfikacji wlasciwoSci dynamicznych belek laminowanych. Koncepcje adapta-
cyjnego sterowania oparto na unikalnej zdolnosci stopéw SMA do wyraZnej zmiany
warto§ci modulu Younga w procesie odwracalnej przemiany martenzytycznej wywo-
lanej temperatura. Zalozono, ze warstwy laminatu sa ulozone i uaktywniane syme-
trycznie wzgledem powierzchni érodkowej, a widkna SMA moga swobodnie odksztal-
caé¢ sie w osnowie. Symulacja numeryczna dotyczy belki laminowanej utwierdzonej
wzdluz jednego brzegu, z masy réwnomiernie rozlozona na swobodnym, przeciwleglym
brzegu. Zgodnie z przyjetym stacjonarnym, jednowymiarowym modelem przewodnic-
twa cieplnego, wyznaczono przebiegi czasowe temperatury i zawartosci martenzytu
we widknach SMA, oraz przebiegi podstawowej czestosci wlasnej w zakresie prze-
miany fazowej. Zbadano wplyw temperatury na czestosci wlasne zmieniajac polozenie
warstw uaktywnianych a takze kierunek ulozenia wiékien SMA. Zakladajac wymu-
szenie harmoniczne dzialajace na swobodny brzeg belki, wyznaczono charakterystyki
amplitudowo-czestotliwo$ciowe odpowiadajace pelnemu zakresowi transformacji fazy
materiatowe;j.
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